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Abstract

The problem of pricing and hedging of contingent claims in incomplete markets has

lead to the development of various valuation methodologies. This thesis examines

the mean-variance and variance-optimal approaches to risk-minimisation and shows

that these are robust under the convergence from discrete- to continuous-time mar-

ket models. This property yields new convergence results for option prices, trading

strategies and value processes in incomplete market models.

Techniques from nonstandard analysis are used to develop new results for the lifting

property of the minimal martingale density and risk-minimising strategies. These are

applied to a number of incomplete market models:

The restriction of hedging dates in a general class of discrete- and continuous-time

models is studied and it is shown that the convergence of the underlying models

implies the convergence of strategies and value processes.

Similar results are obtained for multinomial models and approximations of the Black-

Scholes model by direct observation of the price process. The concept of D 2-conver-

gence is extended to these classes of models, including the construction of discreti-

sation schemes. This yields new convergence results for these models as well as for

option prices in a jump-diffusion model.

The computational aspects of these approximations are examined and numerical re-

sults are provided in the case of European and Asian options.

For ease of reference a summary of the main results from nonstandard analysis in

the context of mathematical finance is given as well as a brief introduction to mean-

variance hedging and variance-optimal pricing.
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Introduction

Let us consider a simplified model of a financial market in which some asset S (a com-

pany share, government bond, foreign currency etc.) is traded; the price of S follows

a random process. We also assume the existence of a risk-free bank account which

allows us to transfer money over time. Let us suppose that the price process of S is

arbitrage-free: this means that it is not possible to invest in S in such a way that,

with some positive probability, the return on this investment exceeds the return on

the bank account.

A contingent claim H is a contract with a prescribed maturity date T which results in

a certain cash value for its holder at time T, the amount depending on events which

took place during the "life" of the claim (usually this value depends on the behaviour

of the risky asset up to time T). These claims are often options which means that

the contract gives its holder the right to this cash value (which may be negative) but

allows him to default.

Suppose we were able to trade in S in such a way that, starting from some initial

balance c of the bank account and not adding or withdrawing extra funds, we could

match the value of the claim H in all possible events. Then this self-financing trading

strategy and H would be equivalent and the initial investment c would be an arbitrage-

free price for this claim. Note that in this case the risk in issuing the claim is zero

as the above hedging strategy insures the issuer against all eventualities. If every

claim H in this model can be replicated in this way the model is called complete.

In probabilistic terms it can be shown that (after discounting all entities at the risk-

free rate) the above situation is equivalent to the existence of a unique martingale

measure for the stochastic process S and that c has to be the expectation of H under

this measure.

The idea of perfect replication is fundamental for the methodology of arbitrage-free

pricing in complete markets. However, in most cases — in particular in practical sit-

uations — markets are incomplete: this means that there exist claims whose intrinsic

risk cannot be reduced to zero.

When faced with an incomplete market several questions arise: How should the risk

associated with a claim be measured? How should an "optimal" strategy be chosen

in order to minimise this risk? What replaces the arbitrage-free price c for the claim

in this situation?

The question of optimal trading is of particular practical importance for financial

institutions: not only has a claim to be priced in the market but its issuer also has

to manage the risk associated with this instrument. The choice of a suitable pricing

and hedging methodology is still a topic of most 'active discussion and research.

At the same time the question of discrete- vs. continuous-time modelling still poses
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many open problems, in particular in connection with convergence in these models:
If a sequence of discrete-time market models converges to a continuous-time model,
under which conditions does this imply that the prices of contingent claims and
optimal trading strategies in these models converge as well?

One basic requirement for a pricing methodology for incomplete markets should be
precisely this stability tinder convergence for option values and trading strategies'. In
this thesis we consider two related approaches (mean-variance hedging and variance-
optimal pricing) for which we will show that they have this stability property. As
a suitable mode of convergence from discrete- to continuous-time stochastic models

we are using the notion of D 2-convergence which originates from a natural lifting

condition in nonstandard analysis.

Outline of this Thesis

Chapter 1 presents a summary of the mean-variance hedging and variance-optimal
pricing methodologies, both in discrete and continuous time. We emphasise the con-

nections between these approaches, in particular in the transition from discrete- to
continuous-time models with its resulting technical difficulties. Most of the results
presented here are taken from recent research articles and this material has not pre-
viously been presented in this unified form.

In Chapter 2 we review briefly the main results from nonstandard measure theory and
the nonstandard approach to stochastic integration in the context of their application
to mathematical finance. We define the notion of D 2-convergence and summarise the
main convergence results in the context of the complete Cox-Ross-Rubinstein and

Black-Scholes models.
As a first application of nonstandard methods in incomplete markets we consider in
Chapter 3 the problem of restricted hedging in discrete- and continuous-time models
for a finite number of possible hedging dates. The results in this chapter extend
previous work by Mercurio and Vorst [MV96] to a larger class of models. Moreover, we

obtain convergence results for trading strategies and value processes in these models.
New nonstandard results which are of particular importance in the study of incom-
plete market models are obtained Chapter 4. We first develop a criterion which allows
us to deduce the lifting property of the density for the minimal martingale measure

from a decomposition of the price process (or, alternatively, the return process) of

the risky asset2 . This is then applied to two incomplete models which can be re-

garded as internal versions of the models considered by Runggaldier, Schweizer and

'This requirement is in general not satisfied: e.g. it lias been shown in [Pri95] that the upper
and lower option prices cm and cm i n as defined in [HK79] are not stable under convergence. Here
cm. = sup E[H] and cmm = inf E[H] with the sup / inf taken over all martingale measures for S.

2 A corresponding standard criterion was obtained independently by Prigent [Pri97].



Introduction	 3

others [RS95, MV96]. Finally, we are able to extend the results of Cutland, Kopp
and Willinger [CKW91, CKW93b] on lifting properties for trading strategies and
value processes to the case of incomplete discrete-time models which have complete

continuous-time models as their standard parts.
These results are then applied in Chapter 5 to two incomplete discrete-time approxi-
mations of the Black-Scholes model, using multinomial trees and direct observations

of the continuous-time price process, respectively. We can extend the notion of D2-
convergence to these models and obtain new convergence results for trading strategies
and value processes, again extending previous results in [CKW93a, RS95, MV96].

In the final Chapter 6 we examine the practical aspects of these models in terms of

their utility for numerical approximations. Explicit examples and numerical results

are provided for European and Asian options.
We conclude with a brief discussion of the results and suggestions for further research.



Chapter 1

Pricing and Hedging in

Incomplete Markets

Under the assumption of no-arbitrage any option price has to be the expectation of the

discounted value of the option at maturity under a martingale measure for discounted

asset prices l . However, this martingale measure is only unique for complete market

models, so that in general we are left with an infinite number of choices (the collection

of martingale measures is a convex set). Different optimality criteria for the pricing

and hedging of claims will lead to different choices for this "pricing measure".

This chapter presents two possible optimality criteria: mean-variance hedging and
variance-optimal pricing, as developed in a series of papers by F011mer, Schweizer

and Sondermann (the main references are [FS86, FS91, Sch91, Sch93b, Sch94b]). We

will see in the following chapters that these pricing concepts have a very appealing

stability property with respect to convergence of option values and trading strate-

gies when continuous time models are approximated by discrete time ones. There

are of course numerous other approaches to option pricing under incompleteness,

e.g. [Dav97, EQ95, KLSX91, Cvi97].

A note on our terminology: some authors prefer the use of "option value" instead

of "option price" in incomplete market models to indicate that these values are not

obtained by arbitrage considerations (cf. [MV96] or [RS95]). However we will continue

to use the word "option price", keeping in mind that this price usually depends on

individual preferences of the market agent.

In order to examine the convergence from discrete to continuous time models we

present the mean-variance hedging approach for both types of models in Section 1.1

and 1.2. The final Section 1.3 then summarises the connections between mean-

variance hedging and variance-optimal pricing. These first sections also introduce

'In continuous time the notion of no-arbitrage is made precise by the concept of "no free lunch
with vanishing risk" (see [DS94]).
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the notation and terminology which will be used in the following chapters.

We will assume throughout that all entities in our models are already discounted,
i.e. the bank account process is constant equal to one. This will simplify the notation
and does not cause any loss of generality since all other price and value processes can

be viewed relative to the (possibly stochastic) instantaneous short rate (cf. [HK79]).

1.1 Mean-Variance Hedging in Discrete Time

Let T E N and define the discrete time line

T := {0, 1,	 , T}.

T will represent the set of possible trading dates in this discrete time economy,
i.e. changes in portfolios are only possible at times t E T.
The price of the risky asset is given as a stochastic process S on some complete
probability space (1Z, .T, .P) with a filtration F = (Yt ) tET. We assume that .7-0 is
trivial (i.e. it contains only sets of measure zero and one, so that every .F0-measurable
random variable is constant) and that ..T = .FT . For S to be a price process we require
that S = (St)teir is F-adapted and square integrable, i.e. St E L2 (P) for all t E T.

Notation 1.1.1. For any process X = (Xt)tET define AXt := Xt+1 — Xt , t e T.

Note. This definition of "forward" rather than "backward" increments for discrete
time processes is different from the notation used in [Sch88]. However, it matches
exactly with the definition used in the nonstandard theory of stochastic integration
(cf. Section 2.2) and therefore we will use it throughout.

A portfolio is a pair (Ot ,/kt ) e 1R2 where Ot represents the number of units in the risky
asset held between time t and t+1 (more precisely, O t is held over the interval (t, t+1])
and ipt the number of units of currency held in the risk-free bank account. However,
Ot , Ot have to be chosen after the prices at time t are announced to prevent the use of
"insider knowledge" about the price S. After the terminal time T we sell the risky
asset and allow one final adjustment of the bank account2 . These assumptions are
reflected in the following definition:

Definition 1.1.2. A trading strategy q5 is a pair of processes 0 = (0,0) = (et, Ot)to
satisfying the following conditions:

(1) 0 is IF-adapted, i.e. Ot is Yt-measurable for t E T, and OT = 0;

2 This extra freedom is crucial for the replication of options in incomplete markets as it allows

the addition or withdrawal of cash to "balance the account". For complete market models this final

adjustment is not needed.
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t-1
(2) E euAst, E L2 (P) for t E T;

u=o

(3) 4) is IF-adapted;

(4) BtSt + i,bt E L2 (P) for t E T.

Then the following processes can be associated with a trading strategy 0:

the value process: Vt (0) := OtSt +bt,

the (accumulated) gains process: Gt (0) := E0,6Su,
u.o

the (cumulative) cost process: Ct (0) := Vt(0) — Gt(0),

for t E T. The gains process represents the accumulated change in the portfolio

market value due to price changes up to (and including) time t. The value process
gives the value of the portfolio after it has been adjusted at time t.
We see that a self-financing strategy (as defined e.g. in [HK79, HP81]) has a constant
cost process C = Co. This is the motivation for the following definition:

Definition 1.1.3. A trading strategy 0 is called mean-self-financing if its cost pro-
cess C(4)) is a martingale.

Note that any mean-self-financing strategy is completely determined by its first com-
ponent 0 together with its terminal value VT.
A contingent claim — or European option — is a random variable H E L2(P)

representing a random payoff at time T.

Definition 1.1.4. Let H E L2 (P). A trading strategy 0 is called H-admissible if
WO) = H, P-a.s.. We then say that di generates H.

Given a claim H it is our aim to find an "optimal" strategy which generates H, where
we use the following optimality criterion:

Local Risk-Minimisation

Let H E L2 (P) be a contingent claim. Define the risk process R(0) of a trading
strategy 4) by

Rt(q5) := E [(CT() — Ct(0)) 2 I Yt]

	

t E T.	 (1.1)

We could then look for an H-admissible risk-minimising strategy 0 in the sense that
Rt (d)) < lit (c15) for any t E T, where qb and i-k agree up to time t, and both 0 and [I)
generate H.
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However, it turns out that is risk-minimising if and only if it is mean-self-financing

and R(q5) < t E T, for all H-admissible strategies not only for those

sharing a "common past" with .1) (Proposition 1.4 in [Sch88]). Precisely this very

strict characterisation prevents a general solution of this optimisation problem; an

example of a situation in which there does not exist any risk-minimising strategy is

given in [Sch88, pp.16-17].

This leads to a weaker notion of risk-minimisation in which the local risk defined by

r(q) :=- E [(Ct+1(0) — Ct(0))21.Ft]

= E [(Vt± i (0) — OtASt — Vt(0)) 2 Tt]
	

(1.2)

for t e T \ {T} is to be minimised by an appropriate choice of Ot and Ot.
As in the risk-minimising case above it can be shown that any locally risk-minimising

strategy is mean-self-financing (Lemma 1.7 in [Sch88]). A candidate for such a strat-

egy can be found by a backward sequential regression procedure, starting from the

requirement VT = H	 IT and setting3

Coy	ASt
(1.3)

Var [ASti Tt]

(where or := 0 if Var[ASt lYt] = 0)

VtH := E [ Vt1-11-1 	et' AStlYt] (1.4)

011	— Or St (1.5)

for t G T \ {T} . Finally, set 41 := 0 and 41 := H. In (1.3) Or can be viewed as
the best linear estimate for V1+11 based on the information at time t (cf. (1.2) and

see [FS89] for a more expository account). (1.4) and (1.5) simply ensure that the

strategy 0H	 (oH , OH) remains mean-self-financing. In particular, V(')= vtH
for all t e T. If (1.3)—(1.5) define a trading strategy then it is the unique locally

risk-minimising strategy for the claim H (Proposition 1.8 in [Sch88]).

However, (1.3) does not guarantee that the integrability conditions (2) and (4) in

Definition 1.1.2 are satisfied. This can be achieved by imposing a nondegeneracy

condition on the price process S:

(E[AStiFt1)2 <L, P-a.s., for t E T \ 101
Var [ASt I•Ft]

for some constant L E R.

3The conditional variance and covariance is defined in the usual sense: Let g be a sub-a-algebra
of .F and X, Y E L2 (P). Then Var[Xlg] := E[X 2 I g] — E[xig] 2 and Cov[X, yig] Epcy lgj —
E[Xig]E[yig].

(1.6)
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Remark 1.1.5. In terms of the behaviour of S as a risky asset condition (1.6) means
that the expected gains from holding S — given by E[AStl.Ft] — are balanced by a
sufficiently strong random behaviour of S — expressed by the conditional variance.
In order to realise a profit from holding S an investor therefore has to take a certain
risk. This corresponds to the usual assumption of no-arbitrage which means that the
possibility of a riskless profit from an investment is excluded.

If (1.6) is satisfied then

E [(9tASt) 2] � E [Vt2+1] <00
	

(1.7)

(see [Sch88], Lemma A.3.3), so that (1.3)—(1.5) indeed define a trading strategy OH
for H, which is then the unique locally risk-minimising strategy generating H. The
initial investment V011 for this strategy can be considered a fair hedging price for the
claim H. The process V H is usually called the intrinsic value process of the claim H.

Remark 1.1.6. In the special case where the market model is complete we know that
there exists a self-financing H-admissible strategy OH . For this strategy the risk
process R(011 ) _. 0 and hence OH is the unique risk-minimising strategy generating H.

In this case VI:ifi and ASt are linearly dependent, so that the estimate in (1.3) provides
a perfect fit. (cf. [FS89]).

A Decomposition of the Contingent Claim

From now on we assume that the nondegeneracy condition (1.6) is satisfied.

To gain a better understanding of the structure of the locally risk-minimising strategy
we define the discrete Doob-Meyer decomposition of the price process S by

S = So+M+A

where AAt := E [ ASti Tt] ,

LMt

and Ao := 0,

:= ASt — AAt

Mo := 0.

Then M is a martingale and A a predictable process; both M and A are square-
integrable. Equation (1.4) can then be written as

VtH = E [ Vt-HF11 Tt] — eflAAt*
	 (1.8)

Following [Sch94a] we define a square-integrable martingale L by

Vt141.1 — E [ Vt-HEll Id — Or AMt, t E T \ {T},	 (1.9)

Lt; := 0.
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Then the martingales M and LH are orthogonal, i.e. their product is a martingale,
or equivalently

E [t1Mt ALF I Ft] = 0 P-a.s..	 (1.10)

Note that ALF LS.Ct(Olf), so that LH represents the extra cost C( 1 ) — Co(SPH
required by the strategy OH . This additional cost process is orthogonal to the mar-

tingale part of the price process S.
Using (1.8) we have

LW = ASt 64 for t E T \ {T}

and IT = E[H — E sH
.5=0

so we have obtained a decomposition

T-1
H = VoH -F ECAS„ + ,

u=0
(1.12)

where LH is a square-integrable martingale orthogonal to the martingale part of S.
(1.12) is the discrete time version of the so-called Eillmer-Schweizer decomposition
(see Section 1.2). Note that in discrete time this decomposition exists under the sole
assumption of the nondegeneracy condition (1.6).

Remark 1.1.7. In the case where the price process S is a martingale the decompo-
sition (1.12) simplifies to the (discrete time) Kunita-Watanabe decomposition of H
(see e.g. [Met82] for the general existence and uniqueness of this decomposition) and
the option price is given as VoH = E[H]. It turns out that in this case the locally
risk-minimising strategy defined in (1.3)—(1.5) is in fact risk-minimising (see [Sch88,
pp.23-24]).

The Minimal Martingale Measure

As mentioned at the beginning of this chapter any option price in an arbitrage-free
market has to be given as the expectation under some martingale measure for the
underlying price process. We will now describe the martingale measure associated to
the value V01 in (1.11).
Define

E E ASti 7.t1	 t E \ {T}
AA t 

at Var [ASt l Tt] E RAMt) 2 1 Ft]
and set

t-1
= 11(1 — asAms).

(1.13)

(1.14)
s=0
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The process 2 is a square-integrable martingale (Proposition 2.3 in [Sch93b]). The
random variable 2T will become the density for our martingale measure. However, 2T

may take negative values. We therefore introduce the notion of a signed martingale
measure (cf. [Sch93b]):

Definition 1.1.8. A signed measure Q on (C2, .F) is called a signed martingale mea-

sure for S if Q(S1) = 1, Q < P on F with dPIdQ E L2 (P) and

r dP A Q
dQ ""jt

Ft] = 0	 P-a.s. for t E T.

We then have the following result (see [Sch9313], in particular Lemma 2.7 for details).

Proposition 1.1.9. If S satisfies the nondegeneracy condition (1.6) then

dP := 2T dP	 (1.15)

defines a signed martingale measure for S and it follows from (1.10) and (1.12) that

= E [111 := E[2T

Furthermore

VtH = t[HI.Ft] := Er2THIFtl•

The option price corresponding to the locally risk-minimising strategy is therefore
indeed given as the expectation under a (signed) martingale measure for price of the
underlying asset.
The measure P is called the (signed) minimal martingale measure 4 for S and will
play a crucial role in the problem of risk-minimisation in continuous time as well as
in the study of convergence from discrete to continuous time models.
We note that the decomposition of the claim H can also be computed under the
minimal martingale measure, with equations (1.3) and (1.9) simplifying to

0H. 	
t E [(St) 2 I Ft]

and ALr	 — OAS.	 (1.16)

(where the conditional expectations are defined as in Definition 1.1.8 are assumed to
exist). In particular, L remains a martingale under P which is orthogonal to S.

1.2 Mean-Variance Hedging in Continuous Time

In continuous time the set of trading dates is T 	 [0, 71] C R for T> 0. We assume
that IF = (.7.0tET is a filtration on some complete probability space (0,Y, P) which

4 The reason for this name will become clear in the following section (see Remark 1.2.7).
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satisfies the usual conditions (i.e. IF is right-continuous and complete), with .7 .0 trivial
and .FT = .F. The price of the risky asset is now given by a semimartingale S E S2 (P),

i.e. S admits a Doob-Meyer decomposition

8=So+M+A

where M is a square-integrable martingale and A is a predictable process with square-
integrable variation. Then the predictable quadratic variation (M) exists (see [Met82]
or [E1182] for definitions) and we make the additional assumption that

A is absolutely continous with respect to (M). 	 (1.17)

This means that there exists a predictable process a such that the Doob-Meyer de-
composition of S is given by

S= So + f a d(M) + M	 (1.18)

Assumption (1.17) is a nondegeneracy condition similar to (1.6) in the discrete case,
again corresponding to the assumption of no-arbitrage in the model.

We can now define trading strategies and their associated value, gains and cost pro-
cesses analogously to the previous section, replacing the finite sums by stochastic
integrals:

Definition 1.2.1. A trading strategy cb is a pair of processes (0,0) = (et, 11)t)teT with
0 predictable and 0 adapted such that

(1) 0 E L2 (S), i.e.

E[fT 
0d(M) 3 + (f

T
 led d 14)

2
] < oo.

0	 0

(2) the value process Vt (0) := OtSt + Ot is square-integrable.

Let cb be a trading strategy. Because of (1) the stochastic integral f OdS exists and is
square integrable. Therefore the gains process Gt (0) := fot OudSu and the cost process
Ct (0) := Vt (cb) — Gt (0) are square integrable.

Local Risk Minimisation

The risk process R can now be defined exactly as in (1.1) in discrete time and one
could again consider the question of finding a risk-ininimising strategy q5H for a given
claim H in the same sense as above. It can again be shown that any risk-minimising
strategy is mean-self-financing, i.e. C(011) is a martingale.
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In the case where S is a square-integrable martingale under P (i.e. A FE 0) this
problem was solved in [FS861 by using the Kunita-Watanabe decomposition of H
(cf. Remark 1.1.7 above):

T
H = E[H] + f 0.1 I dSu + LT

0
(1.19)

where 0 E L2 (5) and L is a square-integrable martingale strongly orthogonal to S.

Theorem 1.2.2 ([FS86, Theorem 2]). Suppose S is a square-integrable martin-

gale. Then there exists a unique H -admissible risk-minimising strategy O H = (01 I ,WH)

given by OH in (1.19) and ipii .. E[HI.Ft] — ell St•

But we already know from Section 1.1 that there is in general no risk-minimising
strategy when P is no longer a martingale measure for S.

It is therefore natural to define the notion of local risk-minimisation as in discrete
time, replacing the definition of r(0) in (1.2) with an infinitesimal version. This
involves considerable technicalities using the concept of "small perturbations" of a
trading strategy which leads to the study of differentiation of semimartingales; details
can be found in [Sch91].

However, under the following further assumptions on S it is possible to obtain an
alternative characterisation of locally risk-minimising strategies which translates our
problem into a question about orthogonality of martingales.
We assume from now on:

(Al) A is continuous

(A2) the density a in (1.18) satisfies Em[lal . log+ Ian <00 (here Em[ . ] denotes the
expectation with respect to the Doleans measure induced by M).

(A3) S is continuous at T, P-a.s..

Under these assumptions the main result in [Sch90] is used to obtain:

Theorem 1.2.3 ([Sch91, Theorem 2.3]). Let 0 be an H-admissible trading strat-

egy. Then the following are equivalent:

(a) 0 is locally risk-minimising

(b) .1) is mean-self financing and the cost process C(0) is orthogonal to M.

Remark 1.2.4. Many authors use the characterisation (b) in the above theorem as
a definition of locally risk-minimising strategies. , This eliminates the need for the

assumptions (A1)—(A3) at this stage. However, the derivation of this definition from

the discrete time concept of local risk-minimisation is then somewhat obscured. We

will therefore continue with the above assumptions.
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In view of Theorem 1.2.3 and the discrete time decomposition (1.12) it is natural to
look for a so-called Fiillmer-Schweizer (FS) decomposition of the claim H in the form

T
H = Volt ± f off dS,, + Lir,

o
(1.20)

where vcr E IR, OH E L2 (S) and LH is a square-integrable martingale orthogonal
to M.

The mean-self-financing H-admissible strategy OH defined by O H in (1.20) has cost
process C()) = V01  + LH and it is therefore easy to see that the existence of a
locally risk-minimising strategy for H is indeed equivalent to the existence of a FS
decomposition (1.20) of H. We saw that in discrete time such a decomposition exists
for any square-integrable claim H, provided the nondegeneracy condition (1.6) is
satisfied. However, in continuous time the problem of existence of a FS decomposition
for a given claim H becomes more subtle.
We saw above that in the case where P is a martingale measure for S, (1.20) is given
by the Kunita-Watanabe decomposition of H with respect to the stable subspace
generated by S. However, such a projection theorem is not available in our case
where S is only a semimartingale. One possible solution is the following: Find a
martingale measure P for S which also preserves orthogonality relations, then use
the Kunita-Watanabe decomposition of H under this new measure to obtain (1.20).

The Minimal Martingale Measure

Definition 1.2.5. A martingale measure P :::-, P will be called minimal if P = P
on .To and if any square-integrable martingale which is orthogonal to M under P
remains a martingale under P.

An existence and uniqueness result for the minimal martingale measure was first
obtained in [FS91] for a continuous price process S; the following extension can be
found in [MR97, Chapter 26]:

Theorem 1.2.6. Suppose atAMt < 1 for all t E T (here AMt := Mt — Mt—).

(i) The minimal martingale measure P exists if and only if the process

2t := E (— f a dM) 
t
	 (1.21)

is square-integrable under P (here E( . ) denotes the stochastic exponential; see
e.g. [Pro90, p.78] for a definition). In that case, P is given by

dP,.

cli" :-= ZT'
(1.22)
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(ii) P is uniquely determined.

We introduce the mean-variance tradeoff process k of S defined as

this process will also play an important role in the context of variance-optimal pricing
as discussed in the following Section 1.3.

Remark 1.2.7. Even if S does not satisfy the assumptions of Theorem 1.2.6 it is
always possible to define a signed local martingale measure P for S by (1.22) provided
the process 2 in (1.21) is a martingale. P is then called the minimal signed local

martingale measure for S. This measure is minimal in the following sense: Under
the assumption that the process k is deterministic, P is the unique measure that
minimises the distance 11 ` — 1 M

L2 (P) 
over all signed local martingale measures QdP

for S with density V, E L2 (P) (Theorem 7 in [Sch95]).

We now have the following analogue to Proposition 1.1.9:

Proposition 1.2.8 ([Sch94b, Lemma 17]). Suppose the mean-variance tradeoff

process 1? is bounded and H E L2 (P) admits a FS decomposition (1.20). Then

Voll = E [H] := E t2T H] .

If 2 is strictly positive then we also have

t
vtH := Ho + f off dSu+ Lti . .8- [ H I Yt] := E [

2T H I .71] •0

On the problem of existence and uniqueness of a FS decomposition (1.20) we have
the following results: If the price process S is continuous and the density 2 is square-
integrable then every H E L2 (P) has a unique Kunita-Watanabe decomposition under
the minimal martingale measure P which does indeed yield the P-orthogonality of
LH and M (Theorem 3.14 in [F591]). The necessary integrability conditions on OH
and LB' can be deduced from additional assumptions on k and H:

Lemma 1.2.9 ([Sch95, Corollary 10]). Suppose S is continuous and the mean-

variance tradeoff process k is bounded. If H E 17 (P) for some r > 2 then 19 11 E L2(S)
and LH is a square-integrable P-martingale.

Unfortunately, if S is not continuous the decomposition (1.20) can no longer be ob-
tained by using the Kunita-Watanabe decomposition of H under P. This is due to
the fact that the P-martingale 1, from the decomposition under P will typically not
be P-orthogonal to M if M has jumps (see [Sch93a, p.106] and [Sch88, 11.5.3]).

Jo

t
kt := f cqd(m),,;
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In the special case of a jump-diffusion model an explicit construction of the FS decom-

position can be obtained from a martingale representation theorem for jump-diffusion
processes (see [Sch93a, Section 11.8] for details).

The question of existence and uniqueness of the FS decomposition has be settled re-
cently by Monat and Stricker [MS95]; without using the minimal martingale measure
the following result has been obtained:

Theorem 1.2.10 ([MS95, Theorem 3.4]). If the mean-variance tradeoff process

k is bounded then every H E L2 (P) admits a FS decomposition. This decomposition

is unique in the following sense: If

T	 T _
H = Vo + f OudSu+ LT --= PO + f OudSu + LT

0	 0

are two FS decompositions of H then Vo = Vo, 0 = 0 in L2 (M), and LT = LT P-a.s..

A counterexample in the same paper shows that there exists a claim H E L2(P)

without FS decomposition if k is not bounded.

1.3 Variance-Optimal Pricing

Complete market models allow the perfect replication of any claim by a self-financing
strategy. Under incompleteness this property no longer holds. We saw above that
extending the set of admissible strategies to mean-self-financing ones (i.e. allowing
strategies which are "on average" self-financing) leads to an optimality criterion with
respect to the minimisation of the expected additional cost.

Another possible choice for the set of strategies is one where we still insist on the
self-financing property but give up the requirement of perfect replication. Using the

notation of the previous section the value process of a self-financing strategy 0 is
completely determined by its initial investment c = Vo (0) together with its gains

process G,(0). Note that only the first component of a strategy5 0 = (6,0) enters
the definition of the gains process; we will therefore use the notation G(6) for the
gains process in this section.
The problem is now the following: for a given claim H we are looking for a self-
financing strategy which replicates this claim as closely a possible. In discrete time
this means we want to

choose c E IR., E E. such that .E [(c + GT() — H) 2] is minimal,	 (1.23)

5 Here we denote the number of units of the risky asset by e to distinguish it from the strategies
in Sections 1.1 and 1.2.
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where E is the set of all adapted processes such that e tASt E L2 (P) for t E T \ {T}
(cf. Definition 1.1.2). We will denote the solution to this problem (if it exists) by

(cH , 11).
In this section we will outline the solution of (1.23) in discrete and continuous time

and explain the connections to the mean-variance hedging approach of Sections 1.1

and 1.2. In the continuous case we make some additional assumptions on the price
process S which allow us to obtain a solution of (1.23) in an explicit form. Finally,
we mention more general assumptions under which a solution to (1.23) exists in
continuous time.

Discrete Time

We first consider a simpler version of (1.23): for given co E R and H E L2(P)

choose E such that E [(co + GT (6) — H) 2] is minimal.	 (1.24)

Under the nondegeneracy condition (1.6) a solution to (1.24) exists in discrete time.

An elegant proof of this result was given in [Sch93b] where it was shown that in this
case the space of stochastic integrals (identified with their terminal values) G(Z-E) :=
{GT() : E E} is closed in the Hilbert space L2 (P). The optimal strategy el'e° can
then be found by projecting H — co onto G(E).

A counterexample in [Sch93b] shows that there is in general no solution to (1.24) if
the nondegeneracy condition (1.6) is not satisfied.

However, this existence result does not reveal any information about the structure of
the optimal strategy and the choice of the initial portfolio value cH in (1.23). In the
following we will see how these can be obtained from the decomposition

T-1

H = VoH + E erAsi +	 (1.25)
i=0

(cf. (1.12)) of H.

In discrete time the mean-variance tradeoff process k of S is defined as

	

t := E 	t-1 (E [ Ast lip 2 t-1

k = ai AAi	T
Var [ ASt I Tt]

	

i=0	 z=0

(1.26)

(where we have used the notation introduced in equation (1.13)). Note that the
nondegeneracy condition (1.6) is equivalent to the boundedness of K. We now assume
that the mean-variance tradeoff process is deterministic6 , so that the nondegeneracy
condition (1.6) is satisfied if Var[ASt l.Ft] > 0 with positive probability. Under these
assumptions we have the following:

6Under this assumption the problem (1.24) was first solved in [Sch94a]. While the general solution
for bounded k can also be calculated explicitly (see [Sch93b], in particular Theorem 2.4 and 2.8) the
results for deterministic k will be sufficient for our purposes.
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Theorem 1.3.1 ([Sch93b, Corollary 3.2 and Proposition 4.3]). If the mean-

variance tradeoff process k is deterministic then the solution (cH ,e1 ) of (1.23) exists

and is given by

cH = voH	 [H]

(where E[ . ] denotes the expectation with respect to the minimal martingale measure

of Section 1.1) and

AAt	 (iH
=	 ± E[GASt)21.Ftl

	— CH — Gt(e11 ))	 E

where

(1.27)

t-1

VtH = V0H Eq/Asi
i.0

t E T,

is the intrinsic value process of the claim H.

Remark 1.3.2. If S is a P-martingale then the nondegeneracy condition (1.6) is triv-

ially satisfied and the mean-variance tradeoff process k is constant zero. In this case

cH = E[H] and 6 11 = 0H, so that the mean-variance and variance-optimal pricing
methodologies yield the same option prices and optimal trading strategies.

Finally, if the claim H is attainable (i.e. LH -=7- 0 in (1.25)) then the solution to (1.23)
is given by (cH ,6H) = ( V0H , OH) which shows that the variance-optimal pricing ap-

proach is consistent with the usual arbitrage-pricing methodology in complete markets
(see also Remark 1.1.6).

Continuous Time

Let us again assume that S has a Doob-Meyer decomposition of the form

S = So + A + M = So + f a d(M) + M

(cf. assumption (1.17) and equation (1.18) on page 11) and recall that the mean-
variance tradeoff process 7 k of S is defined as

:=
 f

d(M)s f	 dAs.	 (1.28)
0

Recall that a random variable H E L2 (P) admits an FS decomposition if

H =	 f 19„H dS. + (1.29)

71n continuous time there are in fact two processes corresponding to the discrete time mean-
variance tradeoff process (see [Sch9413] for details). However, these two processes are indistinguishable
if A is continuous.
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(cf. equation (1.20)) where Vcr E IR, O H E L2 (S) and LH is a square-integrable
martingale orthogonal to M.

Assuming that A is continuous we now have the following analogue to Theorem 1.3.1:

Theorem 1.3.3 ([Sch94b, Theorem 2.3 and Corollary 4.10]). If the mean-var-

iance tradeoff process k is deterministic and H admits an FS decomposition (1.29)
then the problem (1.23) has a solution (c1 I ,611. ), given by

H TrH
C = v0

H
t
II = or +at(ytH_— CH — G_())

	
(1.30)

t
vtH = Ho + f ouH dsu+ LIT .

o

Note. Under the assumption that the finite variation process A is continuous we see

that at corresponds to the term AAt/E[(ASt ) 2 1.Ft] in discrete time, so that (1.30) is
indeed the continuous time analogue of (1.27).

Remark 1.3.4. If S is a P-martingale the assumptions of Theorem 1.3.3 are satisfied
immediately (the decomposition (1.29) given by the Kunita-Watanabe decomposition
of H), and the solution (cH , 11 ) = (V0H ,OH) again.

A general result on the existence and uniqueness of an FS decomposition has already
been stated in Theorem 1.2.10. In the same paper [MS95] it has been shown that
the space GT (E. ) of stochastic integrals with respect to S is indeed closed under the
sole assumption that the mean-variance tradeoff process k is bounded8 . The same
projection argument as in the discrete case can then be applied to show the existence
of a solution to (1.24). However, an explicit formula for the optimal strategy as
in (1.30) or even for the optimal choice of the initial portfolio is not available in this
general case.

8A counterexample in [MS95] shows that this no longer holds if k is not bounded.



Chapter 2

Nonstandard Methods in

Complete Markets

In this chapter we review various concepts and results from nonstandard analysis in

the context of their application to complete market models in mathematical finance.
We assume familiarity with the basic notions of nonstandard analysis, including the

extensions of the real numbers to a set of hyperreals *R, the nonstandard approach
to calculus as well as the construction and properties of the superstructure V(*R),
including the notions of internal sets and functions, the transfer principle and the

standard part map. Introductions to these concepts can be found, e.g. in [Cut88,

CC95, ACH97].
The first two sections of this chapter deal with the theory of Loeb measure and integra-
tion and the nonstandard approach to stochastic integration. These sections contain
most of the results used later in this thesis; proofs can be found in [CC95, AFHL86] for
Section 2.1 and [AFHL86, HP83, Lin80] for Section 2.2; see [E1182, Met82, Pro90] for
the corresponding standard theory of stochastic integration. In the last two sections
we introduce the Cox-Ross-Rubinstein and Black-Scholes pricing models and review

the main results of Cutland, Kopp and Willinger [CKW91, CKW93a, CKW95] re-
garding the nonstandard approach to option pricing and convergence results in these

models. These methods will be extended to incomplete market models in Chapter 4

and we will obtain new convergence results in Chapter 5.

2.1 Loeb Measure and Integration Theory

An internal measure space is a triple (n, T, /9), where 11 is an internal set, T an

internal algebra of subsets of SZ and P : ..T -4 *R is an internal finitely additive set

function; we assume that P(n) is finite. Important examples of this setup are:

(1) The hyperfinite time line T := {0, At, 2t,... (N — 1)At, T}, where T E 11 and
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At := T IN for some infinite integer N E *N\ N. In this case .F is the algebra of all
internal subsets of T and a set function A : 	 *[0, T] is given by A({t}) = At.

(2) Internal probability spaces, where P : .7" *[0, 1]. Often (but not always) the
set 12 is hyperfinite, F the algebra of all internal subsets and P is the normalised
counting measure on C2, i.e. P({co}) = 1/card(11).

An important result by Loeb [Loe75] shows that internal measure spaces can be
turned into standard measure spaces:

Theorem 2.1.1 (Loeb construction). There is a unique a-additive extension of

°P to the a-algebra a(F) generated by T. The completion of this measure is the Loeb
measure L(P) and the completion of a(F) is the Loeb a-algebra L(Y). Furthermore,

for any B E L(T) there is A E .7. such that L(P)(A A B) = 0.

Definition 2.1.2. The measure space (SI, L(.7), L(P)) (also written (It, FL , PL )) is
called the Loeb space associated with the internal measure space (SZ, F, P).

The Loeb space associated with the hyperfinite time line T can be identified with the
interval [0, T] C R via the standard part map st : T [0, 1]. Then L(A) o (stil)
is just Lebesgue measure (here sti l (G) = st -1 (G) n T for G C [0, 2].) In the case
of an internal probability space (12,..T,P) we obtain a standard probability space
(C2, FL , PE). One application of Loeb theory is Anderson's [And76] construction of
Brownian motion as a hyperfinite random walk: Let fl := {-1, +1} T VT} , .7" the
algebra of all internal subsets of SI and P the normalised counting measure. Define
W x T *Rby

W (w,t) Ew(sWEi
s<t

(here we have introduced the convention that the hyperfinite sum is taken over ele-
ments of T; this will be used throughout). It can then be shown (see Theorem 3.3.5
in [AFHL86]) that b: x [0,7] R defined by b(u) , u) := ° B (w , ft), where 'a denotes
the point in T immediately to the right of u, is a standard Brownian motion on the
Loeb space (SZ, FL , PE). One ingredient of the proof is the following nonstandard
version of the central limit theorem:

Proposition 2.1.3 (Central Limit Theorem). Let (Xn),, E . N be an internal se-

quence of *independent random variables on some internal probability space (O, F,P)

with a common standard distribution function and with mean 0 and variance 1. Then
for any N E *N \ N and any a E *R

P ({w E : — Xi (w) a}) *(a)
Nig



2.1 Loeb Measure and Integration Theory 	 21

where

1	 a x2
4)(a) := =J .exp(-- —2 ) dx

is the standard normal distribution function.

We now want to relate internal functions on an internal measure space (0, .F, P) to
standard functions on the Loeb space (0, F L , PL ): A function f : --+ R is called
Loeb measurable if f -1 (B) E .FL for all open sets B C R. An internal function
F:	 *R is .F-measurable if F -1 (A) E .F for any *open set A C *lit

Definition 2.1.4. An internal .F-measurable function F: —> *R is a lifting of the
function f :	 R if f(w) = °F(w) for PL-a.a.

Theorem 2.1.5. The function f : 	 IR is Loeb measurable if and only if it has a

lifting F.

For a .F-measurable and *integrable function F:	 *R we have an internal integral
F dP (or Ep[F] in the case of an internal probability space). We may also consider

the integral ff2 °FdPL (if it exists) on the Loeb space. To relate these two integrals
the notion of S-integrability is needed:

Definition 2.1.6. Let F : l —> *R be a .F-measurable internal function. Then F is

S-integrable if

(i) fFl dP is finite,

(ii) if A E F and P (A) 0, then f IFI dP 0
A

For r > 0 we write S Lr (P) for the set of internal functions F such that i F i r is
S-integrable.

Theorem 2.1.7. (i) For any internal .F-measurable function F: -÷ *R we have

owl dpi, o (f Fd19).

(ii) F is S-integrable if and only if f °IFI dPL = ° (f IFI d-P) < 00.

(iii) f	 IR is PL -integrable if and only if it has an S-integrable lifting F, and in

this case f f dPL = ° (f F dP).

We have the following useful test for S-integrabiliiy:

Lemma 2.1.8 (LindstrOm's Lemma [Lin80]). Let F :	 *R be an internal,

.F-measurable function. If ffl IFI kdP < cx) for some k> 1, then F is S-integrable.
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The next lemma relates an internal change of measure to the change of the associ-

ated Loeb measures. This is of particular importance in the discussion of equivalent

martingale measures in mathematical finance.

Lemma 2.1.9 (cf. [CKW91, Lemma 2.1]). If the internal measure Q is * abso-

lutely continuous with respect to P and its density Z is S-integrable, then Q L is

absolutely continuous with respect to PL with density ° Z .

2.2 Martingales and Stochastic Integration

We start with two regularity concepts for internal functions on the hyperfinite time

line T. Our terminology follows [HP83].

Definition 2.2.1. Let F : T .— *R be an internal function such that F(t) is finite
for all t E T.

(a) F is of class SD if for each u E [0,T] there are points s, t E T, s: ::-_, t P.,- u, such that
if ,g , I E T with gs .c.--_, I ::::: u and .§- < s, t < I, then F(s)R.,' F(s) and F(t)•-:-.1 F(1).

For an SD function we define the function st(F) : [0, T] —>. R by

st(F)(u) := lim ° F(t), u E [0, 7],
°t,i,u
teT

and call st(F) the standard part of F.

(b) F is of class SDJ if (a) holds with s=t and also F(t) R..: F(0) for all t r-----,. 0.

Recall that F is S-continuous if F(s),c-.-.1 F(t) whenever s ::::: t, and that the standard
part of an S-continuous function is continuous, i.e. st(F) E C[0, T]. The standard

part of an SD function is an element of the set D[O, T] of right-continuous functions

with left limits. The extra regularity of SDJ functions means that these functions
have at most one non-infinitesimal jump in each monad and are S-continuous at 0.

It can be shown (Theorem 2.6 in [HP83]) that st I sp j , where st is the map defined

in (2.1) is the standard part map for the Skorohod topology on *D[O, T] (see [Bi168]

for a definition of this topology).

We now turn our attention to internal stochastic processes on the hyperfinite time

line, i.e. to maps X : II x T -4 *R, where (CZ, .7 , P) is some internal probability space

with associated Loeb space (CZ, T L , PL ). We say that a process is S-continuous (or of
class SD or SDJ, respectively) if the path (Xt (w)) tET has this property for PL-almost
all w.

(2.1)

Definition 2.2.2. (a) An internal filtration A is an increasing internal sequence
(At)teT of algebras on a



satisfies the
IL. , .7. , P) is a

IL -martingale (Theorem 5.2
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(b) An internal process X: C2 x T —>*R is nonanticipating (with respect to A) if the
map co i— X(w) is At-measurable for all t E T.

For an internal filtration A we can define a standard filtration
setting

13„ := (fl L(A)) U N',

u<c't
tET

IL = (BOue[0,T1 by

where Al denotes the collection of PL-null sets in .FL . The filtration IL

"usual conditions" (i.e. right-continuity and completeness), so that (C2,
standard filtered probability space.

Definition 2.2.3. (a) A nonanticipating process M is an internal martingale if Mt
is *integrable (with respect to P) and

E [AA' At] = 0 fortET\{T},

where .O.Mt :=-- Mt+pt — Mt denotes the "forward increment" of M at t.

(b) M is a )t2 -martingale if it is an internal martingale and E [4] is finite for all
t E T.

(c) M is an 5L2-martingale if, in addition, Mt E S L2 (P) for all t E T.

Remark 2.2.4. Any A2-martingale M is of class SD and its standard part st(M)
— which is defined pathwise according to (2.1) — is a
in [HP83]).

Definition 2.2.5. The internal quadratic variation [X] : SI x T -- *R of an internal
process X is defined as

pqt :. E(Ax8)2.
s<t

The following result shows that the quadratic variation is an important tool in the
study of internal martingales. The second assertion in this theorem follows from
[HP83, Theorems 6.4 and 7.18].

Theorem 2.2.6. Let M be a A2-martingale.

(i) M is S-continuous if and only if its quadratic variation [M] is S-continuous.

(ii) If M is of class SDJ then [M] is of class SRI and st([M]) = Ist(M)1, PL-a.s.,

where the process on the right denotes the standard (optional) quadratic varia-

tion of st(M) (see lEll82, p.99.1 for a definition).
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We can now obtain stochastic integrals as hyperfinite Stieltjes sums: for an internal
process 8 : 1/ x T -- *R we define the internal stochastic integral with respect to the
internal martingale M as

(E eAm)t := E esAM.s,
s<t

t E T.	 (2.2)

However, for (2.2) to have a standard counterpart we require additional conditions
on the integrand O.

Definition 2.2.7. Let AnxT be the internal algebra on E2 x T generated by the sets
{A x {t} : t E T, A E At}. For an internal martingale M: CZ x T -÷ *R we define the
internal Doleans measure vivf on (El x T,..41-txT) by

I, m (A x {t}) -= E [1A(Mt)2]

where 1 A denotes the indicator function for A E A. The Loeb measure constructed
from vm will be denoted by v.E„m.

Theorem 2.2.8. (i) If M is an SL2 -martingale and 0 E SL2 (vm) (in particular,
0 is nonanticipating) then E eAM is an SL2-martingale.

(ii) Furthermore, if M is of class SDJ, then so is E OAM.

(iii) If M is S-continuous then E 0AM is S-continuous.

Under the assumptions of Theorem 2.2.8 st (E eAM) is a m -martingale according
to Remark 2.2.4. We now want to establish the connection between this process and
the standard stochastic integral with respect to st(M).

Lemma 2.2.9. Let M be an 5L2 -martingale of class SDJ and let m := st(M) be its
standard part. Then the Doleans measure vm of m is the restriction of vz„m 0 sti l to
the predictable sets, where stT : El x T —> EZ x [0, T] is defined by stT (w, t) := (co, c't).

To obtain a nonstandard representation of standard stochastic integrals we need to
extend the notion of a lifting. We assume that M is an 5L2-martingale of class SDJ
and let m := st(M).

Definition 2.2.10. Let 0 : 12 x [0,1] R be a predictable process in L 2 (vm). A
2-lifting of 19 (with respect to M) is a process ®: St x T —> *R in 5L2 (vm) such that
°O(w,t) = 0(w, °t) for vL„m-a.a. (w,t).

The following theorem now summarises the main results of the nonstandard theory
of stochastic integration and its connection to standard stochastic integration.
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Theorem 2.2.11. Let M be an SL2 -martingale of class SDJ. Let m := st(M) be its

standard part and assume that 0 E L2 (vm). Then 0 has a 2-lifting 0 such that

fOdm = st (E eAm) ,

Furthermore, f Odm = st (E OM), PL -a.s., for any other 2-lifting 0 of 0.

2.3 Complete Pricing Models

The Black-Scholes model is the most widely used option pricing model in the financial

literature as well as in the financial industry. Most generalisations and extensions of
pricing methods use this model as a reference point and benchmark. The underlying
stochastic evolution of the price s of a risky asset in the Black-Scholes model follows
a geometric Brownian motionl

dst
—	 -I- olvt,	 (2.3)
St

where w is a standard Brownian motion on some probability space and u, a are either
constants or time-dependent (non-stochastic) parameters. Equation 2.3 can be used
to model equity prices, stock indices and exchange rates as well as prices of bonds and

futures (Black's model [B1a76]; see [Hu197] for a detailed exposition of these models).
One essential property of the model (2.3) is its completeness, i.e. any claim in this

model can be replicated by a self-financing strategy which allows the pricing of this
claim by arbitrage considerations alone. This feature was used in [BS73] in the
derivation of the celebrated Black-Scholes formula.

However, while the Black-Scholes formula provides a closed-form solution for the

pricing problem in the case of European call options and their variants (i.e. options

whose values only depend on the price of the risky asset at maturity) the valuation
of American or exotic (i.e. path-dependent) options usually requires a combination of
sophisticated analytical and numerical methods.

On the other hand, the use of binomial tree models, as first introduced 2 to option
pricing problems by Cox, Ross and Rubinstein [CRR79], allows the pricing of claims
and the calculation of trading strategies by simple algebra: backward induction meth-

ods provide robust numerical procedures for European and American style options
which are flexible and easy to implement.

The intuitive idea behind the use of binomial trees in discrete time is that these
models approximate — for small time steps — the continuous time model. However,

'Geometric Brownian motion with a positive drift was first used in [Sam65] to describe the move-
ment of stock prices.

2 A binomial option pricing formula was first developed by Sharpe (see [Sha78]). It was subse-
quently shown in [CRR79] that this yields the Black-Scholes formula in the limit.

r	 I

a 7
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this requires a theory of convergence which is not straightforward since it has to deal
with convergence of stochastic processes, in particular the convergence of stochastic
integrals and integrands.

Most standard convergence results in the literature are concerned with option prices
[He90, RS95, MV96, Pri97] or the (weak) convergence of gains processes [DP92]. For

a recent survey of convergence methods and results see [BK98, pp.211-221]. We will
see below how a nonstandard approach yields a mode of convergence which is suitable
for prices, strategies and gains and value processes.

In the following we summarise these models and outline the nonstandard approach
together with its convergence results.

The Cox-Ross-Rubinstein Model

For each n E N we define the n-th Cox-Ross-Rubinstein (CRR) model as follows: Let

T E R± . Define the discrete time line

Tn := {0, Ant, 2Ant, ... , (n - 1)Ant, T}, with Ant :.--- Tin,

:.	 \{T},and let (nn, .7,, P,.)) be the underlying probability space, where Sin 	
1 _4, i yIrn

.,Fn := P(12n) and Pn is the normalised counting measure on a A filtration An =

(An,t)teT n on (1z, .T) is generated by the sets [wi t := {(;) E 127  : ws = Cos, .s <t}. We

denote the counting measure on Tn by An, i.e. An({t}) = Ant.
A random walk Wn : On X Tn -) R is defined by

A Wn ,t :--= ci.itit, Wn, 0 := 0

for co = (w0 ,... , coT-Ant) E Sin. Note that the filtration An is then also the natural
filtration generated by the process Wn. The price process in the n-th CRR model is
now defined as

Sn,t := son(' + 12.6.nt + a- AWn, ․ ), t E Tn,
s<t

where ii, a, so E R with a, so > 0, so that

r,

	 1

II := 1 + ilAnt ± o-\/,,,-1

d := 1 + //Ant -
Sn,t+Ant =

Sn,0 -= SO.

Due to its binomial structure this model is complete (see [TW87] for a proof and a
more detailed analysis of finite market models) and any claim H can be replicated
by a unique self-financing strategy 1,11 = (OH , VI) (see [CKW91] for an explicit
formula for II / I ). Then

H =Voll + E etlASn,t
t<T
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for V011 E R. It is well-known that the completeness of the model is equivalent to the
uniqueness of the equivalent martingale measure for ‘517,, (see [HK79]). For the n-th
CRR model this measure Qn is given by the density

dQ n = 
(1 — LAwn,t).

dPn- t<T	 a

The Black-Scholes Model

As mentioned above the price process in the Black-Scholes (BS) model is given by a
geometric Brownian motion

st = so exp ((A — —a)t °Apt)
2

on the time line T := [0, T], where w is a standard Brownian motion on a probability

space (1, J, P) (the parameters T, a, so are the same as in the CRR model). We
assume without loss of generality that SZ = C := Ix E C[0, : x(0) = 0} and that P
is Wiener measure on C. A filtration A = (At)tET on (12, ..T) is generated by the
process w, i.e. At =	 : u < t}.
It follows from the representation theorem for Brownian motion (see e.g. [KS88, The-

orem 3.4.2]) that any claim h E L2 (P) can be replicated by a unique self-financing

strategy Oh = (Oh , Oh ), i.e.

h = + f dsu
0

for some vt3. E IR. Hence, the BS model is complete. The unique equivalent martingale

measure Q for s is given by

dQ 1 /./ 2
ci.73 = exp(--((7r) T — zDT

a	 ) •

The Hyperfinite CRR Model

For any fixed infinite N E *N \ N we have an internal CRR model on the hyperfinite

filtered probability space ( 1N, .TN, AN PN) with a price process SN : S2N X TN —? *R.

When considering this model on the Loeb space (C2 N , L(.TN),L(PN)) we see that S N
is S-continuous and

st(SN) = s, L(PN)-a.s.

(Lemma 3.1 in [CKW91]). Furthermore,

Q = L(C2N),

so that we have indeed constructed a BS model on the Loeb space.



2.4 Convergence Results 	 28

The main result of [CKW91] states that the valuation of claims and calculation of

self-financing trading strategies in the hyperfinite CRR model is equivalent to the
corresponding operations in the BS model:

Theorem 2.3.1. Let H: S/N —) *IR be an internal claim and h E L2 (Q). Then the
following are equivalent:

(i) H is an SL2 (QN)-lifting of h.

(ii) ()H is an SL2 (vs,)-lifting of Oh, and TH is an SL2 (QN x AN )-lifting of Oh.

(iii) eH SN and TH are SL2 (QN x AN )-liftings of Ohs and Wh , respectively.

(iv) V(I) is S-continuous and st(V(4H))=--- v(0).

(v) G(H) is S-continuous and st (Vol/ ± G(T,H)) = v,C1 + G(0).

2.4 Convergence Results

When discussing the convergence of random variables or processes on the sequence
of CRR models to those on the BS model we have to consider that the underly-
ing probability spaces are all different. This suggest the use of weak convergence,
i.e. convergence of the distribution of values. However, the driving process in the
CRR model is the binomial random walk W, and the Brownian motion w in the BS
model. Contingent claims, strategies and value processes can therefore be regarded
as functionals of W and w, respectively. It should then be possible to include the
information about this functional relationship into a suitable mode of convergence.
Recall that Ci = C is the path space for the BS model. Similarly, we can define the
path space Cn := {W„ , .(w) : w E Itn} for the n-th CRR model. By connecting the
points of a path in Cn linearly the space Cn can be considered as a subset of the
normed space C (with the uniform norm). The following general convergence result
then relates the nonstandard notion of a lifting of a function to the standard concept

of "weak convergence along the graph". Note that this concept is genuinely stronger
than weak convergence (see [CKW93a] for an example).

Theorem 2.4.1 ([CKW95, Theorem 3.2]). Let)) be a separable metric space with

a Borel probability It, and suppose that (,in) is a family of probabilities on Borel sets

Yn C 3) converging weakly to p.

Equivalently, it = L(itN)ost- 1 for any infinite N E *N\N, where st : * y -> 3) is the
standard part mapping (see [AR 78]).

If Fn : Yn —> .1 E t is a family of measurable functions and f : Y -41 [8 is measurable then

the following are equivalent:
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(i) FN is a lifting of f for all infinite N , i.e. for L(1 L N )-a. a. yEYNy FN (Y) c'-' f ( °Y);

(ii)(Fn(Y) 7 y) —(f (y), y) weakly as n -4 oo. This means that the distribution
of (Fn(y),y) E R x Yn, with y distributed according to pn converges to the
distribution of (f (y),y) ERxY with y distributed under A.

Moreover, if (i) or (ii) holds, then for all r > 0, FN E SIZ (PN) for all infinite N if
and only if E [I Fid r] -4 Ett[iin as n —> oo.

Discretisation Schemes

An alternative characterisation of the above lifting property in the context of the
paths spaces for the CRR and BS models can be obtained by introducing the idea of
a discretisation scheme for mapping paths in C back into Cn:

Definition 2.4.2. A family (dn)nEN of mappings dn : C -4 Cn is an adapted Q-

discretisation scheme if

(i)dn is An-adapted; i.e. for each t E Tn (dn( . ))(t) is .40-measurable.

(ii)dn is Q-measure-preserving; i.e. Q(c/77 1 (A)) = Q(A) for all A E Tn.

(iii)d(w) -4 w in Q-probability; i.e. for all e > 0,

Q(Ii dn(w ) — w ii <6) -+1 as n	 oo.

(Here ii '11 denotes the supremum norm on C.)

Theorem 2.4.3 ([CKW93a, Theorem A.1]). There is an adapted Q-discretisa-

tion scheme for the binomial CRR model.

In [CKW93a] a Q-adapted discretisation scheme is constructed by using a modifica-
tion of the random walk approximation to Brownian motion via a "Knight scheme"

(see [1M65, p.39]). However, the convergence results in this section are independent
of the particular construction of this discretisation scheme.

In this context we have the following extension of Theorem 2.4.1:

Theorem 2.4.4 ([CKW93a, Theorem 4.1]). Let (Hn)nEN with Hn : an -4 R be
a sequence of claims and let h E L2 (Q). Then the following are equivalent:

(i) Hn (dn (.)) -4 h in L2 (Q).

(ii) HN is an 8L2 (QN )-lifting of h for all infinite N.

(iii) (H (w), co) -4 (h(co),w) weakly and EQ n [1172,]	 EQ [h21.
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Definition 2.4.5. Let (Hn)nEN and h be claims as in Theorem 2.4.4. We say that

Hn D2 -converges to h if any of the equivalent conditions (i)—(iii) in Theorem 2.4.4
D2

hold. We then write Hn -4 h.

Using an adapted Q-discretisation scheme we can construct a sequence of D 2-con-

vergent claims in the following way:

Theorem 2.4.6 ([CKW93a, Theorem 4.4]). Let h E L2 (Q). Define a sequence

Hn : SITI -4 R by

H(w) := EQ [h(Co)I dn (cD) = w] .

D2
Then Hn -4 h.

We can now extend the notion of D 2-convergence to trading strategies and value and

gains processes. This requires a discretisation scheme for the time line T and the
extension of Theorem 2.4.1 to functions taking values in the normed space C, both

of which are straightforward (see [CKW93a] for details). We can then reformulate
Theorem 2.3.1 in terms of D2-convergence:

Theorem 2.4.7. Let IIn : C2n --) R be a sequence of claims in the CRR models and

h E L2 (Q) a claim in the BS model. Then the following are equivalent:

(i) Hn i4 h.

(i i) V-In 14 oh .

OW V('') '4 V (Oh).

(iv) G(I' lln ) 14. G(Oh ) and Volin —> V.

Remark 2.4.8. This result shows that the concept of D2-convergence is preserved
by the operations of stochastic integration and differentiation (i.e. the calculation of
replicating strategies). It therefore seems to be suitable for the analysis of convergence
from discrete- to continuous-time market models; the use of D 2-convergence will be

extended to incomplete discrete-time models in Chapter 5.

Results similar to Theorem 2.4.7 do not exist for weak convergence. Furthermore,
it was shown in [CKWW97] that the above methods can be used to obtain D2-

convergence results for the optimal exercise times and the Snell envelopes in the
pricing of American put options in the context of the CRR and BS models.



Chapter 3

Hedging at Fixed Trading Dates

As a first application of nonstandard methods (in particular, Loeb measure theory)
in incomplete markets we consider the problem of introducing hedging restrictions

into the complete Cox-Ross-Rubinstein and Black-Scholes models, allowing portfolio
adjustments only at fixed trading dates. This problem has been studied in [MV96]
where it was shown that option prices with respect to variance-optimal hedging' in
these models converge.

We will give an alternative and more transparent proof of this result. Furthermore

we will show that the optimal trading strategies and value processes converge as well
for a more general class of models.

The completeness of the CRR and BS models as defined in Section 2.3 relies crucially

on the assumption that hedging portfolios can be adjusted at the same times at
which asset prices change. Besides the practical impossibility of continuous hedging
in a Black-Scholes model the presence of transaction costs in real financial markets
leads to the need of changing portfolios as little as possible.
We assume that a set of possible hedging dates 0 = ho < <	 < hi, = T	 E

is exogenously given. Since asset prices in the CRR and BS models follow Markov
processes the information available to an agent is completely given by the value of
these processes at the hedging dates h i) , , h. This observation leads to modified
pricing models: for example, in the BS model the price process S observed at dates
ho,	 , hf, satisfies

81- hi+1	 5h exp ((A — a-2 ) (hi+i — hi ) + crAWhi ), i=0,... ,t —1

Slo = so,

where L\Whi is a normal random variable with mean zero and variance (hi+, — hi).
A similar recursive equation applies to the CRR model. We will now introduce a

'In fact, in the models under consideration these prices agree with those implied by mean-variance
hedging.
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framework in which we can study the modified BS and CRR model and examine

their convergence properties.

3.1 The Modified Black-Scholes Model

Let T := 10, ... 	 for some T E N,	 :=	 := B(2), set Ahi := h 2+ 1 — hi

(i = 0,	 , — 1) and let the probability P be defined by

where co = (coo,	 ,cot_ 1 ) E C2 and wo,... , wi,_ 1 are independent. This means that

co is a st-variate normal random variable, i.e.

f"--1
P(Wi < ai ; i = 0,	 , — 1) = fx	

071-Ahi
1

<a	 	 exp	 	  dx
.	 2Ahi

where a = (ao,	 at_1), x = (xo, xt_ 1 ) E Re and x_ i = 0.

We can then define a process W: I x T —> R by

AW(w) =	 (w) — W2 (w) := wi, i <

Wo (co ) := O.

A filtration F = CT'i ) iEt. on S2 is defined by the sequence of a-algebras generated

by W, so that Jj := o-(Wi ), i E T. Equivalently, Yi is generated by the sets [w] i :=

{(2) : wk = (4, k < i}. Observe that LP = so that (52, P) is a filtered

probability space satisfying the assumptions of Section 1.1. As mentioned above the

price process :41 : CZ x	 R in the modified BS model is now given by

gi+1 = i exp(0/ —	 + 0-147i), i <

=- so

(cf. equation (14) in [MV96]). Then :5 1- is F-adapted and :51' i E L2 (P) for i E T. We

have

	

= (exp ((p, —	 +	 —

and can therefore calculate (for i <

	

E[Agi l.Ti] = ,§i(exp((p, —	 [exp(a-A1470] — 1)

= (exp(/Ahi ) —1)
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and

ERA.§-i ) 2 ITil = RE [ (exp ((iL — o-2 )Ahi + crAT/Vi ) — 
) 2

=	 (exp (2(i2 — o-2 ).6.hi ) E [ exp (2o-AWi ) I .Fi]

— 2 exp(pAhi) + 1)

=	 (exp ((2p + o-2 )Ahi) — 2 exp(pAhi ) + 1) ,

hence

= (exp ((2/i + cr2 )Ahi ) — 2 exp(pAhi) + 1

— exp(2hi ) +2 exp(pAhi ) — 1)

= „ST exp(2pAhi )(exp(o-2 Ahi) — 1),

where we have used the fact that E[exp(cX)] exp(-12-c2v) for X — ./V(0, v) and c E 111.
In particular, Var[,64
	

> 0, P-a.s.. We see that the ratio

(E [A il-ri]) 2 _ 	 (exp(pAhi) — 1)2

Var[6:51i 1Tj ]	 exp(2/./Ahi )(exp(o-2 Ahi ) —1)

is deterministic. This implies that the nondegeneracy condition (1.6) is satisfied.
We can therefore use the methodology of Section 1.1 to calculate the mean-variance
optimal strategy q5H with associated value process VH for any H E L2 (P) (cf. equa-

	

tions (1.3)—(1.5)). Furthermore, also the variance-optimal strategy	 exists and can
be calculated in the recursive form (1.27). Finally, the variance-optimal price cH

agrees with the mean-variance price 1701/ (cf. Theorem 1.3.1).

3.2 The Modified Cox-Ross-Rubinstein Model

The n-th CRR model was defined in Section 2.3. We recall that the price process in
this model follows the evolution equation

Sn,t+An t	 Sn,t • 

{

u := 1 + izAnt + o-V2S77,t	 with prob. -12-
d := 1 + izA„t — cr-Va Tit	 with prob. i

	 (3.1)

Sn,0 = SO)

where t E Tn = {0, Ant, ... , T} with Ant := 1/n. When considering this model

under restricted hedging we have to make sure that the hedging dates ho, ... , h i, are
elements of the set Tn of possible trading dates. We therefore assume from now on
that h1 ,... , hi, E (2 and define

Sr :=--- fn E N : h i = —
ni

,... , h2,- = = for some n i , ... , ni, E N}.	 (3.2)
n	 n
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Due to our assumption on h 1 ,... , hi, the set 1SnT is infinite. For n E fk'T we can now
define the n-th modified CRR model:

The observed stock price in this model follows a multinomial evolution:

uPi	 with prob. 2-0i

•
	 uid Oi-j	 with prob. (1)2 -13i for j = 1,	 , - 1

d	 with prob. 2-0i

S-n,0 = SO)

(cf. equation (15) in [MV96] 2 ) with i E ir and where A := ni+1 — ni with n 1 , ...
defined as in (3.2) is the number of price changes in the n-th CRR model between
the hedging dates hi, and
We now set

:= Ro x • • x Rt_i with Ri := {(-Pi + 2j)V-67nt : j = 0, ... ,A}.

Let Yn := P(nn) and the measure Pn on (nn, Tn) is given by

Pn (wi = (-13i + 2j) V76.7,,t) = (13!)2-Pi , j = 0, • • •

where w = PO ,	 E SIn and wo,	 are independent, so each wi is
a (13i + 1)-nomial random variable with mean zero and variance f3iA 1 t =	 We
denote the expectation with respect to Pn b y En[.1.
The process Wn : nn X t is now defined as in Section 3.1:

AWn,i(w) = Wn,i+i(w) - Wn,i(w) :=- wj, i <

Wn,o(w) := 0.

Again, the filtration Fn = (Fn,i) ieir on nn is generated by Wn , i.e. To is the algebra
generated by the sets [w] i {Co : Wk = wk, k < Hence .7, = The dynamics
of the price process observed at the hedging dates ci can now be written as

=	 i <	 (3.3)

gn,0 = S0,

where Ji := +13i) is the number of "up"-movements of the underlying CRR
price process between the hedging dates hi and h2 .+ 1 . We see that SIn is Fn-adapted
and :51n,i E L2 (P) for i E it with

—Ago = •( uji 	 11:

2 Note that our definition of the CRR model in Section 2.3 differs from the one used in [MV96].

However, this does not affect the convergence properties as we will see in the next section.
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so that

	

En [Agn,i1Fn,i.] =	 [uji d th-ji Tnd - 1)

	

=	 (2-13i (u d) th -1)

	

=	 ((1 ktAnt) th - 1)

and

En RA:§n,i) 2 1 .7-n,i1[ (U2 ) ji (d 2 ) 13i	 Ynd — 2(1 ± PAntY3i ± 1)

(2-i (U2 ± d	 — 2(1 + pAnt)/(3i + 1),

hence

Varn [Ago "Toil	 (2-th (u2 d 2 ‘ th —)	 (1 + pAnt)21)

( ( 1 + (0.2 + 2p)Ant it12 (Ant?) i3i

— (1 ± 21/Ant + /12 (Ant) 2) )

for i <T. Again the ratio (En[ASn,tlYn,t]) 2 /Varn[ASn,t1.7-n,t] is deterministic so that
for any Hn E L2 (P) the mean-variance strategy Olin with value process Win and
the variance-optimal strategy
as in Section 3.1.

3.3 The Nonstandard Approach

We have introduced the two modified models

Sin := (Qn, Fn Tn, Pn, gn)	 and	 SI := (St, F, .F, P,

and have noted that for contingent claims

Hn E L2(Pn)	 and	 H E L2 (P)

the solutions

v Hn oHn ,oHnv H	 ,	 61-1and

to the local risk-minimisation and variance optimisation problems exist and can be
calculated using the results in Sections 1.1 and 1.3. We will now examine the con-

vergence properties of these models, i.e. we want to show that the prices and optimal
strategies in nn converge to those in It if the contingent claims Hn converge to H in
a suitable way.

Hn with optimal price cHn = VoHn can be calculated
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The set R of possible parameters n for the modified CRR model (3.3) was defined
in (3.2). It has a nonstandard extension *N which by the Transfer Principle contains
arbitrarily large infinite elements. We now fix one such N E \ N. So we have
an internal hyperfinite probability space (QN, TN, PN) and its associated Loeb space
(QN , LGTN ), L(PN)).

Observing that each cv i for (.4, = (wo, E SZN is the sum of A binomial
random variables with mean zero and variance A N t it follows from—the nonstandard
version of the Central Limit Theorem 2.1.3 that3

P = L(PN ) o st —N1 ,	 (3.4)

where &CI- : Q QN denotes the restriction of the inverse standard part map to CZN,

and by the definition of WN and W we have

o wN,z(w) = 0 (Ew3) = E c.co, = Wi(°w)
j=1	 j=--1

L(PN)-a.s.,

for i E Furthermore, Lemma 3.1 in [CKW91] shows that

IL A 	pze. exp(( —
2
)Ahi CJAWN,i)2

L(PN)-a.s.,

for i E if, with both sides in Sr (PN) for r E [1, 00). By the definition of :§N and ,§

this implies that

° SIN,i (w) =	 'w) for i E T, L(PN)-a.s.,	 (3.5)

so that, for i E T, :9N , i is a Sg (PN)-lifting of S (r E [1, oo)).

In the following we will see that the properties (3.4) and (3.5) are sufficient for the
convergence of the optimal trading strategies and option prices in the sequence of

models rn	 t-ninEN -0 those in n. We therefore consider a general sequence of finite

models On = (Qn, Fn,-rn, Pn,Sn) (n E N where -N C N is infinite) together with a
model ft = (Q, F, T, P, S) on the set T = {0, , T} satisfying the following assump-

tions:

(M1) 11, = Ro X • • • X RT-1 for finite sets Ri c R, .Fn = P(Qn) and Q =
= B(Q).

(M2) For W = (wo,	 , _ 1 ) E 11n (Q, resp.) the random variables (Wi) jor \{T} are

independent under the measure Pn (P, resp.). The filtrations Fn and F are

generated by the sets {4 = {CV :	 = (.2)j , j <	 = .7.41 ,T. and .7' =

3see the proof of Theorem 3.3.5 in [AFHL86] or the proof of Lemma 3.3.7 below for a similar

argument.
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(M3) The price processes Sn (S, resp.) are square-integrable, the ratio

(En[ASolYn,i1)2 
Varn [A Sn,i I .Tn,i] 

is deterministic for i < T

and Varn[ASn ,i 1.7,, ,i] > 0 for i < T, with the analogous conditions satisfied
for S.

(M4) For all N E * fk-i -R (3.4) and (3.5) are satisfied, i.e.

P = L(PN ) o st 1	 and	 °SN,i(w) = Si ( °w) L(PN)-a.s., i E

Furthermore, we assume that EN[I SN,il ic] < oo for i E T and some k > 2.

We have already verified that (M1)—(M4) are satisfied for the sequence of modified
CRR models of Section 3.2 and the modified BS model of Section 3.1.
The next lemma shows that in this framework the lifting property (3.5) extends to the
internal processes involved in finding the locally risk-minimal and variance-optimal
strategies.

Lemma 3.3.1. Let F : SZN	 *R be a lifting of f :	 R (i.e. °(F(w)) = f(°w)

for L(PN)-a.a. co) which is S-integrable. Then

°(EN[F I TN,d(w)) =	 i Ti]( °L0) for i E T, L(PN)-a.s..

Proof. Note that EN[FIYN,T] = EN[FIYN] = F, L(PN)-a.s. by our assumption

on FN, and similarly for f. Hence the assertion is true for i = T.

For i < T we define a subspace Cl (i) of Si and 12 (Ni) of ON by

n( i) := RT-i

	

siNi) :=	 x • • • X RT-1

with probability measures PAir) and P(i) defined by

	

P(i) (A) :=	 x A)

PAP (AN ) := PN(RO X • • • Ri-1 X AN)

for A E ft(i) and AN E

Since F (and f, respectively) is of the form F(w) = F (wo, • • •	 • • • WT-1) with
E Ri (wi e R, resp.) we have



(3.6)

(3.7)

(3.8)
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°(EN[FI.TN,i](w)) ° (f	 ,wi,c2))d4)(0)))

= 14) °F(wi ,... ,wi,C;))dL(Pri))(6.))

= fst_i„i(no)) °FPI ,	 ,c0i,CJ)dL(4))(6.))

ftr„ f (°wi, • • • ,	 °cD)d-L,(4)(6))
',01(0)

L
f ° Loi, • • , °coi, (D ) dP(i) (62))

i)

=	 w)

(here stAr—li : SYNi) denotes the restriction of the standard part inverse map

to S2N(i) ). Equality (3.6) follows from the S-integrability of F and Keisler's Fubini

Theorem [AFHL86, Theorem 3.2.14], (3.7) from the fact that elements of C2 (Ni) are

L(PN )-a.s. finite and (3.8) from the measurability of the standard part map together
with (3.4) and the "measurable transformation theorem" [Ha150, Theorem 39.C]. 0

Since the optimal trading strategies and value processes are defined in terms of con-
ditional expectations (cf. (1.3)—(1.4)) we can use Lemma 3.3.1 to show that all the

processes on I2N x T involved in the solution of the risk-minimisation problem are
liftings of their respective counterparts on ft X T. We only have to make sure that

the condition of S-integrability is satisfied at all stages.

Option Prices and Trading Strategies

Let H E L2 (P) be a claim on SI and HN E 8L 2 (PN ) be a lifting of H. We will see

later how we can obtain such a lifting in a natural way.
By assumption (M4) and Lindstrom's Lemma 2.1.8, ASN,i is an 8L 2-lifting of .6.51i

for i E T. Lemma 3.3.1 then implies that Var[ASN,il.TN,i] is a lifting of Var[6.Sil.Fi]
for i E T \ {T}. In particular, by assumption (M3),

VarN [ASNA	 � 0 for i E T \ {T}.

Furthermore, since EN[H ] < co and EN [IASNA k] < co for some k > 2 we have,
setting

2k	 2 k + 2	 k k+2
T :

k + 2' P:= -77	 2

and using Holder's inequality (note that 1/p +11q 1),

EN[I HN	 (EN[IHNIrP1)1/P(EN[IASN,i11)11(1

(EN [Ilkil liP (EN DAS N,i11) 1/q < 00



3.3 The Nonstandard Approach	 39

As r = 2k/(k +2) > 1, Lindstrom's Lemma implies that HNASN,T_i is S-integrable.
It follows from Lemma 3.3.1 that CovN[HN, ASN,T-1lYN,T] is an S-integrable lifting
of Cov[H, AST-11Y2-], and hence

aHN	 COVN[HN, AS N,T-1 Y.N,T-1] 
vT-1	 Nr	 rv arN N-IoN,T-1

I YN,T-1]

(cf. equation (1.3)) is a lifting of its counterpart O_ 	 SZ.

Since EN[(OTHN	 N,T-1)2] < 00 (see inequality (1.7)) also

VT,111. := EN [HN - 9TH_Iv1A5N,T-113N,T-1]

is a lifting of its counterpart V 1 . Moreover, EN [(V) 2] < oo. We can then repeat
the above argument backwards for i T — 2, ... , 0 to obtain

,01i1N)'.ET is a lifting of (v. ,11,0-ThiET.

In particular,

volIN vori.

The corresponding lifting property of the second component of the strategy O HN =
(OHN ,OHN ) then follows immediately from its definition OHN := VHN — OHN SN (see
equation (1.8)).

Assumption (M3) implies that the internal mean-variance tradeoff process kN as
defined in (1.26) is deterministic4 , so that the variance-optimal strategy 6 1IN can be
calculated in the recursive form of equation (1.27):

HN =erN +  EN [ ASN,i1 	 (viHN TTHN E e-IN 
ivAsn, .)

EN [(ASN,i) 2 1 YN,i]	
v	 a

j=0 3

for i E T. An induction argument then shows that the term on the right hand side
of the above equation is a lifting of its counterpart on (note that eoHN 19011N), so
that

61IN is a lifting of 61-1

We summarise our results in the following

Theorem 3.3.2. Suppose the models nN and si satisfy the assumptions (M1)-(114).
If HN E 8L2 (PN ) is a lifting of H E L2 (P) then

(vHN oHN , oHN 61-1	 is a lifting of (VH ,OH ,71,11 ,611).

41n fact, our arguments also show that kN is a lifting of the mean-variance tradeoff process k on
x T.
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The Minimal Martingale Measure

Since SN,i is an SL 2-lifting of Si Lemma 3.3.1 shows that the processes AN MN
defined by

aN i = , r A
'	 varN L-10 N,i I -1- N,i,J	 EN [ (AMN,i) 2 I N,i]

is a lifting of a. This shows that

T-1	 T-1
ZN := H(i - aN,iAmN,i) is a lifting of Z := [1(1 — ai AMi ).	 (3.9)

s=0	 s=0

We know from Section 1.1 that EN [4] < oo, hence 2N is S-integrable.
We can now define the minimal martingale measures PN on C2N and P on by setting

dPN —	 dP
dPNN

2 and	 = Z.
dP

Remark 3.3.3. It was mentioned before that the minimal martingale measure is in
general a signed measure. In fact, in the modified BS and CRR models the densities 2
and 2N , respectively, will take negative values with positive probability: for example,
in the modified BS model the calculations in Section 3.1 show that

1 (exp(ci cr,AWi ) — 1 
=	

)
	  C3

C2

for constants c l , c2 , c3 E R with c2 > 0. Hence

1 —	 < 0 if exp(c i + crAWi ) > 1 +	 + c)

which is true with positive probability since P(AWi > k) > 0 for any k E

To deal with this we can define the positive and negative parts of 2N and 2 by

2kr :=	 + 2N) and 21 := -1 (1 2 1 ± 2).

Again, 2,t, is S-integrable and 2k, is a lifting of 2 1 , respectively. The positive and
negative variations of the measures EN and P (see [Rud87] for a definition) are then
given by

dPis 2P.KIPN and dP± = 2±dP,

i.e. EN = P — EKr and similarly for P. Lemrila 2.1.9 then implies that

dL(Pk) (w)= ( dPN± (w) ) = 0 (2k (w)) = 2± ( 0w).

dL (PN)	 dPN‘

AAN := EN [AS TN ,i1 AMN,i := AS —	 AN := MN ,0 :-= 0

are SL2-liftings of their respective counterparts A, M on SZ x T.
We then define aN and a according to (1.13), so that

LAN. J	 PAN,J
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Proposition 3.3.4. For N E *N \ N,

= L(Pk) o stRI.

Hence

Proof. Given A E T,

(L (Pk) o st-N-1)(A)

P L(PN ) o st7v1.

=	 dL(Pk)
fstV(A)

= fs (A)

l 
04 ciL(PN)

t7,, 

= L 2± dP = f ciP± =
A

PI (A).

We will close this section with two other examples of models satisfying assump-
tions (M1)—(M4).

Further Examples

Example 3.3.5 (Approximation of the Cox-Ross Jump Model). The Poisson process
model of Cox and Ross [CR76] was obtained in [CKW93b] as the limit of a sequence

of binomial models. More precisely, the process

St = So exP(—pt + bNt),

(with constants b E R, b> 0), where N is a Poisson process with intensity param-

eter A > 0, is approximated by the sequence of processes (5 n) defined by

{Sn,t+ An t := Sn,t .
u := 1 — pAnt + (eb — 1)

d := 1 — pAnt

with prob. p := AAnt

with prob. 1 — p

for t E Tn = {0, Ant, ,T} with it := 1/n (cf. (3.1) for the CRR price process).
We may now consider these models under the same hedging restrictions as before:

using the notation of Sections 3.1 and 3.2 we set

nn := Ro x • • • x	 with Hi := {j : j = 0, ... , Al

with a probability Pn given by

•
Pn(wi = 3) = i3i.). P3(1

3
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(A Ahi)j and 12 = N I" with P(wi =	 —	 exp(—A Ah i ). The modified processes

and gr, on t then satisfy

gi+1 =

and ,-571,i+1

exp(—pAhi + b wi)

Using the results in [CKW9313] it is now straightforward to check that the assump-

tions (M1)—(M4) are satisfied 5 , so that Theorem 3.3.2 and Proposition 3.3.4 can be

applied in this context.

Example 3.3.6 (Alternative Definition of the CRR Model). As mentioned earlier the

definition of the CRR model in [MV96] is different from the one used in Section 3.2

in that the evolution equation (3.1) takes the form

Sn,t+Ant = Sre,t
u := exp(a-it)
d := = exp(—ant)

with prob. p := &Ant —d
u—d (3.10)

with prob. 1—p

Sn,0 = 0.

The set N is again defined as in (3.2) and for n E N we set Sin := Ro X • • • X Ri,-15
with Ri :=- {(-0i +	 : j = 0 ,	 = P(Sin) and

Pn(wi = (-13i + 2j)a-13,70 = (131)13 -1 ( 1— P)I3i—j

for w = ( oo, • • • ,(01--,_ 1 ) E C2n• Each wi is therefore a sum of )3i binomial random
variables taking values +o- NrATit with probabilities p and 1 —p, respectively, hence

En = (2p — 1)aVaTii and En [41= a2Ahi.

The filtration Fn is again generated in the natural way.
We also set CI = lie, = B(Ct) and define the probability P by

— a2 )Ahi , (72Ahi)
2

for w = (wo,	 , wf,_ 1 ) E a The filtration IF is defined as before.
The following lemma shows that assumption (M4) is satisfied for this sequence of
models:

Lemma 3.3.7. With Ahi and	 defined as above, let (Xj)j.i,...,pi be a sequence

of binomial random variables, taking values ±o/ 7 t with probability p and 1 —
respectively, where ANt = Ahigii, and p is defined as in (3.10). Then

PN (E Xi 5. a)	
°a'— (it — la2)Ahi)

(3.11)
j=1 

51t should be noted that also in this model EN,i E S 17 (P N) for each r E [1, co).
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where (1, is the standard normal distribution function. Furthermore,

EN [exp (2_, X j) r
] < oo

for any r E [1, oo).

Proof. First note that each Xi has mean m := (2p — 1)cr ,f6i7rt and variance v2 :=

0-2 ANt — m2 . Then

Pi	 Pi= p (E Xi — m < a — AM)
PN (E X j a)	 N

V - V

fitpN ( 1	 Xi—m < a— Am)

V - Nail)

— Am))
n Naiv j

(3.12)

by the nonstandard Central Limit Theorem 2.1.3. A straightforward calculation using

the Taylor expansion of the exponential function shows that

(2/3 — 1)cy 	 1

Nr,5qTrt	
r2) hence

Therefore

Arn = —(2p — 1)a/ 	 — — a-
2
)Ahi.

AArt	 2

\TA = VA0-2ANt — Am2 Va2Ahi.

Taking standard parts an substituting into (3.12) proves (3.11).

For the second assertion note that due to the independence of (Xj)j=1,...,pi

fit	 r	 flz
EN [exp (E i)]= -1 EN [exp(rXi)] .

Now

EN [exp(rXi )] = exp(ro-VANt)p exp(—ro-fATit)(1 — /3)

and another calculation using the Taylor expansion of the exponential function as in

the proof of Lemma 3.1(b) in [CKW91] together with the above calculation of 2p — 1

yields

13i

n EN [exp(rXi)] exp( __a2 (1 — r))rAhi) <00.
j=1.
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With the above definitions the price process S in in this modified CRR model is given
by

Sfn,i+1 = Sfn,i exP(wi), :5n,0 = 0

and similar calculations to those in Section 3.2 show that assumption (M3) is satisfied
(see also the proof of Lemma 3.4 in [MV96]). In the modified BS model the price
process satisfies

i,+1= :Si exP(wi), ,§0 = 0.

By Lemma 3.3.7, P L(PN) o st iV- for any infinite N E	 R, and hence

°S1N,i(w) = S2 ( °w) L(PN)-a.s. for i E

with :9N,i E SLr (PN) for any r > 0.

This shows that this sequence of models satisfies assumptions (M1)-(M4), hence
Theorem 3.3.2 and Proposition 3.3.4 apply.

3.4 Convergence Results

We saw in the previous section how the lifting property of a claim on the internal
model n, implies the lifting property of the optimal strategies and value processes
(Theorem 3.3.2). Using the general convergence result 2.4.1 for functions on separable

metric spaces we can now rewrite Theorem 3.3.2 as follows, using the equivalent
(standard) formulation of assumption (M4):

(M4') Pn	 P weakly and (Sn,i(w), w)	 (Si (w) , co)) weakly as n	 oo. Further-
more, for some k > 2, En [iSn,iik] <00 for all n E R.

Theorem 3.4.1. Suppose the sequence of models (51n) no4 and the model St satisfy
assumptions (M1)-(M3) and (M4'). Let Hn : S2,1 -+R(nEICT) and H :	 R
be measurable functions such that (Hn(w),w)	 (H(w),w) weakly as n	 Co, and
En [I-g E [H2] as n -4 oo. Then, for i E T,

(Ho (w) , ern (w),	 n (w) , ern (co) , co) -4 (H i (w),	(w) ,	 (w),('(w) , co)

weakly as n	 co. In particular,

Hn,0 -4 Ho as n oo.

In the previous section we gave examples of models satisfying the assumptions of

Theorem 3.4.1. All that remains is to show how we can obtain a sequence of claims



m

,x)1	 11
i=1 j=1

(3.13)
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(Hri ) ER converging to a given claim H in the sense that _FIN is an SL2-lifting of H
for all N E *ST \ N.

Any claim H on St is necessarily of the form H(w) = H(wo, • • • , c0T-1) for w E RT.

In the case of the modified BS model (and the modified Cox-Ross jump model
of Example 3.3.5) there is a one-to-one correspondence between w and g(w)

(w), • • • 4(4, so that any claim in these models is necessarily of the form
H , 4) for some function H : IRT -+ lit This means that the value
of any claim in these models can only depend on the values of the risky asset at the
trading dates.

We now assume that the function H has only countably many points of discontinuity
and satisfies a polynomial growth condition

for suitable 171, E N (cf. equation (19) in [MV96]). Any "reasonable" claim in
these models can be represented by such a function H; this class of claims includes
e.g. Asian, lookback, barrier and binary options.
For the approximating model sin we can define the function lin : S27,	 IR where
.11(x) = H(x). Then HN is a lifting of H for infinite N since

HN (x) = *H(x) H(°x) for L(PN )-a.a. x E QN)

and HN E SLr (PN) for any r E [1, oo) due to condition (3.13) and the fact that

G SLr (PN) for any r E [1, co).

Having established the existence of a sequence of claims satisfying the conditions of

Theorem 3.4.1 we can now use the sequence (n.) of modified CRR models to calculate
approximations to the strategies and value processes in the modified BS model. This
has important practical implications: although option prices in the modified BS model

can in principle be calculated by integrating over a multivariate normal distribution
(see Proposition 3.1 in [MV96] for an explicit formula) the numerical evaluation of
these formulae is often problematic; we will see examples of this in Chapter 6. On
the other hand, the calculation of prices and strategies in the multinomial tree of the

modified CRR model can be done by straightforward algebra. Theorem 3.3.2 now

ensures that these approximations converge to the corresponding values and strategies
in the modified BS model.



Chapter 4

Nonstandard Methods in

Incomplete Markets

We saw in Chapter 3 — in particular in (3.9) and Proposition 3.3.4 — that the lifting

property of the price process implies the lifting property of the minimal martingale
density in a discrete time setting. In continuous time such a result is not available

and we have to examine the structure of the minimal martingale density and the
Doob-Meyer decomposition of the price process in more detail. The first section
of this chapter presents a general criterion under which the lifting property of the

minimal density can be obtained. This general result is then applied to two internal
incomplete models in Section 4.2 and Section 4.3, respectively.
In Section 4.4 we show that optimal strategies and value processes in internal incom-
plete models are liftings of their respective counterparts in a complete standard model
if and only if they are associated to a claim which is a lifting of the corresponding
claim in the standard model.

The final section contains the proofs of some technical results which are used in
Sections 4.1 and 4.4.

Throughout this chapter (SI, A, P) denotes an internal filtered probability space
with associated Loeb space (12, JL , PL ) as defined in Section 2.2. Specific examples
of this setup will be introduced in Sections 4.2 and 4.3. The hyperfinite time line T is

defined as T := {0, At, ... , T} for some T E IR+ and At := T IN for some N E *N\ N.

4.1 The Minimal Martingale Measure

We saw in Section 1.2 that for a semimartingale s with Doob-Meyer decomposition

s = so + f d(m) + m	 (4.1)



J(t) := E 6,F, ± !2--( F3 ) 2	 and	 j(v) :=
s<t
sET

1
E Af. + -2 (Aiu)2
u<v
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the density for the minimal martingale measure is defined via the stochastic expo-
nential

i = E(— f a dm)	 (4.2)

In discrete time the density is given by the process

2t = 11 ( 1 - asAMs)	 (4.3)
s<t

with

E[ASt l At] and AM = ASt — E [ASt I At]	 (4.4)at =  Var [ASt j At]

(cf. equation (1.14)). Proposition 4.1.2 below will help to establish the connection

between (4.2) and (4.3) on the hyperfinite time line. The following lemma is needed
in the proof. It shows how the "pure jump" part of a cadlag function can be approx-
imated by an internal function; the proof is given in Section 4.5. Elements of T are
usually denoted by 8 ,t while u,v are used for elements of [0, 7].

Lemma 4.1.1. Let F: T -4 *R be an SDJ function such that

E (AF.0 2 is finite.	 (4.5)
s<T

Let f := st(F) be the standard part of F. Then there exists an internal subset t of T
such that the functions J: T .— *R, j : [0,7] —> R defined as

satisfy j = st(J). Furthermore, the functions K : T —> *IR, k : [0,71 -4 R defined as

K (t) := H(1 + AFs)	 and	 k(v) := H ( 1 + Aiv)
s<S	 u<v
sET

satisfy k = st(K).

Proposition 4.1.2. LetX:SIxT-4*R be an internal martingale of class SDJ.
Let x : It x [0, T] -4 R be its standard part, x := st(X). Define an internal martingale

Z:CtxT —). *R by

Zt := 11 ( 1 + AX8).
8<t

Then Z is of class SDJ and z := st(Z) = E(x), PL-a.s., where

1	 1
E (x)v = exp (xv — —

2
 [x]v) H( 1 + Axu) exp (—Axu + —

2
(Axi,)2)

u<v

denotes the stochastic exponential of x.



1
log(41 ) = E log(1 + AX 5 ) = E AX, — —2 (AX5 ) 2 + Es with

s<t	 8<t
sET"	 sET"

1E8 1 	lAx.913.
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Proof. Let -6 be the subset of CI such that X (w) and [X] (w) are SDJ and st([X](to)) =

[x](t.o) for all to E "-i- . We know from Theorem 2.2.6(ii) that PL (1) = 1. Now fix w E ft.
Let ii' be the internal subset of T obtained by applying Lemma 4.1.1 to the path X (w)

(i.e. ir contains all s E T such that °IX5 MI > 0). Set T" := T \ i-C and write

Z(w) = Z' . Z" (we will now suppress the explicit dependence on co) with

Z;
	

H(1+ AX8)
s<t
sET

11
= exp (E AiCs — (1X8)2 — AX, + ( X3 ) 2 ) 11(1 + AX,), (4.6)

s<t	 s<1
sET	 sE

ri ( 1+ AX 3 ).	 (4.7)
s<t

sET"

Since I log(1 + y) — y + 1-y2 I � II3 for II � 1 and '1X8 I = 0 for all 8 E T" we have

Let E := max{IAX,I : 8 E T"}. Then E ...:::', 0 and

1 
E es 1 < E (Axs) 2 = E . [XI ,,,, o

.9<t	 .9<t

SET"

as [X] is SDJ; hence, by the S-continuity of the exponential function,

1
Zg:::-... exp ( E AXs — (6,.,C s) 2 ) .

s<t
sET"

Therefore, by (4.6) and (4.7),

11
Zt ,--,---• exp (E AX, — —(AX3 ) 2) exp (E —AXs + —

2 
(AX5 ) 2 ) H ( 1+ AX5)

s<t	 2	 8<t	 s<t
sEir	 SO

1
= exp (Xt — —2 [X] t) H ( 1 ± AX,) Eexp(—AX, + —

1
(AXs)2).

2s<t	 s<t
sEir	 sEir

Observing that st(X) = x and st([X1) = [x] it then follows from the definition of 'Th
in Lemma 4.1.1 and the S-continuity of the exponential function that

st(Z),, = exp (x, — -1- [x],) H (1 + 26,x,) exp(—Ax. + 1 ( Axu) 2 ) •
u<v

0
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Corollary 4.1.3. LetM:SIxT-4 . *IR. be an SL 2 -martingale of class SDJ and
m := st(M) its standard part. Let a be a predictable process in L2 (vm ) and A be an
SL2 (vm)-lifting of a. Then

st (11(1 + ilAM)) = E (— f a dm).

Proof. It follows from Theorems 2.2.8 and 2.2.11 that E AM is a martingale of class
SDJ and st(E AAM) = f a dm. The result then follows from Proposition 4.1.2. El

Remark 4.14 It will be shown in Chapter 5 how Corollary 4.1.3 implies convergence
results for option prices in a sequence of discrete-time models. Similar results are

obtained in [Pri97]; however the above formulation was derived independently and
makes use of different techniques. In [Pri97] the notion of uniform tightness of a
sequence of martingales is used together with the results in PMP891 to obtain the

weak convergence of the sequence of associated stochastic integrals (see also [DP92]).

Corollary 4.1.3 provides a method to obtain the lifting property of the minimal density
by calculating the processes a, M for a given internal price process S on SI x T and
comparing them with the processes a, m for a standard price process s on SI x [0, 1].
However, most models are defined via a return process: in discrete time the price
process S is then given by

St-i-At = St(i + ARt), So = 0

for some (internal) process R with Ro = 0. This process has itself a decomposition

ARt = 4 E [(.6,M1) 2 1 At] ± AltV
	

(4.8)

with

R ._  E[ARt i At] 

and AMiR := ARt — E [ARt I At] •at • — Var [ARt I At]

Calculating a, M for S according to (4.4) and observing that ASt = StARt yields

St E [ ARtl Ad  _ 1 0at =
S2 Var [ARt l At] — St t

AMt = St (ARt — E [AN At]) = StAMtR

so that

atAMt = aN\MtR.

Similarly, in continuous time we assume that the price process s is defined as the
solution to the stochastic differential equation

dst = st_drt



with prob. 2-0

with prob. (1)2-0 for j = 1, ... ,0-1	 (4.10)
:

with prob. 2-0
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for a semimartingale r with Doob-Meyer decomposition

rt = f ar d(mr ) + m"	 (4.9)

with a square-integrable martingale m r and a predictable process a*. The processes
a, in in the Doob-Meyer decomposition (4.1) of s are then given by

at = —
1

a7i and dmt = st_dm'i,

so thatthat

atdmt = cqdrn'i.

We therefore obtain the following criterion for the lifting property of the minimal
density:

Corollary 4.1.5. LetR:0><T-> *Randr:SixT->lik be return processes with
decompositions (4.8) and (4.9), respectively. If M R is an SL2 -lifting of mr of class
SaI and aR is an SL2 (vmR)-lifting of a' then the minimal densities 2: 11 x T *R
and 2: 11 x [0, 7] -- IR are given by

2.H(1+ aRAMR) and 2 = £ (- f ardmr)

and satisfy i = st(2).

4.2 Example: A Multinomial Model

We will now apply the results of the previous section to a multinomial model for the
evolution of the price process on the hyperfinite time line T: let 0 E N be a natural
number; given the price at time t E T there are now 0 + 1 possible prices at time
t + At. However, if /3> 1 the resulting model is in general not complete and we will
use the methodology of mean-variance hedging to determine the value of contingent
claims in such a model.

More specifically, the price process S is given by the evolution equation

St+At

S0

=

= 80

u'fi

uje-i

(1 15
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with

U := 1 + p—
At 

+ o--VAtl f3 and d:= 1 + p—
At

 - o-VAtl 0	 (4.11)
0	 0

for so, p, a E IR, a, so > 0. Note that this model is a hyperfinite version of the modified
CRR model of Section 3.2 corresponding to a hyperfinite number of hedging dates
and a fixed number (0 - 1) of "skipped" price changes between hedging dates.
To define S in terms of an internal return process we set 12 := {0,1, ... ,0}1A{T},
..T = 7-'(12) and define a measure P on (12,T) with

P(COt = j) = 2-13 C.)
3

for co = (wo,... ,w7-,_pt) E Cl and (wt)tET\{T} independent. The filtration A on (11,T)
is generated in the usual way, i.e. At is the internal algebra generated by the sets
Pit := {c2) : ws = Ws, s <t}.

We now have a multinomial version of Anderson's random walk (see Section 2.1).

Proposition 4.2.1. The internal process W: SZ x T	 *R defined by

Wt = E(-0 + aos) VAt/i3
s<t

is S-continuous and w := st(W) is a standard Brownian motion on (fi, YL)PL)•

Proof. This can be proved by arguments analogous to those used in the proof of The-
orem 3.3.5 in [AFHL86]. Alternatively, W can be viewed as the process obtained
from a binomial random walk on the finer time line To := {0, At/13, 2At/13, ... , T}
by evaluation at the points of the set T C T.	 1:1

We then define the return process R: 12 x T -> *R as

ARt := uwte-wt - 1, Ro := 0,

with u, d as in (4.11). The price process S : S2 x T *R given by / St := StARt,
So := so satisfies the above evolution equation (4.10). It follows from the proof of
Lemma 3.1 in [CKW91] that

1 D

St Pe. so exp((m - -
2

0--)t + crWt) PL-a.s.,

and St E SL(P) for r E [1, oo). Hence s := st(S) is a geometric Brownian motion
with drift p and volatility a, i.e. s is a Black-Scholes price process on (SI,FL,PL).
According to Section 2.3 there is a unique martingale measure for s, given by the
density (relative to PO

exp
 (

1 A	 ii
-

2
 (-

a
)

2 
T - -

a WT) . (4.12)
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We will now calculate aR and AMR in the decomposition (4.8):

E [ARt i At] = E [tet d "3'4 1 At] - 1

= (E2- (134 ) ui e-j) - 1 = 2(u +d) —1,
J=.0

SO

AMiR = uwt d	 - 2-° (u +

and

[(/M)21At] = E [u2wt d2(/3-wt) At] _ 2-2°(u d)2°

2-p(u2 d2) 	 2-2fl (u d)20,

hence

(U d) O - 20
-t	 (u2 d2 _)	 2-0 (u + d)20

(in particular, a-P is a constant). Since u + d = 2 + 21,At/P we see that

(u	 = 20 + f32/8 1i—At ± 2°	 (3) (izAt).1

j=2	 7

hence (by ignoring terms containing (At) k for k > 1)

(u d) ,8 - 20
20A.

At

A similar (though lengthier) calculation for (u2 + d2 ) 0 - 2-0 (u + d) fl shows
(u2 d2 ) )3 _	 (u d) 20	 200.2 .

At
Hence

E

(4.13)

that

(4.14)

rvR •-•-•
-t	 0.2 7

which is finite. We now consider the process E AMR: Using the Taylor expansion
of the exponential function we see that

1 2 t
u - exp (01 - -

2
a2) + cr .V At I	 P)

d- exp ((p, - 1a2) —
At 

- o-VAtIO)2	 0,7-6,t
0

and —0
At

-
1
 (u + - exp (th —

At )
2



hence

n	 1
uPe. ---

At

_ 1
- At

and

1
0 r----' —

At

This implies that

E AmsR

s<t
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u'tdi3-wt - exp ((it - 1 .72 )At + (-0 + 2wt)a/it//3)

1
uwt cl13-'t - exp ((iL - -a-2)At + aAWt)

2-'3 (u + d) 13 - exp (mAt)

. E(u-sd o--. — 2-'3 (u + d)13)
s<t

(exp ((p - o-2 ) At + crAWs) - exp (iLAt))
s<t

1
= exp ((/ 

1
- -

2
cr2 )At) E (exp(o-AW, ) - exp (-

2
o-2At))

s<t

(exp (o-AWs) - exp (-1 (3-2At))
2s<t

- E (1 + if r ATV s +--1 cr2 (AT 47,) 2 - 1 — -1- 0-2 6,t)—
s<t

= E crAWs + -1 a2 ((iW8 ) 2 - At)
2s<t

1
= aWt + -2 0-2 ([W]t - t)

(4.15)

(where (4.15) again uses the Taylor expansion of the exponential function up to
order 2). By Proposition 4.2.1 together with Theorem 2.2.6, [W] is S-continuous and

stant = t, PL-a.s., hence E AMR is S-continuous and

st (E AMR) = cw, 13L-a.s..

We have therefore shown that

st (E aRAMR) = ilw,
cr

PProposition 4.2.2. In the multinomial CRR model 7:1.0) the minimal density 2
satisfies

st(2),, = E
 (_f 

-11- dw) = exp (- -1- ( lif ) 2u - 
A
Ti to

)
u	 for all u E [0, T], PL-a.s..

cr	 u

Furthermore, for any r E [1, co), '2t E S Lr (P) for all t E T.
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Proof. The first assertion follows from Corollary 4.1.5. It only remains to show the
S-integrability of A i m for m E N: due to the independence of (wt)tETVT} we have

E [Aim] = E	 alsiAmfl m] = H E [1 1 a!slAMf
s<t	 s<t

Note that a := a sR is a constant and the random variables (AMsR)seT\{T} are identi-
cally distributed; in the following we will therefore just write AM instead of AM sR

EE [ 1
1 — aAmr]

i=0

11+ E (m. aiiE[iAmii]

E[IAMIi] = KiAt

for some finite constant K i E *R. Hence

i.1

Calculating IAMl i , taking expectations and neglecting terms which contain (At) k for
k> 1 — similarly to the calculations leading to equations (4.13) and (4.14) — shows
that

E [12tr] 11 (1 + E (7)
s<t	 i=i

= H ( i + kAt)
s<t

exp(kt) < 00,

where k is a finite constant. 	 0

We can now define the (internal) minimal martingale measure P. on (12, .T) by

di'
c7TD:= zT'

Lemma 2.1.9 again shows that

dPL of') _	 _
dPL

= —dp) - LJT — eXP( — ( 110. ) 2T — 1=1 tv0
l

so that the "minimal Loeb measure" PI, coincides with the unique martingale measure
for s (cf. equation (4.12)). Therefore, if h E L2 (h) is a claim in the BS model and
H E S L2 (P) is a lifting of h then H 2T E SL(P) by Proposition 4.2.2 and Holder's
inequality, hence

E p[H] = E [2T H] EPL, [ a (2TH)] = E [h] ,

i.e. option prices with respect to the internal minimal martingale measure are in-
finitesimally close to the corresponding prices in the BS model.

This property of the multinomial CRR model (4.10), namely that it is "complete in
the limit", will be examined further in the next chapter.
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4.3 Example: A Jump-Diffusion Model

As a second applications of the results of Section 4.1 we consider a continuous-time
jump-diffusion model with a discretised version that is obtained by "direct discreti-
sation" of the continuous-time price process. We therefore consider the model intro-

duced in [RS95] on the hyperfinite time line. Note that this model is incomplete in
both discrete and continuous time. It was shown in [RS95] that the minimal densities
(and hence option prices) for the discrete time models converge to those in the con-

tinuous model. Using the results of this section we will obtain an alternative proof of
this result in Chapter 5.

Let (l, .T, P) be an internal probability space carrying an internal Brownian mo-
tion ( Wt)tE *[o,T] and an internal Poisson process (1t)tE*[0,2-] with intensity A for
A E R, A > 0. Then "W and ST are necessarily independent (see [Sch93a, p.92]).
Let tt, o-, co, so E R with so > 0, > —1 and o-2 + (p2 A > 0. We define an internal
price process ,§ : x *[0, T]	 *R by

Alt := so exp ((it — i1 0-2)t ofkt + log(1+ co)gt),	 (4.16)

i.e. A' is the solution to the internal stochastic differential equation

dA't
= Adt + adWt + codgt, Soso.

Note that, due to our assumption yo > —1, AI is strictly positive. Furthermore, by
transfer of [Sch93a, equation (II.8.17)],

E[ SUP	 <00 for r E [1,00),
tE *[O,T]

so that Alt E S Lr (P) for all t E * [0,1], r E [1,00).

We now define discrete parameter internal processes W, N, S: x T	 *R by evalu-
ating "W, g, Af at points in T:

Wt(w) := 1kt (w), Nt(w) := gt(w), St := Alt (w) for t E T, w E.

This means that the increments (AWt)tET \{T} are internal i.i.d. 	 At) random
variables. Since, for j E *N and s,t E	 Tb t + s < T,

(As)-1P(.1\48 — fcrt =_- j = — exm — As)	 (4.17)
.1!

the increments (ANt)tEn{T} are	 with a distribution given by

.19 (6nNt = j ) = 
(At)3

j! 
exp(--AAt) for j E *N.



ASt = StARt, So = so, (4.18)
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An internal filtration A = (Át) tET on (1k, ..T) is generated by the processes W and N,

i.e. At := 0-11478 ,N3 : s < t} .

The price process S is also SLr-integrable for any r E [1, co) and satisfies

where R:S2xT	 *IR is the discrete return process given by

1
ARt := exp(i — —2 o-2)At o-AWt + log(1 + (p)ANt) — 1, Ro := 0.

Proposition 4.3.1. (i) The process W is S-continuous and w := st(W) is a stan-

dard Brownian motion.

(ii) The process N is of class SDJ and n := st(N) is a Poisson process with inten-

sity A.

Proof. (i) This was proved in [Cut87, Theorem 2.2]. The proof is a modification of
the construction of Brownian motion as a binomial random walk (see Section 2.1).

(ii) This is an adaptation of the proofs of [Cut83, Theorem 6.2] and [CKW93b, Propo-
sition 2.1]: First define a process ft : Il x [0, T] 	N U loo} by

n(u,	 := max ° r(t , w).
tu

Then n is an increasing process and, by (4.17), P(NT = k) = Al4 exp(—AT), so
that (summing over k E N) AT- T is finite, PL-a.s.. It also follows from (4.17) that, for
fixed t E *[0, T] and any s 0, P(Rt+s — Art = 0) = exp(As) 1, so that gt+3 =
PL-a.s.. Hence

(Ay)j
— = j) =	 exp(—Av)

j!

for j E N and u, v E [0, 7], u + v < T. Furthermore the increments of ft are in-

dependent by the corresponding property of J. To show that PL-a.a. paths of

are right-continuous fix (.,) E S/ such that ñ, (w)< co for all v E [0,7] and consider

u E [0,7] with nu = j E N. By definition of ñ there exists t E T, t P.,- u with N(w) = j

and gt+s (w) = j for all s > 0, s 0. By overflow there exists a real > 0 such that

gt+3(w) = j for s E	 5), hence ftu±v(w) = j for all v E [0, 5).

We have shown that /ST is of class SD and that ñ = st(g) = st(N) = n is a standard

Poisson process with intensity A. In particular, the jumps of ñ are of size one, PL-a.s..

Hence N (as well as -.1C.r) has at most one jump of size one in each monad, i.e. N is of
class SDJ.	 0
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It follows from Proposition 4.3.1 that the internal return and price processes R and S

are of class SDJ and

r := st(R) = flu + awu + (Pnu,

s := st(S) = soe Hu for u E [0, 7], PL-a.s.,

so that .9 is the stock price process in the jump-diffusion model in [RS95, equa-
tion (1.1)]. The Doob-Meyer decomposition of the return process r can be calculated
as

dru = arud (mr)u dmru

with

r_  + (PA and2 + co2A

dmru = udwu + (P(dnu — Au)

(see [RS95]). On the other hand, calculating the internal decomposition of R and
observing that E [cANt ] = exp((c — 1)AAt) for c E *IR (see [Pro90, p.15]) yields

E [ARtl At] = exp((p, + coA)At) — 1,

SO

AMiR = ARt — E [ ARti At]

= exp ((it + A)At)	 (4.19)
1

x (exp ((— —
2
a` — A) At + thW + log(1 + cp)ANO — 1)

and

E [(AMR)1 At] = exp (2(/ yo A) AO (exp ((a-2 + (p2 A)At) + 2 . 1 — 1) ,

hence

exp ((p + A)At) — 1
at =— 2 (tz + yoA)At).

exp ((a2 + cp2 A) At) — 
1 exp

We see that ar is a constant and, using the Taylor expansion of the exponential
function once again,

o R 	 + (PA 
= at .= 0.2 + co 2 A

In order to show that st (MR) = mr it remains to prove the following lemma:
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Lemma 4.3.2. The process M:It x T *R defined by

1
Mt := E (exp ((— —2

0-2 — coA)At + 0-Wt + log(1 + co)AN) — 1)
s<t

satisfies

st(M)„ —coAu + o-wu + (pnu for u E [0, T],

Proof. Note first that ex+Y — 1 = (ex —1) + (ev — 1) + (ex — 1)(eY —1) for x, y E *R.
We will use this relation with

xt := (—	 'yoA — o- 2)t + clAWt,

log(1 + yo)ANt,

SO

Mt =E(exs — 1) ± (Os — 1) ± (exa — 1)(eYs — 1).	 (4.20)
s<t

By Theorem 2.2.6(ii) there is a set f2 c St with PL( l) = 1 such that (W, N)(co) is
SDJ and [w] (co) = st([W1)(co) for co E ft. Now fix co E 5-2. Using the Taylor expansion
of the exponential function shows that

1r,	 1E exa(w) —1 (—(pA —	 + —o-L[W]t(w) + oWt(co)
2	 2

hence

st (E ex) 1) = —Au crwu(w) for u E [0, 71

Since N(co) is SDJ we have ANt (w) E {0, 1}, so that

eY 3( ''' ) —1 (1+ (p ) AN8(w) — 1 = (pAN5 (w) for s E T,

hence

st (E eY - P) 1)	 yon(w) for u E [0, T].

Finally, let E	 max{lex. (w) — 11 : s E T}, so E 0. For the remaining term in (4.20)

we then have

s<t

E (ex.P) — 1)(eysm —1)

s<t

E(es.(,) —1)(pAN8(co)

s<t
� EyoNt(w),

which is infinitesimal since Nt (w) is finite.
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Proposition 4.3.3. In the discretised jump-diffusion model (4.18) the minimal den-

sity 2 = 11(1 — aRAMR) is of class SDJ and satisfies

st(2)u = £(— f ar dmr)	 for all u E [0,T], FL-a.s..

Furthermore, for any r E [1, co), 2t E S Lr (P) for all t E T.

Proof. The first assertion follows again from Corollary 4.1.5. For the S-integrability
we can use the same argument as in the proof of Proposition 4.2.2, so it is enough to
show that, for i E N, E ['AW] = Kt for some finite Ki E *R. But this follows
immediately from the expression (4.19) for AMiR together with the fact that

E [exp(cAWt)] = exp("c2 t) and E [exp(cANt)] = exp ((exp (c) — 1)AAt)

for any c E	 0

Remark 4.3.4. Note that the density e (— f ar dmr) in Proposition 4.3.3 may take
negative values as mr has jumps of size A. We can ensure that the density remains
strictly positive if we make the additional assumption on the coefficients A, tt, a,cp

that (par =	 < 1 (cf. Theorem 1.2.6).

Proposition 4.3.3 is the exact analogue of Proposition 4.2.2 for the multinomial model
in Section 4.2. Therefore the minimal Loeb measure PL coincides with the minimal
martingale measure for s and, for any h E L2 (PL ) with lifting H E S L2 (P), we have

E p [H] E p [h] .

4.4 Trading Strategies and Value Processes

In this section we present a general result which we will use later to relate the op-
timal trading strategies for discrete incomplete market models to those in complete

continuous time models. We will illustrate these results in the next chapter when we

consider (incomplete) discrete time approximations of the Black-Scholes model.

We are back in the general setting of Section 4.1, i.e. (11, A, A, P) is an internal filtered
probability space with associated Loeb space (11, FL, We will denote the internal
expectation with respect to P by E[•1 and the (standard) expectation with respect
to Pi, by EL[ .1. The counting measure on the hyperfinite time line T is denoted by A.
Suppose the process S: 11 x T *R is an internal 8L 2 (P)-martingale of class SDJ.
As usual we denote the internal Doleans measure of S by vs. Let s := st(S) be the
standard part of S, so that s : l x [0,7] —> R is an L2(PL)-martingale.
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We make the following assumptions (Si) and (S2) on the processes S and s. In
Chapter 5 we will introduce two models for which these are satisfied. Furthermore,
note that (Si) and (S2) are satisfied for the models considered in [CKW91, CKW9313].

(Si) For any nonanticipating process e : SZ x T 	 *R and any 0 E L2 (v3 ) we have

e is a SL2 (vs)-lifting of 0 <=> es is a SL2 (P x A)-lifting of Os.

(S2) Any h E L2 (PL ) can be represented as

h = vo + f Oudsu	 (4.21)

with a unique 0 E L2 (vs ) and vo e

Now let h E L2 (PL) and vo, 0 be defined as in (4.21). Define processes g, v,
x [0,2]	 R by

gt	f 0„dsu ,	 vt := vo + gt ,	 vt — Otst•

Let H E SL2 (P) be a lifting of h. We can then define an internal decomposition of H
as in Section 1.1: Let

Vt := E [HIAt],	 et :=
E [(Ast) 2 1 At]

(with e t = 0 if ERASt ) 2 lAt] = 0) and set eT := 0. So V is a SL2-martingale. By

transfer of the inequality (1.7) we see that

E [(etASt ) 2] < oo.

The internal martingale L defined by

Lo := 0,	 ALt := AVt — etASt

is internally orthogonal to S, i.e.

E [ALtASt l	 = E [17tAst — et(ASt)21Ad

E [Vt+AtASt i At] — VtE[ASti At] — etE [(ASt)2IAt]

0 fortET\{T}

(where the last equality uses the martingale property of S and the definition of et).
Then

vt = vo + E eiL ASu + Lt and VT = H.
u<t

E [ Vt+AtASti At] 



4.4 Trading Strategies and Value Processes 	 61

Finally, we define internal processes G, 'I' : St x T -4 *R by

Gt := E eu6Su,	 Wt := Vt — etst.
u<t

We need the following two lemmata; the proofs are given in Section 4.5. The first
characterises orthogonality of martingales in terms of orthogonality with respect to

the space generated by stochastic integrals. The second gives a simple criterion for
an internal martingale to be infinitesimal.

Lemma 4.4.1. Let X, Y: CZ x T —> *R be internal martingales. Then X and Y are

orthogonal, i.e.

(4.22)E [AXtAYtlAt] = 0 for all t E T,

if and only if for all nonanticipating 6:CtxT—*R the process Z defined by

z, = Yt E 0,AX,	 (4.23)
s<t

is an internal martingale, i.e. Y and E OAX are orthogonal.

Lemma 4.4.2. Let X : C 1 > < T -- *R be an internal martingale with Xo = 0. If
E[X] ::::: 0 then Xt ::::: 0 for all t E T, PL -a.s., i.e. st(X)E., 0.

We can now prove the main result of this section:

Theorem 4.4.3. Under the assumptions (Si) and (S2) we have

(i) 0 is an SL2 (v8 )-lifting of 0;

(ii) ‘11 is an SL2 (P x A)-lifting of 0;

(iii) G and V are 8L2 -martingales of class SDJ and satisfy, PL-a.s.,

st(G) .. g,

st(V) = v,

hence st(V) = st(Vo + G). (4.24)

Proof. First note that vo = EL[h]R-,-. E[H] = Vo. Since S is an SL2-lifting of s and
0 E L2 (v3 ) there exists a 2-lifting 0 of 0 such that

T
° (E es) = f Oudsu,

t<T	 o
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(Theorem 2.2.11). Then -11 := Vo + Et<T etASt is also an SL2-lifting of h, hence

0 P-.1E [(1/ — ii. ) 2 ] . E [(E etASt + LT - E etAst)2]
t<T	 t<T

= E [(pet - et)Ast) 2] + E [4]
t<T

+ 2E [LT 2(et - et)ASt]
t<T

The internal process

Mt := Lt E(eu — eu)ASu
u<t

is a martingale by Lemma 4.4.1 (recall that L and S are internally orthogonal). Since
Mo = 0 we have

E[
LT E(et — et)ASt] = O.

t<T

Therefore the final term in (4.25) disappears and

\ 2
12 xT (e — e) 2 dug = E [( (et- ot)Ast) ] P:-:

t<T

and	 E [Li] P.--, 0.

Hence 8 is also a 2-lifting of 0 with respect to vs and 8 e SL2 (vs). By assump-
tion (Si) this is equivalent to es being a 8L2 (P x A)-lifting of Os. Furthermore, G is
an SL2-martingale of class SDJ by Theorem 2.2.8, and Theorem 2.2.11 implies that

st(G) = st (E 86,S) = f Ods = g, PL-a.s..

As E[L].--::1 0 it follows from Lemma 4.4.2 that the paths of st(L) are constant zero,

PL-a.s., hence

st (V) = st (Ho + G + L) = °H0 + st(G) = ho + gt = v	 PL-a.s.,

Finally, this implies that kIf = V — es is an SL2-lifting of 0 = v — Os.	 0

Remark 4.44 In the language of mathematical finance Theorem 4.4.3 shows that
the lifting property of a claim H implies the lifting property of the associated locally-
risk-minimising (or variance-optimal') strategy, and its value and gains process.

(4.25)

0

1 Since S is a martingale the locally-risk-minimising and variance-optimal strategies coincide in
this case (see Remark 1.3.2).
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This result therefore includes Theorem 3.5 in [CKW91] and Theorem 4.1 in [CKW9313]
as special cases. It should be noted however that the models in [CKW91, CKW9313]
are internally complete. It is therefore possible to obtain an internally self-financing
trading strategy generating the claim H, so that equation (4.24) is automatically
satisfied: for self-financing strategies we have V = Vo + G.

The crucial point in Theorem 4.4.3 is that the additional cost process L is infinites-
imal, so that the internal strategies here are self-financing "in the limit". This last

statement will be made precise in the next chapter.

We summarise the results of this section in the following theorem which is a general-

isation of Theorem 2.3.1:

Theorem 4.4.5. With the above notation and assumptions (Si) and (S2) the fol-

lowing are equivalent:

(i) H is an 8L2 (P)-lifting of h.

(ii) e is an SL2 (vs)-lifting of 0, and T is an 8L2 (P x A)-lifting of 0.

(iii) es and ‘If are 8L2 (P x A)-liftings of Os and IP, respectively.

(iv) G is an SL2 -martingale of class SDJ and st(Vo + G) = vo +g, PL-a.s..

(v) V is an 8L2 -martingale of class SDJ and st(V) = v, PL-a.s..

4.5 Auxiliary Results

This section contains the proofs of some technical results which were used in the
earlier parts of this chapter.

Proof of Lemma 4.1.1. Note first that F, is finite for all s E T and let B :=
max{lAZI +1 : s E T}. Then B is finite and I °A.F13 1 < B for all s E T.
There are at most countably many points u E [0,1] such that lAfu i > 0. Note also
that since F is SDJ there exists a unique s E T for every u E [0, T] with I Aful > 0

such that s

° F(s) = f (u—) and °F(s + At) = f(u), hence 'AF, = AA,. (4.26)

Now let J := {u E [0, 1] : ' ,Mu' > 0} = {ui, u2, • • . } be the (possibly) finite set of

jump points of f.
Case (i): J is a finite — possibly empty — set. Let if be the set of corresponding

jump points s of F as defined in (4.26). Then t is finite (or empty), hence internal



° J (t)
1 	 2)

°( F + (6,118)
.5<t
sEir

= E	 + —
2

( ° Fs)2
.5<t,
sET

(4.27)
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and, for t E T,

°K(t) °(1-1(1+ AFs)) = 11(1+ ° A.Fs).
s<t	 s<t
SET	 sET

(4.28)

Case (ii): J is countably infinite. Due to assumption (4.5) the set of u E [0,7] such
that I _A fu i > c is finite for any fixed c> 0. We may therefore assume (by applying
Case (i) to a subset of .11 if necessary) that lAful < for all u E J. Let (iii)ZEN

be an enumeration of the points in .11 and (MiEN the sequence of corresponding non-
infinitesimal jump points in T as defined in (4.26). By Countable Comprehension (see
e.g. Theorem 2.5.1 in [CC95]) this sequence can be extended to a sequence (s i ),; E • N
with s i E T for all i E *N.
Now let E max{IF, — °F51 : s E T}. Then E 0 and

max{IAFs —	 : s E T} < 2E.

Choose M E *N \ N such that ME 0 and M < N (e.g. let M = min{ [VA, N}
where [r] denotes the integer part of r E *R; if E = 0 then let M = N).

Define it' := {Si : i < M} C T. Then it' is internal and

° J(t) = ° (E AF, + 1 (.F1 ) 2) = E °AT', + 1 (°,6.11 ) 2	 (4.29)
.9<t	 8<t
.9EIC	 sErTh

as

— °	 + (F5 ) 2 — ( °A.F02)
s<1
BET

<

	

	 — ° AF31 +
1
—2 IAF3 — °PF,I•	 + ° AFsl

.5<t
sEt

M(2E+ 2BE) O.



+ es
1 + °API,

AF, — ° AFs
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Furthermore,

llog(H(1 + AF,)) — log(11(1 + 0A1'8 ))1 � Ellog(1 + AFs) — log(1 + °
AFs)1s<t	 s<1	 s<t

sET	 sET	 sET

AFB — '6.1'8)
log (1 + 	

1 + ° AF5 )

(writing log(1 + x) = x + 6)

= E
s<t
SET

__ El
1 + °AZ I

+ lEsl.

Recall that IAA] < -12- for all u E .11, so that, for sEt, I° AF51 < 1, which implies

that 1 + ° Al's > i. Since I log(1 + x) — xi � 1x1 2 for Ix' < i we see that lE s 1 <

416.1'5 — °6.Fs1 2 and hence the final sum is bounded by

E 216.F5 — °AF5 1+ 416.1'5 — '6.11, 1 2 < MW + 16E2 ) = 4ME(1+ 4)P:', 0,
s<t
SET

s<i
SET

s<t
SET

thus, by the S-continuity of the exponential function

° K(t) = ° (1-1(1+ AFs)) = H(1 + ° F5).

s<t	 s<t
sET	 sET

(4.30)

(Note that the use of the above inequality for the logarithm function also shows that

log (ll (1 + 6.F5)). E log(1 + AI's)
s<t	 s<t
sET	 sET

is finite since E5<t (6.118 ) 2 is finite by (4.5).)

We now show that st(J) = j and st(K) = k in either case: Let v E [0, 1]. Then there
are points v', v" E .111 such that ti < v < v" and s Et .11 for all v' < s < v" (i.e. v', v"
are the nearest jump points to the left and right of v — note that possibly v' = v).
Let t', t" be the corresponding points in 'ir- as defined in (4.26). Then °Iv — el > 0.
Hence, using (4.27) and (4.29) respectively, and observing that j only changes values



Hence

E[AZt 1 At] =
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at points u E .11 while °J( . ) changes values only at the corresponding points s E ,

1 
(°,6,11) 2st(J)(v) lim ° J(t)	 lim r °AFs + —

2ot,t.v
s<t
SET

E	 + (°A.F1.)2
s<t'
sET

1
E Ah + (6, .19) 2 i(v).

u<v,

An analogous argument (using (4.28) and (4.30)) then shows that st(K) = k.

Proof of Lemma 4.4.1. First assume that X and Y are orthogonal. Calculating
AZt yields

AZt = Yt+.6,t E esAXs — Yt esAX,
s<t+At	 s<t

= (Yt AYt) E 85 AX5 — YtEesAX,
s<t+At	 s<t

= YtetAXt + AYt E esAX,
s<t±At

YtetAxt + AYt E es Ax., + AYtetAXt
s<t

E [YtetAXt I At] + E [AYt EgsAXs At] + E [AYtetAXt1 At]
s<t

YtetE [Axt 'At] + E [AYt lAt] E es Axs + ® E [AYtAXt I At]
s<t

=0

because of the martingale property and the orthogonality of X and Y (cf. equa-

tion 4.22).
For the converse note that the process

Zt := Xt AY, = XtYt
s<t

is a martingale (choose e 1 in (4.23)).

The following lemma is a nonstandard version of the standard result that two con-
tinuous processes which are versions of each other are already indistinguishable.

Lemma 4.5.1. Let X: Sber	 *IR be an S-continuous process and PL,(Xt :=-2. 0) = 1
for each t E T. Then

-131.,(Xt	 0 for all t E	 = 1.
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Proof. Let O {u.; E C2 : X (w) is S-continuous}. Then PL(f ) = 1. For r E [0,7] let
f := max{t E T : t < r}, i.e. f is the element in T immediately to the left of r. Now
let S := {q :qEQn [0,1]} C T. Since there is a one-to-one correspondence between
the elements in Q n [0, T] and those in S we see that S is countable and S-dense,
i.e. st(S) = [0,T].
For s E S define

D,	 {(4) E : °Ixs(w)l > 0} = {co E : X3(w) � O} flft

Then PL (Ds) =-- 0 by assumption. Let

D:=1JD3.
sEs

Then PL (D) = 0 and PL O \ D) = 1. For fixed wEO\D the path X.(w) is 5-

continuous and Xt (w) -2, 0 for all t E S. Let x := st(X(w)), so x is a continuous
function which is zero on Q n [0, T]. Hence X(w) 0 for all t E T.	 0

Proof of Lemma 4.4.2. Let [X] be the internal quadratic variation of X. We
know that

E[4] = E[X] + E[Pfl t] = E[[X] t] for t E T.

It follows that E[[X1T] = E[X] Pe, 0. Since [X]2-, > 0 this implies that [X]T(w) 0
for PL-a.a. w. But [X]o = 0 and [X] is an increasing process, hence the path [X].(w)
is S-continuous for PL-a.a. w. Therefore X is S-continuous by Theorem 2.2.6.
Since [X] is an increasing process we have

0 < E[4] = E[[X] t] E[[X]T] 0 for t E T.

Hence, for fixed t E T, Xt r-ze, 0 PL-a.s.. Lemma 4.5.1 then implies that Xt 0 for all
t E T,	 0



Chapter 5

Approximations of the
Black-Scholes Model

In this chapter we apply the results of Section 4.4 to two alternative approximations
of the BS model. These can be viewed as the limits of the modified CRR and BS
models, respectively, under restricted hedging (see Chapter 3) when the time between
hedging dates decreases to zero. The results in this chapter therefore extend the

results in [MV96] and [RS95] on the convergence of option prices.

5.1 The Multinomial Cox-Ross-Rubinstein Model

In Section 4.2 we introduced a hyperfinite multinomial version of the CRR model and
showed that the minimal martingale measure on the Loeb space coincides with the
unique martingale measure of the complete BS model; this implies that option prices
in this multinomial model are infinitesimally close to the corresponding prices in the
BS model. Using the results of Section 4.4 we now show that the same is true for the

associated trading strategies and value processes. We then use the concept of D2-
convergence to obtain new convergence results for these processes. It has previously
been shown in [MV96, Proposition 3.6] that option prices for a European call option

in the sequence of multinomial models converge to the corresponding BS price.

Definition of the Model

Let [3 E N be fixed and let p , a-, so E IR, cf, so > 0. For 7-1 E N we define the n-th

( 3 + 1)-nomial CRR model as follows: For T E 111+ let Tn := {0, Ant, ... , T} with
pylrn \ {T} and .Fn := P(On). The countingAnt := Tin. Set Sin := 10, 1,	 ,...	 measure

on Tn, is denoted by A.
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We want to specify a probability measure Qr, on SZ„ such that the price process

Sn,t+p := Sn,t • et dO-Let

with

S	 := SO	 (5.1)

Ant	 Antu := 1 +	 + cr-VAnt/i3 and d := 1 +	 - a-VAnt/i3
0	 0

is a martingale under Q. On possible choice would be the internal minimal martin-
gale measure constructed in Section 4.2; however, we can use the extra information

that our multinomial model is obtained by sampling the price process of a complete
binomial CRR model (on the finer time set T:= {0, Ant/13,2Ant/O, , T}) at the
points t E T. This "hidden" binomial model has a unique martingale measure given

by the probabilities

1 - d 1
q := 	  =(1_L VAnt/O) and 1 

q = u 1 =	 Ant/ /3)

u— d 2	 a	 u - d 2	 cry

for an "up-" or "down-movement" between times in T. We therefore define the
measure Qn on (itn,..Tn) by

n (Wt = i) := (13j ) qi ( 1	j

and (wt)tE T \IT)for w = ( (.00) WT_ t) E independent. We denote the expec-

tation with respect to Q n by En[ . ]. A filtration An = (..--.4-,t)tETn is again generated

by the multinomial random walk Wn : Qn X Tn R with

(-0 +2wo-VAnti 0, wn,0:= 0.

Since AWn,t is the sum of 13 independent and identically distributed binomial trials,

each with outcome +VAnt/13 (with probability q) or -VAnt/13 (with probability

1 - q), we see that

En [AWn,t1 An,t] = 0-V Anti (2q -1) = -111Ant,

i.e. Wn is not a martingale under Q. We therefore define an adjusted multinomial

process fvn : fi n X Tn R with

:= AWn ' t	 Ant, 1717n,0 := 0,
 a

so that

En [Agrn,t1An,t1

Vain [AfiTn,t I An ,t]

=

= 0(1nt/P (LaAnt/i3)2)

= Ant(1 - VAnt/i3).

(5.2)

(5.3)
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The n-th (i3 + 1)-nomial CRR model satisfies the assumptions of Section 1.1, so that
any claim H : Sin R in this model can be replicated by a mean-self-financing

strategy 4' 11 = (81 ,4/11 ) which is risk-minimising since Sn is a martingale (cf. Re-

mark 1.1.7 on page 9). Furthermore, the variance-optimal strategy el exists and

coincides with e ll in this case (see Remark 1.3.2).

Remark 5.1.1. As mentioned above the multinomial CRR model can be regarded as
the restriction of a binomial CRR model on TC1 = {0, Antlf3,... ,T} to the coarser

time line T. It will be useful later to have some notation for this binomial model: let

Sig := {-1, +1}192\{T} and Ce,, be the measure on (14, p(14)) given by the binomial

probabilities q and 1 — q. Let W7e, be a binomial random walk on Tg, with step size

±VAnt/0 and the price process Se be given by

Ant
4 ,t (w) = so	 (1 +	 + o-AW71.7,8), s,t e

0

where 1K3,,t	 Wni3 t+Ant/i3 14771.3i,t.

The Hyperfinite Version

For any infinite N E *N \N we have an internal (0 + 1)-nomial CRR model on the

hyperfinite filtered probability space (C2N,YN ,AN ,QN) with associated Loeb space

(UN, L (FN), L(QN))•

Lemma 5.1.2. (i) The processes WN and 1717N are S-continuous.

(ii) := st(I;V- N) is a standard Brownian motion on (SIN , L(YN ), L(QN))•

(iii) The price process SN is SLr (Q N )-integrable for each r E [1, oo).

Proof. (i): By transfer of (5.2) and (5.3) 1717N is an internal A2-martingale, and cal-

culating the quadratic variation of 'T/IT' N yields

(5.4)
s<t

[17V N]t(W) = EANt ( -1i (- + w8 ) 2 + 2-1-1-a (-0 + 2w3)VAN t/P (Pla)2ANt)
.9<t

E Ks(w)ANt,
s< t

where Ilfs(w)I < + 1 for all s and (2). Hence [1;t7N](w) is S-continuous which implies
that I-4'7N is S-continuous by Theorem 2.2.6(i). Since WN,t = TA/' N,t — V also WN is
S-continuous.
(ii):	 = st(l' TN) exists and is continuous by'part (i). Also tbo = 0 by definition
of fli". N. The process TAT' N has independent and identically distributed increments,
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so, by the central limit theorem (Theorem 2.1.3) and the transfer of equations (5.2)
and (5.3), in o t is normally distributed with mean zero and variance

°((1 — ( 410. ) 2 ANt/O) E ANt) . ot.
s<t

(iii): Using the notation introduced in Remark 5.1.1 we consider the price pro-
cess Sgr on T TN. Following the same argument as in the proof of Lemma 3.1(b)
in [CKW91] we see that it is sufficient to prove that, for t E 713N,

EQ0N [II (1 + aANt113+bAWg, ․)] is finite for a, b E R.
8<t

Using the independence of the increments of Wg we see that the above expectation
equals

H (i + (a — b ila ).ANt/13);::-..., exp (if- t)
s<t

for some finite K. This implies that, for any r E [1, oo ) , i sg,,ii r is S-integrable for all
t E TI3N , hence SN,t E SLr (QN) for all t E T.	 El

By Lemma 5.1.2(i) WN,t is finite, L(QN)-a.s.. It then follows from (5.1) (or (5.4))
and the proof of Lemma 3.1(a) in [CKW91] that, L(QN)-a.s.,

SN,t
,	 1,

so exp (uL — —
2

CI
2 

) t ± OW N,t)

1
= so exp (— —

2
a

n
`t ± 0-1-47 N,t)

for all t E TN. Hence, SN is S-continuous and

1 n
su := St(SN)u = so exp(--

2
a`u + alb.) for u E [0, T], L(QN)-a.s..

Since fb is a standard Brownian motion, s is indeed the price process in a Black-
Scholes model under the unique martingale measure Q: L(QN ). Hence each claim
h E L2 (Q) can be represented as

T
h = vt)'' + f Oulidsti

JO

for some Oh E L2 (v3 ) and vtj E lit We now verify assumption (Si) on page 60 by
employing the following lemma:

Lemma 5.1.3. Suppose SN satisfies

E [(ASN,t) 2 1 ANA = (SN,t) 2KANt	 (5.5)

for some finite constant K E * R with °K > 0. For any nonanticipating process 8
and any 0 E L2 (v3 ) we then have

0 is a sL2 (vsN)-lifting of 0 .4=> OSN is a SL2 (QN x AN)-lifting of Os.
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Proof. By Definition 2.2.7 the internal algebra AnN xn, on C1 N X TN is generated by

the sets {A x {t} : t E TN, A E AN,t }. Using (5.5)

vsN (A x	 = E [1A(ASN,t) 2] = E [1AS2N,t] K Nt

for t E TN, A E ANA. Since SNA is non-infinitesimal, L(Q N)-a.s., and square-S-

integrable we have

vsN (B) 0 <=> (C2N x AN) (B) 0

for B E AQN XT N . This implies that e lifts 0 with respect to vsN if and only if OS N

lifts Os with respect to QN X AN. Furthermore,

C)2 dvsN
LNXTN

E[Ee2 (AsN,t ) 2] = E [E(OSNO2KANd
t<T	 t<T

K

 fO. T—N X - N

(esN) 2 d(QN X AN)

by (5.5) and the tower property for conditional expectations. Hence, e E S L2 (vsN)

if and only if eS N E SL2 (C2N x AN).

In order to check (5.5) we calculate

E (AsN,0 2 1 ANA = (SN,t ) 2E[(tet d 13-  -1)2]

= (SN,t ) 2 (E [(tet d 13-') 2] - 2E [et (1°-wt ] + 1)

= (SN,t) 2	 [(et d 8 -`1 2] - 2 . 1 + I)	 (5.6)

Now

E [(etc/13'01 (13i ) u2. d2 (13—i)qi (1 _

j.o
(u2	 d2 (1 _ q))0

(—
u -

1
d 

(112 - u2 d u d2 - d2))13

(u + d - ud)13

(2 + 2iLIA 	 (1 + (2p -	 p2(ANtl 13)2)Y

(1+ a2	 112(60/1/0)2)
fi

= 1+ (a2 + e)ANt

with e Ps-, 0. Substituting into (5.6) we see that SN satisfies (5.5) with K = cr2 + e.
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We are now in a situation where we can apply the results of Section 4.4, in particular
Theorem 4.4.5, so that the valuation of claims and calculation of mean-self-financing
trading strategies in the hyperfinite (/3 + 1)-nomial CRR model is equivalent to the
corresponding operations in the BS model.

Convergence Results

As in Section 2.4 we can consider the space C = Ix E C[0, T] : x(0) = 0} with
the measure Q together with the finite subspaces Cr, of polygonal paths of Wn and
measure Q. Using Theorem 2.4.1 together with the definition of D 2-convergence in
the context of these spaces we have the following analogue of Theorem 2.4.7:

Theorem 5.1.4. Let Hn : 14, —> R be a sequence of claims in the (f3+1)-nomial CRR

models and h E L2 (Q) a claim in the BS model. Then the following are equivalent:

(i) Hn r4 h.

(ii) Vin P-; Oh .

(iii) V() '4 V().

(iv) G(Vin ) -14 G(Oh ) and Vorin --+ V.

An important aspect of D 2-convergence is the existence of a discretisation scheme
which maps paths in C back into C.

Proposition 5.1.5. There is an adapted Q-discretisation scheme for the (0 + 1)-
nomial CRR model.

Proof. Let (dg )nEN be the adapted Q-discretisation scheme for the binomial CRR
model on Se., (see Remark 5.1.1 and Theorem 2.4.3), so that ce, : c —> Cr'8, where
Ce. :. {NI (w) : w c 143,} denotes the path space for the binomial CRR model. Define
a map iin : ce -- Cri by

(4(4(0 := co(t) for CO E Ce and t E Tn

and filling in linearly between points in T. SO i'in samples paths in C‘3„ at points in Tn

and "forgets" what happens between these points. We now define dn : c -+ Cm as

dn := iin 0 4.

To see that (dn)nEN is an adapted Q-discreti gation scheme we note that dn is &-
adapted and Q-measure preserving since cig and .jin are. It only remains to show that
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d(w)	 w in Q-probability. Fix E > 0 and let 6> 0. As (C1) nEN is a discretisation
scheme there exist no E N such that

(114(w) — w il < E /2) > 1-6 for all n.> no	 (5.7)

(here 11 • 11 denotes the sup norm on C). Furthermore, 114 (w)

	

� 2( 2 for13 +l	 n>t 13ffor all w E C. We therefore have en E N such that Il cin(w) — w il < e/

and w E C. Hence, for n > max{n 5 , fi},

(Ildn(w) — wIl <E.) =	 04(4M) d(w) + dg (w) wii <E)

c2 (114(6v)) — d',31(w)11+ ii cei(w)	 < e)

� 62 (E 1 2 +	 wit < 6)

> 1 — (5 by (5.7),

which completes the proof.	 0

Remark 5.1.6. The convergence result in Theorem 5.1.4 could have also been obtained

under the minimal martingale measure for the multinomial CRR model as defined
in Section 4.2. Therefore our choice of the measure Qn might seem arbitrary; how-

ever, note that the minimal martingale measure depends on the specification of the
"physical" probability in the underlying model (we have used the uniform measure

in Section 4.2), we may therefore also use a martingale measure from the beginning.
Furthermore, our choice of Qn allows the construction of an adapted discretisation
scheme from the already existing one for the binomial CRR model as in the proof of
Proposition 5.1.5.

We saw in Theorem 2.4.6 that we can always obtain a sequence of D2-convergent
claims by means of an adapted discretisation scheme (the proof of Theorem 2.4.6 also
applies to our situation, cf. [CKW93a]). However, when considering a specific claim h
in the BS model a D 2-convergent sequence (Hn)nEN approximating h can often be
found in a more direct and natural way:

Example 5.1.7. If the claim h only depends on the price of the risky asset at maturity,
i.e. h = f(sT) for some function f R R then Hn := f(S„,T) is a natural choice
of an approximating sequence for h. Indeed, if f is piecewise continuous and satisfies
a polynomial growth condition then the same argument as in Section 3.4 shows that

D2
H n -4 h.

Example 5.1.8 (Asian options). If h = (+, f0 stdt — K) -1- is an Asian call option
with fixed strike price K then the claims Hn Et<T Sn,tAnt — 10+ yield a
D2-convergent sequence approximating h. To see this note that, for N E *N \ N,
SN is S-continuous, i.e. for w E N C C1N the path SN,.(w) is S-continuous where
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L(QN )C6N ) = 1. In particular, SN,.(W) is bounded, hence S-integrable with respect

to AN. Therefore

T
° (E SN ,t(W)ANt) = f st (co)dt for co E nN ,

t<T	 o

which shows that HN is a lifting of h. By Lemma 5.1.2(iii) SN ,t E SLr (QN) for any
r E [1, oo). This implies that also Et<T SNAAnt E Sr (QN) for any r E [1, oo).

Exactly the same considerations apply to an Asian option with average strike price,
i.e. h= (sT — 124 foT std0 + .

Summing up the results of this section we have shown that, for any 0 E N, the (0+1)-

nomial CRR model has exactly the same convergence properties as the complete
binomial CRR model, provided we are using mean-variance hedging for pricing and

replicating claims in these models. When using finite models as approximations of the
continuous time BS model — especially for numerical purposes — the use of binomial

models does therefore not offer any advantage over multinomial models. In fact, we

will see in the next chapter that the use of (i3 + 1)-nomial models with 0 > 0 may

even preferable.

5.2 Direct Discretisation of the Price Process

In this section we consider a Black-Scholes model on a filtered probability space

/,(SI, .7", P) with time-dependent deterministic drift (Pt)te[o,T] and volatility (at 1 tE[OT]•

We assume that the functions iL, a- : [0,7] —> IR are piecewise continuous and bounded.

Furthermore, at > 0 for all t e [0, 7].

It is well-known that this model is complete (see e.g. [BK98, MR97]), so that there

is a unique equivalent martingale measure Q for the price process s, and under this

measure s is the solution to the stochastic differential equation

dst
— = at dtD
st

t

where ib is a standard Brownian motion under Q, i.e. 8 is given as

1ft 2	 t

St = SO eX —P (
2 0 

au du + f au &Lau).	 (5.8)
o

From now on we will work with the measure Q; a filtration IF on (SI, ..T) is generated
by ib . For any h E L2 (Q) let q9 	 the unique self-financing strategy generating h.

We want to define a sequence of discrete time models approximating (5.8) following

the "direct discretisation" approach in Section 4.3. However, we first approximate
the volatility function a by a sequence of piecewise constant functions as in [RS95]:
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For n E N and Ant := Tin define an : [0,7] —> R by

	

an(t) := C7 (0) 1 {0} (t)	 E a(s)1(.9,3+Ant,(t)
s<t

	(with the sum taken over Tn = {0, Ant,	 t}). This means that an(t) = a(t) for

t E Tn and an remains constant between points in T. SO an is left-continuous with
right limits, bounded and strictly positive.
We define another Q-martingale sn : SZ x[0, T] R by

So := so exp(--
2 0 

an du +
0 

a n,n u)

We can then obtain a discrete time process Sn : 12 X Tn -4 R by evaluating sn at the
discretisation points t E Tn, so that Sn satisfies

1 ,
Sn,t+Ant = Sn,t exp(— yrr 71 Ant + an,tAil)t) , t E Tn {T},	 (5.10)

Sn,0 = SO,

where Aibt := tpt+Ant 'tht Af(0, ant).

The Discrete Time Model and its Internal Version

We define the n-th discretised BS model as follows: Let Sin :=	 \{T},	 13(12)
and Qn the probability defined by wt iV(0, Ant) and wo, .. • , wT—Ant independent.
A filtration An is generated by the process Wn : nnx Tn R with AWn,t := Lot,
Wn,0 := 0. The price process Sn is then defined as in (5.10), with Afti t replaced by

AWn,t•
The discretised BS model satisfies the assumptions of Section 1.1 (cf. the calcula-
tions in Section 3.1), so that any claim H E L2 (Q) can be replicated by a

= (e H TH)	
risk-

minimising mean-self-financing strategy (D H	. Again the variance-optimal

strategy II coincides with OH.

As before, for infinite N, this gives rise to an internal model on (ftN, AN,TN,QN)

with associated Loeb space (S/ N , L(.7-N),L(QN)). By Proposition 4.3.1(i) the internal

process W N is S-continuous and w := st(WN) is a standard Brownian motion on the
Loeb space.
Due to the piecewise continuity of a we have

	

N (t) = * o-(t)	 o-(°t) for L(AN)-a.a. t E TN,

so that aw is an S-bounded lifting of a. Hence

1 2

	

So 11	 + o-n,,AWn,8)
s<t

1	 2= 80 exp (— —
2 
E 

A 4 
E C No AW N , ․)

(5.9)

S N,t

s<t	 s<t
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is S-continuous and

1 ft 9
st(SN). =-- so exp (— —

2 0 
0du f andwn).

Calculating

1
E [511;[,t] = s exp (— —

2
(r — r2 ) E o-2NANt)

s<t

for r E

shows that SN is an SY-martingale for any r E [1, oo). Finally

E [(ASN,t) 2 I ANA = S2N,t(exP(ak,tANt) — 1) = Sk,t (o-2N,t et)ANt

with et "--% 0 for all t E TN, so that we can use the proof of Lemma 5.1.3 to show that
assumption (Si) in Section 4.4 is satisfied. Hence Theorem 4.4.5 holds for this internal

model and the BS model (5.8); we can now use it to obtain standard convergence
results for the sequence of discretised BS models (5.10):

Convergence Results

As in Section 5.1 we assume that St = C for the BS model and we consider the
subspaces Cn C C of polygonal paths of W. We can therefore define D2-convergence

as before and have the following analogue to Theorems 2.4.7 and 5.1.4:

Theorem 5.2.1. Let Hn : 	 IRR be a sequence of claims in the discretised BS

models and h E L2 (Q) a claim in the BS model. Then the following are equivalent:

(i)Hn i=2: h.

(ii)vim ./4 oh.

(iii) V(") 14 v(0).

(iv) G(0,2) 14 G(Oh) and Vogn Voh.

We will see below how we can obtain an almost trivial adapted Q-discretisation

scheme (d)EN for these models, so that we also have the alternative characterisation
of D 2-convergence in terms of "L2 (d 0)-convergence" given by Theorem 2.4.4. Note
that in this case the spaces Cn are not finite; however, the proof of Theorem 2.4.4

does not use this assumption (cf. [CKW95, Theorem 5.1]).

Proposition 5.2.2. The family of mappings dn : C Cn defined by

(5.11)(dn (w))(t) := co(t) for co E C and t E Trio

with d(w) filled in linearly between points in Tn, is an adapted Q-discretisation

scheme.
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Proof. Firstly, dr, is An-adapted by definition. Furthermore, Q(dri l (A)) --= (2 7, (A) for

all A E ..rn due to the fact that the finite-dimensional distributions of a Brownian

motion are multivariate normal. It therefore only remains to show that d(w) -4 w

in Q-probability.

Using Proposition 4.3.1(0 once again we see that, for infinite N E *N\N, the standard

part of the process dN : *C X TN —> *IR defined by (5.11) is a standard Brownian

motion on ( *C, L(*1),L(*Q)), hence

L ( * Q) ai d N (* w ) — *wil ,-=-' 0) = 1,

in particular, for any positive E E ill,

1 = L(*(2)(11dN(*w) — *w il < 6) ::"'-' * Q (II d N (* W ) — * 44) ll < e).

By the nonstandard characterisation of convergence of a sequence in R this means

that

Q(Ildn(w) — wil < E) —) 1 as n —> oo.

0

Remark 5.2.3. For the discretised jump-diffusion model of Section 4.3 we can define a

sequence of discrete-time models analogously to the discretised BS model above: We

set CZ := C x 7, where 7) := Ix E D[O, 7] : x(0) = 0} and define Sin := Cn x 7,„ where

Dn is the path space for the discretised Poisson process. The measures Pn on SIn are

given by the joint finite-dimensional distributions of the Brownian motion and the

Poisson process. We can then define D 2-convergence for this sequence of models as

above.

Proposition 4.3.3 shows that the minimal martingale densities 4 in the discrete-time

models are D 2-convergent to the minimal density i in the continuous-time model.
D2

Furthermore, for any sequence of claims H n E L2 (Ps) with Hn —> h for a claim

h E L2 (P) we have

En [Ha] —> t [h] as n —> oo.

We have therefore obtained an alternative proof of the convergence result in [RS95,

Theorem 3] for option prices under the minimal martingale measure'. Unfortunately,

since the continuous-time model is not complete and assumption (S2) is therefore

not satisfied, we cannot use Theorem 4.4.3 in this situation so that a corresponding

convergence result for the trading strategies is not available.

'The piecewise constant approximation of the time-dependent coefficients in [RS95] is defined as

in (5.9).



Chapter 6

Numerical Results

In this chapter we examine the numerical and computational aspects of the discrete

time models in Chapters 4 and 5 when these are used to obtain approximations for

option prices in the Black-Scholes model

1 9
St = so exp ((p — —

2
olt ±crwt) t E [0,7]	 (6.1)

We first consider the case of a European call option and obtain a formula for an

approximation in the discretised BS model of Sections 4.3 and 5.2; we can then

examine the numerical properties of this approximation. Furthermore, we compare

the use of multinomial trees to the standard binomial CRR model and see that there

are advantages in using these incomplete models.

Section 6.2 deals with the pricing of path-dependent options in the special case of

Asian options. This is of particular importance as these options do not allow for

closed-form pricing formulae, so that numerical approximations are required.

The final section of this chapter is an appendix containing the Mathematica source

code used for these computations as well as additional graphs and tables illustrating

the results.

6.1 European Call Options

We first consider the pricing of a European call option (ST — K)+ in sequences of

incomplete models converging to the complete BS model when prices are calculated

according to the minimal martingale measure (cf. Section 4.1). At the end of this

section we will see how the convergence is affected if we use the specific martingale

measures of Sections 5.1 and 5.2 in the specifications of the models. This analysis is

valid for general claims which are only dependent on the price of the risky asset at

maturity.
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In this section we use the following parameters for the Black-Scholes model (6.1):

= 0.05, a = 0.2, so = 100, T = 0.5. The option will be priced for different strike

prices K = 90, 100, 110, i.e. we value in-the-money, at-the-money and out-of-the-
money options to see if this influences the numerical convergence results.

Direct Discretisation

We first consider the model introduced in [RS95] (see also Sections 4.3 and 5.2) in the

case where the Poisson component is not present, i.e. co =- 0 in (4.16). It was remarked
in [RS95, p.378] that the pricing of options by direct discretisation of the price process

and the use of the minimal martingale measure for the resulting incomplete markets
provides an alternative approach to obtaining converging approximations of BS prices;

we are now examining the practical aspects of this methodology.
For fixed n E N denote At := T In and ti := iAt = 0... n). The discretised price

process Sn = (Sn,i)i=0,...,n is then obtained by setting So := St, and Wn ,i := tut,

in (6.1), so Sn, satisfies

= exp (01 — —
2

o-2 )At + o-AWn,i) i = 0, n-	 1, 5"0/ = so,
Sn,i+1	 1
So

where AWn,,t := Wo±i - Wo is a Gaussian random variable with mean 0 and

variance At. In the following we will work only with the discretised processes Sn
and Tvn (for fixed n). We therefore drop the subscript n to ease the notation.
From [R595, equations (2.11)—(2.14)] or the calculations in Section 4.3, page 57, we

know that the minimal martingale measure P for the price process (6.2) is given by
its density

n-1
2 = H (1 - a(Mi — 1))

i=0

where

exp(o-At) — 1
exp(LAt)(exp(o-2 At) — 1)

1
:= exp(a-AWi — o-2At)

and the value vnif of a contingent claim H is given as

„if= E [2 = E 11 - a(Mi — 1)) 111
i=0	 •

(6.2)

a :—



So E [H + a — a exp(c/AWi — 2t)) (exp(0/ — —a2)nAt + awn) — C )11
2	 2 SO

1	 1

(6.3)

n-1

i=0

So E [11 (f + g exp(o-AWO) (exp(aWn ) — K) ],
i=0

n-1
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Following the procedure outlined in [RS95, pp.379-381] we obtain

•.E [II]

=
 E [

H (1 _ a(Mi — 1))(Sri — K)+1
i=0

n-1

= So E [11 ( 1 + a — aMi)( — —)
5n K

So So

n-1

i=0

where

(1 + a) exp(( — o-2 ) At)

—a exp(--o-
2 
At) exp((p, — r2 )	 = —a exp (01 — cr2)At)

So exp ((A — io-2 )nAt)	 So exp (( eu —.-o-2)T)•

The product inside the expectation in (6.3) now evaluates to

n-1H (f g exp(o-,O,Wi)) = E (E (fn—igi E exp(uAWk)))
i=0	 i=0 IeI	 kEl

where I is the set of index sets defined by

= {{k1,...	 : ks G {0,... ,n — 1} and ks	 kt for s	 t},

i.e. the inner sums represent all possible selections of exactly i out of n indices. Hence

So
 E[(

E (E (fn-igi E exp(o-AWk)))) (exp (o-Wn ) — K)-11

i=0 IEIi 	kEI

so
 (
E (E fn -AWk )) (exp(a-Wn) — K) +1)) .
i=0 /Eh	 kEI

However, since the {AWi : i = 0, n — 1} are i.i.d. random variables the partic-
ular selection through the index sets I E It does not affect the expectation. Thus,
observing that Wi = ICiJ AWk,

ft [II] = SoE (7)	 gi E [exp(o-Wi) (exp(aWn) —	 ,	 (6.4)

f :=

g :=

K.-
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so that the problem is reduced to calculating

Bi := E [exp(o-Wi ) (exp(o-Wi cr(Wn - Wi)) - 101

E [eGi 	 _ Kr]

E [eGi E [ (eGi+ai _ 50+ 
G21 1

	
(6.5)

where, for i = 1, ,n-1, Gi := aWi is a Gaussian random variable with mean 0 and
variance a2ti and di := a (Wn -Wi ) is Gaussian with mean 0 and variance c1-2 (T - ti).
Furthermore, for fixed i, Gi and di are independent. In the case of i = 0 and i = n
we have

Bo = E [(ewn - k)l

Bn = E [ewn (effwn - Kill .

For the inner expectation in (6.5) we have (keeping G i fixed)

E ReGi+ai - k)+1

= E (eGi[ (-1 o-2 (T ti ) -1 a-2exp	 - -	 (T - ti ) + a- (Wn w2	 2

= exp( l o-2 (T - ti )) BS (eGi , cr, 1 o-2 ,T -

where BS (S, a, r, T, K) denotes the Black-Scholes value

-

1
BS(S, a, r, T, K) = EQ [e-rT (51 exp(rT - icr2T + awT) - K) +]	 (6.6)

. s a, (log(S/K) + (r + a2/2)T)
0-VT

- exp(-rT)K ID (
log(S / K) - (r -

a-VT

(in (6.6) 'w 	 ./V(0, T)-distributed under Q). Therefore Bi (i = 1, ... , 0 - 1) is given

as

1	 1
= exp(r2 - ti )) E [eGi BS (eGi , cr, a2 , T - ti , k)]

where Gi	a-24). For Bo we have

Bo = exp(	 BS (1,	 T, k),
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and a direct calculation (evaluating an integral similar to the one in the original

Black-Scholes formula) yields

1 2 - — log(K) -
Bn = exp(2o-2T) (1)(- 

log(K)

VT

 2a2T

	

	 a2T ))
exp(

2 
o- T)K4:1)

 a-VT

exp(o-2 T) BS (exp(o-2T), a, -21 o-2 , T, K).

Once {Bi :	 0,	 , n} have been evaluated — this has to be done numerically —

we obtain an approximation 'Unit for the option value v H according to (6.4):

fvff	 [H]= SoE(ni)
i=0

Remark 6.1.1. Note that {Bi : i = 0,	 , n} only depend on ti and the parameters

So, K,p,a and T. In particular, the Bi are independent of n. We can therefore write

Bi = i3(t2 ) where : [0, T]	 R. Once we have calculated a set of values of B for a

given n these values can be re-used for a refinement of the approximation.

The following table lists the approximation values v nli for various n together with

the absolute and relative errors compared to the Black-Scholes value. These values

have been calculated for a strike price K = 100 so that the Black-Scholes price (to 4

decimal places) for this option is BS = 5.6372.

K = 100, BS = 5.6372

n vx
n abs. error rel. error (%)

1 5.4814 0.1558 2.764

5 5.6055 0.0317 0.562

10 5.6212 0.0160 0.284

15 5.6268 0.0104 0.185

17 5.6345 0.0027 0.048

18 8.8097 3.1726 56.278

20 10.5519 4.9147 87.183

We see that the approximations yield good results for relatively small values of n.
However, as n increases these deteriorate, so that for n > 17 the approximations
become unstable; a similar pattern can be observed for different strike prices (see

Appendix, page 97). This is due to the coefficients (7)fn-igi in (6.7) which increase

rapidly in n while the function .13- remains almost constant on [0, T]. Even though -B

can be evaluated with very high accuracy small errors in this evaluation are magnified
by the coefficients which causes numerical instability in the approximation (6.7).

(6.7)
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Multinomial Models

We now consider the (0 +1)-nomial model introduced in Section 4.2. Recall that this

model was obtained by "skipping" 0 — 1 steps in the binomial CRR model 0 E NO.

It is therefore natural to compare the approximation results for various values for 0

with the corresponding results for the CRR model, i.e. for 0 = 1.

In the case of a claim that only depends on the price of the risky asset at maturity,

i.e. H = f (ST) for some f : R —> IR the price can be calculated by backward recursion

through the multinomial tree: An example of a trinomial tree (13 = 2, n = 2) with

one-step probabilities q(0), q(1), q(2) is given in Figure 6.1. Once the option value

at maturity is known for all possible states (i.e. H2(1), ... , H2(5) in Figure 6.1, or
H(1),... , Hn (n13 + 1) for a general n-step (/3+ 1)-nomial model) then the remaining
values Ht (i) can be calculated as

0

Ht(i) = E q (i) 11t+1(i + (3 — :7))	 (6.8)
j=0

for t = 0, ... „ n — 1 and i = 1, ... , Ot + 1.

Figure 6.1: Event tree for a 2-step trinomial model

We will again choose the minimal martingale measure as a pricing measure; this is

reflected in the probabilities q(0), ... , q(0) (see pages 91-96 in the Appendix for the

implementation of this approach). The results of these approximations for n-step

models with n = 1, ... , 100 for a strike price K = 100 are illustrated in Figure 6.2.

The continuous horizontal line represents the BS price while the two dotted graphs

represent the values obtained by using the binomial CRR model. The results for the

trinomial models are given by the dashed line. The corresponding graphs for the
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I •

strike prices K = 90,110 — showing far more complicated convergence patterns —

can be found in the Appendix, page 98.

5.68

	  beta=1, n even

---- -- .1—..—..—.—..—.—..—..—.—..—.------.:.bettaa:2be1'

. • .	
n odd

20
i
I
1

I

Figure 6.2: European Call Option: Convergence in n for 0 = 1, 2, K = 100

The most striking feature is the different behaviour of the sub-sequences for odd

and even values of n in the case of the binomial model. The trinomial model does
not exhibit these "odd-even-ripples". A common technique for smoothing out these
ripples is binomial averaging where the price is taken to be an average of successive
binomial prices Vn (e.g. 1 (Vn_ 1 + 2Vn + Vn+ 1 ), see [RS98] 1 ). However, this requires
extra computational effort as Vn has to be evaluated for different n. Furthermore, the
resulting average price does not correspond to any pricing methodology: it is usually
not the expectation under a martingale measure so that it might allow arbitrage

opportunities. These problems can be overcome by using a trinomial model together
with the mean-variance hedging approach. We have shown in Section 5.1 that all

(0 + 1)-nomial models are equivalent in terms of their convergence to the BS model.

We also see from Figure 6.2 that, for fixed n, the prices in the trinomial model
usually give better approximations than those for the binomial model. However,
we have to take into account that these approximations require more computational
operations for the same n since the spatial discretisation of the tree is finer. If we

consider multiplications as the computationally most "expensive" operations we have

the following formula for the number C(/3, n) of operations involved in the calculation
of an option price in an n-step (f3 + 1)-nomial model: It is easy to check that the
number N(3, n) of nodes in an n-step (f3 + 1)-nomial model is

1
N(/3,n) = (-

2
0n + 1)(n + 1)

5.66

5.64
1

1 	 . '

.•	 •

III..	 .-: :BS

1

1 This paper also develops an alternative binomial model which is particularly suited for the pricing

of barrier options.
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and at each node, apart from those at time T, [3 + 1 multiplications are required
(see (6.8)), hence

C(0, n) = (0+ 1)N(/3,n -1) = (3 + 1)n(3(n -1) + 1).

The following Figure 6.3 now shows the option values for trees with 0 = 1, ... , 5

when plotted relative to C(fi, n) (see also pages 99-100). We see that the "odd-even"

effect which we observed for 0 = 1 appears again for 0 = 3, 5 — or rather: it does

not appear for 0 = 2,4 — a possible explanation for these patterns is given below.

5.67 1

Figure 6.3: Convergence relative to number of operations for 0 = 1, ... , 5, K = 100

We see that even when the results are adjusted for the cost of computation the use
of multinomial models with /3> 1 yields better approximations for the option price;
however, this effect diminishes with increasing 0.

Initial Choice of Measure

So far we have examined the convergence of option prices under the minimal martin-

gale measure for the direct discretisation and multinomial approximation of the BS
model. In Chapter 5 we noted that we can also specify the models with a martingale
measure for the price process, using the unique martingale measure for the "hidden"
model (the BS model for the direct discretisation, the binomial CRR model for the

multinomial model). How does this affect the approximation of option prices in these
models?
In the case of an option of the form H = f (ST), i.e. H only depends on the price of
the risky asset at maturity, we have the following results:

Proposition 6.1.2. For the discretised BS model of Section 5.2 we have

viill = vil for n E N,
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where v H denotes the BS value of H while v„H denotes the value with respect to the

discretised model.

Proof. log(ST) — .A.r (log(so) —  a-2T, a-2T) in the BS model as well as in the discretised

model. Since H = f (ST) we have

vff =-- Ec2n [f (ST)] = EQ [f (ST)] = vH .

0

Proposition 6.1.3. For the multinomial model of Section 5.1 we have

V7,H,0 = V' 	 for (3 E N, n E N,

where V H denotes the value of H with respect to an n/3-step binomial CRR model0,1

while VnHo is the value with respect to an n-step (0 +1)-nornial model.

Proof. It is enough to prove the assertion for n = 1; the general result then follows by

backward induction using the recursion technique in (6.8). Let H1(1), ... , H1 (/3 + 1)
denote the values of the claim at time T in a 1-step model (cf. Figure 6.1). Recall

that q is the probability for an "up-movement" in the 13-step binomial model on the

time line {0, T 1 /3 , 2T 1 13 , . . . ,T} (cf. Section 5.1), so that Q (w = j) = (1) qi (1 — q) 0— i

and the price ViFS in the 1-step multinomial model is given by

0
Villo.---EQ [H]=EDi (1 — q) —illi(0 — i + 1).

i=0

In the 0-step binomial model with the same terminal values as before H0 (1) =

H1 (1), ... , Ho(/3 + 1) = H1 (/3 + 1) the price viii, is calculated recursively (see equa-
tion (6.8)):

Ht (i):= gHt+i (i ) + (1 — q)Ht+i (i + 1)

for t = 0, ... , p - 1, i = 1, ... , t -I- 1 and

Vi31:11H. Ho (1).

It then follows by induction on 0 that

)3
V01:11 = H0 (1) = E (19.) qi (1 — q) 13—iHn(3 — i +1) =V11,10.

i=0 2

0
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If the binomial CRR model exhibits the "odd-even-ripples" for option prices as ob-

served in Figure 6.2 then it is clear from Proposition 6.1.3 that a (0+1)-nomial model

will "inherit" this effect for odd 0 while it will not appear for even 0.
Furthermore, even though the option price for an n-step (f3 + 1)-nomial model can

also be obtained by using a binomial n0-step model the former calculation is more

efficient as

C(0, n) = (f3 + 1)n ( -
1

f3(n - 1) + 1) < n0(n0 +1) = C(1,0)
2

for 0 > 1. This is due to the fact that the products qi (1- q) f)-j for the probabilities

in the multinomial tree are only calculated once while they are evaluated repeatedly

in the binomial tree.

Remark 6.1.4. While we see from Propositions 6.1.2 and 6.1.3 that the option prices

in these models coincide the replicating strategies for the claim H will be different:

the number of hedging dates differs for different values of n and, while the BS and
CRR model allow self-financing replicating strategies, the corresponding strategies in
the discretised and multinomial model will only be mean-self-financing.

6.2 Asian Options

For claims of the form H = f (ST) Propositions 6.1.2 and 6.1.3 show that the prices

in the direct discretisation and multinomial models can also be obtained by using the
underlying BS and CRR models if we use the "hidden" martingale measure in the
specification of the incomplete models. This is no longer true if we consider claims

whose values depend on the entire path of the risky asset in these models. In this

section we consider the case of an Asian call option with fixed strike price, i.e.

h.
 (

1 
1 

sudu - 10+
T

in the continuous-time BS model. We saw in Example 5.1.8 that a discrete-time

approximation for this claim is given by
n-1

H=
	
E SiAt - K) ,	 (6.9)
i=0

where (Si)i=0,.., is the price process on {iAt : i = 0,... ,n} with At := Tin.

Direct Discretisation

We now work in the setting of the discretised BS model of Section 5.2, so that the

process (Si)i=0,...,n is given by

Si = so 11 exp (- -
2

o-2 At + o-AWk)
k=0



1	 i—n—
= — So E[ (E ai exp (0-

T	
AWk) —At

i=1

1,	 , n — 1. Setting

(6.10)
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with AWk Jni(0, At) for k = 0,	 , n — 1. Then

E [H] = E [ (—IA n— Si — K) 1
T i=0

= —
At

So E
T

n-1

(i=[0

i-1
1

exp (— —
2

cr2 i4t) exp (a- E ATV k) — k)
k=o

where	 KT/(So.At) and ch := exp(-112i1t) for i

fc + 1 and G k := a AW k for k = ..	 — 1 we have

E
At_so F[(exp(Go) ai exp (E Gk) —)

_)
K

n-1

=1	

i-1	 +

i k=1

	

n-1	 /i-1

	

=_- 
At 

so E [E [ (exp (— —
1
a2 6.t + a-Wo) E	 exP (E ck) _ K)

2

	

i=z1	 k=1

= 
Pt So E [BS (E exp(_-

2
o-2 (i — 1).At) exp (E Gk),a, 0, At, I?)

i=1	 k=1

n-1	 i-1
1

where (G k) k=zi ,n-1 are o-2At). The approximate value vnil is now given as

an average of Black-Scholes values with respect to a multivariate normal distribution.
The integral in (6.10) is difficult to evaluate numerically and is usually computed
using Monte-Carlo simulations (cf. [Hu197, TW91]). We will now take a brief look at

multinomial trees as an alternative approximation method.

Multinomial Models

For the evaluation of path-dependent options in an n-step (0 + 1)-nomial model it is

necessary to keep track of all (p + 1) n possible paths of the price process. This makes

it practically impossible to obtain approximations for large values of n. We list the

results of some calculations for binomial and trinomial models in the table below.
These are compared to the results obtained by Monte-Carlo simulation in [TW91]2.

The model parameters are as follows: T = 1/3, a = 0.2, K = 95, 100, 105. We also

incorporate a constant interest rate r = 0.09 in order to achieve comparable results
to those in [TW91] where an average over 120 subsequent asset prices was calculated.

2 This paper also develops an alternative algorithm for the pricing of Asian options which uses an
approximation to the distribution of the average of a collection of lognormal random variables. This

algorithm produces an accuracy similar the Monte-Carlo method.
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n K = 95 K = 100 K =- 105 paths3

binomial tree (0 ,---- 1)

10 5.491 2.412 0.775 512

11 5.505 2.429 0.787 1024

12 5.516 2.440 0.796 2048

13 5.526 2.452 0.805 4069

14 5.534 2.461 0.811 8192

15 5.541 2.469 0.817 16384

16 5.548 2.476 0.823 32786

17 5.553 2.482 0.827 65536

18 5.558 2.487 0.832 131072

trinomial tree (3 = 2)

6 5.404 2.274 0.677 243

7 5.433 2.321 0.708 729

8 5.461 2.355 0.732 2187

9 5.481 2.379 0.751 6561

10 5.496 2.398 0.766 19683

11 5.509 2.416 0.779 59049

Monte-Carlo simulation

120 6.80 3.36 1.31 n/a

We see that the results for small values of n cannot be used as acceptable approxima-

tions (in contrast to the case of European call options where a relative error of < 1%

can be achieved in binomial models for n < 15). In fact, the sequence of approximate

values seems to be increasing very slowly in n while the number of paths grows ex-

ponentially. Furthermore, the use of trinomial models does not offer any advantage

in this case: the results relative to the number of paths are even slightly worse than

those in the binomial model.

6.3 Appendix

This section contains the Mathematica 3.0 Notebook (pages 91-96) which was used

for the numerical calculations in this chapter as well as for generating the graphs. All

calculations were performed on a SPARCstation 10 under SunOS 4.1.

Further numerical results and graphs can be found on pages 97-100.

3Note that the number of paths is only (0 + 1)n-1 since the price ST is not required in (6.9).
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lnit

In(1.1 := << Statistics INormalDistribution'

In[2]:= ndist = NormalDistribution[0, 1]

Out[2]= NormalDistribution [0, 1]

I-n[3h= BS [ S_, sig_, r_, T_, K_] : = S * CDF [ndist,
(Log [ S / K] + (i-i- (sig 2) /2) *T) / (sig * Start [1] ) ] - Exp [-r *T] *

K*CDF [ndist, (Log [S / K] + (r - (sig 2) /2) *T) / (sig*Sgrt [T] ) ]

:= BS [S, a, r, T, K]

1
Outi41 =	 E-r T K1 + Erf [ T (1.

(3; ) + Log [I]
2	 'n,/ 2 AFT a

1 c;̀ ) + Log[*]
S (1 + Erf [ T (r

2	 1/2 v--T- cr

Definition of model parameters (call option)

In 151 := p= O.05; a = 0.2; T = 0.5; SO = 100;

In[6]:= K = 100;

In[7]:= n := 20;

in(81:= N [BS [SO, a, 0, T, K] ]

Out[8.1= 5.6372

In[9] := dt := T/n

In[101:= t [L] := dt * i

"Direct Discretisation" Evaluation

In[11.1 := Q : = (Exp [p * dt] -1) / (Exp [p * dt] * (Exp [a A 2 * dt] - 1) )

In1121:= f := (1 + Q) *Exp[ (p - (1 / 2) *a1'2) *dt]

In[131 := g := -Q* Exp [ (p- /5 1. 2) *dt]

In[141:= Kb = K / (SO *Exp [ (g - (1 / 2) * a A 2) *TI ) ;
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D2(15] := Plot [Evaluate[Table[Exp[x] *BS[Exp[x] , a, (1/2) *a A 2, T-vt, Kb] *
Exp[- (x " 2) / (2 * a" 2 *vt) ] / (Sqrt [2 * Pi *vt] * a) ,
{vt, t [1] , t [n - 1] , dt)] ] ,

{x, -0.3, 0.6), PlotRange -> All];

0 . 8

-0.2	 0.2 0 . 4	 0 . 6

To calculate B[t] the numerical evaluation of the integral can be restricted to the part of the real line
indicated in the graph above. This increases the numerical precision. The following definition of B[t]
stores the values once they have been calculated, so that they can be re-used for a refinement of the
time line.

D2(16] := B[vt_] :=B[vt] = Exp[ (1 / 2) *a"2* (T -vt)]*
NIntegrate[Exp[x]*BS[Exp[x], a, (1/2) *a"2, T-vt, Kb] *

Exp [- (x" 2) / (2 * a" 2 *vt) ] / (Sgrt [2 * Pi *vt] * a) ,
{x, -0.5, 1)]

In[17] := B[0] =Exp[(1/ 2)*a"2*T]*BS[1, a, (1/ 2)*a"2, T, Kb];

in(18] := B[T] =Exp[a"2*T]*BS[Exp[a"2*T], a, (1/ 2)*a"2, T, Kb];

In(19] := apprdir[vn_] := Module [ {numH),
xi= vn;
numH = SO *Sum[Binomial [n, i] *£" (n- i) *g A i*B[t [1] ] , (i, 0, xi)];
Print ["n=", n, " approx. value: ", numH, " 	 absolute error: ",
Abs[nuraH-BS[SO, a, 0, T, X]], "	 relative error: ",
100*Abs[numH-BS[S0, a, 0, T, K]] /BS[SO, a, 0, T, K], "96"];

res =Append[res, {n, nuraH, Abs[numH-BS[SO, a, 0, T, K]],
100*Abs[numH-BS[SO, a, 0, T, X]] /BS[SO, a, 0, T, K])];]

1'2(201 := res = {);

Running the evaluation for n=1,...,25 an storing the results for later use (calculation aborted for
presentation).

In(21] := Do[apprdir[1], {i, 1, 25)];

n=1	 approx. value: 5.48137 absolute error: 0.155823 relative error:
2.7642%

n=2	 approx. value: 5.5581 absolute error: 0.0790986 relative error:
1.40315%

n=3	 approx. value: 5.58437 absolute error: 0.0528317 relative error:
0.937198%

Out (213= $Aborted

In(22]:= res >> resdir90.math
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Multinomial approximation

Basic coefficients in the muftinomial model

In[23] := A = 1;

Ir][243 := dt 13 := dt / A

In(25] := uA := 1 + p *dt/3 + a* Sqrt [dt0]

In (26] := diS := 1 + 11*dt/3 - a* Scart [ft/3]

.1121.27] := 111,63[i_] := ufi A i*c1/3" (A - i)

D2(28] := E/3 := (1 + p * dt/3) A A

Ir : (29] : = VARA := ( (1 + p * dt0) A 2 + a" 2 *dtf3) A 0 - (1+ pi * dt/3) A ( 2 */3)

Path-independent (backward evaluation)

The one—step probabilities p(i) (original measure) and q(i) (minimal martingale measure) are indexed
by the number of up—movements i (i can take values from 0 to 13) in the "hidden" binomial model.

In (30] := patep [i_] : = Binomial [/3, 1] / 2 A 13

In(31.1 := gstep [i_] := 1 - ( (EA - 1) / VARA) * (mA [i] -E13)

The possible "states of the world" in the path—independent setting are numbered according to the total
number of up—movements j (j can take values from 0 to nfl) in the "hidden" binomial model.

Inr323 := mtotal [j_] := uat3 A j *dA A (n * A - j )

In(33] := Tvalue [j_] := Max [ (SO *mtotal [j ] - K, 0) ]

Initialisation of the tree with the terminal values of the option, then backward evaluation of
expecatations under the minimal martingale measure. This module changes the global variables n and
fl:
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In[34]:= approx/3[1in_, vb_] := Module [ (H, numH),
n = vn; = vb;
H=Table[0, (i, 1, (n/2)* ( 18*n+ + 2) +111;
Do[H[{(ft /2)* (n- 1)*n+n+ 1 +i]] =Tvalue[1], (i, 0, n*/3)];
Do[

Do [H [ [k] ] = Sum[pstep [1] *qstep [i] *H [ [k + /3* 1 + 1 + i] ] , (i, 0, /311 ,
(k, (13/2) * (1 - 1) *1 +1 +1, (13/2) *1* (1 +1) +1 + 1)],

{1, n-1, 0, -1)];
numH = N[H[ [1] ]];
Print["n=", n, " 13=",
l3, " approx. value: ", numH, " 	 absolute error: ",
Abs[numH-BS[SO, a, 0, T, K]], " 	 relative error: ",
100*Abs[numH-BS[SO, a, 0, T, K]] /BS[SO, a, 0, T, K],
" 96", "	 operations: ", ((3+ 1)*n* ((/3/2) (n- 1) + 1) ];
res =Append[res, (n, /3, numH, Abs[numH-BS[SO, a, 0, T, K]],

100*Abs[numH-BS[S0, a, 0, T, K]] /BS[SO, a, 0, T, K],
+	 * n * ((//2)* (n- 1) + 1) )];]

Example of one evaluation. The list of results for a range of values for n can be generated and strored
as in the case of the direct discretisation above.

In[35]:= approxB[5, 2]

n=5	 =2 approx. value: 5.62382	 absolute error: 0.0133732
relative error: 0.237231%	 operations: 75

Generating graphs

The results of the multinomial approximations are stored externally. These files are available from the
author on request. The following intructions generate a plot of the results relative to the number of
operations for )3=1,...5.

In(36]:= res2 = << res2k100.math;

D2(37] := res3 = << res3k100.math;

In(38]:= res4 = << res4k100.math;

In(39]:= res5 = << res5k100.math;

In(40] := res6 = << res6k100.math;

In[41]:= t2even=Table[(res2Hi, 6fl, res2[[i, 3]]), (i, 2, 105, 2)];
t2odd=Table[(res2[[i, 6]], res2[[i, 3]]), {1, 1, 105, 2)];
t4even=Table[(res4Hi, 6]], res4[[i, 3]]), {i, 2, 44, 2)];
t4odd=Table[(res4[[i, 6]], res4[[i, 3]]), (i, 1, 44, 2)];
t6even=TableHres6Hi, 6]], res6[[1, 3]]), (i, 2, 28, 2)];
t6odd=Table[(res6[[i, 6]], res6[[i, 3]]), (i, 1, 28, 2)];
t3 = TableHres3[(i, 6]], res3[[i, 3]]), (i, 1, 60)];
t5 =Table[(res 5 [[ i , 6]], res5[[1, 3]]), {i, 1,33)];
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In(42] := pl2even=
ListPlot [t2even, PlotJoined -> True, DisplayFunction -> Identity];

pl2odd =
ListPlot[t2odd, PlotJoined -> True, DisplayFunotion-> Identity];

p13 = ListPlot [t3, PlotJoined -> True,
PlotStyle ->Dashing[{0.02, 0.01)], DisplayFunction-> Identity];

pl4even= ListPlot [t4even, PlotJoined -> True,
PlotStyle -> Dashing [ 0 .01, 0.02)] , Display-Function -> Identity] ;

pl4odd = ListPlot [t4odd, PlotJoined -> True,
P].otStyle -> Dashing [ {0 . 01, 0. 02) , DisplayFunotion -> Identity] ;

p15 = ListPlot[t5, PlotJoined -> True, PlotStyle ->
Dashing[{0.005, 0.015, 0.02, 0.015)], DisplayFunction-> Identity];

pl6even = ListPlot [t6even, PlotJoined -> True,
PlotStyle ->Dashing[{0.005, 0.01)], DisplayFunction-> Identity];

pl6odd = ListPlot [t6odd, PlotJoined -> True,
PlotStyle -> Dashing [ {0 . 005, 0. 01) , DisplayFunction -> Identity] ;

plBS =
Plot [BS[SO,	 0, T, K], (x, 0, 11000), DisplayFunction.-> Identity];

In(43]:= Show[pl2even, pl2odd, pl4even, pl4odd, pl6even, pl6odd, p13, p15,
plBS, PlotRange -> (5.605, 5.67), DisplayFunction-> $DisplayFunction]

Out(43]= - Graphics -

Path-dependent evaluation

Redefining parameters:

In(44] := n = 5; 13 = 1;

In(45]:= a = 0.2; T=0.333; sO = 100;

In[46]:= K = 95;

In(47]:= r := 0.09;

In[48]:= dt := T /n; dt/3 := dt /13;

Generating the sample space. Note: since the asset price at maturity does not enter the average each CD

has only n-1 components.

In(49]:= SI= Table[IntegerDigits[i, /3+1, (n-1)], {1, 0, (A + 1) A (n-1) -1)]

Out[491= {{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0},
{0, 1, 0, 1}, {0, 1, 1, 0}, {0, 1, 1, 1}, {1, 0, 0, 0}, {1, 0, 0, 1},
{1, 0, 1, 0}, {1, 0, 1, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}, {1, 1, 1, 0},
{1, 1, 1, 1}}

Definition of the up- and down-steps; we work with the "hidden" CRRmartingalemeasure from the
beginning; we therefore take the interest rate as a drift coefficient.

In(501 := u : = 1 + r * dt/3 + a * Sqrt [dt/9] ; d : = 1 + r * dt/3 - * Sqrt [dtfi] ;

In(51]:= gstep := (1- d) / (u- d)

Generating measure on St:
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In (52 := Qmeas = Table [Product [Binomial [0, C2 [ [i, ] ] ] *
qstep A S2[[1, j]]* (1- gstep) (ft -	 i]]), {i , 1, n-1)],

(i, 1, Length[0])]

Out [521= {0.0969932, 0.0768093, 0.0768093, 0.0608256, 0.0768093, 0.0608256,
0.0608256, 0.048168, 0.0768093, 0.0608256, 0.0608256, 0.048168,
0.0608256, 0.048168, 0.048168, 0.0381444)

/r2/533:= mbeta[i_] :=uAi*d"(/3- J.)

In (54] := pathsum[omega_] := Module [ (p),
P = 1;
Do [p = p *mbeta [omega [ [i] ] ] +1,

(1, n-1, 1, -1)
];

sO *p]

Calculating the option value for one path w:

In(55] := value [omega_] := Max [(pathsum[omega] In -K, 0)] / ( (1+ r*dt/3) A (n*/3))

In (56] := approxval = Sum[value[Q[ [i]]] *Qmeas [ [i] ], (i, 1, Length[Q] )]

Out [56J= 5.34918

Everything in one module (this changes the global variables n43 again):

In (57] := approxAsia[vn_, vb_.] := Module [ (C2, Qmeas),
n vn; /3 = vb;
= Table [IntegerDigits [i, 13+ 1, (n - 1)], (i, 0, (0+ 1) A (n - 1) - 1) ;

Qmeas = Table [Product [Binomial [ IS, Q[ [1, j ] ] ] * gstep [ [ i, j ] ] *
(1 _ castep) A	 _ g[[1. , j]]), {j, 1, n -1}], {i, 1, Length[D])];

approxval = Sum[value[Q[ [i]] ] *Qmeas [ [1] ] , (i, 1, Length[Q])];
Print ["n=", n, " fi=", 13,
" approx. value: ", approxval, "	 paths: ", Length[Q] ];
res = Append[res, {a, f3, approxval, Length [D] } ] ; ]
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K = 90, BS = 11.7725

n vH
n abs. error rel. error (%)

1 11.6732 0.0992 0.843

5 11.7502 0.0222 0.189

10 11.7610 0.0114 0.097

15 11.7645 0.0079 0.067

16 12.1159 0.3435 2.918

20 18.2353 6.4628 54.898

Table 6.1: European Call Option (strike price K = 90): Approximation by direct

discretisation

K = 110, BS = 2.2113

n vir
n abs. error rel. error (%)

1 2.0656 0.1456 6.585

5 2.1841 0.0271 1.224

10 2.1978 0.0135 0.601

15 2.2037 0.0076 0.342

18 2.1343 0.0770 3.482

20 6.6003 4.3891 198.490

Table 6.2: European Call Option (strike price K = 110): Approximation by direct

discretisation
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Figure 6.6: Convergence relative to number of operations for 9 = 1, 2, 3, K = 90
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Figure 6.8: Convergence relative to number of operations for 13 = 1,2,3, K = 110
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Conclusions

We have extended the applications of nonstandard analysis in mathematical finance

to incomplete markets. We have shown that the nonstandard notion of a lifting and

its corresponding standard concept of D 2-convergence provide powerful tools in the

study of convergence of market models. These allowed us to extend recent results on

the convergence of option prices in incomplete market models to trading strategies

and value processes. Establishing the convergence of risk-minimal strategies is of

particular practical importance in the risk-management of financial instruments.

We have shown that the methodology of mean-variance hedging (and the related

method of variance-optimal pricing) in incomplete markets has an appealing stability

property under convergence from discrete- to continuous-time trading which should

increase its acceptability. At the same time we have given further evidence of the

suitability of D 2-convergence as a mode of convergence for financial market mod-

els. We have demonstrated the application of these techniques in two alternative

approximations of the Black-Scholes model:

Multinomial models combined with the mean-variance hedging methodology have

been shown to be equivalent to the usual binomial approach in terms of their conver-

gence properties. When comparing these models under computational and numerical

aspects we saw that the use of trinomial models (or indeed general (0 + 1)-nomial

models for 0 > 1) has advantages over binomial models. In fact, trinomial mod-

els are widely used for numerical approximations of option prices (see e.g. [Hu197,

pp.360,376-378] for a discussion and their relation to explicit finite difference meth-

ods for numerical solutions of the Black-Scholes PDE), however without an underlying

pricing and hedging theory. Our results now provide a rigorous justification together

with explicit formulae for the calculation of risk-minimising replicating strategies

which are convergent to the risk-free strategies in the limit model.

On the other hand the "direct discretisation" approach provides a very appealing

description of D 2-convergence in terms of a simple discretisation scheme, avoiding

the technicalities of mapping the paths of a Brownian motion back into discrete-

space random walks. While the resulting pricing formulae may not be suitable for

standard numerical integration techniques, direct discretisation is the underlying idea

for the use of Monte-Carlo simulations in the evaluation of path-dependent options,

and we are again able to provide a theoretical framework for these techniques. In

fact, we saw in the case of Asian options that multinomial trees are of limited use

due to their computational complexity while diTect discretisation methods lead to the

numerical evaluation of high-dimensional integrals which are not feasible without the

application of some randomisation technique.
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Open Problems and Suggestions for Further Work

Regarding the nonstandard results in Chapter 4 there are two major open questions

which could be addressed by further research:

(1) Can the assumptions in Corollary 4.1.3 be weakened, i.e. under which assumptions

does the lifting property of the price process imply the lifting property of the minimal

density? A first step in this direction is an analysis of the Doob-Meyer decomposition

S = so + a + m

of a semimartingale s that has a lifting S. We can calculate an internal decomposition

5= So + A + M

of S with

AAt := E [ASt i At] , AMt := ASt — AAt.

How is the internal martingale M related to m (similarly for A and a)? In the case

of an S-continuous process S it would be sufficient to show that A is S-continuous;

the uniqueness of the standard Doob-Meyer decomposition would then imply that

st(A) = a and st(M) = m. However, even in this special case such a result is not

available.

(2) Is Theorem 4.4.3 still true if assumption (S2) is no longer satisfied, i.e. if the

claim h has a Kunita-Watanabe decomposition

T
h = vo + f Ouds. + 1T

JO

with a non-zero martingale 1 orthogonal to s? The natural way to extend the proof

of Theorem 4.4.3 is by constructing a lifting L of s which is internally orthogonal

to S. The resulting term in the extension of equation (4.25) would then again be

zero. A suitable candidate for such a lifting L could be found by first choosing a

general lifting L of 1 and then decomposing

Then L is orthogonal to S as required. It then has to be shown that the integral

E PAS is infinitesimal. Even though (st(L),st(S)) = (1, s) = 0 it is not clear if this

implies that the integrand I' is infinitesimal. TM's problem is therefore related to ques-

tion (1) above where we are trying to relate the internal Doob-Meyer decomposition

of an internal process to its standard counterpart.
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The pricing of American options in incomplete markets is a topic of ongoing research.

Given the successful application of D2-convergence to the pricing of American options

in the CRR and BS models in [CKWW97] one could examine whether it is possible to

extend these results to incomplete markets by using the results in [Sch88, Chapter III].

Prices for American options and their optimal exercise times are usually calculated by

means of binomial tree models. An extension of our results on multinomial trees could

then provide more efficient approximations as demonstrated in the case of European

style options.
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