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ABSTRACT

In the sanitary ware industry the time associated with designing new

geometries of ware is considerably long. This is due to the process of trial and

error presently carried out to determine the mould shape necessary to produce the

desired finished articles. Large articles such as wash basins, toilet pedestals and

bidets may deform significantly under their own weight during firing. The method

of support is limited as these articles are fired only once and in their glazed state,
_

so that the ware stands on its unglazed surface as it passes through the kiln. Kiln

cars carry the ware through the kiln so that articles on the top of the car

experience a different temperature profile from those situated near the car base.

This difference in thermal experience may result in a difference in the amount of

deformation experienced by the ware, higher temperatures result in lower

parameter values of viscosity and elasticity and therefore yield increased

deformation. Although accumulated experience of working with such articles

reduces the duration of the design process to an extent, it is still undesirably and

uneconomically long. The need for a model which predicts the deformation

during firing of a variety of ware geometries and that incorporates the material

parameters and also the method of support is clearly evident.

A model has been developed that predicts the viscoelastic deformation of

a range of vitreous china testpieces during the firing process. The model

constitutes a novel application of the transmission line modelling technique to

viscoelastic deformation. The applicability of the model to the sanitary ware

industry is addressed.
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ABSTRACT

During firing, the deformation of ceramic articles under their own

weight may be problematic particularly in the sanitary ware industry where

articles are large. A model has been developed that predicts the viscoelastic

deformation of a range of vitreous china testpieces during the firing process.

The model constitutes a novel application of the transmission line modelling

technique to viscoelastic deformation. The applicability of the model to the

sanitary ware industry is addressed.
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CHAPTER 1

INTRODUCTION

1.1 Aim of Research

In the sanitary ware industry the time associated with designing new

geometries of ware is considerably long. This is due to the process of trial and

error presently carried out to determine the mould shape necessary to produce

the desired finished articles. Large articles such as wash basins, toilet

pedestals and bidets may deform significantly under their own weight during

firing. The method of support is limited as these articles are fired only once

and in their glazed state, so that the ware stands on its unglazed surface as it

passes through the kiln. Kiln cars carry the ware through the kiln so that

articles on the top of the car experience a different temperature profile from

those situated near the car base. This difference in thermal experience may

result in a difference in the amount of deformation experienced by the ware,

higher temperatures result in lower parameter values of viscosity and elasticity

and therefore yield increased deformation. Although accumulated experience

of working with such articles reduces the duration of the design process to an

extent, it is still undesirably and uneconomically long. The need for a model

which predicts the deformation during firing of a variety of ware geometries

and that incorporates the material parameters and also the method of support is

clearly evident.

1.2 Thesis Overview

This thesis introduces a novel application of the transmission line

modelling (TLM) technique to the deformation of bodies exhibiting either

viscous, elastic or viscoelastic behaviour. The modelling concepts are applied
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initially to elongating columns of viscous fluid, deforming under their own

weight. Most of the work thereafter, however, concentrates upon bending

under gravity where it is assumed that in plane shearing effects are negligible

so that the deformation may be considered to be pure bending. The

incorporation of classical elastic small strain theory is shown to lead to the

development of viscoelastic models for bodies of various geometries.

The preliminary chapters provide the reader with background

information regarding deformation theory of viscous fluids and elastic bodies,

and also provide a basic introduction to the modelling technique employed.

The object of the work was to develop models of deformation which could be

applied successfully to the deformation of vitreous china ware during the firing

process. Chapters documenting the compositional and physical characteristics

of this particular material during firing and its behaviour at high temperatures

are, therefore, included. Original work is discussed in chapter 5 where details

of the deformation models developed using the TLM technique are provided.

The applicability of the models to the sanitary ware industry is discussed in the

following chapter accompanied by the comparison of simulated and

experimental results for a variety of ceramic test pieces. The geometries of the

test pieces comprise cantilevers, hoops and a three dimensional mushroom

shaped shell having rotational symmetry. A chapter discussing the work and

its general applicability concludes the thesis.
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CHAPTER 2

BACKGROUND TO DEFORMATION

The concepts of fluid flow are revised and shown to lead to the

formulation of equations describing the flow of viscous fluids. Details of rigid

body motion are also revised and lay the foundations for the classical bending

theory as applied to elastic beams and plates for small strain. Traditional

mechanical models describing the viscoelastic behaviour of materials conclude

this chapter.

3



2.1 Fluid Motion

2.1.1 Definition of a fluid

A fluid is a substance, either liquid or gas, which has the ability to

flow. Fluids differ from solids in their molecular structure; the molecular

movement in solids being smaller and the intermolecular forces of attraction

being much greater than in fluids. As a result, if a solid rigid body is

considered to be made up of a collection of particles then all the particles

within the body are held together rigidly and move with a common .velocity,

namely that of the centre of mass of the body. The same is not true of

particles in a fluid, where positions of particles are interchangeable. If a

constant shearing force is exerted upon a solid body which is at rest then, in

general, it will resist movement. A body which is elastic will deform

instantaneously; a larger value of Young's Modulus yielding an increase in the

resistance to deformation. However, if the solid body is plastic in nature then

the initial deformation may be elastic with plastic flow occurring when the

force exceeds a particular value. A state of equilibrium is attained with the

internal resistive forces so that further deformation arises purely as a result of

an applied force of increasing magnitude. If a fluid experiences a constant

shearing force, flow will commence immediately and will continue for as long

as the force is applied. When a variation in velocity exists between different

layers within the fluid equilibrium cannot be reached. Returning to the plastic

body, the existence of the resistive forces is such that upon removal of the

force the body may regain its original shape provided that the force is removed

prior to the onset of plastic flow so that the body is behaving elastically. If the

removal of the force occurs during plastic flow then the body will be

permanently set. The fluid, however, will always retain its new shape once the

force has been removed, since in the absence of flow any internal resistance

ceases [1].
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2.1.2 Continuum hypothesis

The physical properties of a fluid are dependent upon its molecular

structure and so it would seem that a microscopic view is necessary when

considering fluids in motion. This viewpoint, however, is not consistent with

the measurement of material parameters, which are usually obtained from the

bulk material. The continuum hypothesis offers a macroscopic view where

fluids are considered continuous in so much that their properties are uniform

over small volumes, each volume containing many molecules, and that changes

in these material properties, from volume to volume, remain smooth. It is now

not unreasonable to represent a fluid particle by such a volume assigned with

local parameter values.

2.1.3 Lagrangian coordinate system

The position of each point in a fluid can be determined if the velocity of

the corresponding fluid particle is known for a given time interval. In this way

the position vector of a particle is a function of time and contributes to the time

history of each point in the fluid [2]. The concept of the Lagrangian

coordinate system is also used when considering the motion of rigid bodies,

which can be either translational or rotational.

2.1.4 Acceleration of a fluid particle

The position vector of a particle is a function of both time and space,

that is r=r(t). If the velocity in the x direction at r is denoted by v then it also

follows that v =v(t). Thus, the derivative with respect to time will consist of

partial time and space derivatives. The acceleration of the particle in one

dimension is, therefore, given by

Dv	 a	 av

	

— v— + v—	 (2.1)
Dt	 at	 ax
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where the first term on the right is the local acceleration of the particle and the

second term is the accumulative, or convective, acceleration due to the rest of

the fluid. Thus, each fluid particle has an acceleration consisting of two

components; one component forcing the particle to move with the bulk of the

fluid and the other component allowing the particle some independent motion.

D isThe substantial derivative —
Dt 

s 	 Lagrangian in nature; the movement of a

fluid particle being monitored over time so that (2.1) may be determined.

2.1.5 Local fluid motion

The local motion of a fluid does bare some resemblance to the local

deformation of a solid elastic body in so much that a fluid element may

translate, rotate and, if compressible, increase its volume by a pure straining

motion. If the flow is incompressible then the motion may be considered

solely as a superposition of rigid body translation and rigid body rotation [3].

The acceleration of the fluid associated with each type of motion takes the form

of equation (2.1), where in the case of rotational motion the velocity v will be

replaced by angular velocity co.

2.1.6 Continuity

The equation of continuity results from the 'consideration of mass

conservation as a fluid flows through a fixed region in space [4]. The

conservation of mass ensures that matter can be neither created nor destroyed.

Considering the mass flow per unit area, or the mass flux, in the x-direction

through the differential control volume in figure 2.1, the net mass flow is

given by

	

am x	 arnx+dx _ _ a(p u dy dz) 
dx –a(P u) dx dy dz	 (2.2)

	

at	 at	 ax	 ax

where mx is the mass at position x.

6



pw lz

Figure 2.1 Mass flux through a differential control volume.

The net mass flow in the other two directions can be obtained in a similar

manner, which leads to the following expression for the total mass entering the

control volume

1
 a(P u ) + 8(p v) ± a(P w) ) dx dy dz

ax	 aY	 az

where u, v and w are the components of the velocity of flow in the x, y and z

directions respectively.

The change in mass entering the control volume over a given time period must

be equivalent to the above expression, from the conservation of mass. Thus,

(2.3)

a(p dx dy dz) _

at

which leads to

1
 a(13 u) + a(P v) + a(P w) ) dx dy dz

ax	 aY	 az

ap + a(p u) + 5(p v) + ä(p w) _ 0
at	 ax	 ay	 az

(2.4).

In the case of an incompressible fluid, where the density does not change with

time nor with direction, the continuity equation (2.4) simplifies to
au	 av	 aw
—+—+—  _ 0
ax	 ay	 az

(2.5).
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2.2 Viscous Flow

2.2.1 Viscosity

The viscosity of a fluid is a measure of the resistance to motion of

adjacent layers within the fluid. Shearing forces, arising from a moving plate

acting on a fluid which is in contact with a solid boundary as in figure 2.2, set

up an increasing velocity gradient in a direction perpendicular to the boundary

such that the first layer of fluid particles is at rest with respect to the boundary.

Y

plate moving with velocity u

stationary solid boundary

Figure 2.2 Moving plate in contact with viscous fluid setting up a velocity

gradient.

It is this no-slip condition which gives the impression of the ability of a viscous

fluid to stick to the walls of the vessel in which it is contained. The condition

fails when the fluid can no longer be treated as a continuum. The shearing

stresses oppose relative motion of the fluid layers. The stress in the x-direction

is given by
du

'Ix = 1 —dy

where, u is the velocity in the x direction and ri is the coefficient of dynamic

viscosity. Thus, the coefficient of dynamic viscosity is defined as the shear

force per unit area necessary to cause relative movement of unit velocity

(2.6)
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between layers unit distance apart within the fluid. The SI units of dynamic

viscosity are, therefore, kgm- 1 s- 1 [5]. The shearing stress can also be shown to

be related to the rate of change of shearing strain y. Since,
dx

du = 
dt	

(2.7)

then,

S.!!-!	 dx/dt
dy — dy

Now,
dx
dy — Y

thus, substituting (2.9) into (2.8) gives
du _ cly
dy — dt

(2.8).

(2.9)

(2.10)

which, when substituted back into (2.6), leads to
cl y_

(2.11).
Ix=71  dt

When the above relationship holds the fluid is termed Newtonian. Thus,

for a Newtonian fluid under constant stress, flow continues at a constant rate.

Many fluids do not exhibit a linear stress/strain rate relationship and are

termed non-Newtonian. The types of flows in this case may be either time

independent, time dependent or viscoelastic.

(i) Time independent flow

The shear strain rate is a single valued, non-linear function of the shear

stress. This behaviour is demonstrated by a Bingham plastic body which

behaves as a solid until a particular stress, termed the yield stress, is reached

whereupon the body behaves as a Newtonian viscous fluid.

(ii) Time dependent flow

The shearing rate is not a single valued function of the shear stress and

may be dependent upon the past shear history of the fluid. The shear

stress/strain rate curve may also form an hysteresis loop. Examples of fluids

9
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/,

exhibiting time dependency include thixotropic fluids, for which the shear

stress decreases with time and displays hysteresis behaviour, and rheopectic

fluids, for which the shear stress increases with time.

(iii) Viscoelastic flows

Here both the shear strain and the shear strain rate are related to the

shear stress. There are several classifications of viscoelastic flow, each

combining the elements of viscosity and elasticity, and are treated in greater

detail towards the end of this chapter in section 2.5.

2.2.2 Navier-Stokes equations

The distribution of normal and shear stresses over an infinitesimal

volume of fluid is depicted in figure 2.3. The components are shown acting on

only three faces of the element for simplicity; components on the remaining

faces act in opposition to those already specified.

x

Figure 2.3 Normal and shear stress components acting on a volume element.

Taking moments about the x axis leads to the further simplification that

T = T	 (2.12).yz	 zy

Taking moments about the y axis similarly leads to

(2.13)T = Tzx	 xz

and taking moments about the z axis leads to

T = Txy	 yx (2.14) .

10



Tzx

(2.17)

(2.18) .

The Navier-Stokes equations arise from the consideration of Newton's

second law of motion when applied to a differential control volume [6,7].

zxT„, + 	 dz

gri
z A

C5x 	 dx lour + yx  d y
by

bx

Figure 2.4 Stresses acting on a differential control volume.

Considering figure 2.4, the net stress across the volume in the x-direction is

thus given by

dy	 zx

	aa,	 at

	

-	 dx + 	 Yx dy + 	 zx dz

	

ax	 ay	 az
(2.15)

From equation (2.6) it was shown that
du

= dy
(2.16).

For the above control volume the shear stress 	 is given byyx

au
= (— +yx	

ay	 axav

and, similarly,

awax+ —

For normal stress the following equation holds [6]:

au
ax = - P ± 271	 (2.19)

ax

where p is the externally applied pressure acting on the fluid.

11



Du _
Dt

Dw_	 1 ap ± rl (  52w
Dt	 P Oz	 P ( ax2

± gz

Thus, the net force per unit mass in the x direction, Fx, can now be written as

1 (a	 au
F x = —p (7 - -x ( p +2 ri--)+TI___a ( ay +

Ox) ay ax	 ayau ) 4"1-Fza (* + °A

(2.20) .

However, from the continuity equation (2.5) for an incompressible fluid,

1-1 a lau	 av aw

p Ox Ox
 + +—) = 0

ay az

so, the equation for the net force per unit mass reduces to

1 5p	 ri
Fx =

P ax	 P

	

1

a2u	 02_	 02u)
	  +	 - ax2	ay2	 az2 (2.21)

Gravity also acts on the volume of fluid to produce an additional force, so that

the total force per unit mass becomes

/	
+

ap	 n 
	  +

1 a2u 	 02 u	 52u j

	

- — — 	 + gx	 (2.22) .

	

p ax	 p a x 2	 03,2az2

Similar expressions can be obtained in each of the other two directions.

From Newton's Second Law of Motion, the acceleration of a body is

proportional to the sum of external forces acting upon it. Thus,

1	
+

ap	 i i a2u
— —
P axP ax2

A 2 u	 A 2 u

+  u	 +  u	 ± gx03,2	 aZ2

Dv	 1 (3P	 1_ — — +
Dt	 P ay	 P 1

 a2v

ax2

A2v	 52v j
+  u	 + 	  + gy

ay 2	 az2

(2.23)
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‘

\

_ _ _ 2. - - - -
\-

where, as in equation (2.1),

Du	 au	 au
- —+u—

Dt	 at	 ax

Dv	 av	 av
– —+ v—

Dt	 at	 ay

Dw ow	 Ow– —+ w
atDt	 az

(2.24).

2.3 Rigid Body Motion

2.3.1 Definition of a rigid body

A solid body in which any two particles remain a fixed distance apart

regardless of the forces acting upon the body is defined as rigid [8].

2.3.2 Theorems of motion

Euler's theorem states that for a rigid body rotating about a point its

motion is equivalent to rotation about a line passing through the given point.

Chasle's theorem states that rigid body motion is described by the

translation and rotation of a certain point in the body. The point of motion

commonly being the centre of mass of the body.
\	 n

\	 \
\	 \

	

\	 \

	

%	 \

Figure 2.5 Translation and rotation of a rigid body about its centre of mass.
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1
KB = —

2 
m V2 (2.25).

2.3.3 Moment of inertia

The kinetic energy, ICE, of a body of mass m and translational velocity

v is given by

However, if the same body is rotating about an axis with angular velocity co

then the corresponding kinetic energy becomes
1

KE = —
2 

I coIL	(2.26)

where I is the moment of inertia of the body.

Thus, if the body is a distance r from the axis then

V = TCO	 (2.27).

Substituting now for v into equation (2.25) and comparing with equation (2.26)

yields

I = m r2	(2.28). •

2.3.4 Area moment of inertia

The moment of inertia of a plane area is calculated with respect to an

axis lying in that plane. Referring to figure 2.6 and taking the z axis to be the

axis of rotation then the area moment of inertia, I, is given by

Iz =-- fy2 dA
	

(2.29).

A

14



Figure 2.6 Element of area dA within a body.

dy

h-

Figure 2.7 Rectangular area of cross section with central axis at y=0.

Applying the above integral of equation (2.29) to a rectangle which consists of

small elements of area b dy, as depicted in figure 2.7, yields
h/2

Iz = 2 f y2 b dy	 (2.30)
0

b h3
12

Similarly, the calculation of Iy yields
h b3

T
Y
 — 

12

(2.31).

(2.32).

15



and similarly,

(2.33)

(2.34)

(2.35)

h-

2.3.5 Radius of gyration

The radius of gyration with respect to an axis is equal to the square root

of the area moment of inertia about that axis divided by the area. Thus, the

radius of gyration of the rectangle with respect to the z axis, kz, is given by

b	
(2.36).

2.3.6 Angular momentum

The rate of change of angular momentum is equal to the sum of the

moments of the external forces acting on a body. Thus, if ri denotes the

position vector of the force Fi then the rate of change of angular momentum, J,

is given by

—dJ = E • x Fi	 (2.37)
1

where J is related to the angular velocity, co, by

J = I co	 (2.38)

with the moment of inertia, I, as defined in equation 2.28.

16



Ex.
6y = v

E
(2.41)

2.4 Elastic Theory

2.4.1 Relationship between stress and strain

The components of stress acting on a solid body are identical to those

shown in figures 2.3 and 2.4 acting on a fluid volume but differ in their

relationship to the associated components of strain. When an elastic body

whose material properties are isotropic is subjected to a normally applied

tensile (or compressive) force the corresponding stress in the body produces

elongation of the material, in the direction of the applied force. The amount of

elongation per unit stress varies from material to material and thus the

proportionality factor relating stress to strain is material dependent. The

proportionality factor is Young's modulus of elasticity, E, and is defined by

the following equation [9]

E = 2x-	 (2.39)
6x

which is also known as Hooke's Law. In equation (2.39) a x and ex are the

tensile (or compressive) stress and strain in the x direction, respectively. Thus,

for an elastic solid the strain associated with a constant stress is itself constant.

The elongation of the material is accompanied by contraction in the lateral

plane, the magnitude of which being determined by the value of Poisson's

ratio, v, for that particular material so that
lateral strain 

v —(2.40).
longitudinal strain

In terms of the tensile stress

and,

sZ = - v —LI
	

(2.42)

the negative sign denoting compression.

Clearly, then, for a three dimensional body it follows that the full form

of the stress-strain relations is

17



1 ,
6 = - ka

x
 - v (a + az))

x	 E	 3'

1
s = — (

Y
a - v (az + ax))

Y E 

6 = 1 (a - v (a + a ))z E z	 x	 y

(2.43)

(2.44)

(2.45).

In the case of a shear stress, txy ) acting on the body in the y direction

and in the plane normal to the x axis, the following relationship holds

Txy = G yxy	 (2.46)

where, 7„y is the shear strain and G is the shear modulus or the modulus of

rigidity.

Similarly,

T = G yyz	 yz

and

(2.47)

tzx = G yzx	 (2.48).

Although the normal and shear stresses are independent of one another, the

shear modulus is related to Young's Modulus according to
E 

G —

	

	 (2.49).
2 (1+ v)

If, under stretching, the volume of a body does not change then v = 0.5 and,

therefore, G = —
E

' so that the effect of Young's modulus is divided equally
3

between each of the three shearing stresses.

18
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P i	

d d

2.4.2 Bending beam theory

Pure bending of a beam results from the application of equal and

opposite moments to the ends of an initially straight beam, so that the final

deformation represents a symmetric curve [10]. The theory is built upon the

following assumptions:

(i) the material is homogeneous and isotropic;

(ii) the beam is long in comparison to its depth, so that the effect of shear is

negligible;

(iii) the width of the beam is not so great that the beam may be considered

as a thin plate;

(iv) cross-sections of the beam remain plane and perpendicular to

longitudinal fibres.

1 R	 R 1

Figure 2.8 Simply supported beam subject to two equal forces.

Consider an elastic beam subject to two equal forces of magnitude, P,

acting at a distance d from each end of the beam, as depicted in figure 2.8.

Then, for equilibrium the reactions, R, at each end are equal to P. In order to

determine the distribution of stress within the beam, a typical cross-section ab

is examined. The beam is fictitiously divided at the cross-section as shown in

figure 2.9a.
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a

b

: x
:

A

R

vi
Y

Figure 2.9a Fictitious division of beam at ab.

The effect of the remainder of the bar to the right of the cross-section is

replaced by a bending moment, M, acting on ab such that

M = P d	 (2.50).

Figure 2.9b Normal stress acting on an elemental area dA at cross-section ab.

Looking at the cross-section itself, shown in figure 2.9b, then for equilibrium

the sum of the moments of the internal forces will be equivalent to the resistive

couple M. That is,

EFx y = M	 (2.51)

which leads to

fax dA y = M
A

Applying Hooke's Law gives

fE Ex dA y = M
A

(2.52).

(2.53).
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Close examination of a section of beam which has been subject to pure

bending as in figure 2.10, allows the determination of the strain 6„ .

Elongation occurs along the lower length of the beam with an associated

contraction along the upper length. As in the case of the action of tensile or

compressive forces, lateral changes in dimension accompany longitudinal

changes. Along the lower convex length fibres in the lateral plane contract and

those in the plane normal to the upper concave length expand according to
51	 IE = - V Ex = - V- = -v	 (2.54).z	 1	 r

The lateral plane along mn, through which the neutral axis passes, contains

fibres which do not experience any change in length during bending and thus

(2.55).Ex --	 = 0- ,-- Ez 

0

1+81

V
Y

Figure 2.10 Section of beam after pure bending with radius of curvature, r.

Fibres along the sides of the beam remain normal to those in the longitudinal

direction, so that the section acquires a new shape. The area of the section,

however, remains constant since any elongation below the neutral axis is
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balanced by an equivalent contraction located at the same distance above the

_ Yneutral axis. Substituting for 6 x — — in equation (2.53) leads to
r

"E	 E (2.56)M = , —r y2 dA = —r Iz
A

where, from equation (2.29),
Iz = 5y2 dA .

A

S	 s+ds

Figure 2.11 Section of the neutral axis from s to s+ds.

The angular deformation of each point along the beam can be

determined from consideration of figure 2.11, which depicts the deflection of

the neutral axis in the beam section. An element of length ds has a radius of

curvature r such that two points m and n situated at s and s+ds, respectively,

along the axis have an angular separation de. If the path is traced from point

m to n, then as the position along the neutral axis increases the angular

separation decreases. Thus, ds=-rde and substitution for r leads to
CM

8 = - j—Eizds

For small deflections of the beam the following approximations hold:

dx = ds and tane = 0 = -41	 (2.58)
dx

which enables a solution for the deflection y of the beam, namely

y = - .kf 1P4E, iz dx)dx	 (2.59).

Thus, if the form of the bending moment, M, is known then the deflection at

each point along the bar can be determined.

(2.57)
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The following examples illustrate the application of the above theory

firstly to a simply supported beam and secondly to a cantilever. In both cases

the load represents the weight and is distributed uniformly along the length of

the beam.

Example 1 Simply supported beam

L

a

Figure 2.12 Simply supported beam of uniform load w per unit length.

Considering a cross-section ab situated a distance x along the beam of total

length L, as in figure 2.12, then resolving forces to the left of ab yields;

R - wx = V	 (2.60)

where w is the weight per unit length of the beam;
wL i

R = —
2
 is the vertical reaction at each support;

and V is the total shearing force acting at the cross section which is related to

the bending moment, M, by

Thus,

dM
V = —

dx

wLx wx2
M—	 -

2	 2

which leads to

dy ... _ rwx(L-x) dx
dx	 j 2 E Iz

(2.63).

23



-̀l-i - f wx2 dx
dx — - 2 E Iz (2.68).

thus,

The following boundary conditions also apply:

the midpoint of the beam, x = k, is a point of inflection so that -d--Y. .-.-- 0;
2	 dx

the deflection at the two ends of the beam is equal to zero so that y ._-_-0 at x=0

and x =L.

By use of (2.58), the first boundary condition yields a solution for 0;

	

o—  
w (X3 _ X2L + L3	

6
)

2EIz 3	 2	 12	
(2. 4)

The remaining boundary conditions yield a solution is for the deflection y;
w 

Y — 24 E z (L3x - 
2Lx3 + x4)	 (2.65).

I 

Example 2 Cantilever beam

L

Figure 2.13 Cantilever beam subject to uniform load w per unit length.

Consider a beam supported at one end, as in figure 2.13. The reaction at the

support is equivalent to the whole weight of the beam. Taking a cross-section

cd through the beam and looking at forces acting on the left hand side leads to

V = 0 - wx	 (2.66)

and

M=-
2

wx2
(2.67)
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The boundary conditions which apply here are:

the gradient at the supported end of the beam is zero, so that at x = L
cly . 0 ;
dx

and the deflection is zero at the support, so that at x = L, y = 0.

The following solutions for 0 and y can now be obtained;
w  rx3 L3)

0 —(2.69).2 E Iz L3 3 )

w 
y — 24E (3L4 - 4L3x + x4)Iz (2.70).

Figure 2.14 Beam supported on the left.

If, however, the beam is instead supported on the left, as in figure 2.14, then

substituting L-x for x in the above equations yields the following solutions for

0 and y;

0 — 2
w
E Iz (L2x - Lx2 ± i3

w 
Y — 24 E Iz (6L

2x2 - 4Lx3 + x4)

(2.71)

(2.72).

2.4.3 Bending in two perpendicular directions

The deformation of a rectangular plate lying in the xy plane subject to

the normal stresses ax and ay may be determined by consideration of a

narrow strip along the length of the plate [11], as depicted in figure 2.15a.



(2.73)

(2.74).

The plate is of depth h and the strip has a width of unit length so that the strip

resembles a beam of length L as described in the previous section.

Z

Cy

Figure 2.15a Rectangular plate containing a strip of unit width and subjected

to stresses in two perpendicular directions.

As in bending beam theory the cross-sections remain plane so that in each of

the two directions the only form of deformation is rotation about the neutral

axes. The equations governing the stress/strain relationships in the two

perpendicular directions result from equations (2.43) and (2.44) with a=0,

that is

16x = —E (ax - v ay)

1 ,
6 = — (CY - V GOy E Y

If the plate is subject only to a load in the x direction then the strain in the y

direction is zero so that equation (2.74) yields

(2.75).ay = V ax

It then follows from equation (2.73) that
s E___x___a —

x	 (1- v2)
(2.76).
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M

L

Figure 2.15b Pure bending of rectangular plate in one direction only.

Bending of the plate, resulting from the application of the bending moment

depicted in figure 2.15b, yields a vertical deflection w which is related to the

radius of curvature r by
1	 d2w
T: = - dx2

so that the strain cx may now be expressed as

	

z	 d2w=.	 — -z—

	

Ex r	 dx2

(2.77)

(2.78).

The bending moment is related to the stress by
h/2

M = fax z dz
	

(2.79)
-h/2

	which, upon substitution for c 	 Ex yields
-E h3  d2w

	

M —	 (2.80)
12 (1-v2) dx2

or, alternatively,
-E h3  de 

— -D —
(10 

(2.81)NI — 
12 (1-v2) ds	 ds

E h3 
where D — 12 (1-v2) is the rigidity of the plate and replaces EIz in equation

(2.57) for the bending of beams.

Consider now a plate which is subjected to bending moments Mx and

My' as shown in figure 2.16, such that the radii of curvature in the two

perpendicular directions are respectively r x and r.
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The perpendicular strains are therefore [12],
z

EX = — (2.82)
rx
z

(2.83)EY = —r 
Y

Figure 2.16 Rectangular plate subjected to bending in two perpendicular

directions.

so that, from equations (2.73) and (2.74), the perpendicular stresses may be

expressed as
E z  (1 + v)

a —	 (2.84)
x	 (1-V2) r rx y

a _  E z  (1 + v
Y	 (1-v2) ry rx)

(2.85).

Since, from equation (2.79)
h/2

M = fax z dz
-h/2

and, similarly,
h/2

M = fa z dz
Y	 Y

-h/2

then substitution of equations (2.84) and (2.85) leads to

Mx = D e__F.;)	 (2.86)
r rx y

and

M = D (-1 +—v)
Y	 ry rx

(2.87).
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Application of equation (2.77) in each of the two directions finally yields
(d2w d2w)

M 	 Wx2 ±vT-13/2)	
(2.88)

and

(d2

d2w d21
M = -D --+v--

y	 dx2
(2.89).

Consider now a circular plate [13], a segment of which is shown in

figure 2.17. The section shown in the plate of sides aa' and bb' has a radial

length dr and is subtended by the angle de. The shearing force Q per unit

length acts on the side aa' of the section at a radial distance r so that under

conditions of equilibrium an opposing force per unit length acts on bb' of
dQ

magnitude Q + 
dr

dr. The moment per unit length M r acting on aa' is

dM
balanced by the opposing moment per unit length M r +—r-dr on bb'. Due to

dr

symmetry there is no change in the shearing force along the circumferential

axis and therefore the moments Mt per unit length, causing rotation about this

axis, balance one another.

Q+dQdr
dr

Figure 2.17 Segment of a 2-d circular plate.

Assuming Mr yields a positive rotation then Mt , acting on side a'b', may be

written in component form as follows;
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Mt = Mt cosr) 0 + Mt sinr) r
2	 2	 (2.90)

Similarly, Mt acting on side ab, may be expressed as;
de	 de

Mt = -Mt cosH2 ) 0 + Mt sinF
2

) r (2.91)

so that, for small angles, the resultant component of Mt in the radial direction

is given by Mt dO.

The moment equation of equilibrium for the section in figure 2.17 is,

therefore, given by

(
dMMr+Tir r-drj(r+dr)d0 - Mrrde - Mtdrde +

(r+dr)(Q+ cAlr)(r+dr)d0 - rQrd0 = 0dr

(2.92).

Neglecting small terms this reduces to
dMMr+—r-r - Mt + Qr = 0	 (2.93)dr

where, from equations (2.86) and (2.87),

Mr = D (1+11	 (2.94)rr rt

Mt = D (1+1 	 (2.95).rt rr

Consideration of figure 2.18 allows the determination of M r and Mt in terms of

the vertical displacement, w, of the plate.

Figure 2.18 Radial curvature of circular 2-d plate.
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1	 ldw
rt	r dr

(2.98).

The downward vertical displacement at a radial distance r from the
dw

centre of the plate is w, so that the tangent at r is given by tanO = --
dr • 

For

small deflections the radius of curvature rr which lies along OB may, therefore,

be determined according to
1 de	 d2w— = — = 	 (2.96).
rr	 ds	 dr2

The radius of curvature r t swings out and back into the plane of the paper

describing a cone of radius r at its base. From figure 2.18,
r

—
rt 

= sine	 (2.97)

and for small angles the approximation that sine = tan° holds, yielding the

following expression;

Equation (2.93) may now be written in terms of w, giving
d3w _i_ ld2w 1 dw g „ .
d3 +d2r dr2 -r2 dr — -D	 .4-77/

which simplifies to
Ari d (rcly_v)) . _Q.
drLrdik dr))	 D

(2.100).

2.5 Viscoelasticity

Some materials are fairly complex in their behaviour and not only

respond elastically under stress but also respond viscously [14]. These

materials of dual behaviour are termed viscoelastic. It is not always apparent

whether a viscoelastic material is essentially solid or liquid in characteristic and

thus it is necessary to bring to light the main distinguishing features. A

viscoelastic liquid flows viscously and extends elastically, and is, therefore,

non-Newtonian. A viscoelastic solid exhibits delayed and retarded elasticity

under the action of a force, so that only at steady state does Hooke's Law hold.
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Mechanical models, comprising springs and dashpots, are used to represent the

viscoelastic behaviour in each case.

2.5.1 Maxwell model

This model consists of an elastic and viscous . component forming a

series combination to represent a viscoelastic (or Maxwell) liquid. The

combination is depicted in figure 2.19, where the spring of shear modulus G

obeys Hooke's Law and the dashpot of shear viscosity ri is Newtonian.

Figure 2.19 Series combination of spring and dashpot.

Thus, the following relationships hold

= G7 	 (2.101)

where -ce is the elastic shear stress and y e is the shear elastic strain,

and

(2.102)
= dt

where t, is the viscous shear stress and 
dy, 

is the shear viscous strain rate.
dt

Applying a shearing force F to the body results in a distribution of

shear stress t which is experienced by each component. Therefore, in the

Maxwell model, the stress-strain relationships become
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and

Ye =

dYv =
dt

yt = +	 dt
G

(2.106).

t r
Time

The strain resulting from each component is additive and thus the total strain,

yt, experienced by the viscoelastic liquid is simply the sum of the individual

strains.

Therefore,

which yields

Yt = Ye ± Yv (2.105)

Strain

Ye

Yv

Figure 2.20 Strain versus time for a viscoelastic liquid under constant stress.

The variation of total strain with time under a constantly applied load is

depicted in the graph of figure 2.20. The body experiences an initial elastic

strain, ye, after which flow continues at a constant rate, 	 v . Any inertia
dt

effects have been neglected so that the viscous flow does not accelerate but is

instantaneously constant. If the load is removed from the body at any time

t=tr, such that T=0, then there will be no elastic contribution to the total
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n4 	 4i.
±T — = n

G dt	 dt
(2.107).

G t

T = t 0 e( 1 ) (2.108)

strain. In other words, the elastic strain is recoverable upon removal of the

load. The instantaneous viscous contribution to the total strain will also be of

zero magnitude.

Differentiating the total strain equation (2.106) and multiplying through by ri

leads to

_clyt
If the body is held at constant strain then	 = 0 and the solution becomes

dt

for T =to at t=0.

Thus, it can be seen that the stress in the body relaxes with time; decreasing to
dt •

zero as t tends to infinity. Under constant stress —
dt 

= 0 and, returning to

equation (2.107), the material behaves as a Newtonian viscous liquid.

2.5.2 Kelvin model

Arranging the spring and dashpot in a parallel combination forms a

mechanical representation of a viscoelastic, or Kelvin, solid.

Figure 2.21 Parallel combination of spring and dashpot.
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I r Gtr

1 - e	 1 ) (2.111).

Referring to figure 2.21, the force F acting on the body causes equal strain in

each of the components so that the total stress is the sum of the individual

stresses. Thus,

(2.109)It = le + 'Iv

which leads to

k
tt = GY + lidt

Solving for y gives

(2.110).

)

Under constant stress, To , the strain-time diagram is as depicted in figure 2.22,

showing a time delay before the elastic strain is reached. Upon removal of the

load at t=tr the stress equation becomes
ay _

Gy + i —
dt 

0	 (2.112)

the solution taking the following form

Gt

Y = Y o e
(- 1 )

where yo is the strain when t=0.

(2.113)

Strain

Time

Figure 2.22 Strain versus time for a viscoelastic solid under constant stress,
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tr Time

Hence, the strain does not decrease to zero instantaneously. Instead, the body

exhibits a retarded response to the removal of the load, resulting in an

exponential decay of the strain as illustrated in figure 2.23.

A

Strain

To

Figure 2.23 Strain of a viscoelastic solid when the load is removed at time=tr.

Having established the two most basic viscoelastic representations,

models of greater complexity may be created. The components are simply put

together like building blocks so that their combination describes the behaviour

of a particular viscoelastic material.

2.5.3 Three component models

Three component models consist of a parallel combination (Kelvin

model) in series with either an elastic spring or a viscous dashpot. The models

are portrayed in figures 2.24a and b, respectively. The corresponding strain-

time diagrams are represented by figures 2.25a and b, showing in each case the

response of the system to the application and removal of a constant load. The

total strain is the sum of the strain associated with the elastic/viscous series

component and the resultant strain of the parallel combination.

36



Strain

T	 t
— +
G 

1 
G 

2

Figure 2.24a
	

Figure 2.24b

Figure 2.25a Strain versus time for the 3-component model in figure 2.24a.
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7v1

Time

Figure 2.25b Strain versus time for the 3-component model in figure 2.24b.

2.5.4 Four component model

Placing a Maxwell model in series with a Kelvin model constitutes a

four component model, as in figure 2.26. Strains are again additive, the

stress-time diagram of figure 2.27 depicting the behaviour under a constant

load.

Figure 2.26 A four component model.
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Strain

7e 1+ Yv 1 + 't
G

Ye 11

2

Figure 2.27 Strain versus time for the 4-component model in figure 2.26.

Upon removal of the load in each of the cases illustrated above, only

when there exists a series viscous component does the material result in a

permanent state of deformation, all forms of elastic strain being recoverable.
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CHAPTER 3

BACKGROUND TO TLM

The basic concepts of the TLM modelling technique are introduced and

discussed with application to both wave and diffusion based problems.
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3.1 Introduction to TLM

The transmission line matrix (TLM) method is a transient numerical

modelling technique which solves problems described by the wave or diffusion

equation.

TLM routines are explicit in nature [1] facilitating the incorporation of

non linear parameters [2]. The explicitness of the technique easily

accommodates boundary conditions whether constant or varying throughout the

modelling period [3-6]. Although equations constituting the routines may be

expressed in matrix form, there is no lengthy matrix manipulation as found in

other modelling techniques. Routines are one step such that calculations only

depend upon values stored at the previous time step, or iteration, the iterations

themselves requiring very little processing time.

One of the greatest advantages of the technique is that the routines

involved are numerically very simple and thus modification of a particular

routine does not require great mathematical skill. As a result, development of

programs is usually straightforward compared with the initial conceptual

interpretation of the problem. Comparison with other techniques readily

highlights the simplicity of structure and in particular the simple meshing of a

TLM network. This does not mean, however, that bodies of complex

geometry pose a challenge for the technique. In fact, TLM has been applied

successfully to many different body shapes, up to and including those of three

dimensions [2,7-9]. Substructuring in time and space [10,11] allows both

accurate modelling of rapidly changing parameters and focussed attention in

localised areas respectively. Each is achieved through the explicit nature of the

technique and leads to optimum modelling efficiency.

The technique, therefore, is extremely flexible within the confines of its

modelling applications.
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3.2 Applications of the TLM Technique

The basis of the TLM technique was conceived by P B Johns and R L

Beurle with their first work being published in 1971 [12,13]. Originally

applied to the propagation of electric and magnetic fields the technique

provided solutions such as those for waveguide problems in the form of field

patterns and determination of resonant frequencies [14,15]. Development of

the technique proceeded resulting in the modelling of problems involving

inhomogeneous dielectrics and those requiring a three dimensional treatment

[14,16,17].

Success in the modelling of wave propagation led to investigation of the

applicability of TLM to diffusion problems. A substantial amount of work has

been carried out on thermal diffusion, covering a wide variety of problems

including heat flow in semi conductor devices and heat transfer in foodstuffs

[18-20]. Increased success and knowledge of the method led to more diverse

applications such as acoustic wave propagation [21,22], electron diffusion in

solar cells [23,24], the soaking behaviour of white rice [25] and fluid network

dynamics [26,27]. The theoretical aspects of the TLM technique including

accuracy, meshing and stability have been thoroughly addressed [28-32].

3.3 TLM Theory

The TLM technique provides a solution for the Telegrapher's equation

which takes the following form in two dimensional space [1]:

	

a2,÷„ n2
	 ‘11	 u	 4 Re_, d	zdT f, a

2
(1)

	

ax 2	 ay2	 at	 at 2

where ozto represents the potential of the network;

Rd represents the distributed value of resistance;

Cd represents the distributed value of capacitance.;

(3.1)
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Ld represents the distributed value of inductance.

Clearly, (3.1) models the potential in an electric circuit as a function of

both time and space. At first sight the question posed is, "how does this circuit

relate to problems in the physical world?". The types of problems appropriate

to TLM are those which may be expressed either in the full form of the

Telegrapher's equation or in a reduced form. By suitable choice of circuit

parameters and magnitude of timestep one or other of the time derivative terms

may be assumed negligible, thus reducing the form of the full equation which

itself represents a damped wave equation. A circuit with no resistance is

modelled by

a
2

0:1)	 8
2 0 	 r, a2 0

— tadud 	ax 2	 ay2	 at2

and is the wave equation.

a20 a(1)
Choosing the modelling timestep sufficiently small so that 	  «at 2	 at

yields the diffusion equation [28]:

(3.2)

go a 	 ,
-

ax2	 ay2	 at
(3.3).

Having introduced the switch mechanism to transform the behaviour of

the circuit so that either diffusion or wave propagation results, analogies

between the circuit and the physical problems can now be established. The

diffusion or wave parameters are represented by the electrical components of

the relevant circuit so that the potential represents the scalar or field quantity to

be determined. Maxwell's equations in two dimensions yield the following

equation for the propagation of electromagnetic waves in a medium,
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(3.4)

a2E z 	 132E,

ax 2	 ay2

a2Ez

at2

where, la is the permeability;

6 is the permittivity;

E denotes the electric field;

and Ex=Ey=0.

Comparing equations (3.2) and (3.4) lead to the following equivalences;

Ez and cl)z

p. and Ld

6 and 2Cd

(3.5).

1
From equation (3.4) the wave speed is 	 which is equal to the

NI-te
1

speed of light, c, for jAi.-=--sr--= 1 since6--=10 1.ir6o6r .	 However, the

corresponding velocity of propagation in the TLM mesh, from equation (3.2),
1 

is 	 , where Ld and Cd are the inductance and capacitance per unit length
-v2LdCd

respectively. The mesh velocity is, therefore, equal to r- due to the

transmission line network representing a medium which has a relative

permittivity of twice the free space value [33].

As an example of a diffusion application the thermal diffusion equation

is considered, which in two dimensions is given by

202T
alp

" 	
ax2	 ay2

pCp

kT at
(3.6)

where, T is the temperature;

p is the density;

kT is the thermal conductivity;
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and C is the specific heat capacity.
P

Upon comparison with equation (3.3) of the transmission line network

the temperature is represented by the network potential and heat flow is

modelled by the current. The distributed network and material parameters may

be related as follows,
1

Rd= 4kT

Cd = pCp

(3.7).

It now suffices to reveal the fundamentals of the technique which

ultimately provide the solution of the Telegrapher's equation.

3.4 Fundamentals of TLM

The TLM routine operates by passing pulses of information, the

magnitude of which being determined by the parameters involved in the

particular application. The value of the required field quantity is calculated at

points within a body from the information pulses, as and when desired.

The body under consideration is divided into spatial elements such that

points of calculation lie at their centres. These points are termed nodes and

represent the points of connection of paths along which the information pulses

are passed. It is these paths of interconnection which constitute the TLM

mesh. The pulses, then, follow a structured route as defined by the mesh

which spatially discretises the body. The paths of the TLM mesh are of a

finite length and thus the duration of pulse travel between nodes is also finite,

yielding temporal discretisation as required in a transient simulation.
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61

The wave and diffusion equations involve the pairs of lumped circuit

components L, C and R, C respectively, so that elements take the appearance

of the structure in figure 3.1.

61

Figure 3.1 A general 3-d cubic lumped circuit element, of spatial dimension

51.

Arranging the components in this way clearly localises the parameter

values within each element. This representation, however, effectively isolates

nodes from one another in the body so that there is no apparent

interconnection. The wave network parameters L and C are related to their

distributed values by

L = Ld 61 and C = Cd 51	 (3.8)

and the diffusion network parameters R and C are related to their distributed

values by
51

R = Rd 512 and C = Cd 513 (3.9).

Returning to circuit theory, the capacitance of a diffusion element can

be expressed in terms of impedance by
St

Z= -E	 (3 . 10)
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z=
Ld

Cd
(3.11).

thus introducing temporal discretisation theoretically in the model. The

capacitor may now be replaced by transmission lines, each of impedance Z,

which in 1-d connect neighbouring nodes. In a two dimensional network each

element contains two whole transmission lines so that the impedance is given
2.5t

by Z =' the capacitance of the element being divided equally between theC 

lines. Similarly, in three dimensions the impedance of each line is Z =

[2]. In wave applications the impedance is calculated from the inductance and

capacitance, according to

The velocity of the wave on the mesh is given by

81 	 1 
8t1.\17,—/Cd

in a one-dimensional network, and

61 	 1 
8t NI2LdCd

in a two dimensional network [12,33].

(3.12)

(3.13)

the timestep 8t must be chosen so

is modelled correctly according to

en the wave propagation is one

For given values of 81, Ld and Cd,

that the velocity of the wave on the mesh

equation (3.12) or (3.13) above. Wh

dimensional the timestep is given by

St = 81 1-\r:,--iCd=	 1.47:rCd = CZ
Cd

and is in agreement with equation (3.10).
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Figure 3.2 Two dimensional LC element.

The equations for the voltage and the current difference at the shunt

junction depicted in figure 3.2 are

ao z —	
aix

 Ld
ax	 at

and

a0 Z — T 
al

Y
 _Lad

ay	at

and

ai x + ay _

	

	 aoz2,cd
ax	 ay	 at

(3.14).

Maxwell's equations, in two dimensions, give

aE z	 0HY
— 11

ax	 at

and

5H 

ay
	  -	

a
il.

aY	 at

and
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ax	 ay

where H denotes the magnetic field 	 (3.15).

Comparison of equations (3.14) and (3.15) now yields the following remaining

equivalences for equation (3.4) and that of the TLM network,

ll and Ty

Hy and -Ix

(3.16).

--/N/N--•-/\/\-M1n11-'\/`-•-'\/`-MINI

Figure 3.3 A symmetric 1-d nodal structure constituting the TLM mesh.

In figure 3.3 the nodal separation has a constant value of .51 and is equivalent to

the length of the transmission line and hence the spatial dimension of an

element. The elemental boundaries straddle the transmission lines, lying

midway along their length.

The paths enabling pulse travel have now been constructed and, as any

efficient road network requires a highway code, rules of pulse passing need to

be established. Consider a 1-d element as in figure 3.4. The transmission

lines connect the element to neighbours on either side. Two pulses are

considered initially incident at the node.

Figure 3.4 Pulses incident at a node.
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The arrival of the pulses at the node gives rise to a nodal potential, (13,

whereupon instantaneous scattering of the pulses occurs, depicted in figure 3.5,

such that the modified pulse values are sent back down the transmission lines.

These reflected pulses travel along the lines in one complete timestep heading

now in the direction of neighbouring nodes. Once more each pulse will

become incident at a node and give rise to a potential. The repeated scattering

and passing of pulses in this way illustrates the propagation of pulses along the

network.

el	 :
n--\/•-•-f\z,---,\/-4.--,\/•--,\/•-•-,\/•-n

n-1 -E—F--	 n	 —H- n+1

V . r	 V2r1

Figure 3.5 Pulses scattered instantaneously towards neighbouring nodes.

In general, all the nodes in a network will have initial incident pulses so

that the above behaviour occurs in each element at the same moment in time.

The route taken by the pulses upon scattering may be illustrated by the

following connection routine for 1-dimensional propagation, the subscript k

denoting the kth time interval.

k+ iVl) = kVr(11-1,2)

k+ 1Vi0,2) = kVr(n+ 1,1)

(3.17)

where the first entry within the parantheses denotes the node number and the

second entry denotes the branch number.
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4 2

2d2 
EV i

R + Z	
1

1=1 •

2d

ER-1-1Z
1=1

0:1:0 (3.19)

3

Figure 3.6 Two-dimensional configuration of node branches.

In two dimensions each node has four branches, as depicted in figure

3.6. The connection routine in this case takes the following form,

k+ 1 Vi(i9.0) kV 	+1,3)

k+1Vi('j , 2)	 kVr(i+

k+1 Vi(jj , 3) = kV1.(i).j-111)

k+	 =

(3.18).

The value of the nodal potential and the magnitude of the reflected

pulses are determined from the application of Thevenin's Theorem to a TLM

node, the details of which being included in Appendix I,. yielding

Vri —	
+Z  	 (R-Z) vi

(R+Z)	 (R + Z) 1
(3.20)

where d represents the dimension of the model.
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V 1c

.	 R..„„(___	 R ___ -<	

V r1 V2r Vc r

The reflected pulses may also be expressed in matrix form such that for

a 2 dimensional symmetric node:

rk+1V11. Z Z Z
k+1V2r 1 Z

(2R-Z
2R-Z Z Z kV2i

k+1V3r
-

2(R +Z) Z Z 2R-Z Z

j(kVii)

kV3i

k+1V4r) Z Z Z 2R-Z nIcV4i

(3.21).

For a 2 dimensional wave node (with R=0):

(k+1V1r\ (4 1 1 1 VkVii
k+1V2r _ 1 1 -1 1	 1 0/21
k+1V3r — 2 1 1 -1	 1 kVil

+ 1V4ri 1 1 1 4AkV4ii

(3.22).

Not all reflected pulse values are evaluated according to the type of

matrix above, that is reflections of pulses may also occur at the boundaries of

the mesh, for example, at material interfaces [19]. Consider a body placed in

surroundings such that it is heated by constant sources in the ambient.

constant
heat source

at temperature
—(\/\__. Tc

Rb

surface
boundary

Figure 3.7 Reflected pulses at a boundary.

Figure 3.7 represents the surface boundary arrangement for elements at

the surface of the body and those of the ambient. The temperature of the heat

source is assumed to be unaffected by the presence of the body, so that Vci

does not contribute to its nodal potential. The source supplies heat to the body
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1at a rate determined by the boundary resistance Rb"---41.1-1-0 where h is the heat

transfer coefficient. The following the rules of conservation of current across

the boundary, as for a general node, leads to

Z	 Rb -Z)vi
V rc —	 T +

Rb + Z c ( Rb + Z c (3.23).

The product of heat flow and resistance must equal the temperature drop across

the resistor, that is

Rb
(V

i
 - V r )	 V i + V r -;	 (3.24).

Z

If the rate of heat transfer to the body is instantaneous, ie Rb = 0, then the

reflected pulse takes a new form

Vcr = 're - Vei	(3.25).

If, on the other hand, a zero rate of heat transfer exists, such that the boundary

resistor is infinite, then the boundary becomes insulating and the reflected

pulse is now given by

Ver = vci	(3.26)

denoting a perfect reflection at the boundary.

In the case of electromagnetic waves the reflection at a boundary is

dependent upon the type of wall [33]. If voltage represents the electric field

then a magnetic wall is represented by an open circuit resulting in total

reflection of the pulse value as in equation (3.26), and an electric wall is

represented by a short circuit which reflects an identical negative pulse.

Conversely, when the voltage represents the magnetic field a magnetic wall is

represented by a short circuit boundary and an electric wall is represented by

an open circuit boundary.
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3.5 Initialisation of Pulses

In most thermal problems not only is the body under consideration

heated by its surroundings but it will also have an initial temperature which

may be uniform or linear across the body. Considering, for simplicity, a

uniform temperature distribution, then this can be achieved by applying

adiabatic heat sources of the required temperature and heating the body until it

reaches the steady state condition so that it assumes the temperature of the

ambient. This, however, proves to be time consuming particularly for a 3-d

problem and the same result can be achieved much more efficiently by

returning to Thevenin's theory. When steady state is reached, such that a

uniform potential is achieved throughout the network, the net current flow in

the circuit is zero with no net current flow down each branch at every node.

Thus, Kirchoff's current law now yields

2V1 1 - 	 _ 2 V2 i - (I) _

RI + Zi	 R2 + Z2

_ 2 Vmi -
	  —o
R m + Zm

(3.27)

from which it can be shown that the solution is

= V2 i = 	  =— = (I)
 2

(3.28).

Thus, setting all incident pulse values, including those of the stubs

which will be discussed later in this chapter, to half the value of the required

initial nodal potential initialises the mesh uniformly and instantaneously.

3.6 Generation of Current and Current Loss

In some bodies chemical reactions, or changes of state, occur which in

turn affect the temperature profile by altering the rate of heat transfer within

the body. These body effects actually alter the rate of heat transfer indirectly
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via a direct generation of heat into the body or via a direct heat loss from the

body.

In a diffusion network an increase, or surge, of current can be

represented by a current generator attached to the appropriate node [34] as

shown in figure 3.8.

Figure 3.8 Current generator attached to TLM node.

The nodal potential equation takes the generated current into account as

follows,

cI)

(	 2d	 \
2 	

VI i + IgenR + Z -
n 	 1=1	 i—

2d
VI  1 
1...4R + Z
1=1

(3.29)

where d represents the spatial dimension of the node.

Current loss can similarly be represented by a negative current

generator or, alternatively, as charge dissipated through a resistor [35] depicted

in figure 3.9.

Num—/VV\— --/VV\--smo

R g

Figure 3.9 Resistor dissipates charge from node.

The additional resistance in the network affects the impedance at the node

according to
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2d2 
(R± Z)

1 
EV1 i
=1

( 2d
1 	 1

IR + Z ' R jg
--1

- (3.30).

Examples of effects modelled in this way include evaporation and

recondensation of moisture which causes cooling and heating of a body

respectively, and also chemical exothermic and endothermic reactions.

Losses in wave propagation, such as attenuation, are generally

accounted for by use of stub transmission lines and are discussed in section

3.8.

3.7 Variation of Parameters in a Diffusion Network

3.7.1 Variation in resistance

Thus far the TLM technique has been shown to apply only to a

homogeneous and isotropic material such that the elements in the network

model the same parameters and the nodes are symmetric.

1

R Y

4

	

	
2

R x
R Y

I
3

Figure 3.10 An asymmetric 2-d node representing an anisotropic material.
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1	 1 

+Z ± R +Zx	 Y	 j

81z

Consider an anisotropic material such that the parameter modelled by

the resistance takes a different value in the x direction from that in the y

direction. The structure of a TLM node now resembles that in figure 3.10 and

the nodal potential equation becomes [36]:

2 (( + Vz3)	 2((RV2i + Vzft))))

(3.31).

Thus, a spatial variance in the resistance, either from one element to

another or within the element itself, is easily accommodated.

Figure 3.11 Asymmetric RC element.

Similarly, asymmetry in the dimensions of the element, as in figure

3.11, can be easily accommodated since,
51	 51

Rx Rdx—x—si si and Ry.
= RdY	

(332)
—31-151xOlz
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where Rdx and Rdy are the distributed values of resistance in the x and y

directions respectively. The volume modelled by the capacitance is now

513(513,51z.

Temporal changes in the resistance of the network are accounted for

simply by altering the value of the resistors at the appropriate iteration before

the arrival of incident pulses at the node [37].

3.7.2 Variation in capacitance

Changes in the capacitance of the mesh occur either as a result of a

varying parameter or because adjacent elements have different volumes.

Consider, for example, a segment as shown in figure 3.12.

81
	

81
	

81

Figure 3.12 Segment consisting of elements of unequal volume.

Although the nodal separation is of a constant value throughout, the volume

represented by each element increases towards the outer edge of the segment.

Local increases in capacitance may be modelled in terms of a stub

transmission line placed at the relevant nodes in the network, as illustrated in

figure 3.13. In this way the transmissicn lines linking nodes model the

minimum capacitance of the network and the open circuit stub line models any

additional capacitance. Thus, the total capacitance of an element is divided
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into the link lines and the stub line, the link lines carrying the same

characteristic impedance throughout the network [2,18,36].

Fig 3.13 A 2-d TLM node with stub.

A voltage pulse travelling from the node along an open circuit stub

transmission line will return to be incident at the same node a time interval St

later. Hence the impedance is given by
St 1

(3.33)Z s =js

where Cs is the additional capacitance modelled by the stub, such that

Cs =-- Celement - Cmin	 (3.34).

Clearly, from the above determination of zs time synchronisation of the

pulse scattering is maintained. The presence of the stub is purely to provide an

additional storage mechanism so that the reflected pulse returns the unmodified

incident pulse. Therefore, the stub line is connected directly to the node and

not via a resistor as in the case of the link lines.

The nodal potential equation for a node such as that in figure 3.13 must

be modified to incorporate the stub as follows [2],
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2d
1

(3.35)

1  1  1
+

R+Z Zs
\ 1=1	 i

2d . 2 Vi(1). ( 	 2 
Ev,i+ 	 s

(R-Fz) ,„ .	 Zs

and the reflected pulse travelling along the stub is calculated according to

Vsr = (1) - Vsi	(3.36).

Temporal changes in the capacitance and hence stub impedance must be

accompanied by conservation of current flow across the stub. If the value of

the stub impedance is altered before the incident pulse arrives at the node, then

a new incident pulse value must be calculated so that current is conserved [22].

vsi

Z s becomes Z S Ivsli

Figure 3.14 Conservation along a stub.

Thus, if in figure 3.14 V si ' and Zs ' denote the values of the incident pulse

along the stub and the stub impedance after a change of parameters then

vsi 1 V i_	 s
Z s

,
	Zs

allowing recalculation of the incident pulse V si 1.

(3.37)
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3.8 Variation of Parameters in a Wave Network

From equation (3.5) a change in permittivity between materials is

represented by the associated change in capacitance, and hence admittance, of

the two separate networks. The velocity of an electromagnetic wave is

dependent upon the permittivity so that each network models a different

velocity. Modelling the two materials on one network requires that the

characteristic impedance of the link lines be constant throughout. However, in

order that the network reflects the difference in propagational velocity as the

wave travels through the two different media, open circuit stubs must be

incorporated into the part of the network yielding the slower velocity. The

stubs have an admittance, which is the inverse of impedance, of Yo such that

for a two dimensional network the total shunt capacitance at each node is given

by [16],

2C61(
1+ -1&-)	 (3.38).

4

The 2-d scattering matrix now takes the following form,

"k+ 1V11. (-(Y0+2) 2 2	 2Y0 n (kVii\

k + 1V2r 1 2 -(Y0 +2) 2	 2Y0 kV2i._
Y0 +4k + 1V3r 2 2 -(Y0 +2) 2Y0 kV3!

+ 1V4r) \	 2 2 2	 (Y0-4)) nIcV4i/

(3.39).

If the voltage of the wave represents the magnetic field then a change in

permeability is modelled by the impedance of the stub lines. However, when

the voltage represents an electric field changes in permeability modelled as

admittance stubs yield an impedance mismatch [16], and must be rectified by

introducing transmission and reflection coefficients at the material boundary

which incorporate the ratio of the intrinsic impedances. For example, consider
1 

a medium of wave velocity v 1 — /--- and a second medium in which the
NI-to8o
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velocity is v 2 –
11 	 v1

– 	  – 	 . If the potential of the
1-1/3	 V Vtol-treo	

11T-1- r

Z
network represents the magnetic field then 1.1r = 1+ --(L where Zo is the

4

impedance of the stub, and the intrinsic impedance of the second medium is

+ Zo11  Ld _ 11 I-to j—tr = ZilflZ2 =
4Cd	60

If the potential of the

network represents the electric field then because the stub now models changes

Y„
in admittance it follows that 1.1 r = 1 + = so that the impedance of the second

4

medium is Z2 —	 Z1which is clearly not in agreement with Z2

il Y
1+  

4
°

above. A similar problem is encountered when modelling changes in

permittivity using the magnetic field representation.

Spatial variation in the dimensions of elements lead to velocity changes

in the mesh which may, again, be accomplished by the use of stubs so that

time synchronisation is maintained or, alternatively, by the use of

discontinuous link lines, the impedance of which represents the change in

element size [7,22].

Attenuation is the reduction in amplitude of a wave and is represented

as a loss that is distributed continuously along the lines of the mesh [38]. A

loss stub extracts energy from the node each timestep, behaving essentially the

same as a resistor connected to earth in the diffusion application, and may be

used to model losses in inhomogeneous materials [39].
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CHAPTER 4

FIRING OF VITREOUS CLAYS

Details of the physical and chemical properties of whiteware are

reviewed in this chapter. The different stages of the firing process and their

effect upon clay are also examined.
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4.1 Introduction

Clay has been exploited since 15000 BC to provide robust articles

suitable for daily use [1]. The natural properties of wet clay allow it to be

moulded easily and hence formed into complex shapes. Moreover, application

of heat transforms the clay into a material which is suitable for the manufacture

of a wide variety of ware. Clay exhibits a variety of physical characteristics

that are dependent upon the mineralogical composition. The diverse range of

mineral properties leads to high industrial demand not only in the ceramics

industry but also in such areas as agriculture, medicine, plastics and rubber

manufacture.

Prior to the eighteenth century, pottery was manufactured from local

deposits producing red coloured articles. The discovery of china clay, yielding

white coloured articles, initiated the whiteware industry. Development of

porcelain, bone china and earthenware rapidly followed spawning the

tableware industry. In the nineteenth century demands for improved sanitation

fortuitously spurred the growth of the sanitary ware industry.

An important objective of the ceramics industry is to reproduce design

ware reliably upon demand. Consequently, intimate knowledge of a particular

clay body's constituents and the ensuing reactions during firing is advantageous

when attempting to predict successful designs.

4.2 Whiteware Systems

A whiteware body is composed of three main constituents: clay, flux

and filler. A typical percentage analysis for sanitary ware is tabulated below.
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Clay Flux Filler

china clay 23% felspar 20% quartz 33%

ball clay 24%

Table 4.1 Typical sanitary ware composition [1].

4.2.1 Clay

Depending upon origin, clays are generally classified as either primary

or secondary. Primary clays are located within the vicinity of the original

rocks from which they were formed, whilst secondary clays have been

transported by rivers and deposited at locations remote from the formation site.

Both types of clay were originally formed when granite rock, containing the

mineral felspar, was exposed to superheated steam and hot acidic gases

escaping form within the earth's crust. This process caused a partial

decomposition of the felspar resulting in the formation of china clay. Normal

weathering can also induce decomposition but unfortunately the presence of

iron impurities accompanies this present day formation mechanism. Iron

impurities are undesirable in that they lead to a colour cast, usually brown, red

or pink, upon firing. However, the presence of some impurities can produce

effects of significant technical importance such as resistance to stoneware

corrosion and the translucency of porcelain. Lime (calcium carbonate) is a

particularly important impurity as its addition to china clay causes a reduction

in firing shrinkage and at the same time increases the strength of the body

thereby elevating the maximum firing temperature of the ware [2].

Kaolinite exists in crystalline form and as a consequence does not

exhibit plasticity [3]. Ball clays, however, exhibit a high degree of plasticity.

These clays are formed from thick layer deposits of secondary china clay and

contain organic material as a result of the transportation process. During firing
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most of this organic material is burned out and the residual matter aids the

development of plasticity. The fine grain size and the crystal layer

arrangement, which entraps layers of water, further enhance plasticity. Ball

clays, when added to pure china clay, impart both strength and plasticity to an

article improving the shaping properties. Although originally dark in colour,

ball clays 'burn' white and are therefore a particularly desirable additive to the

china bodies. Furthermore, the physical and chemical properties of a clay

body can be tailored by controlling the talc, felspar and quartz mineral content.

The sanitary ware industry in particular exploits these properties to produce

bodies that are resistant to cracking of both the clay and glaze. In addition,

fired strength, whiteness and very low porosity, in the interest of hygiene, are

also highly desirable properties.

4.2.2 Flux

During firing at high temperatures, clays vitrify and form a limited

amount of glass which in its liquid state seals the crystalline structure.

Unfortunately, typical vitrification temperatures exceed those used in practical

commercial kilns. The addition of fluxing material reduces the vitrification

temperature and introduces control over the formation of glass. Felspar is an

important fluxing agent as it exhibits a significant difference between its

softening and melting points. Potash and soda felspars are commonly used

fluxing agents each supplying a large proportion of alkali which induces the

vitrification process at a lower temperature. Nepheline syenite

(Na20Al2032Si02) is exploited by the sanitary ware industry as it yields a

significant fluxing action due to high alkali content, despite containing less

silica than the felspars.
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4.2.3 Filler

Fillers are employed to form a rigid skeletal structure within the

ceramic body. An ideal filler remains inert at low temperatures whilst at high

temperatures will produce a highly viscous liquid. A practical and cost

effective filler is silica which can be found in abundance as quartz, sand or

flint. Crystalline quartz is employed by the sanitary ware industry to increase

thermal expansion during firing, offsetting the overall shrinkage. If the

particle size is sufficiently small then silica may also be exploited as a fluxing

agent.

4.3 The Firing Process

The firing of clay articles is fundamental to the manufacture of ceramic

ware, imparting strength and permanent shape to the bodies. A variety of

commercial kilns have been designed for this process, each with unique

specifications dependent upon the type of article to be fired. The simultaneous

achievement of article quality and kiln efficiency is greatly beneficial to the

ceramic industry. During firing thermal stresses are induced within the ware

and if excessive cause cracking and possibly fracture. Consequently, kiln

design must allow careful control of the heating rate if such failures are to be

avoided. In addition, energy consumption is of prime importance to the

manufacturer and therefore kiln efficiency must be optimised to keep costs

low.

During firing the effect of heat causes physical changes in the

mineralogical composition which are accompanied by chemical reactions.

These result in physical and structural modifications of the clay. The chemical

effects give rise to exothermic and endothermic reactions and consequently the

temperature profile of the kiln must be tailored accordingly. The firing

process consists of five major stages [1], each of which must be carefully
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controlled to ensure completion of all chemical changes and their associated

thermal reactions.

4.3.1 Smoking

Temperature range: 150°C - 300°C.

Prior to firing clay articles are left to dry by evaporation at room

temperature. At such low temperatures water molecules remain trapped

between the interstitial layers of the clay. If fired in this condition the clay

body would crack due to the increase in internal pressure as the trapped water

molecules vaporize. To prevent this cracking mechanism the clay articles are

subjected to a gradual temperature increase in a well ventilated environment.

This process of driving off the remaining water is termed smoking.

4.3.2 Pre-heating

Temperature range: 300°C - 800°C.

This stage is employed to initiate the decomposition of the constituent

minerals which induces chemical and physical changes within the clay body.

Mineral decomposition expels chemically bonded water, carbon dioxide and

sulphur dioxide.	 It is essential that this process is completed before

vitrification occurs when the surface pores become sealed. Incomplete

oxidation of carbonaceous material prevents the oxidation of iron and sulphur

so that the trapped gases cause bloating and discolouring of the ware. During

this stage thermal expansion of the free silica occurs, at a temperature of

573°C. If the heating rate is not controlled sufficiently then the ware may be

subjected to cracking or dunting as it is commonly known.
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4.3.3 Full fire stage

Temperature range: 8000C - max0C (in the region of 12000C).

This process continues the reactions of the previous stage but at an

increased temperature and heating rate. The maximum firing temperature

dictates the quantity of silica entering the liquid phase.

4.3.4 Finishing stage

Temperature range: max0C.

"Soaking" the ware at the maximum temperature for an extended

duration allows all the chemical reactions and physical changes to reach

completion. Overheating at this stage may lead to distortion and colour

defects.

4.3.5 Cooling

Temperature range: maxoC - room temperature.

Articles are cooled rapidly from the maximum temperature through the

crystallisation zone to 9000C. This steep temperature gradient is employed to

prevent the highly vitreous materials from crystallising. Once the

crystallisation zone has been transcended the ware is cooled at a slower rate to

room temperature. In general, the firing process causes an increase in the

amount of free silica present within the clay body and, therefore, an increased

probability of dunting and crazing of the glaze. Consequently, a controlled

cooling rate is essential if these effects are to be prevented.
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4.4 Changes of State

The conversion of a ceramic body at high temperatures from a solid to

a liquid state is a gradual process consisting of four stages; solid, sintered,

vitrified and fused liquid. A standard firing process employs the first three

stages, avoiding the fused liquid stage so as to prevent excessive deformation.

4.4.1 Sintering

The process of sintering occurs at a temperature which is approximately

six tenths of that in degrees Celsius at which the body reaches its liquid state.

Strength is imparted to the body as particles bond to form larger crystals of the

same crystallographic structure. The bulk density of the body increases as a

result of the compaction process and is accompanied by a reduction in porosity.

Sintering, therefore, produces hard, dense bodies when fired at temperatures

well below the liquidus temperature. The three distinct stages of sintering are

as follows [4]:

(i) Initial Phase

Pores form an interconnected network throughout the material.

(ii) Intermediate Phase

Pores are still interconnected and densification is accompanied by

crystal growth.

(iii) Final Phase

Pores are no longer connected and shrinkage of closed pores occurs.

The porosity remains low at a value less than approximately 10%.

Densification ceases but crystal growth continues.
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4.4.2 Vitrification

Vitrification normally occurs at the onset of densification, typically

900°C, and continues up to the melting point of the body under consideration.

The temperature at which vitrification commences can be controlled by the

compositional content of mullite in the body; an increase of mullite content

raises the starting temperature [5]. During vitrification the process of

densification continues aided by the development of a viscous liquid phase at

the crystal interfaces. Crystals grow in size as the small crystals dissolve and

later reprecipitate upon larger crystals. The formation of a viscous liquid

provides a bond for the material, most of which is still in its solid state, and

thus imparts strength to the body. The increase in strength and durability are

accompanied by a decrease in porosity as the viscous liquid penetrates the open

pores. Firing shrinkage also occurs during vitrification as the body moves

towards its equilibrium state, the high surface tension of the viscous fluid

drawing the particles of clay together.

Vitrification must be completed before significant deformation of the

body occurs under its own weight. Varying the concentration of alumina and

alkali impurities varies the viscosity of the liquid phase which, when combined

with a controlled amount of liquid phase, allows the deformation due to gravity

to be minimised.

4.4.3 Fusion

Fusion describes the complete transformation from solid to liquid

phase, which occurs at a specific temperature. Although ceramic bodies are

not ascribed a melting point it is common to assign a refractoriness value that

defines the temperature at which significant deformation occurs. Since the

body is in the liquid phase flow occurs due to the effect of gravity and the

body undergoes significant deformation.
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4.5 Physical Changes During Firing

4.5.1 Volume

Bodies may experience either an increase or decrease in volume, or

even both, throughout the firing period. Not all changes in volume are

permanent, however, as the effect of cooling is such as to reverse the volume

change. The reversible volume changes arise as a result of thermal expansion

or contraction. Problems arise during firing when a difference exists between

the value of the thermal expansion coefficient of the clay body and the glaze,

causing expansion at unequal rates and ultimately effects similar to crazing.

Differential expansion may also appear within the clay body itself yielding

localised cracks. Not all bodies have the ability to regain their original volume

upon cooling, in which case the thermal expansion coefficient contributes to a

permanent change in the volume. Another reversible change arises from the

quartz inversion which is itself a reversible reaction. The quartz expands at the

inversional temperature of 573 0C whilst being heated and contracts at the same

temperature upon cooling, as shown in figure 4.1. The results represent those

of a clay body which is only subjected to temperatures below those of

vitrification so that any other changes in length arising during heating are

reversible. Although the volume change associated with the dual quartz

reaction is termed reversible it nonetheless produces a permanent increase in

volume. The heating process disrupts the packing structure and because the

body does not exhibit elastic behaviour the volume increase cannot be

recovered totally upon cooling.
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Figure 4.1 Hysteresis behaviour due to quartz inversions.

Irreversible changes in volume are permanent and arise from changes in

the mineralogical composition during firing. During the preheating stage of

firing the decomposition of certain minerals causes permanent expansion of

bodies albeit minimal. The process of sintering results in an irreversible

change by consolidating the material, yielding an associated reduction in the

volume. Another permanent change in volume, which may be avoided, arises

as a result of bloating which is produced by the expansion of trapped gases

within closed pores.

All of the irreversible volume changes mentioned above, although of

some significance to the final appearance of a fired ceramic article, are

relatively small when compared to the firing shrinkage which arises as a result

of vitrification. Volumetric firing shrinkages of values greater than 30% may

be experienced by certain clay bodies [6]. Increased shrinkage results in cases

where the initial porosity is high and which therefore facilitates the compaction

process. Anisotropic shrinkage, originating from the shaping process as

particles take up their preferred orientation, may occur during firing and

inevitably leads to distortion. The rate and amount of shrinkage is not only

dependent upon the material composition and structure but also upon the firing

schedule applied to the ware.
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4.5.2 Porosity

The true porosity of a body is the percentage of the total body volume

occupied by both open and closed pores. The apparent porosity is a measure

of the open pores and gives an indirect measure of the apparent vitrification;

the greater the number of open pores the greater the volume available to the

liquid phase. The porosity of most clay articles increases with temperature

during the preheating stage when decomposition of minerals is occurring

accompanied by the loss of chemically bonded water [8]. At higher

temperatures the sintering process consolidates the material reducing the

porosity. Thereafter vitrification causes the porosity to decrease further as

molten matter fills the remaining open pores resulting in shrinkage of the body.

At slightly above 1200°C the vitrified ware reaches a value of zero apparent

porosity. Any increase in the value of the true porosity is now associated with

bloating as the volume of the closed pores increases. Raising the temperature

further would yield an associated increase in apparent porosity and cause the

body to experience the undesirable effects of overfiring.

4.5.3 Weight loss

Losses in weight during firing occur initially in the smoking stage as a

result of loss of water and continue through to the decomposition of kaolinite

and that of the carbonates and sulphates. Weight loss is dependent upon the

mechanism of vapour diffusion so that the greater the thickness of the article

the higher the temperature at which loss occurs [8]. Ceramic materials

experiencing a gain in weight do so as a result of either the oxidation of

components such as ferrous iron, or the oxidation of sulphides. The average

weight loss of ball clays is generally in the region of 8%, whereas purified

china clays may exhibit a loss of up to 14% due to their higher content of

hydrous minerals.
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4.5.4 Specific gravity

The true specific gravity is the mean value of the true density of all the

minerals within the clay body. The bulk density depends upon the bulk

volume of the clay including that taken up by both open and closed pores. It is

related to the true density by

densitybuut = densitytme (1-porosity)

where porosity is the fractional total pore volume. The value of the bulk

specific gravity is identical to that of the bulk density when expressed in

gcm -3 . The apparent specific gravity is independent of the volume of open

pores so that a vitrified material, which therefore consists of a minimal number

of closed pores, will exhibit a similar value to that of the true specific gravity.

A typical variation of specific gravity over the firing schedule is depicted in

figure 4.2 for a china clay.
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Figure 4.2 Variation of specific gravity with temperature for a lcaolinite clay

[7].

Thermal expansion of the body accompanied by loss of water at the

beginning of the firing cycle causes the true specific gravity to decrease

slightly. Decomposition of lcaolinite at around 500 0C results in a marked

decrease, reflecting the change in structure. The subsequent shrinkage of the

body due to sintering causes an increase in the specific gravity until about
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950°C where the increase is dramatic, reflecting the exothermic reaction upon

decomposition of metakaolinite to form mullite. The specific gravity tends to

decrease as the temperature increases and as the formation of the liquid phase

begins. Once the liquid phase is fully developed the specific gravity remains

virtually constant. The weight of the body is constant throughout the liquid

phase so that changes in the bulk density, which is porosity dependent, cancel

out the volumetric changes resulting from firing shrinkage.

Factors affecting specific gravity include the plasticity of the clay; non-

plastic clays yielding higher values of specific gravity than plastic clays. The

amount of flux content is also influential as clays of greater flux content show

a greater decrease in the specific gravity. The firing schedule affects the

specific gravity in such a way that a high rate and short vitrification range yield

a greater decrease and faster rate of reduction [8]. Slow cooling rates also

have an effect, increasing the crystallisation from a liquid and thus yielding an

increase in the specific gravity. The presence of impurities may be significant

as they may combine with the body to form a fusible material and therefore

cause a modification in the value of the true specific gravity [9].

4.5.5 Strength

Determination of the strength of a ceramic body during firing is of

great industrial importance as it allows calculation of the maximum permissible

heating rate. The ratio of the modulus of rupture to the modulus of elasticity is

termed the critical strain and depends chiefly upon the mineralogical

composition. During firing up to 800°C the value of the modulus of elasticity

is virtually constant, the typical value for a kaolinite clay being 10 4 MNm-2.

However, the modulus of rupture, a measure of the stress at which a body

ruptures, varies quite considerably, passing through maximum and minimum

values which are attributed to the mineralogical changes within the body.
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Figure 4.3 depicts the variation of the modulus of rupture, showing an overall

increase in magnitude.
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Figure 4.3 Typical variation of Modulus of Rupture for: a lcaolinite clay [10].

The increase in strength up to approximately 500°C occurs as a result

of loss of adsorbed moisture and the bonding of particles which follows. The

loss of chemically bonded water and the decomposition of kaolinite produces a

reduction in strength from around 500°C. The rapid increase up to 800°C

reflects the onset of the sintering of particles within the body. Addition of

inert materials has the effect of reducing the overall strength and also reduces

the maximum and minimum values of the modulus of rupture so as to smooth

out the variation in the critical strain.

At temperatures above 800°C, that is during the glassy phase,

experimentation by sonic methods has revealed a decrease in both the Young's

modulus and the modulus of rupture, each modulus reaching its maximum

value immediately prior to this phase [11]. Measurements of Young's modulus

for porcelain reveal a significant decrease from the maximum value of

7x104 MNm-2 to 4 MNm-2 at the end of firing [12].

The strength of fired bodies is significantly affected by the

compositional content of mullite, with increased strength resulting from greater
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mullite content [5]. The addition of nitrates also effectuates an increase in

mechanical strength, whereas bloating decreases the strength [13,7]. Both

porosity and, more significantly, the pore geometry are influential upon the

elastic moduli of fired bodies; an increase in porosity generally yielding a

linear decrease in the elastic moduli. However, in cases where the pores

become more spherical as the porosity increases the values of the elastic

moduli also increase so that the moduli/porosity relationships are no longer

linear [2,14].

4.6 Effects of Excessive Heating

A great advantage of the firing process is that all body changes which

take place, be they physical or chemical, are slow to reach completion, thus

reducing the possibility of fracture and other faults such as cracking or

discolouring. The rates of heating and cooling are extremely influential upon

the quality and appearance of the ware and if not strictly monitored may

produce unsatisfactory results. Also of significant importance in product

quality is the maximum temperature to which articles are fired and the length

of time that they are kept at this temperature. Articles fired at too high a

temperature or soaked for too great a period of time experience over-heating

which is the term given to the furthering of reactions causing fusion as a result

of heating. The presence of a large amount of fused material can cause a body

to distort under its own weight so that tall, narrow bodies dramatically lose

height and gain in width at the base. Increasing the firing temperature or

prolonging the soaking period of such a body would, therefore, cause even

greater distortion. Other effects of prolonged soaking include the promotion of

crystallisation resulting in a reduction in strength, increased shrinkage or

expansion, and the swelling or bloating of articles. The effect of too much

heat may also affect the glaze on certain articles resulting in a dull finish.
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Continuous heating and cooling may be detrimental to the ware due to

the hysteresis nature of thermal expansion. Sudden changes in temperature

cause a body to experience thermal shock; the lower a body's resistance the

greater the possibility of damage such as flaking and cracking. As a result,

gradual cycling of repeated heating and cooling is usually preferred.

The physical changes that occur in the bodies during the firing process

together with the time at which they occur and their duration will clearly have

a significant effect upon the final product. It is these aspects of the firing

process which are therefore of importance in the simulation of the ware and are

reconsidered in the application of the TLM models of deformation in chapter

6. The strucutre and formulation of the TLM models now follows.
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CHAPTER 5

TLM MODELS

The basic structure of a TLM diffusion routine is shown to yield models

simulating the behaviour of viscous beams under the effect of gravity. A step

by step development leads to a novel application of the technique to both cases

of elongation and bending. The elongational model illustrates the change in

behaviour from non-Newtonian to Newtonian at high viscosities and the

bending model verifies the viscous/elastic analogy under constant stress.

Emphasis is placed on bending with the inherent applicability of the model to

beams of initial curvature being highlighted. Incorporation of the classical

elastic beam theory previously outlined in chapter 2 yields the development of

viscoelastic models which are shown to be in theoretical agreement. Steady

state elastic solutions resulting from parallel viscoelastic TLM models are

shown to agree with the classical elastic theory at small strains but also exhibit

the phenomena of large deflections. The bending model is extended to

incorporate deformation in two dimensions and is applicable to thin plates and

shells. The formulation of an elastic bending model concludes this chapter.
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5.1 Trouton's Descending Fluid

Consider a stream of fluid descending under its own weight as it flows

through a hole in the base of a container. Once steady state is achieved the

shape of the fluid directly beneath the hole resembles that shown in figure 5.1.

The width of the stream gradually narrows down the length of the fluid until a

point is reached where the fluid breaks away, at regular intervals of time.

Figure 5.1 Descending viscous fluid.

At a distance y from the top of the stream the local fluid velocity is v, the rate

of elongation being —av . According to Trouton [1], the weight of the stream
ay

below y provides a tractive force, F, such that

F = x av

A	 ay

where A is the area of the cross-section at y and X is a constant for a particular

fluid. The volume of the fluid is conserved so that vA is constant throughout

the period of flow. The constant X is termed the coefficient of viscous traction

and is related to the viscosity of the fluid, 11, by X=3r1 [2]. This relationship is

analogous to that between Young's modulus of elasticity E and the shear

modulus G, namely E=3G. The equation of motion of the fluid is determined

by considering a volume element of the fluid at y of mass pAdy, which yields

(5.1)
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(5.2)

(5.3)

aF 
+pAg = pA 

Dv
— 
ay	 Dt

and, upon substitution for F, leads to

a2v + p _ p Dv

ay 2 	a, g — X Dt

where

Dv	 av , ay
– — -I- v	 (5.4)

Dt	 at	 ay
D

so that —
Dt 

represents the substantial derivative.

Equations (5.3) and (5.4) are in agreement with the Navier-Stokes

equations (2.23), (2.24) in chapter 2 derived for a viscous fluid, under the

condition of zero applied pressure.

The problem above can be described as diffusion of the effect of gravity

causing relative motion within a body. The amount of relative motion is

dependent upon both the viscosity and density of the material. In the limit of

either infinite viscosity or zero density no velocity gradient exists. A fluid of

infinite viscosity behaves as a rigid solid body so that it would not pour from

its original container but would, in fact, fall freely under gravity; all points in

the fluid having a common velocity. Equation (5.3) determines the velocity at

a distance y along the length of the descending fluid, provided that the fluid

breakpoint has not been reached.

5.2 Formulation of an Elongational Viscous Model

Consider a column of viscous fluid supported vertically. The fluid is

assumed to be of a suitable consistency so that a clamp at the top of the column

supports the weight of the fluid. If the column remains supported for a

sufficiently long period of time the shape of the fluid near the support will

92



•

•

•

•

•

resemble that in figure 5.1, the time taken to reach this state being dependent

upon the properties of the fluid. It is of interest here to consider the flow of

the column of viscous fluid only whilst continuity is maintained. It may

therefore be assumed that at any point in the column the fluid does not break

away during flow. After a certain period of time has elapsed the fluid will

resemble that in figure 5.2. All cross-sections of the fluid may be considered

to lie above a fictitious fluid breakpoint since continuity is maintained. The

equation of flow will be dependent upon the density and viscosity of the fluid

as in the case of the descending stream of viscous fluid.

Figure 5.2 Deformed viscous column of fluid.

Figure 5.3 Fluid before deformation. 	 Figure 5.4 Deformed fluid.

Now consider the column of viscous fluid to be spatially discretised into

fluid elements as in figure 5.3. Here, the velocity of the fluid within each

93



(5.6).

(5.7)

element is represented by the velocity at a single, central point. After a certain

period of time the shape of the column of fluid will take the form of that in

figure 5.2 and is shown in discretised form in figure 5.4. The first point in the

top element of the fluid incorporates the no-slip condition and retains its

original position as a result. All other elemental points have a new position

due to the combination of displacement by elements above and elongation of

the elements themselves, this arising from the traction produced by the fluid

below. It follows then that the total velocity at any point in the fluid is the

sum of the local velocity of the element yielding elongation and the convective,

or accumulative, velocity yielding displacement. The acceleration at each

point, therefore, consists of two parts; a local acceleration and a convective

acceleration. Thus, the equation of motion for the stream of fluid descending

under its own weight may be applied to the supported column of fluid, that is
a2v

P av
ay2	 X	 X at

where v is now the total velocity consisting of an accumulative velocity and an

elongational velocity.

Equation (5.5) may be re-written as follows;

a2 v	 p a(t) _ p av
ay2	 X	 at	 k at

The analogous TLM network equation is given by

a20 r,	 „„
	  + 2Rd k, d — —
ay2	 at

where cl30 is a distributed potential such that, in general terms, (I)' = g't; g'

being a constant.

The constant 	  may be considered to drive the circuit. Therefore
at

the additional potential (I30 causes the network potential (I) to increase with time

(5.5)
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aeo
at

a2,x,	 acy 
such that if 	  is positive then	 represents a lower limit in the solution

ay2	 at

a20
of cI), and if 	 2 

is negative then —at represents an upper limit. Here it is
ay

aeo 
iassumed that — is the only distributed driving source; there being no

at

external, or ambient, sources.

Clearly, in the case of a body of viscous fluid subjected solely to

gravity, the acceleration at any point within the fluid cannot exceed the

gravitational acceleration. When the upper limit of the acceleration is reached

throughout the material the body is free falling and there is no relative motion

of the fluid within the body itself, that is there is no flow.

aeo 
The circuit driver	 provides the network with an associated

at

maximum or minimum distributed potential 0', the value of which increases

with time. The value of Izto after a time period t may be denoted by g't, where

– g', so that the potential applied to the circuit is increased by g'Ot

every timestep.

The provision of the applied potential increase to the circuit may be

accomplished by re-initialising the incident pulses. That is, the incident pulse
g'Ot

values are updated by	 each timestep, ensuring . that the potential is
2

increased by the appropriate amount. In this way the pulses carry the full

information of the potential in the network and automatically enforce the

limiting behaviour of the driving source. In the limit when €12 , = 0' for each

node, no relative motion occurs and the whole network is in static equilibrium

with no net current flow since, from chapter 3, all incident pulses have the

same value of —
2
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Gravity acts upon each element of the body as an internal source,

diffusing its effect throughout the body, the flow that develops as a result being

dependent upon the material parameters. Modelling the viscosity in the

resistance and the density in the capacitance of the network yields

() = velocity = v

C = cc, x (elemental volume) = p x (elemental volume) = elemental mass = m

elemental length  _ 	 elemental length 
R = Rd 2 cross-sectional area 2 A, cross-sectional area

(5.8).

Using the network relationship for current, I = C
ao
—

' 
it follows that thea 

current at a node represents the resultant viscous tractive force developed over

a given time period. The net current between neighbouring nodes, therefore,

represents the net force.

It would be equally valid to model both the density and viscosity by the

capacitance, in which case the current at a node would represent the total force

divided by the coefficient of viscous traction, or the 'effective' total force, and

the net current would represent the net effective force.

In thermal applications the excitation of the network generally arises

from either external heat sources or heat generation within the body itself due

to, for example, exothermic reactions caused by changes of state. Such

internal heat effects have been shown in chapter 3 to be accommodated for by

a current generator, or in the case of heat loss by a resistor to earth. When a

current generator models a heat effect the addition to the potential of the node

is calculated according to
2d Igen 	

(5.9)

V  1 

Ld(R+Z)
1------1
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which in a one dimensional routine (d =1) is equal to
R.,.	 ( +Z) 

igen
2	

(5.10).

It is clear that the excitation due to gravity, gt, cannot be represented

accurately in terms of a potential arising from a current generator, since if

Igen = C g then the loading potential would be

R	 Z	 p g 61 2 g St
Cg-- + Cg	 —	 +	 (5.11)

2	 2	 4A 	 2

thereby introducing an additional loading term which is inconsistent with the

flow equation (5.5). It is, however, interesting to note that for high values of

X the additional loading term is negligible so that this method of loading is

consistent with that of modelling the loading in the pulses. For low values of

X the additional loading term becomes significant and as X tends to zero this

term dominates the routine so that the gravitational acceleration is not imposed

as the upper limit in the model.

5.2.1 Boundary conditions

No surface forces, such as air resistance or surface tension, are

assumed present resulting in the absence of any external sources. Clearly,

then, the body may considered to be insulated from its surroundings since all

source generation occurs within the body itself. A one dimensional TLM

treatment assumes insulation along the length of a body yet incorporates the

cross-sectional geometry in the formulation of the network parameters, so that

it does in fact represent a three dimensional body insulated along its entire

length. Thus, the question still remaining is "how are support conditions

incorporated?" Treatment of boundaries are considered in terms of nodal

potentials or pulse values. Consider a solid-fluid boundary, or interface.

From viscous flow theory, detailed in chapter 2, the layer of fluid adjacent to

the solid boundary does not move with respect to this boundary. That is, a no-

97



slip condition exists. Consider again a vertical column of fluid supported at

the top element, as in figure 5.5. To ensure a value of zero velocity for the

first element the nodal potential is set to zero throughout the modelling period.

•

•

•

•

(1)(1) = 0

•
-1-- insulation within fluid boundary

cl) (n) = cl) (n-1)

Figure 5.5 Clamped viscous column with boundary conditions.

In this way the no-slip node is unaffected by the rest of the fluid in the column

and, therefore, can be considered analogous to an adiabatic node in thermal

diffusion applications. Here, it is assumed that the support is unaffected by the

presence of the fluid so that the velocity of the support is maintained at zero

and, although not modelled directly, is represented by the nodal potential of

the first element. The opposite end of the column is unsupported so that its

displacement is not impeded by the surroundings. However, at the base of the

column the fluid must be retained within the bulk of the material so that

although the final element may be displaced it may not experience any

elongation. Therefore, the velocity of the final element must equal that of the

previous element so that c1 o (n)=43(n-l) where n denotes the node of the final

element in the column. In this way insulation takes effect within the material

boundaries, ensuring no loss of fluid into the surrounding medium. Because

the surroundings are assumed to have no effect upon the column of fluid, it

follows that the velocity of the medium adjacent to the base of the column is

equal to that of the final element. It is now evident that a double insulation is

a2 ',
present at the final node such that —ax2 – 0.
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•

-•

•

•

•

X=0

Figure 5.6 Equivalent nodal representation of figure 5.5.

It should be noted that in figure 5.5 the position of the second node

represents a distance of zero from the base of the clamp and the position of the

final node n represents a distance equivalent to the total length of the column

extending from the clamp. At the first node the values of the incident pulses
1

are Vi(1,1)=0 and Vi(1,2)=Vr(2,1) + —g8t. The nodal representation of
2

figure 5.5 may be altered to that of figure 5.6 where the volume of the first

and final elements are half that of a general element. The elements of nodes 1

and n contain only half a transmission line which connects each of them to

their neighbouring fluid elements, so that the link line impedance is maintained

constant. The second half of the transmission line is redundant in each case

due to the boundary pulse and potential conditions.

5.2.2 Results of elongational model

Using the above formulation elongation results have been obtained for

columns of 10cm in length after a period of 0.1s. The columns of fluid all

have the same density of 1 gcm-3 and a cross-sectional area of 1 cm 2 . Volume

is conserved using a Poisson's ratio of 0.5. The viscosity of the columns

varies from 10000 gcm- 1 s- 1 to 1 gcm- 1 s- 1 . The new lengths of the columns

resulting from elongation are tabulated below in table 5.1, showing an increase

in elongation as the viscosity decreases.
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Viscosity in gcm- 1 s- 1 Total length in cm

Column 1 10000 10.17

Column 2 1000 11.64

Column 3 100 14.66

Column 4 10 14.85

Column 5 1 14.85

Table 5.1 Lengths of a variety of viscous columns after 0.1s.

From the table it can be seen that the value of 1 gcm- l s- 1 yields no

further increase in elongation than for the value of 10 gcm- 1 s- 1 after the same

period of deformation. This implies that, although column 5 has a lower

viscosity than column 4, the total rate of elongation throughout the column is

the same in both cases.

In figure 5.7a the rate of elongation at each element in column 4 reveals

high rates of elongation near the support decreasing to zero rates of elongation

towards the free end. Figure 5.7b shows that these lower elements have

accelerations equivalent to the acceleration of gravity.

viscosity = 10 g/cm/s

60 —
_

40 —
rate of

elongation in 30 —
cm/s

20—

10—
,

	

0 --i---1--A.•—.* 3	 .1.: X---x---X

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

distance along column in cm

Figure 5.7a Rate of elongation results for column 4 after a time period of

0.1s.
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viscosity = 10 g/cm/s

100 —

90

. 80
velocity in

cm/s
70

60
x

50
0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

distance along column in cm

Figure 5 .7b Velocity results for column 4 after a time period of 0.1s.

In figure 5.8a the rate of elongation in column 5 reveals a higher rate of

elongation closer to the support than for column 4 and from figure 5.8b an

increased number of elements are shown to reach a velocity of 98 cms- 1 which

after a time period of 0.1s is equivalent to the acceleration of gravity. Clearly,

although the total amount of elongation is equivalent in both cases the

distribution of the elongation throughout the columns is different. In fact, only

at high viscosities is the elongation rate, and hence the elongation, linearly

distributed over each element in the column, being proportional to the weight

of the fluid below each element.

viscosity = 1 g/cm/s •

90
80
70
60

rate of 50
elongation in

40cm/s
30
20
10
o

0	 1 2	 3	 4	 5	 6	 7	 8	 9	 10

distance along column in cm

Figure 5.8a Rate of elongation results for column 5 after a time period of

0.1s.
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84	 11-11111111
4 5 6 7 8 9 10
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Figure 5.8b Velocity results for column 5 after a time period of 0.1s.

The rate of elongation along column 1 is depicted in figure 5.9a and

shows a nearly linear relationship with distance from the end of the beam, and

hence with the weight below each element. Figure 10 shows the rate of

elongation displaying a linear relationship with distance for a column of

105 gcm-1s-1.

viscosity = 10000 g/cm/s

distance along column in cm

Figure 5.9a Rate of elongation results for column 1 after a time period of

0.1s.
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Figure 5.9b Velocity results for column 1 after a time period of 0.1s.

viscosity = 100000 g/cm/s

0.035 —

0.03

0.025 —
rate of	 0.02 —

elongation in
cm/s	 0.015 —

0.01

0.005

	

0 0
	 1	 2	 3	 4	 5	 6	 7	 8	 9 10

distance along column in cm

Figure 5.10 Rate of elongation for column of 10 5 gcm- 1 s- 1 after 0.1s.

The resultant stress distribution is, therefore, dependent upon the

viscosity (and density) and is reflected by the elongation distribution. As the

viscosity is taken towards a zero value all the elements in the column reach the

gravitational acceleration except the first element beyond the support which

experiences all the elongation.

The elongation of each column is calculated from the elongation rate

but may perhaps differ slightly from observed results since the model does not

incorporate the effect of surface tension. Bodies of low viscosity, therefore,
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do not display a profile as depicted in figure 5.2 where bulging at the base of

the column, beyond its original width, arises due to surface tension.

5.3 Formulation of a Bending Viscous Model

Consider a column of viscous fluid supported horizontally, the cross-

section of which being depicted in figure 5.11a. After a period of time,

assuming no elongation of the material, the curvature of the cantilever of fluid

changes under the effect of gravity to represent that in figure 5.11b. For a

material of infinite viscosity the curvature of the cantilever would remain equal

to zero.

Figure 5.11a

Figure 5.11b

A beam of discrete elements may be considered analogous to a hinged

system of rigid bodies; the stiffness of the hinges being represented by the

viscosity of the material. As mentioned in section 2.1.5 of chapter 2, the

rotation and translation of a fluid element resembles that of a rigid body. The

concept of a hinged system therefore enables the laws of rigid body motion,
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outlined in section 2.3, to be applied to a viscous body subject to rotational

effects. Each element is assumed to represent a rigid body which rotates about

each of its neighbours according to the supporting constraints.

-*--•-

Figure 5.12 Simply supported beam of fluid.

In the case of a column of fluid, supported horizontally at both ends, each

element rotates relative to elements on either side as in figure 5.12.

11-

Figure 5.13 Cantilever of fluid.

Elements in a cantilever rotate only about neighbours lying at the same side as

the support; in figure 5.13 elements rotate only about neighbours on their left.

Thus, in either case elements rotate about the neighbours which form a line of

connection to a support. This line of connection runs through the centres of

the elements and is equivalent to the neutral axis as defined in chapter 2. As in

the case of the vertical column of fluid gravity acts at each point within the

fluid. However, in the case of the horizontally supported beams the effect of
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the action of gravity is such as to produce a shearing force, and hence a

moment, causing each element to rotate.

Consider the rotation of an element of the cantilever in figure 5.13. In

this case, the effect of gravity on the element produces a shearing force which

results in rotation. The shearing force V acting on a horizontal beam at a

distance x from the support is equivalent to the tractive force F acting on an

identical beam supported vertically, the beams being depicted in figures 5.14a

and 5.14b respectively.

Figures 14a and 14b Horizontal and vertical viscous beams subjected to shear

and traction respectively.

Results from the elongational model show that both the amount of

elongation and the distribution of the elongation throughout the beam is

dependent upon the viscosity and for density. The elongation of each element is

directly proportional to the velocity causing elongation which is itself

proportional to the net force on the element. The resultant force distribution is

therefore parameter dependent. It now follows that the shear force acting on a

horizontally supported beam of fluid must also be viscous/density dependent.

In the case of very low viscous fluids, where the acceleration of the elements at

the lower end of a vertical beam is equivalent to the gravitational acceleration,
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no elongation of the fluid occurs in this lower region as the difference in the

resultant force between consecutive elements is zero. It follows that no net

force acts on each of these lower elements. Therefore, for a horizontally

supported beam of the same fluid parameters, no shear force would act on the

beam towards its free end. However, in the case of highly viscous fluids

where the elemental elongation is proportional to the weight of the fluid below,

so that F is given by F = p (L - x) A g, where A is the area, then the shear

force V is also given by V = p (L - x) A g.

Initially, gravity acts parallel to the sides of the element as in figure

5.15a. The shearing force is assumed to act along the boundary on the right of

the element and produces an elemental bending moment SM. From chapter 2,

the shearing force V is related to the bending moment M by
dM

V= —
dx	

(5.12)

from which it follows that the elemental bending moment SM is given by

OM = V S1	 (5.13)

where 61 is the elemental length.

The line of connection passes through a fictitious hinge which connects the

element to its neighbour so that the elemental bending moment acts about this

hinge.

-ID-

V cos 0

Figures 5.15a and 5.15b Local rotation of a rigid body element at subsequent

time intervals.
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The elemental bending moment causes the element to rotate without, it

is assumed, changing the shape of the element so that opposite sides remain

parallel. Figure 5.15b shows the subsequent rotation experienced by the

element. The element has rotated about the fictitious hinge and lies at an angle

0 to the horizontal. Gravity is assumed to produce a shearing force which acts

parallel to the sides of the element at all times. The component of gravity

which now acts parallel to the sides of the element is g cos0. Therefore the

associated shearing force is now V cos0 and the elemental bending moment is

given by

5M = V 51 cos0	 (5.14).

For a highly viscous fluid, which does not move significantly before the

stresses have developed fully, the shear force is given by V = p (L-x) area g,

so that the expression for the elemental bending moment becomes

5M = p (n - 051 2 area g cos0	 (5.15)

where n51 = L and i51 = x.

The area of overlap of the elements in figure 5.15b is equivalent to the

area of the gap formed between them, as a result of rotation about hinges lying

on the neutral axis which passes through their centres. It follows that, when

considering three dimensions, volume is conserved; each element being

modelled with the same elemental volume and hence elemental mass.

However, real fluids maintain material continuity, with the fluid elements

experiencing tension along the upper length of the element and compression

along the lower length. The fluid, therefore, is stressed tractively so that the

coefficient of viscous traction is responsible for the ensuing flow. In the rigid

body representation the pure rotation of each element must result from a

combination of two equal shearing actions, so that no deformation of the shape

of the fluid elements is observed, and indicates that the flow is dependent upon

the shear viscosity. Therefore, the present representation may be assumed to

maintain material continuity, and thus represent bending, only if the coefficient
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of viscous traction is used in the model so that fluid elements are able to

deform tractively with bending.

The above discussion leads to the formulation of the equation describing

angular rotation in a viscous body. The form of the equation will take that of

equation (5.5) derived earlier but will replace the concept of linear momentum

by that of angular momentum for a three dimensional body. Thus,

a2 i,co + am 1 _ p a1,03
ax2	 ax X	 X at

(5.16)

bh3 .
where Iz--

12 
is the area moment of inertia, defined in section 2.3.4 of chapter

2 and o) is the total angular velocity.

Or, in terms of the shearing force V,

821z.

ax2
V _ p alzco

+
a,	 a,	 at

(5.17).

Substituting for V = p (n-i)d1 bh g cose for high values of X, leads to

a2izco

a,,2
p(n - 081 bh g cose _ p aizo

+
X,	 X at

(5.18).

Each element, therefore, rotates as a result of gravity acting upon the

element itself and as a result of the rotation of neighbouring elements. For

example, in the case of the cantilever in figures 5.15a and 5.15b if the second

element from the support rotates through an angle 0 then, because of material

continuity, so must all the remaining elements in the beam.

Figure 5.16 shows the axis of rotation of a solid body. The shaded

region depicts the plane area bh normal to the axis.
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elemental length 
—R 

2 X cross-sectional area
(5.20).

axis of 
II

rotation 1

Figure 5.16 The axis of rotation passes through a fictitious hinge connecting

neighbouring elements.

Substituting for Iz in equation (5.18) leads to

82  h20)	 a  h2co 

	12 + p 5((n - i)S1 g t cose) _ P 	 12 
ax2	 X	 at	 A.	 at

(5.19).

Comparison of equation (5.16) with the modified diffusion equation (5.7)

yields the following relationships:

h2co
cto =

12

C = p x (elemental volume) = mass = m

Now, cto = (n-i)S1 g t cose so that the pulses are updated by (n-i)S1 g St cos0 
2

each timestep. It is evident that for high viscosities (or low densities) the value

of 0130 varies for each node so that the applied potential does not act as a

constant uniform upper limit to the circuit potential as in the elongational

model. However, for low viscosities (or high densities) the shear force and
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hence cI30 must be determined from the net forces in the elongational model,

yielding zero shear forces in the limit as the viscosity tends to zero. A limit is

therefore also imposed upon the circuit potential in the bending model which

has a constant uniform value of zero.
ao

Using the network relationship for current, I = C—y, the current at a

node has units of force multiplied by distance and therefore represents the

resultant viscous bending moment. The net current between nodes, therefore

represents the net bending moment.

As mentioned earlier in the case of the elongational model, the viscosity

may also be modelled by the capacitance so that the resistance is purely

dependent upon the dimensions of the body, and the current represents the

bending moment divided by the coefficient of viscous traction.

Clearly, the angular velocity co of each element may be determined

from the corresponding value of the nodal potential. The angle of inclination,
t

0, can thus be determined from the relationship 0 = fcodt which is
(21

represented in discrete form by the summation of co& over the period of

deformation.

The viscous approach at high viscosities is similar to that taken in

classical elastic theory, described in section 2.4.2 of chapter 2, where the

shearing force acting on each section of a beam is equivalent to the total weight

of the beam to the right of that section. In the elastic formulation it is assumed

that the elastic body stresses are developed instantaneously. In the viscous

model the shear viscous stresses, and thus bending moments, are allowed to

develop with time so that ultimately the material parameters not only dictate

the magnitude of the deformation but also dictate the change in curvature along

the length of the beam.
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5.3.1 Boundary conditions

The effects of the surrounding media on the body are represented by the

boundary conditions. In fact, the types of boundaries occurring in the case of

the cantilever are similar to those of the vertically supported column of fluid

discussed in section 5.3 and are illustrated in figure 5.17. At the supported

end the no-slip condition applies within the fluid so that the angular velocity of

the first element is zero ensuring no relative motion with respect to the

stationary support. This is achieved in the TLM network by setting the nodal

potential to zero at the first node throughout the simulation. The pulses

incident at the first node take the following form, Vi(1,1)=0 and

Vi(1,2)=Vr(2,1)+(n-1)81g5tcos0. The sides of the cantilever are not subject

to any resistance to motion and are effectively insulated from the surroundings.

This ensures that, at each distance x along the cantilever, the angular rotation

throughout the height and width of the beam is constant so that no shearing

effects are introduced and the cantilever experiences pure bending. As in the

case of the vertical column, these boundary conditions can be adequately

modelled by a one dimensional treatment. Once again, the surroundings are

assumed to have no effect at the free end of the cantilever so that the angular

velocity of the surroundings adjacent to the free end is equivalent to that of the

final node. This insulation may be represented by a perfectly reflecting

boundary, such that the pulse incident from the free end is equal to the pulse

reflected from the node as depicted in figure 5.17.

Figure 5.17 Boundary conditions for viscous cantilever..
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Clearly, the boundary condition at the free end of the cantilever is

slightly different from that of the vertical column where the condition of no

elongation, that is —av = 0 and hence zero net force, was enforced by setting
ax

the potential of the final node equal to that of the previous node. At the free

end of the cantilever the bending moment is zero yielding M = 	 —ac° - oz ox

and therefore —aw - 0. Although the angular strain rate —Ow is zero, the end
ax	 ax

of the cantilever does in fact strain with respect to the previous element so that

the potential of the final node is not equal to that of the previous node.

However, the final element is not assumed to strain with respect to the

surroundings and so the final nodal potential is equal to that of the adjacent

node of the surrounding medium.

Consider now a simply supported beam where both ends are clamped,

as in figure 5.18. Clearly, at each end of the beam the no-slip condition holds

ensuring zero rotation.

nodal potentials
set to zero

Figure 5.18 Boundary conditions for a simply supported viscous beam.
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L 	>

V A

(5.22)

F	 F

Figure 5.19 Forces acting on simply supported beam.

The weight of the beam is supported equally by the two supports so that the

upward force exerted by each support is given by F = —
1 

p area L g, as shown
2

in figure 5.19. Therefore, for a highly viscous fluid the resultant downward

force acting at a distance x from the left support is given by

V = F - p area x g = p area (—
L
 - x) g (5.21).

2

As for the cantilever, a general element of the beam will rotate throughout the

deformation period so that the component of gravity causing the rotation is

g cosO, where A is the angular inclination of the element to the horizontal. The

notation for the shear force acting on a general element i is, therefore, given

by

V = p (3- - i)O1 area g cos0

where n51 = L and i51 = x.

The shear force is incorporated by the updated pulse values yielding;

Vi = Vi + 8P cos() (1.21- - 051	 (5..23).

At present lateral movement of the beam ends will accompany sagging.

The ends will move towards one another as if they had been placed on rollers.
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The no-slip boundaries, therefore, only enforce the condition of zero rotation.

If it is required to enforce constraints upon the lateral movement, such as a

restriction upon the length of the span, then additional control related to the

error in the lateral movement is necessary at the beam ends. Such a

controlling mechanism is described in the following section.

5.3.2 PIED control and tuning

Proportional, integral and derivative (PID) control consists of a

combination of three types of control which are commonly applied to

electronic feedback amplifier design [3,4]. A particular feedback system may

not have a good transient response and may also yield considerable steady state

errors. Application of PID control to the system enables improvement in both

the transient and steady state responses. The proportional and integral controls

are applied to improve the steady state response of the system, but

unfortunately at the same time generally yield instability during the transient.

The purpose of the derivative control is therefore to dampen the system and

thus yield an improved transient response.

R(s)	 +

reference -
---1n0--n

error signal

E(s)
--OD- C(s)

closed loop

PHYSICAL
SYSTEMCOMPENSATOR —IP,-

input output

Figure 5.20 Unity gain feedback system and compensator.

The compensator in figure 5.20 houses the PID control. Each of the three

control types may be expressed in either continuous or discrete form.
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Proportional control

Here, the applied control is directly proportional to the error observed

over each timestep and thus is expressed continuously as

u(t) = Kp E(t)	 (5.24)

or discretely as

u(k) --= Kp E(k)	 (5.25)

where u(t) is the control as a function of time, t;

u(k) is the control as a function of iteration number, k;

K is a proportionality constant;P

E(t) is the error as a function of time;

E(k) is the error as a function of iteration number.

Derivative control

Here, the applied control is proportional to the time rate of the error

and is expressed continuously as
dE(t)

u(t) = K TD —	 (5.26)
P- 

or discretely as

u(k) = Kp TD 
(E(k) - E(k-1))

T	 )

where TD is termed the derivative time;

T represents the iteration timestep.

(5.27)

Integral control

Integration of the error provides the control in this case and may be

expressed continuously as

K 
t
r

u(t) = -Al j E(t) dt
Ito

or discretely as

(5.28)
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K
u(k) = —P. T E(k) + u(k-1)

Ti
(5.29)

where T1 is the integral (or reset) time.

The PID controller can thus be expressed discretely as

u(k) = Kp (E(k) +TD (E(k) - E(k-1)1 + I E(k)) + u(k-1)	 (5.30).
L	 T	 ) T1

The error E(k) is determined experimentally and thus it just remains to

determine the values of the constants Kp' TD and T1.

The method for determination of the constants may be considered

analogous to tuning the system. Initially, the proportional control only is

considered. The constant K is gradually increased until the response of theP

system oscillates. The value at which oscillations first appear is noted and Kp

in the PID control equation is set to half of this value, so that the solution is

kept well away from any instability. The values of the remaining constants are

then determined by trial and error until the system is tuned.

In the case of a simply supported beam the source of error results from

the change in the span with time. In the associated TLM network the control is

applied by a current generator at each of the no-slip boundary nodes and

contributes a correcting moment. The PID control, therefore, takes the

following form

Igen = (a ERROR(k) + b SUM_ERROR(k) + c DIFF_ERROR(k)) Cot521

(5.31)

where

ERROR(k) represents the change in span, with respect to the true, or

original, span. That is, ERROR(k) = 0.5(SPAN(k) -

TRUE_SPAN(k)). The factor of 0.5 being included since the two

supports equally compensate for the error;
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SUM_ERROR(k) represents the summation of ERROR(k) up to and

including the present iteration;

DIFF_ERROR(k) represents the change in ERROR(k) over an iteration,

namely ERROR(k) - ERROR(k-1);

C is the capacitance of the element:

Ot is the iteration timestep;

81 is the nodal separation;

a, b and c are constants to be determined using the tuning technique

described above.

The correcting moment is dependent upon the nodal potential, unlike

the force due to gravity, and is applied to the model via a current generator.

5.4 Temporal and Spatial Convergence

Any TLM routine may be shown to exhibit temporal and spatial

convergence if formulated correctly. The following example illustrates that

convergence is achievable for the bending model. The TLM routine was

executed for a cantilever of length 10cm, cross-sectional area of 1cm 2, density

of lgcm-3 and viscosity, ri, of 105 gcm-1 s- 1 . A nodal separation of lcm was

used and the angular deformation at the end of the cantilever, after a time

period of 0.1s, is plotted in figure 5.21 for decreasing timesteps.
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Figure 5.21 Graph of convergence of angular deformation as St is decreased

successively by a factor of 0.5.

Clearly, as the timestep is decreased the angular deformation increases

and tends to a converged value.

In any numerical modelling technique altering the number of elements

should not significantly affect the result but should .serve to improve the

accuracy with increased mesh refinement, until convergence has been reached.

However, in the TLM modelling of the diffusion equation extra care must be

taken to ensure that when reducing the spatial separation the timestep is also

reduced. If the timestep is not reduced then the second order time derivative

of the potential may become significant so that the routine no longer models

diffusion but instead models a damped wave. This condition of consistency

with modelling the diffusion equation is achieved by reducing both the spatial
St

step and timestep such that the ratio —512 is kept constant, once a converged pair

of SI and St have been determined [5]. Figure 5.22 illustrates convergence for

the above consisitency requirement for a cantilever of length 10cm, cross-

sectional area 1cm2, density lgcm-3 and viscosity 105 gcm- l s-1 . The results in

each case are taken after a time period of 0.1s.
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Figure 5.22 Graph showing approach to convergence as the nodal separation is

decreased; the timestep is reduced by the same factor squared to satisfy

consistency requirements.

5.5 Comparison with Finite Difference

The finite difference method allows partial differential equations to be

expressed discretely and is based upon the approximation that the gradient of a

curve at a point halfway between two points on the curve is equal to the mean

gradient [6], as shown in figure 5.23.

The gradient of the curve f(x) may now be expressed as
f(x+h) - f(x-h) 

f(x ) —
2h

and the second derivative may be expressed as
f(x +h) -2f(x) + f(x-h) 

h2

where h = x11 - x1.

The first order time derivative is expressed more simply as
f(x,t+6) - f(x,t) 

where 6 is the time increment.
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Figure 5.23 Graph illustrating the comparison of the mean and halfway

gradients.

A finite difference routine may now be formulated to model the viscous

equation for rotation.

a2 I,co	 pbh(L - x) g cos0  _ p aIzco
ox 2	 Ot

This is achieved by rewriting equation (5.32) in discrete notation. Let Izco(x,t)

denote the angular momentum at a distance x along the beam and at time t,
bh3

such that Iz--
12 • 

The second order space differential may now be written as

I zco(x +81,t)-2Izco(x,t)+Izco(x-S1,t)

512

and the first order time differential may be written as

Izco(x,t+Ot)-Izco(x,t)
•

St

(5.32)

Substituting the above into equation (5.32) leads to
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IzO) (x +81,0 -2I zo)(x,t)+Izco(x-S1,t)  ±  pbh(L-x) g COs@ _

S1 2	X,
P I zco(x,t +80-Izco(x,t)

X	 St

(5.33).

Rearranging equation (5.33) gives

Izco(x,t +St) = I zco (x, t) +

( I zco(x+Sl,t)-2I zo)(x,t)+I zco(x-S1,t) X&
+ gOtbh(L- x)cos0

S1 2	P

(5.34)

or, in terms of nodal representation where iS1 represents the general position x

and nO1 represents the length of the beam,

I CO (i + 1, t) - 2IzO) (i,t)+I zco(i-1,t) ) X& )
I z co (i, t + St) = I zo (i ,t) + K  z

612	 P

+ gOtbh(n-i)Olcos0

(5.35).

As in the TLM routine, for a cantilever the angular momentum at the

support is set to zero throughout the period of flow so that at x=0,

Izo)(0,t) = 0. At the free end of the cantilever, x=L, the insulated boundary

condition is incorporated by setting I zco(L+81,0 = Izco(L,t). The boundary

conditions corresponding to the notation of equation (5.35) are, therefore, at

i=1, Izco(1,t) = 0 and at i=n, Izco(n+1,0 = Izco(n,t).

Figures 5.24 and 5.25 below show the angular deformation near the

support for a cantilever bending under gravity of length 10cm, cross-sectional

area of 1cm2 and density of lgcm-3 . The TLM and finite difference routines

were executed for a range of viscosities and for a time period of 0.01s, in each

case using converged values of the nodal separation and iteration timestep.

From the graphs it can be seen that good agreement is obtained between

the two approaches.
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Figure 5.24 Angular deformation for different viscosities using a TLM

routine.
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Figure 5.25 Angular deformation for different viscosities using a finite

difference routine.

Figure 5.26 shows a graph of the difference in the results of figures

5.24 and 5.25. The magnitude of the discrepancy in the angular deformation

increases as the amount of deformation increases, the error being no greater

than 0.6%.
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Figure 5.26 Comparison of TLM and Finite Difference results (note the

vertical scale).

5.6 Rotation under Constant Stress

Consider a cantilever of viscous fluid that does not experience

elongation as the beam deforms. If a constant shear force is applied to each

element then each element is also subjected to a constant stress. Throughout

the period of flow each element experiences a different but constant resultant

stress. Therefore, each element in the fluid reaches a. particular steady state

angular velocity which is dependent upon the stress, density and viscosity.

TLM results have been obtained for a cantilever having a deformable

length of 10cm, a cross-sectional area of 1cm2 and a density of lgcm-3 . The

pulses at each node i are updated by a constant value of 
(n-i)OlgOt

, so that the
2

beam experiences the same shearing forces as in the analytical small strain

elastic solution. The angular velocity at the free end of the cantilever is plotted

against time in figure 5.27 for different values of viscosity, 1.
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Figure 5.27 Graph of angular velocity against time for different values of

viscosity, under the condition of constant applied stress.

From figure 5.27 it can be seen

and hence constant stress, a decrease in

angular velocity. This is consistent with

fluid under constant stress, detailed in

that under a constant shearing force,

viscosity yields a greater steady state

the theoretical behaviour of a viscous
gi

chapter 2, where T = 1 dt under

constant stress T.

Figure 5.28 depicts the variation in steady state angular velocity along

the beam for different values of the coefficient of viscous traction X, where

X=31. Figure 5.29 depicts the variation in angular deformation along the

beam for different values of Young's Modulus, the magnitudes of which are

equal to those of the coefficients of viscous traction in figure 5.28. The elastic

deformations were calculated from the analytical small strain theory detailed in

section 2.4 of chapter 2.

Figure 5.30 plots the difference of the graphs of figures 5.28 and 5.29

and reveals close agreement. Therefore a viscous/elastic analogy is apparent

under constant stress such that the angular velocity is analogous to the angular

deformation and the coefficient of viscous traction is analogous to the Young's
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Figure 5.28 Variation of angular velocity along beams of different values of

the coefficient of viscous traction, under constant stress.
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Figure 5.29 Analytical variation of angular deformation along beams of

different values of Young's Modulus, under constant stress.
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Figure 5.30 Comparison of the graphs of figures 5.29 and 5.30 revealing

analogous results.

In figure 5.30 the magnitude of the discrepancy in the analogous results

increases as the parameter magnitude decreases but remains less than 0.07% in

each case.

From figure 5.27 it is apparent that, as well as the steady state solution,

the time taken to reach a particular steady state is also parameter dependent

such that a decrease in viscosity corresponds to an increase in the rise time. A

low diffusivity, therefore, not only yields a large rise time but also a high

steady state, so that the gradients of graphs in figure 5.27 increase as the

diffusivity decreases. Modifying the material parameters not only serves to

either increase or decrease the velocities reached at steady state but also

characterises the variation in angular velocity along the length of the column.

Thus, the resultant stress distribution within the body is also parameter

dependent.
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Compare the above with a rod placed in an ambient temperature of

1000C so that it is gradually heated to a steady state temperature. The time

taken to reach the steady state here is also parameter dependent, such that it

decreases with an increase in thermal diffusivity. The greater the thermal

diffusivity the faster the thermal response of the material. However, the steady

state temperature reached is independent of the thermal parameters and is

uniform across the rod. Clearly, all rods of equivalent dimensions will reach

the same steady state temperature of 1000C but after different periods of time,

the rise times reflecting the thermal response which is parameter dependent. It

therefore follows that rods of low diffusivity • exhibit less steep

temperature/time gradients as depicted in figure 5.31.

time

Figure 5.31 Variation of temperature with time for different diffusivities

under constant ambient conditions.

In the TLM modelling of diffusion problems it is required that the term

in the Telegrapher's equation containing the second order time differential of

the potential is much smaller than that containing the first order time

differential of the potential so that in a one-dimensional model,

820 ,.., ao
Ld cd 	  « 2Rd,...,d

at 2	 at
(5.36).
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a 2 0
LdCd 	

at2

r, ao
2Rd,d

at

m– << 1	 (5.37).

m–
St 2 a

2
CD 

at 2

4Rcsi4 ao
at

(5.39).

and

The ratio of these two terms may, therefore, be used as an error parameter m

[8] such that

The impedance of the transmission lines is given by

	

li  Ld	 St

	

Z = 	 	 – —	 (5.38)

	

C d 	C

where C = C d S1 3 represents the lumped capacitance and Rd represents the

lumped resistance.

Equation (5.38) allows substitution for Ld in (5.37) and representing the

RdS1 
lumped resistance by R – 	 , together with the expression for C above

251'

leads to

Inspection of the transient of figure 5.29 leads to the following general

equation for each of the curves;
-t(1) --= A(1-exp(—Ra (5.40)

where (I) represents the temperature at time t and A is the steady state

temperature.

From (5.39) it follows that

80( -t )
– A— exp

at	 RC	 RC)
(5.41)
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a20
—	 A 

exp(-
-t

	 	 -at2 (RC)2	 RC
(5.42)

so that the expression for m now becomes

St2
m — 	 	 (5.43).

4(RC)2514

Clearly, for a constant error and constant Sl, a low value of RC demands a

smaller value of St than a correspondingly higher value of RC.

Equation (5.43) also yields the accuracy requirement that for constant

RC a constant error is maintained if when reducing S1 the timestep St is chosen

St i
so that the ratio — is constant [5].

612

A fluid of high viscosity, although of a slow steady state flow rate,

exhibits a fast stress response and therefore a fast rate of change of velocity

since the resistance to the diffusion is inversely proportional to the viscosity.

The fluid has a low RC value and, therefore, from equation (5.43) must be

modelled using a smaller timestep than fluids of lower viscosities to ensure

accuracy. The requirement that bodies of slow deformation rates be modelled

using small timesteps is clearly unfortunate if it is desired to simulate their

behaviour over long periods of time. The accuracy requirement also dictates

that a fast deforming body may be sampled less frequently than a body that is

deforming more slowly. However, the choice of timestep for a body of high

deformation rate should not be chosen so large that crucial information is

missed.

The development of the total stress response under gravity is achieved

faster in a highly viscous fluid, in fact in the limit of infinite viscosity the total

stress response time is infinitesimal so that the total stresses may be considered

to be developed instantaneously, at the same time there being infinitesimal

resulting flow. This situation may be compared with an elastic body where, in
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g sin 9

the formulation of the equations for the pure bending of an elastic cantilever,

each section instantaneously experiences the total shearing force of the weight

of the beam beyond that section [9]; the development of the elastic stresses not

being time dependent.

5.7 Coupled Viscous Model

In general, a viscous body deforming under gravity will exhibit both

aspects of elongation and bending as detailed in sections 5.2 and 5.4

respectively. A model reflecting the full behaviour of such a body involves the

coupling of two TLM meshes; one describing the elongation and the other

describing the rotation. In a coupled model each mesh feeds information into

the other. Thus, the elongation affects the magnitude of the rotation and the

angular inclination affects the component of gravity promoting elongational

flow. The elongation directly modifies the resistance which is modelled

identically in each network. The full action of gravity upon a general element,

inclined at an angle 0, is depicted in figure 5.32,

Figure 5.32 Viscous element subject to both elongation and rotation.

The component of gravity promoting elongation is now gsin0 so that the

following expressions for the pulses in the two meshes apply:

V' =	

▪ 

g St sine 
Elongation mesh:

2

V 

▪ 

V(i) Ot cos0 
Rotation mesh:

	

	 (5.44)
2pbh
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where V(i) represents the shear force on a general element i.

When the viscosity of the beam is high the shear force may be replaced

by pbh(L-x)g so that the pulses in the rotation mesh become
vi vi (L-x) g St cos0 

(5.45)
2

and the coupling incorporates the changes in shear stress due to changes in

length and hence changes in cross-sectional area. When the viscosity is low

the shearing forces V(i) must be obtained from tractive forces in a vertical

elongation model so that shear stresses due to both the magnitude of the

viscosity and the dimensional changes are incorporated via the coupling.

5.8 Meshing and Beams of Initial Curvature

TLM meshes for the vertical column, cantilever and simply supported

beam are one dimensional and therefore consist of a 'string' of nodes.

Thermal bodies which can be modelled adequately by a one dimensional

treatment are those which are insulated along their entire length. Consider a

rod of length L, cross-sectional area A and density p. The rod has thermal

conductivity K, specific heat capacity S and heat transfer coefficient H. If the

rod is insulated along its length and subject to identical heat sources at each

end, as depicted in figure 5.33, then after a certain period of time a uniform

temperature gradient is established; the temperature at each point along the rod

being the same as that of the heat sources. The time taken to reach this steady

state is dependent upon the dimensions of the rod and its material parameters.

Figure 5.33 Insulated rod subjected to constant heat sources at each end.
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Consider now an identical rod which, although of the same length L

and cross-section A, has a different curvature as shown .in figure 5.34. Under

the same heating conditions as before the curved rod will acquire an identical

uniform temperature distribution and in the same time period as for the straight

rod. In fact, an identical rod of any curvature will reach the same steady state

in the same time period. Thus, the transfer of heat along an insulated rod is

independent of curvature. It therefore follows that a curved insulated rod can

be modelled as a straight insulated rod of equivalent length and cross-section.

Figure 5.34 Insulated curved rod subjected to constant heat sources at each

end.

A TLM mesh representing an insulated rod of any curvature is shown in

figure 5.35, illustrating that the arrangement of resistors and transmission lines

in the network is independent of element orientation.

Figure 5.35 Curvature-independent TLM mesh.
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Consider now a viscous column, cantilever and simply supported beam.

Each beam may be modelled by a one dimensional TLM mesh; the structure of

which, as in the case of an insulated rod, being independent of curvature.

Although the meshing itself is independent of curvature the effect of gravity

upon each of the bodies is not, so that the pulses in the network effectively

incorporate the curvature into each model. It follows then that throughout the

modelling period of a cantilever or simply supported beam the associated TLM

mesh does not change its structure even though the beams themselves are

deforming; it is only the values of R, Z and the incident pulses which alter.

Clearly then, beams having initial curvature may also be modelled

using the same mesh structure as above, with the initial orientation of each

element being incorporated in the pulses at the beginning of the modelling

period. Figure 5.36 depicts a curved beam having initial angular orientation Ai

at a general node i.

Figure 5.36 Curved beam supported as a cantilever.

The pulses at a general node are, therefore, given by
vi	 vi	 (n-i)S1 g St cos(); 

2
(5.46).

The weight to the right of element i is given by (n-i)SlApg but is now inclined

at an angle O.

It is assumed here that the initial state of the beam is such that the beam

has either been formed with an initial curvature or that it has been pre-

deformed to this state by, for example, elastic deformation.
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5.9 Incorporation of Elasticity

5.9.1 Elasticity in series

The Maxwell model for the series combination of viscoelasticity has

been described earlier in section 2.5 of chapter 2. This model consists of

initial elastic deformation followed by viscous flow. Incorporation of series

elasticity to the viscous TLM model is very straightforward. The elastic

deformation of a cantilever, for example, may be calculated analytically using

the classical theory detailed in section 2.4.2 of chapter 2. This deformation

may be used as the starting point for the viscous flow so that in the TLM

routine the viscous deformation is applied to an initially curved beam. The

resultant deformation, therefore, consists of elastic strain followed by viscous

strain so that y total = Y elastic ± Y viscous •

8 —

7 —

6 —

5 —
angular

deformation in 4 —
3 m_m_.-M-41degrees

2 —

1 —

0
0	 2	 4	 6	 8	 10 12 14 16 18 20

time x 0.001s

Figure 5.37 Graph of angular deformation against time under constant applied

stress for a series viscoelastic beam, obtained from the TLM model.

Figure 5.37 shows the angular deformation near the support for a

cantilever of length 10cm, cross-sectional area of 1cm2 and density of lgcm-3.

The value of Young's Modulus of Elasticity in series, Es, is 10 7 gcm- 1 s-2 and
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the viscosity, T1, is 104 gcm- 1 s- 1 . The cantilever is subjected to a constant

shear force V=pbhOlg, and hence constant stress as no elongation occurs.

5.9.2 Elasticity in parallel

The Kelvin model represents a parallel combination of viscosity and

elasticity, such that the elastic and viscous stresses are additive. That is, the

total shear stress ttotal is given by

total = *1	 • ±	
(5.47).elastic	 viscous

It will be recalled that in the bending viscous model the stress is

incorporated by means of an applied potential (13 0 such that

= T
viscous	 tot —

	

shear force - 	 ao.

	

-	 C	 p
area	 bhS1	 ôt at

(5.48)

where for a cantilever (to = g(n-i)SlcosOt and is modelled by the pulses

according to

vi = vi	 (n - i)O1 cos° g St 
(5.49).

2

Therefore, in a parallel viscoelastic model

(5.50)'t total = -c elastic ± P

which leads to

aco	 (1 total -	 elastic ) 

at

or, in terms of the pulses,

vi = vi	 (-C total - elastic )5t

2p

(5.51)

(5.52).

The state of zero applied viscous stress is achieved in the model when

—0
at

resulting in t total = elastic so that the TLM routine yields the elastic

solution.
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where 0 elastic (5.56).

Now, from chapter 2,

1	 s
0= — iM ds --

Erz 0
bh3where 4 =
12 •

pg (n - i)S1 cos() 

pg (n - i)S1 cos() EIz

s
f M ds
	

(5.53)
0

Rearranging equation (5.53) yields

0 Eiz pg (n -i)S1 cos()
pg (n -051 cos() =	 s

SM ds
0

so that T 	 1- totai = I elastic .

(5.54)

Substituting for 't total and T elastic in equation (5.52) now yields the

form of the incident pulses for parallel viscoelastic flow;

vi = vi +  
g (n - i)SI St cose 

2
0 Erz g (n -i)S1 St cos() 

s
2f M ds

0

(5.55)

which may be written as

vi , vi ± g (n -i)S1 St cos0 _ 	 0(i) 	 g(n –061 St costa
2	 @elastic ( i)	 2

The viscous equation incorporating parallel elasticity is, therefore, given by

82 Iz co  +  p(n -i)S1 bh g cos0  i i 	 0(i) j  P  alzo)
ax 2	 X.	 °elastic (i )	 2'.'	 at

(5.57).

This formulation assumes that the parallel viscoelastic behaviour is

performed upon a beam whose initial angular deformation is zero along its
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vi	 vi	 g (n-i)51 Ot cos°	 (0(i)-80(i)) g (n -DM Ot cos() 
2	 elastic ( i )	 2	

(5.58).

entire length. If the initial angular orientation is denoted by 0 0(i) then equation

(5.56) becomes

The parallel viscoelastic angular deformation of a cantilever may be

calculated where fm ds pbhg 
(s3 - 3s2L + 3sL2) using the elastic solution6

from equation (2.71) in chapter 2, s being the distance along the beam.

Graphs of angular deformation, at lcm from the support, are plotted against

time in figure 5.38 for a cantilever of length 10cm, cross-sectional area 1cm2,

density lgcm-3 and viscosity 104 gcm- 1 s- 1 . The value of parallel elasticity, Ep,

in the graphs ranges from 106 gcm-ls-2 to 108 gcm-1s-2
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Figure 5.38 TLM graphs of angular deformation against time under constant

bending moment for different values of parallel elasticity, Ep.

The graphs of figure 5.38 show that the greater the value of Ep the

quicker the steady state is reached. For Ep = 10 8 gcm- 1 s-2 it can be seen that

slight oscillations occur before the steady state is reached. These oscillations
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arise because of the low viscosity of the beam and illustrate the true damped

wave type of behaviour.

Clearly, viscoelastic models may be formed for beams of any shape

provided that either the path of integration or the elastic angular deformation is

known.

Theoretical results obtained from small strain theory display a

proportionality between the inverse of Young's Modulus and the angular

deformation. Thus, according to this theory, a cantilever of low elasticity may

have a steady state solution such that the free end of the beam deforms beyond

900 to the horizontal. Clearly, this is not a realistic solution as the beam

would in fact hang so that the end of the beam lies at an angle of 90° to the

horizontal. The graphs depicted in figure 5.39 compare results obtained from

the parallel viscoelastic TLM model when run to steady state against theoretical

small strain results where the angular deformation is given by

0 – 6Pg 2	 2	 "c3L x-x L+— I. The cantilever is of length 10cm, cross-sectional
Eh'	 3

area 1cm2 and density lgcm-3.

angular
deformation at
end of beam in

degrees

0 20 40 60 80 100 120

1/Ep x e-08 cms-2/g

Figure 5.39 Comparison of steady state TLM elastic solution with small strain

theory for decreasing values of Young's Modulus, Ep.
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The TLM results show good agreement with small strain theory for

high values of Young's Modulus, that is for theoretical angular deformations

less than 900. As the Young's Modulus is decreased further the TLM results

predict vertical deformation at the end of the beam and, therefore, more

accurately represent the true deformation.

5.9.3 Combinations of series and parallel elasticity

Three and four component viscoelastic models, as described in chapter

2, can now be constructed by effectively 'fitting' together the appropriate types

of flow and deformation. Figure 5.40 shows a three component model

consisting of an elastic spring in series with a parallel combination of a viscous

dashpot and a second elastic spring. A graph of strain against time for such a

model under constant stress is plotted in figure 5.41 and illustrates the

behaviour upon removal of the stress. The results have been obtained for a

cantilever of the same dimensions and density as above. The viscosity of the

beam is 104 gcnr 1 s- 1 , with Es = 108 genri s-2 and Ep =107 gcm- 1 s-2 , the

angular deformation being that at lcm from the support: The load is removed

at t=0.2s.

Figure 5.40 A three component viscoelastic model.
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Figure 5.41 Graph of angular deformation against time under constant applied

stress for the three component TLM viscoelastic model. The load is removed

at 0.2s.

The graph of figure 5.41 can be seen to be in agreement with the

theoretical results of figure 2.25a in chapter 2. A three component model

comprising a viscous dashpot in replacement of the series elastic spring in

figure 5.40 is achieved by running two TLM routines simultaneously over the

period of deformation; one for the series viscous flow and the other for the

parallel viscoelastic deformation. The routines are coupled since the strains are

additive and appear in the loading terms of each routine. A four component

model consisting of initial elasticity, followed by viscous flow and finally

parallel viscoelastic flow is simply a series combination of intial elastic

deformation followed by the three component viscoelastic mechanism described

above.
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a2r z co

ay2

pbh(nx -i)S1gcose	 p ar, co
+

A.	 X	 at
(5.61)+

5.10 Viscous Deformation in Two Dimensions

The general approach taken to model the deformation of viscous beams

may also be applied to two dimensional plates and shells. As in elastic theory

the rigidity of a plate is assumed to be increased by a factor dependent upon

the value of Poisson's Ratio, v, for the material. The rigidity of an elastic

two dimensional plate was shown in section 2.4.3 of chapter 2 to be
E h3 

D —
12 (1-v2) — EI

l z	(5.59)

where E is the Young's Modulus, h is the plate thickness and I' z is the

modified area moment of inertia.
bh3

It follows from (5.59) that the area moment of inertia, I =' for the
z	 12

deformation of beams, given in section 5.3, must be replaced by
h3 

I'
— 12(1-v2)z	 12(1-v2)	

(5.60).

The two dimensional viscous equation for pure bending is

so that all four incident pulses are updated each iteration by

(n x -i)Slg St cose 

2

where nxS1 represents the length of the cantilever.

z

nx S1

Figure 5.42 Two dimensional cantilever supported at the left along the y axis.

(5.62)
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The general equation of a two dimensional diffusion network is, from

chapter 3,

n2,T,	 n2,1, r, ae•
"	  + 	 — 4 Rdk.d 	
a,c 2	 ay2	 at

(5.63)

so that the resistance of the TLM network is now modelled by

elemental length 
—R 

4 X cross-sectional area
(5.64)

and the line impedance is given by
26t

Z =
C

(5.65)

where C=p x elemental volume, as two whole transmission lines equally

share the capacitance of an element.

This formulation allows the modelling of asymmetric deformation as

observed when the viscosity of a plate varies in the y direction, provided that

the variation is not so great that the shearing in this direction becomes

significant. A variation in viscosity along the length of a beam using the one-

dimensional formulation is easily achieved simply by incorporating the

appropriate value in the resistance. Alternatively, modelling the viscosity in

the capacitance would necessitate the use of stubs to account for the variation

along the beam. A viscosity variation in the y direction of a two dimensional

plate supported as a cantilever, as depicted in figure 5.42, would produce a

change in curvature in both the x and y dimensions of the plate; the viscosity

variation having an effect upon the deformation in the x direction. Plates

having initial curvature in both the x and y dimensions may also be modelled

by equation (5.61), provided that the curvature in the y direction is slight so

that shearing forces in the direction of the width are not significant. Plates

supported not only along the width but also along the length in the x direction

may have significant shearing forces in each of the two dimensions so that a

cross spatial derivative term would need to be present in the diffusion equation
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to account for the torsional bending. The Navier-Stokes equations relate the

velocity components in each of the three dimensions under constant pressure as

follows [11],

av	 av	 avoH+ v x _	 av
+v 	 z ) -- pg

-	 at	
x

	

+

ax	 "3' ay
y	

z az	 x -

m2	 a2v za2 v x u Vy	 a2Vx a2vx a2
vx

1 ax2 ± ayax + azax ± 1-1 1 ax 2 ± A ,2 ± az2

av 	 av	 a i 2 ( avx + avy ±  av z  1+
p( 03; +vy  a;cc	

Y+vy ay +vz  D 	 —pgy	 11
ay 3	 ax	 ay	 az )

a2v 	 a2v	 &v a2 v	 82
Vx  ±	 Y  ±	 z  )± 1{  ax2Y  ±	 Y  ±	 Y  )

i 
a2v 
Nay	 ay2	 azay	 ay2	 az2

	

av	 a ( 2 ( o 	 aVy avzavz 	 avx 

p(
	 +vz	 +v 	 Y +v Dv z ) — pg

at	 ax	 3' ay	 z az	 z	 az 3 1 ax ± ay ± az))±

[ a2v
x  ±  

a2
vY  ±  

a2
vz  

)	 a2v z  ±  a2 v  ±  a
2

vz	 z 
11	 +

Naz	 ay&	 8z2	
'11[ ax 2	 ay2	 az2 j

(5.66).

Dv x 
In each of the above equations the left hand side may be written as p

Dt

	

Dv	 Dv zY 
P	 and p

	

Dt	 Dt

av x + avy + avz

ax	 ay	 az

respectively and in the case of incompressible flow

— 0, so that the equations reduce to
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Dt	 ax2	 ay2	 az2

(5 . 67).

It is evident that each equation requires the velocity components in each of the

three dimensions so that the coupling of three velocity meshes would be

required for the complete solution.

The incorporation of both series and parallel elasticity into the basic two

dimensional viscous model of equation (5.61) is achieved as set out for the one

dimensional case in section 5.10; the appropriate analytical elastic solutions

being two dimensional. In cases where a fuller description of the deformation

is required, the elastic equations will take a similar form to the three

dimensional viscous equations above so that they incorporate the complete

three dimensional behaviour.

5.11 Formulation of an Elastic Bending Model

The static solution of the deformation of an elastic cantilever under its

own weight is given by

z —
d20

EI 
	

– pbh(L - x)g
dx2

(5.68).

In order that equation (5.68) may be modelled by a TLM routine, time

dependency must be introduced. As it stands the above equation is one of an
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equilibrium of forces, so that time dependency may be introduced by re-writing

(5.68) as an equation of motion as follows,

a20	 a2e
EI z --v- + pbh(L -x)g cos0 = piz

ax`	 at 2 (5.69)

where the introduction of the transient has allowed the implementation of the

component of gravity, g cos0, as the beam deforms.

Rearrangement of (5.69) leads to

a2 i ze ± pbh(L-x)g cos0 _ p a2Iz0
ax 2	 E	 E at2

where it should be noted that the loss of the negative sign in front of the

gravitational term is due to assuming that for the solution the double

integration is now performed along the beam in the opposite direction.

Equation (5.70) represents an elastic wave of Young's modulus E and

velocity	 —
E 

and describes an elastic cantilever vibrating under the effect of
P

gravity. The steady state solution of (5.70) is given by equation (5.68) and

may be obtained from equation (5.70) if a damping term is introduced, such

that

a2 i ze + pbh(L -x)g cose _ p (32I z0 +  X	 aze	 0.71).
ax 2	 E	 E at 2	 Ebh at

The damping term is proportional to the cofficient of viscous traction X and the

angular velocity of the wave. A high viscosity increases the damping and

brings the beam to rest with fewer oscillations than for a lower viscosity.

Although the transient is dependent upon the viscosity, the steady state solution

is independent of the value of viscosity so that equation (5.71) may be used to

obtain static elastic solutions.

Comparison of the viscous equation (5.18) and the damped elastic

equation (5.71) reveals a similar loading term so that, again, the pulses model

the effect of gravity. The angular inclination of the beam is, therefore,

(5.70)

146



a2e,	 ae•
- Ldcd  2 + 2 RdCd

at	 at
(5.72).

aoi
at

2 RdCd

represented by the pulses and not by the mesh structure, so that the elastic

model may be applied to beams of initial curvature as detailed in section 5.8

for the viscous model.

The corresponding one dimensional damped wave equation for the

TLM network is given by

Comparison of equations (5.71) and (5.72) yields the following network

parameters

(1) = Ize

C d =

2R d =
pbh

(5.73)

so that the distributed inductance is of unit magnitude.

The incident pulses take the following form,

[V' = vi ± 0.5 P(bh) 2 (n - i),51 g cos0 Ot 

X
(5.74)

and the boundary conditions are identical to those for the viscous bending

model, with a zero potential at the clamped end of the beam and a perfectly

reflecting boundary at the free end.

Figure 5.43 compares elastic solutions obtained from a TLM

formulation of equation (5.71) with those obtained from small strain elastic

theory for a beam of length 10cm, cross-sectional area 1cm 2 and density

1 gem-3.
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Figure 5.43 Comparison of TLM and analytical elastic solutions.

Comparison of the analytical and TLM steady state solutions of figure

5.43 shows agreement for small deformations but shows a discrepancy at low

values of elasticity when the angular deformation becomes significant and cos°

is much smaller than 1. The solutions from the elastic TLM routine give

angular deformations which are less than those from the viscous based parallel

viscoelastic model in figure 5.37 as the elasticity decreases, although both

models show the maximum deformation tending to 90 0 as the elasticity tends

to zero. The TLM elastic routine is considered to yield the most accurate

results since deviation from the analytical solution commences at angles whose

cosine values dictate a significant reduction in the gravitational component.

The steady state graph of the parallel viscoelastic model does not begin to

deviate significantly from that of the analytical solution until the deformation

reaches approximately 80°, which implies that although the cos() dependency

of the routine behaves correctly as a limiting factor it does not, however,

accurately influence the magnitude of the stresses acting .on the beam.
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CHAPTER 6

APPLICATION OF TLM MODELS TO CERAMICS

Existing models of deformation, suitable for application to ceramics,

are discussed. Evidence of viscoelastic behaviour at high temperatures is

provided allowing the applicability of models to the firing of sanitary ware to

be addressed. Ceramic testpieces are introduced for which the analytical

elastic solutions are given. Finally, deformation results from viscoelastic TLM

routines for the various testpieces are compared with experimental results.
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6.1 Existing Deformation Models

Previous methods designed to predict deformation of ceramics during

firing have assumed either purely viscous or purely elastic behaviour.

McDowall and Vose [1] based their method upon the analogy of steady state

viscous flow and elastic deformation under constant stress. Instead of

considering an equation of motion for the viscous flow, they assume that a

viscous body is subject to the same stress as an elastic body under gravity and

that the equations of equilibrium applied to the bending of elastic beams may

be applied to those of a viscous nature. This leads to the replacement of the

Young's Modulus, E, in the bending equations by the product of the coefficient

of viscous traction and the period of deformation, Xt. Subsequently, the

expression for the central sag of a simply supported viscous rod is shown to

depend upon the dimensions of the rod and the material properties of density

and viscosity over a given heating schedule, as shown by equation (6.1).

Sag —
, 

TF 4'-'

( t

t

F 15 g pTF f (T) dt
(6.1)A	 2

u TF

s	
8A.

I

where

f(T) is a function dependent upon the temperature and material of the ceramic;

1.../rF is the length of the rod at the final firing temperature TF ;

dTF is the diameter at the final firing temperature;

pTF is the density at the final firing temperature;

X is the coefficient of viscous traction;

the integral is performed over the period during which significant sagging

occurs, tF denoting the time at which the maximum firing temperature is

reached.
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The integral expression in equation (6.1) is assumed to be constant for a

ceramic rod during a specific firing schedule and is termed the Pyroplastic

Index. This constant provides a measure of the amount of deformation during

firing; the higher the value the greater the deformation. Adcock, Drummond

and McDowall [2] have applied this approach to a variety of test pieces, each

of different geometry. Although the investigators claim good agreement with

experiment for their particular clay body McNabb and Duncan [3] highlight

that discrepancies with experiment were obtained when the theory was put into

general industrial practice. These authors also consider the deformation arising

from viscous flow but incorporate temperature effects and internal stresses

which may result in additional deformation independent of the gravitational

force, such as the yielding of ware towards regions of higher temperature. The

basic equations vary only slightly from those of Adcock et al, using a modified

expression for the Pyroplastic Index which includes a dependence on porosity.

Gaillard et al [4] take a purely elastic approach to the modelling of a porcelain

plate even though a high vitreous phase content is observed. A finite element

code is employed which assumes linear elastic behaviour and considers only

steady states. Young's Modulus is temperature dependent and isotropic.

Shrinkage is incorporated and results for a single plate are claimed to be in

perfect accord with experiment. However, it is suggested that the simplified

approach be developed to take into account the viscoelastic behaviour of the

material.

6.2 Viseoelastic Behaviour at High Temperatures

Evidence of the viscoelastic behaviour of ceramics at high temperatures

is well documented [5-9]. Experiments have been devised to determine the

behaviour of bodies when subject to constant stresses, such as torsion testing

and flexural bending. Uniaxial testing, although commonly applied to metals
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and polymers, is not favoured for ceramics because of the necessity for high

temperature grips which are not readily available. The application of

compression testing is limited because of the tendency for specimens to buckle

and subsequently fail. However, such tests have been successfully carried out

on a kaolinite body [5] and show that ultimately the deformation under

compression is proportional to time, yielding steady flow under constant stress.

Initial behaviour reflects that of a parallel viscoelastic combination, the

deformation occurring at a faster rate than that displayed during the period of

Newtonian flow which follows.

In flexure it has been found that steady state creep is not easily achieved

[6]; some materials may be subjected to bending for up to 1200 hours and still

fail to display signs of approaching steady state. This behaviour sheds doubt

on the general applicability of the viscous modelling approach employed by

McDowall and Vose [1] where steady state flow is assumed throughout

bending. Bending tests carried out on pre-fired refractories at high

temperatures further limit the applicability of the viscous approach, revealing

departure from the linear relationship between deformation and load prior to

fracture [7]. At temperatures in the region of 1300°C the stress/strain

behaviour is highly non-linear being viscoelastic in nature even though the

deformation at room temperature is shown to be elastic until brittle fracture

occurs.

The creep data obtained for a particular ceramic under each type of

testing may not, in general, be in agreement; the response under compression

being different from that under tension and in bending [6,8]. This highlights

the importance of carrying out the appropriate test according to the service

requirements of the body.

All the above experimentation has been carried out on pre-fired

ceramics at high temperatures and implies that similar behaviour may be

expected at high temperatures during firing. In fact, torsion testing of sanitary
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ware bodies during firing has been shown to reveal a viscoelastic response [9].

The testing was performed over a range of temperatures from room

temperature up to a firing temperature of 1200°C and results from 800°C

onwards are clearly indicative of three component viscoelastic behaviour with

initial elasticity. As the temperature is increased, under constant applied

torque, the results reveal an increase in the initial elastic deformation and an

increase in flow rate, indicating a decrease in both the series and parallel

values of Young's Modulus as well as a decrease in the viscosity. Glass is

known to be viscoelastic at all temperatures [10] and experimental results for

viscosities in the region of 10 13 gcm- 1 s- 1 indicate stress relaxation behaviour

for a range of silicate glasses. Three component viscoelastic behaviour is

consistent with that obtained when a glass fibre is subjected to stretching; a

slowly applied strain rate allows stretching, or flow, whereas a rapidly applied

strain rate will cause the fibre to break before flow is established. This

behaviour is reflected in glass forming operations for viscosities as low as

104 gcm- 1 s- 1 , where the speed of application of the plunger can drastically

affect the build up of stresses in the glass. These elastic stresses may yield

localised imperfections or even fracture if considerable.

The viscoelastic behaviour of all ceramic bodies is dependent upon

composition and must be determined experimentally. A three component

viscoelastic model displaying initial elastic deformation, however, may provide

an adequate representation for the behaviour of most viscoelastic materials

[11] .

It is now not unreasonable to assume that deformation under the action

of gravity during the firing process may also be represented by such a

viscoelastic model.
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6.3 Applicability of Deformation Models During Firing Cycle

In all of the existing models described earlier the deformation during

firing is assumed to occur during the heating of the ware up to the maximum

firing temperature. Comparison of three sanitary ware formulations during

firing has been shown to reveal a change in behaviour due to an increase in

rigidity on cooling [9]. Investigation of the viscoelastic behaviour yielded

greater flow during the heating cycle, highlighting a reduced temperature

dependence for viscosity and Young's Modulus on cooling. The rigidity on

cooling was found to be significantly greater for the formulation with the

highest quartz content which, although considerably viscoelastic at 1000°C on

heating, behaved as though essentially rigid at the same temperature during

cooling. Results obtained from the high temperature torsion testing of

porcelain bodies also indicate a higher viscosity during cooling [12]. The

rigidity of these bodies, therefore, is greatly enhanced so that negligible

deformation may be assumed to occur after vitrification. Once cooling begins

all phase reactions terminate with porosity close to zero and firing shrinkage

constant. The types of problems which occur during cooling are those

affecting the appearance of the ware such as dunting, commonly associated

with the ox-13 quartz inversion [13]. Thermal stresses may also remain in the

ware which if considerable cause shattering. The cooling cycle, therefore,

may be assumed to play an insignificant role in the deformation of the ware

and may be disregarded in simulations.

6.4 Variation of Viscosity and Elasticity During Firing

Viscosity varies with temperature according to

ri = A T exp(103 -12,r)	 (6.2)

156



dY 2

11 _ 	 dt 

112	 dY 1

dt

(6.4).

where A and B are parameters dependent upon the composition of the melt

[14]. Values of viscosity for various silicate melts at temperatures around

1300°C have been determined [14] and lie in the region of 10 - 105 gem- is- i.

The same viscosity range has also been determined for whiteware compositions

during the glassy phase [15]. At the beginning of a firing cycle the

temperature of the article is very low so that the viscosity has a near infinite

value. The viscosity decreases to a minimum value over a time period of

approximately 10 hours, this minimum value being reached at the maximum

firing temperature. The variation of viscosity during the firing cycle and the

length of time that the ware is held at each temperature is important with

regard to the product quality and appearance.

Examination of the RC time constant for the TLM model in chapter 5

has revealed that bodies of high viscosity must be modelled using very small

timesteps. This can be seen to be extremely unfortunate for the modelling of

the viscosity range above, where the higher viscosities, and their associated

long time periods, necessitate timesteps so small that run times would be

unacceptably large. However, this problem may be overcome by considering

the stress / strain rate relationship for viscous flow,

c ..= " dt	
(6.3).

gy
Clearly, under constant stress T, a number of pairs of values of ri and 	 exist

dt

dY 1	 dY 2that satisfy equation (6.3). Therefore, if i i ,	 and 11 2, - are two such
dt	 dt

pairs of values then it follows that

Both pairs of values will yield the same strain y if the periods of flow, t 1 and

t2 , satisfy
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ti _ 111

t2	 112
(6.5).

t rise
high i

t rise	 time
low 1

As an example, consider T------106 gcm-1s-2. Then for i 1 = 1010 gem-is-i it

follows that dYi — 10 4 s-1 and for 12 = 105 gcm-1 s -1 it follows that
dt

dy 2
— 10 s- 1 . If the strains y i and y2 are to be equal and the first flow period

dt

is 4=107 s then y 1 = 10 3 = 7 2 , yielding t 2 = 102 s =
11

The stress / strain rate behaviour is clearly advantageous in the TLM

model, allowing highly viscous bodies to be modelled equivalently by lower

viscosities provided that the modelling viscosity is not so low that the

equivalence relation breaks down. The breakdown of the stress / strain rate

equivalence coincides with the viscosity at which the body begins to deform

before the full distribution of the stresses has occurred, as illustrated in the

results of the elongating viscous columns in chapter 5. Figure 6.1 shows a

typical variation in the angular strain rate under constant stress for both a high

and a low value of viscosity, as generated by the TLM model.

angular
strain rate

low n

high 1

Figure 6.1 Graph of angular strain rate against time for high and low

viscosities.

158



The steady state is reached in each case when t = trise So 
that for

0	 t	 t	 the graph follows an exponential curve and for t 	 trise the
nse

graph is constant.

Therefore, for t trise

and, for t	 trise

51-1 =
dt

(6.6)(1 -ex
P RC

LIY =
dt

(6.7).

If the modelling time period is less than trise then clearly a higher value

of viscosity must be chosen so that the stress / strain rate equivalence holds.

The variation in viscosity throughout the firing cycle may be

represented by a series combination of Newtonian viscous flows each yielding

a strain yi after their period of flow t j , as depicted in figure 6.2.

11 1 ,t 1 :11 1

1 2 ,t 2 ,T2

11 3 ,t 3 ,Y3

111 ' ti 'Ti

in	 ,7n

Figure 6.2 A series combination of viscous flows over time .
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l	

t
2	

t
3	

time L12t 1 t'
1 2 3

time

The above combination may be replaced by a single constant value of

viscosity and time period, which is calculated from the equivalence relation,
n

such that the total strain y satisfies Ey i = y. Figures 6.3a and 6.3b illustrate
i= 1

such a flow replacement under the condition of constant stress.

strain	 strain

Figure 6.3a Varying viscosity	 Figure 6.3b Constant viscosity

It is evident from figures 6.3a and 6.3b that although the strain rate differs

between the two graphs, the strain and hence, during bending under gravity,

the angular deformation, 0, remains the same so that cos0 and hence the stress

is also modelled accurately throughout the deformation using the constant

viscosity approach .

A body which may be represented by a three-component viscoelastic

mechanism exhibits such behaviour under any load and also, therefore, under a

time varying load. As a body bends under gravity it experiences a decrease in

load due to the increase in angular deformation, so that at each moment in time

the body responds with its three-component viscoelastic behaviour. Figure 6.4

illustrates such a series combination of three-component viscoelastic flows.

The parameters with subscript n denote those values at the maximum firing
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Y

time

temperature, so that X i is greater than X2 is greater than 7s.„, and similarly for

the elastic moduli.

Figure 6.4 Three-component viscoelastic behaviour with time dependent

parameters.

Due to the problem of modelling high viscosities, the above series

combination must be rearranged so that the complete behaviour may be

modelled most efficiently by the TLM deformation model. For simplicity it

will be assumed initially that the same stress t acts on each of the series

components. This assumption allows the lumping together of all the elastic

deformations resulting from the series elastic moduli, Es, so that their summed
n

deformation Y s =	 Y s.I 1
i=1

may be performed at time t=0 from a single
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n	 n

_ . 1 t _t
Es	 Esi IYs. (6.8)Ys = 1

i=1	 i=1

Es	 Esi
i=1

(6.9).

NY

time

E p n

elastic modulus value Es. It now follows that ys may be expressed in terms of

Es as

where it is apparent that the single elastic modulus Es is related to the series

values Esi by

Figure 6.5 depicts the modified representation of figure 6.4 such that the total

deformation is equal, although the transient deformation differs.

Figure 6.5 Time dependent three-component viscoelastic behaviour with initial

lumped elasticity.

It is now evident from figure 6.5 that the viscosity values X i are in

series and therefore may be replaced by a constant viscosity value X, in the

manner described earlier. The consequence of altering the viscosity is an
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t

alteration to the time scale t' which is calculated according to equation (6.5) so
t

that the ratio of	 is kept constant. The series three-component combination
X•

with constant viscosity and corresponding new time scale is depicted in figure

6.6.

Figure 6.6 Three-component viscoelastic combination with constant viscosity

and modified time period, t'.

The strain of a parallel viscoelastic combination is given by

Epi (
1- exp

( -Ep i t i  ))
Xi	

(6.10)

and is clearly unaffected by the appropriate modification of both the viscosity

and the time period.

The parallel elastic moduli Ep i are also in series so that their strains are

additive, allowing the replacement by a single elastic modulus Ep such that

	

Ep	 Epi

	

1	 1 

i=i

Ypi

(6.11).
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Consider two consecutive parallel viscoelastic flows of viscosity X and

parallel elastic moduli Ep i and Ep2, of duration t 1 and t2 respectively. The

strain is given by the following equations and is depicted in figure 6.7a.

and

(1 - exp
( 

 -EP lt
Ep i	X, )

for 0<t<ti

Epiti
+ 	  1- exp

(  -Ep 2 (t -to  ))
Y	 	  1-exp

Ep2

for t i <t<t2

(6.12)

Now let Ep i and Ep2 be replaced by a single modulus of elasticity Ep such that
1	 1	 1

— =	 + — then the strain y' is given byEp Epi Ep2

y' =	 (1- exp ( -EPti ))	 for 0<e<t 1 2	(6.13)
Ep	 X

and is depicted in figure 6.7b.

strain 7
A

72

7

strain y

1
	 t 2	 t	 t 1	 t'2

	 t'

Figures 6.7a and 6.7b Strain / time diagrams for varying parallel elastic

modulus and equivalent constant parallel elastic modulus respectively.

If the two representations are to be equivalent then the strain at t 2 should be

equal to that at t' 2 , yielding
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1 (1- exprEP1t1 ))	
t 

Y = Y2 =	 +	 (1- exp
(  -Ep2 (t2 -t1)  ))

Ep i 	X	 EP2	 X

(6.14)

and

I' = 12 = I (1- exp(  -EPtI2 ))	 (6.15).
Ep	 X

Substituting for Ep in (6.15) leads to

1' = 12 —
-Ep i EP2 V 2	 Ep1EP2tI2 't	  1exp(-	 	  -

Ep i 	(Epi +EP2) X )	
't

) + EP2 (1 ex[ 
-

(Ep i +EP2)X

(6.16).

Comparison of each of the two terms on the right hand side of equations (6.14)

and (6.16) yields,

E2V2Eit12
t 1 —	 and	 t 2 t 1 —

(Ei +E2 )	 (E1 + E 2 )

and therefore,

(6.17)

( 	 El 
t2	 +	

E2 	)
V2 = t' 2	(6.18).

(E 1 +E2 )	 (El +E2 )

The total period of flow is therefore the same in both representations. From

figures 6.7a and 6.7b it is clear that although the final deformation is equal in

the two cases the transient deformation is not identical but is in fact equivalent

due to the scaling of the time axis t'. For example, the equivalent time period

of the deformation 1 1 is denoted by t' 1 and may be calculated by equating

equations (6.12) and (6.13) at times t 1 and t' l respectively, yielding

- X 141- EP (1-ex rEP1t1	 )))=	 p	 (6.19).
Ep	 Ep i	 X

If the stress T is not constant but varies with cosO, as during bending

under gravity, then because the strains and hence the angular deformations are

equivalent in the two representations so, therefore, are the stresses.
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'I

t,

The series three-component viscoelastic combination of figure 6.4,

under constant stress, may now be represented by the single valued three-

component viscoelastic combination of figure 6.8.

E 
P

Figure 6.8 Equivalent single valued representation of a series three-component

combination with time dependent parameters.

It has been shown that in the case of either varying viscous flow or

varying parallel viscoelastic flow the replacement by constant parameters

applies under the condition of constant stress and also under a stress which

varies as cos0. In the case of a series combination of varying elastic moduli,

lumping of the components allows only one value of stress to be applied.

Therefore, if, as during bending, the true stress varies as cos° then the true

n
deformation is given by E 'MOSE) 1 compared to the lumped deformation of

. Esi1---1
n	 n

V t "C	 1
—	

1

LjEsi Es where /— is replaced by —. Clearly, as e i increases coseiEsi	Es
i=1	 i=1

decreases so that the lumped deformation is greater than the true deformation,

since in the lumped deformation the stress takes its maximum value throughout

such that cose i =1.
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EpEp
,T 

Es
,

t I t f

Consider now the series three-component viscoelastic behaviour

depicted in figure 6.9a where the viscosity is constant throughout the

deformation period. This behaviour may be represented equivalently by that of

figure 6.9b where the strains due to the series elastic components have been

lumped together and performed initially. If the series elastic moduli are to be

replaced by a single modulus value Es, as in figure 6.9c, then to ensure the

same final deformation Of at time tf, the rate of deformation must be less than

that of figure 6.9b, but still must be dependent upon the elastic parameter Ep,

demanding therefore a decrease in the stress. It follows that, for the transient

strain curve of figure 6.9c to mimic that of figure 6.9b from --LEs to Of, the

T
stress must commence at a lower value of cos—

Es
. It is evident that the three-

component viscoelastic mechanism of figure 6.8 represents this behaviour if a

constant stress of T is applied to the series elastic component and a deformation

dependent stress of TcosO is applied to the parallel viscoelastic component.

0
	 e	 e

Figures 6.9a, 6.9b and 6.9c

The application of t as the initial stress has resulted in too much stress

being applied to the system so that in order for figure 6.9c to yield the correct

final angular deformation the excess stress must be accounted for during the

transient of the parallel combination. It may be assumed that in figure 6.9b the
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deformation Of lies on a viscoelastic curve whose steady state solution is

determined only by an elastic parameter Epm. The angular deformation Of may

TCOSOf  ( 1 _ ex_ (  -Ep m tf  )).	
parallelIf thetherefore be expressed by 0 f —

Ep m	P	 A,

elasticity Ep in figure 6.9c is replaced by Ep m and the behaviour of the three

component model of figure 6.8 modified so that the steady state strain is only
T	 T	 T

dependent upon Epm, that is under constant stress —
Epm 

— —
Es 

+ —
Ep' 

then in

figure 6.9b Of is given by

WOO f  ( 1 exp (  -Ep m t f  )j	 x-i  T	
+

COSO 	 TCOSO f	 -Ep t f .
0 f	 	  1 - exp

Ep m	 X	 — Ld Esi	 Ep	 A.

It therefore follows that in figure 6.9c

tcoself  (
1- exp

(  -Ep m tf	  ))	 T	 C-c os0	 T
O f —	

_
+ —2.e

Rpm	 X	 Es	 Esi	 Es

TcosOf  (
1- exp

(  -Ep tf  ))
+

Ep	 X

illustrating that the initial excess stress, and hence strain of ts , is now properly

accounted for.

6.5 Firing Shrinkage

During the firing of vitreous china sanitary ware no elongation of the

ware is observed as a result of viscous flow and, therefore, a coupled model of

elongation and bending is not applicable. Various changes in the dimensions

of a vitreous china body occur throughout the firing process and are discussed

in chapter 4. Some of the changes are temporary, occurring over certain

periods of the firing cycle. A permanent decrease in the dimensions of a

vitreous china body is apparent once the article has been fired and is termed the

firing shrinkage. Linear firing shrinkages are commonly in the region of 10%
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of the original dimensions and thus significantly affect the amount of

deformation observed. Incorporation of this effect in the TLM model is,

therefore, essential if an accurate prediction of the deformation is required.

The variation of firing shrinkage with time is approximately linear from the

onset of vitrification up to the maximum firing temperature, and is

concentrated during this period of the firing schedule. Thus, the change in the

dimension of the body as a result of firing shrinkage accompanies the viscous

deformation.

Implementation of the linear variation of firing shrinkage over the

simulation period ensures modification of the elemental lengths at each

iteration according to
51 . (1 _ (firing shrinkage x k St)) 

810	
•

(6.20)
L simulation period

where the firing shrinkage is expressed as a percentage of the original length;

k is the iteration number;

61 is the elemental length at time k Ot;

510 is the original, pre-fired elemental length.

Consider a simply supported beam; if the material shrinks whilst

deforming viscously, as in firing, the length and thus the span of the beam will

be affected. A reduction in the span accompanies the deformation as shown in

figure 6.1.
Before firing:

After firing:

Figure 6.1 Reduction in span after firing.

169



Equation (5.31) in section 5.3.2 governing control at the ends of the

beam must now be modified to incorporate the shrinkage so that the span does

not remain constant but decreases linearly with time according to the amount of

firing shrinkage.

6.6 Analytical Elastic Solutions for Test Pieces

6.6.1 Hoop

The geometric symmetry of the test piece depicted in figure 6.4

simplifies the problem in that it is only necessary to determine the solution for

one half of the hoop.

Figure 6.4 Outline of hoop for which an elastic solution is required.

Both halves of the hoop may be considered as comprising three separate

sections, each having a different but constant radius of curvature. The width

and thickness of the hoop are constant and are considered to be small in

comparison with the circumference, so that any shearing effects are negligible.
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dU — 0dMo

dU
dTo = 0

and

(6.22)

(6.23)

radius of circle R radius of circle r •	 infinite radius
of curvature

Figure 6.5 Sections comprising right half of hoop.

The method for determining the elastic deformation of the hoop

requires calculation of the total energy of the system, U, in terms of the sum of

the bending moments acting on each section [16]. The expression for the

energy is given in equation (6.21) where MI, MID and Mjjj are the bending

moments in sections (i), (ii) and (iii) respectively.

U —
2 	-NA

---ii
2

MI	 ds + ds + m HI
2
 ds (6.21)f	 f

2E1	 2E1
i	

2E1
sI	

sII	 sIII

The differentiation of U with respect to a force, or a moment, yields the

associated displacement, or angular deformation. Assuming no rotation or

horizontal displacement at the top of the hoop due to symmetry the following

conditions apply,

where Mo is the moment at the top of the hoop and T o is the horizontal

tension.

This ensures determination of the two unknowns, Mo and To, so that

general expressions may now be obtained for the bending moments in each
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s
A = f—

M
ds

EI
0

(6.24).

section of the hoop. The change in angular deformation within each section is

then calculated from the equilibrium condition for bending beams, namely

Consider section (i) of the hoop as in figure 6.6, then the bending moment MI

at a distance Rcl) along the curve is given by equation (6.25).

(i)	 .
MI = Mo - To R(1- cos) - 5 wR2(sin(1)-sinu)du

0

which leads to

MI = Mo - To R(1- cos) - wR2 [(1)sincl)+ cog') -1}

where w is the weight of the section per unit length.

(6.25)

(6.26)

Figure 6.6 Forces and moments acting on section (i) of the hoop.

Figure 6.7 shows the forces and bending moments acting on section (ii),

where the weight of section (i) is wR(n-y) and a = —7c - kv. The expression for
2

the general bending moment Mil at a distance rck along the curve in this section

is given in equation (6.27).
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Figure 6.7 Forces and moments acting on section (ii) of the hoop.

(I)

M11 = M 7C -4, To r[sina - sin (a -4))] - f wr 2 [cos(a. -4)) - cos(a -)] 4
0

- wRr(rc - y)[cosa - cos(a -4))]

(6.27)

where M 	 is calculated from MI at 4)=Av in equation (6.26), that is

Mn _ y = Mo - To R(1+cosy) - wR 2 [(7c-w)siny -cosv -1]

(6.28).

Substituting (6.28) into (6.27) and evaluating the integral leads to

Mu = Mo - To R(1+ cosy) - wR 2 [(7r - y)siny - cosy -1]

- To r[ sina - sin (a - 4))] + wr 2 [(I)cos(a -4)) + sin (a -4)) - sina]

+ wRr(ir - y)[cos(a -4)) - cosa]

(6.29).

Figure 6.8 shows the forces and bending moments acting on section (iii) and

equation (6.30) gives the general expression for the bending moment at a

distance s from the top of this section.
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To

1

Figure 6.8 Forces and moments acting on section (iii) of the hoop.

MI11 = Ma - Tos
	

(6.30)

where Ma is the bending moment in section (ii) at (1)=a. Thus, from equation

(6.29)

Ma = Mo - T0 R(1+ cosw) - wR2 [(7t - w)sinw - cosy -1] - Torsina

+ wr 2 [oc - sina] + wRr(Tc - W)[1-cosa]

(6.31).

Substituting for M o, in equation (6.30) yields

Mill = Mo - To R(l+cosw) - wR 2 [(7c- kv)sinv - cow -1] - Torsina

+ wr 2 [a-sina] + wRr(n-y)[1-cosa] - Tos

(6.32).

It is now possible to determine the total energy U defined in equation

(6.21). Applying the condition of zero rotation at the top of the hoop stated in

equation (6.22) leads to the following expression.

r	 dMi
ds + f m	 dMii ds + f mnI

dMin ds 0 ..(633)M Ii	 dM o
1 II

--II
dMo

=
dMo

Equation (6.33) is further simplified to

fMI ds + 5 M11 ds + fivim ds = 0
	

(6.34)
I	 II	 m
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dTo
dMIII _ rsinoc - s - R[1+ cosy] (6.39).

since, by inspection,

dMi dMii  _  dMill  _1
dMo dMo dMo

(6.35).

The limits of the integrals are determined from figures 6.6, 6.7 and 6.8 so that

equation (6.34) may be expressed as

n - w	 a	 1

fM
IR cl(1) + f MIIr d(1) ± f Min ds = 0

	
(6.36).

0	 0	 0

Evaluation of equation (6.36) yields an expression of the form

MoAi - ToB i = C 1	(6.37)

where A 1 , B 1 and C 1 are constants determined by integration.

Applying now the condition of no horizontal displacement at the top of

the hoop (6.23) to the total energy expression (6.21) yields

r	 dMI	dMii  ds ±	 dMill 
j M i	 ds + f M il	 f M ill	 ds = 0

dT0	dT0	 dT01	 II	 III

where

dMI — R(1- cos(1))

dMii = _R(1+ cos) - r[sinoc - sin (cc -4))]
dTo

dTo

(6.38)

Applying the limits of integration as in equation (6.36) and thus evaluating

equation (6.38) yields an expression of the form

M0A2 + T0B2 = C2	 (6.40)

where A2 , B2 and C2 are constants determined by integration.

The values of Mo and To may now be determined from the simultaneous

equations (6.37) and (6.40). Substitution of M o and To in equations (6.26),

(6.29) and (6.32) yields solutions for the bending moments throughout the
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hoop so that the angular deformation may be calculated in each section

according to equation (6.24), to give

4) MR	 R
O i – f	 (14)= ---

EI
[M04)- ToR(4)- simI)) - wR 2 [-(1)cosd) + 2simi) - (Hi

EI
0

(6.41)

(I) M11 r  di)
OH–  f El

o

= —
r

[M0 1)– T0 Rk1+cosw]--wR2 4[(7r — W)sin w –cosw –1]
EI

–To r[4) cos kv – cos(-
2

 — kV — (1)) + sin w]

+wr2 [4sin(1-̀ - kv -)+2 + clxsinck -2sinw]
2

+wRr (7r - w)[-sin(i-- kif -4)-1:1)sinw + cow]]

(6.42)

si MI_II ds01II = 0 —Ei

s.	 [M o - T0 R(1+ cow) - wR 2 [(7c - W)sin w - COSkii -1] - Torcomv
EI

+ wr 2 [-7c— y - cow] + wRr (7c - kv)[1- siny ] - 
To s 

]
2	 2

(6.43).

The angular inclination with respect to the horizontal in section (i) of

the hoop is given by 0=7C—Ito , and in section (ii) by 0=w+4 so that equations

(6.41) and (6.42) may be expressed as

R
0 1 =	 [Mo ( n - 0 ) – To R[(rc –0) –sinO]_ wR 2 [(7c — 0) cos° + 2 sin 0 – n + e]i

EI

(6.44)
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r
en =	 [M0(0 - y)— ToR(0 — TE)[l+ cosy]

EI

-wR2 (0 - y)[(n — v)sin y —cosy —1]— To r[(e — y)cosy — sine + sin y]

+wr2 [(y — e)cose +2 +(O - xv)sin(0 - 'qv) — 2 sin kv] + wRr(7c - kv)[ - cos0 - (0 - xv)siny + cosw]]

(6.45)

and are now compatible with the rotational TLM model formulation discussed

in chapter 5.

The expressions for ei , ell and em for the left half of the hoop are

obtained by inverting the integrals in each case and replacing 0 by 2n-0 in

equations (6.44) and (6.45).

6.6.2 Mushroom Shell

Figure 6.9 Outline of three dimensional mushroom.

The analytical solution for the elastic deformation of the mushroom

shell, illustrated in figure 6.9, considers only the deformation of the plate

connecting the stalk and the dome. Due to the high elasticity of the material

deformation of the stalk and dome is considered negligible, significant

deformation occurring only in the plate.
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—1 d (rd (1 d( rd w 1)_
r dr	 dr r dr	 dr )

_ q
D

(6.46).

Figure 6.10 Circular 2-d plate with hole of radius R 1 at centre.

The plate is considered to be clamped at the inner radius, so that both

the vertical displacement and the angular deformation are zero at R 1 . At the

outer edge of the plate the thickness increases so as to reinforce the structure

where the plate joins the dome. This reinforcement is modelled by considering

the plate to have a weightless, rigid ring fixed to the outer rim which forces the

gradient to be zero. The weight of the dome acting along this circumference is

also taken into consideration.

The displacement of the plate in the z direction is denoted by w and in

chapter 2 was shown to be related to the vertical force per unit length Q by the

following equation

d (1 d ( r dw )) = _ Q
dr r dr	 dr ))	 D

(2.100).

r
The weight per unit area of the plate is given by q, so that Q27cr= fq27cr dr

0

which, upon substitution for Q in (2.100), leads to
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q27cR2 [1 V(R2 —R22)  ]
R

27ER2 (6.49)
weight of dome  -_

27ER2Q

The general solution of (6.46) is given by

qr 4 
w =	 + air 2 + a2 + a3 r2 lnr + a41nr

64D
(6.47)

where a1 ,a2 ,a3 and a4 are constants of integration to be determined.

The dome of the mushroom is of radius R and represents the cap of a

sphere of radius R as illustrated in figure 6.11.

Figure 6.11 Dome of mushroom represented by a spherical cap.

The surface area of the cap can be calculated as a fraction of that of a

hemisphere and is, therefore, given by

2 7cR2  (R - h)V	 _ R22	 ) 1
— 27tR2 [1. 

(R2

R	 R
(6.48).

The force per unit length Q in figure 6.10 is equal to the weight of the

dome per unit length. The expression for the surface area of the dome in

(6.48) therefore leads to

and substitution for Q in equation (2.100) now yields
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d (1 d ( r dw )) _
dr r dr	 dr ))	 R2

qR2[1-11(R2 -R22).  ]

(6.50).

and

Substituting for w from (6.47) at r=R2 into (6.50) leads to

ciR2	 V (R2 _R22)

qR2 	4Da3 
(6.51).

2	 R2	 R2

Also, at the outer edge of the plate the gradient is zero so that 
dw =0 at r=R2
dr

which, from equation (6.47), yields

a4
2a1R2 + (2R21nR 2 + R2 )a 3 +	 - 

R
2
3 

— 0
R 2	 16D

(6.52).

dw
The conditions at the inner radius r=R i are w=0 and —1r=0 which, from

equation (6.47), give

qlti4

n - 11) 2	 n	 n D 2 lnD	 n 1 nDa 2	 a	 - —o
64D

3
+(2R 11nR 1 + R 1 )a 3 +	

qR2
a4	 	  – 0
R I	 16D

(6.53)

(6.54).

Expressions may now be obtained for each of the constants of integration.

Rearrangement of (6.51) gives

R2 (qR2	 qR ( 1_ VR2 _ R22	 ))	 (6.55).a3 –
4D 2	 R2

Solving the remaining simultaneous equations yields

1 	 qR2  ( R12 _ R22) ± 2R 2 0nR 2 -1nR i )a 3 )	 (6.56)a4	 R2	 1	 16D

R1 2 R
2
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(2R 11nR 1 +RI)a3 (6.57)
a4 ]  1 
R 1 2R1

qR 1
4 	 2

a2 = 	  ailti - a3R 12 1nR 1 - a41nR1
64D

(6.58).

The vertical deflection of the plate w may now be determined from

equation (6.47). The angular deformation of the plate, 0, is determined by
dw

differentiation of (6.47) with respect to r, since MO = —
dr ' 

yielding

tan( 
	r3

0 =	 -1	 ell	 + 2a 1r + a 3 (2r1nr + r) + —
a4 )

16D	 r
(6.59).

6.7 Comparison of TLM with Experimental Results

6.7.1 Details of testpieces

Results have been obtained for seven vitreous china ware testpieces:

(i) three bars, supported as cantilevers;

(ii) three hoops;

(iii) a three-dimensional mushroom shell.

All of the testpieces were slipcast into plaster of paris moulds. The bars

and hoops were manufactured from the same slip, and therefore taken to be of

the same density, viscosity and elasticity. A slip of different composition was

used in the manufacture of the mushroom which produced less deformation in

identical bars made from the first slip. The values of viscosity and elasticity

for the mushroom, therefore, were assumed to be higher. The mass of each

testpiece is assumed constant throughout the deformation period so that the

bulk density increases as the volume of the pieces decreases due to firing

shrinkage. The time variation of the bulk density does not result from the
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gravitational deformation of the material and therefore the body may be

assumed incompressible throughout the liquid phase.

The bodies are assumed to deform significantly during firing throughout

the viscosity range of approximately 10 11 gom-is-1 to los gotn-1-4s and over a

time period of approximately four hours. The range of Young's Modulus in

series is assumed to be approximately 10 12 gcm-1 s-2 to 106 gcm-l s-2. The

range of Young's Modulus in parallel, implemented . as Epm described in

section 6.4, is assumed to be the same order of magnitude as that of the

viscosity.

The dimensions of each of the three bars are given in table 6.1 and

were calculated from the mould dimensions after taking account of the 4%

linear drying shrinkage. The length of each bar is the deformable length, that

is the length protruding from the clamped support.

bar 1 bar 2 bar 3

length in cm 10.40 10.40 20.24

width in cm 1.63 2.69 1.63

height in cm 0.91 1.59

.

0.91

Table 6.1 Pre-fired dimensions of bars.

The elastic solutions for the short bars, bar 1 and bar 2, may be

obtained either from the small strain analytical theory or from the TLM elastic

model as the values of the Young's Moduli are high so that both approaches

yield the same small strain result. The elastic solutions for the long bar,

however, demand implementation of the TLM elastic model as the deformation

can no longer be considered as small strain.
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diameter	 >

radius of curvature
foot length

feet
separation

A schematic of the hoops is depicted in figure 6.12 with the

corresponding dimension values being given in table 6.2. As for the bars the

hoop dimensions were calculated from the mould geometries accounting for the

drying shrinkage. In each case the cross-sectional hoop thickness is 0.92cm

and the width is 1.74cm.

Figure 6.12 Schematic of hoop.

hoop 1 hoop 2 hoop 3

foot length in cm 1.63 2.17 2.39

radius of curvature

in cm-1

1.41 1.63 1.82

diameter in cm 12.17 13.70 15.16

feet separation in cm 3.48 3.80 4.25

Table 6.2 Pre-fired dimensions of hoops.

In the TLM routine for the hoop the viscous loading in the incident

pulses takes the following form,

Vi = + 1 (11 -51 0 0 5g cos	 t	 (6.60)
2 2
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dome height

dome base
ledge

tiZ
2:11

stalk length

since each foot supports half the weight of the hoop, as in the case of a simply

supported beam detailed in chapter 5, and where 0 0(i) denotes the initial

angular inclination of each element.

Figure 6.13 depicts the central cross-section of the three dimensional

mushroom shell, the dimensions of which being detailed in table 6.3.

stalk base

Figure 6.13 Central cross-section of mushroom shell.

stalk length in cm 18.0

diagonal in cm 20.5

stalk base in cm .	 9.0

dome base in cm 28.0

ledge in cm 8.0

dome height in cm 10.0

average shell thickness in cm 0.7

Table 6.3 Pre-fired dimensions of mushroom.
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The elastic analytical solution for the mushroom assumed an average

shell thickness of 0.7cm. In the TLM routine, however, the geometry of the

mushroom could be incorporated more precisely, reflecting the variation in

thickness of the dome and ledges of the mushroom shell as depicted in figure

6.14.

4,0.7cm

Figure 6.14 Mushroom dome and ledges in detail.

The viscous loading in the pulses of the mushroom models the total

weight of the shell divided by the number of segments in the model, so that the

weight is distributed evenly around the base of the stalk.

6.7.2 Results

Details of the parameter values used in the simulations are given at the

end of this section together with the computer run times.

Figures 6.15, 6.16 and 6.17 compare the experimental deformations of

the cantilevers with the simulated results from a three-component viscoelastic

TLM model. The maximum angular deformations of the bars are compared in

table 6.4.
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Figure 6.15 Comparison of experimental results (dark outline)
and three-component viscoelaslic TLM model results for bar 1.

Figure 6.16 Comparison of experimental results (dark outline)
and three-component viscoelastic TLM model results for bar 2.
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Figure 6.17 Comparison of experimental results (dark outline)
and three-component viscoelastic TLM model results for bar 3.
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average measured

angular deformation at

end of beam in degrees

predicted angular

deformation at end of

beam in degrees

bar 1 21.33 21.83

bar 2 7.75 7.06

bar 3 77.75 77.70

Table 6.4 Comparison of the experimental cantilever deformations with

predicted deformations using a three-component viscoelastic TLM model.

The experimental results were determined from the average deformation

of three bars in each case. Each ceramic beam was placed on graph paper so

that the outline of the piece could be plotted and the average angular deflection

at the end of the beam could then be measured. The variation of these results

was no greater than 5%. The percentage errors in the results of table 6.4 are

2.3%, 8.9% and 0.1% respectively. The cross-sectional area of bar 2 is

greater than that of the other two bars so that the weight is also greater.

Tighter clamping is therefore required for bar 2 which, if insufficient, will

introduce error in the experimental deformation. The larger error associated

with bar 2 is, therefore, possibly due to insufficient supporting conditions.

Figure 6.18 compares the experimental deformation of hoop 2 with the

simulated results from a three-component viscoelastic TLM model. The

maximum vertical and horizontal deformations of each of the three hoops are

compared in table 6.5. The experimental values given are the average values

of three hoops per geometry, the variation in each case being less than 6% .
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Figure 6.18 Simulated 3-component viscoelastIc deformation 	 outlineoverlying original pre-fired hoop geometry. 	 (dark	 )

189



original
diameter

CM

measured
change in
height cm

predicted
change in
height cm

measured
maximum
horizontal
diameter

CM

predicted
maximum
horizontal
diameter

CM

hoop 1 12.17 1.84 1.86 11.55 11.78

hoop 2 13.70 2.60 2.53 .	 13.65 13.44

hoop 3 15.16 3.47 3.37 15.70 15.16

Table 6.5 Comparison of the average experimental hoop deformations with

predicted deformations using a three-component viscoelastic TLM model.

The percentage errors in the results of table 6.5 are less than 3.5% for

each of the hoops. In practice a horizontal bar connects the feet so that the

hoop is a stable, upright structure throughout the firing process. However, the

bar is not modelled either elastically or viscoelastically as its presence is

assumed to have a negligible effect upon the main deformation of the hoop.

The model assumes that the base of the feet do not bend but ensures that the

feet separation experiences the correct amount of firing shrinkage by

incorporation of the PID control theory of chapter 5. The boundary conditions

applied in the model lead to the very slight buckling inwards of the legs of the

hoop, whereas in reality the legs bend outwards due to the slight raising of the

bar in between the feet.

Figure 6.19 compares the experimental deformation of a segment of the

mushroom shell with the simulated results from a three-component viscoelastic

TLM model. Table 6.6 compares the average experimental results of three

mushroom shells with simulated results.
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Figure 6.19 Simulated 3-component viscoelastic deformation (dark outline)
overlying original pre-fired mushroom shell segment.
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measured results predicted results

change in maximum
vertical height

3.68 cm 3.34 cm

maximum angular
deformation near centre

of ledge

90 - 20° 8.25°

vertical height at outer
ledge circumference

15.60 cm 15.86 cm

Table 6.6 Comparison of the average experimental deformation of the

mushroom with the predicted deformation using a three-component viscoelastic

TLM model.

The variation in the average vertical deflections of the experimental

results was less than 3%, the angular deflections in the ledge however

displayed a greater variation of 38%. Most errors in table 6.6 are less than

10%, although the undulation in the mushroom ledge increases the error to

slightly less than 60%. The thickness of the mushroom ledges, although

modelled as a constant, does vary slightly around the circumference of each

mushroom. A variation in the thickness of the shell can significantly alter the

amount of deformation as angular deformation is inversely proportional to the

square value of the thickness. The mass of each of the fired mushrooms is also

not constant, suggesting either a discrepancy in density and/or shell volume.

The variation of angular deformation in the ledge could also possibly be due to

an uneven temperature distribution which is not accounted for in the model.

The analytical elastic solutions used in the model only assume

deformation in the ledge of the mushroom so that errors may have been

introduced by the simplicity of the model. The base of the mushroom which

constitutes a circular plate is not modelled either elastically or viscoelastically

as it is assumed to have a negligible effect upon the deformation of the

structure. As for the hoops, the model ensures that the base of the stalk
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experiences the correct amount of firing shrinkage by incorporation of the PID

control theory of chapter 5.

All models were run with converged values of elemental length and

timestep. For the bars and hoops a viscosity of 105gcm- 1 s- 1 demanded a

timestep of 10-7s for convergence. The model of the mushroom shell was

executed with a higher viscosity of 2x10 5gcm- 1 s- 1 , demanding a converged

timestep of 5x10-8s. Each model was run for a simulated time period of

0.017s being equivalent to approximately 4 hours over the true viscosity range.

The density parameter of each body was 2.4 gcm -3 and the linear firing

shrinkage was 8%. The series elasticity parameter value used for the bars and

hoops was 3600x104 gcm-1s -2 and the parallel elasticity value Ep m was

900x104 gcm -l s-2 . The viscosity and Young's Moduli of the mushroom were

determined by comparing the experimental deformation of a cantilever, having

the same dimensions of bar 1, with simulated results and increasing the

parameter values until good agreement was observed. The series elasticity

parameter value used was 4500x104 gcm-
 
1 s-2 and the parallel elasticity value

Epm was 900x104 gcm-ls-2.

For each of the short bars 41 nodes were used in the model and for the

long bar 81 nodes were required for convergence. Run times of these

simulations were approximately 20 minutes on 486 IBM compatible PC. The

run times of the hoops were approximately 40 minutes due to the increase in

the number of nodes required. The mushroom shell required 174 nodes with

an average nodal separation of 0.25cm along the length of each segment and

was run with 12 segments. Because of the smaller timestep and the two

dimensional structure of the TLM routine the run time of this model was

greatly increased to 4 days and necessitated the use of a Sun Sparc 10 work

station. However, due to the symmetry of the structure the mushroom could

be modelled using a one dimensional routine which would reduce the run time

to a couple of hours on a 486 PC.
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CHAPTER 7

DISCUSSION

This final chapter reviews the thesis and emphasises the more

significant aspects of the research. Areas for future work are also highlighted.
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(5.69).

7.1 Summary of Thesis

The transmission line modelling (TLM) technique has been applied to

two types of deformation, these being elongation and bending, each under the

effect of gravity. Models of viscous deformation have been formulated in each

case. More complex models of viscoelastic behaviour have been developed

and applied to bending under gravity. The behaviours modelled are:

a) series viscoelastic behaviour;

b) parallel viscoelastic behaviour;

c) three-component viscoelastic behaviour.

An elastic TLM routine which provides steady state solutions for beams

bending under their own weight has also been developed. The application of

the TLM modelling technique to each type of behaviour ' above is presented for

the first time in this thesis.

Although the elastic model represents the behaviour of a damped wave

it does not, in its present form, match the transient behaviour of a parallel

viscoelastic mechanism as represented by the viscous based parallel viscoelastic

model. From chapter 5, the damped elastic equation used to obtain elastic

steady state solutions is given by

However, for the transient behaviour to match that of the viscous-based

parallel viscoelastic model, the term containing the first order time derivative

must take the following form,

x o2 i  az()  )
E ax2	 at )

since the viscous-based equation is given by

(7.1)
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(5.57)

ao
where co =	 .

at

In equation (5.57) the gravitational term contains the required steady state

elastic solution and therefore represents the two terms on the left hand side of

equation (5.69), once this equation has been multiplied through by E/?.

Clearly, the angular acceleration term appears identically in both equations so

that only with the modified time derivative term of (7.1) does the damped

wave representation model the parallel viscoelastic mechanism. Unfortunately,

a wave equation comprising the term of (7.1) is not in the required form for

solution by the TLM technique so that the viscous-based approach of equation

(5.57) has been adopted. Upon comparison of the time derivative of equation

(5.69) and that of (7.1) it is evident that, although dimensionally identical, the

first term represents damping associated with the total velocity and the second

term represents damping associated with relative velocities of the body. This

implies that the term of equation (5.69) models an external damping effect,

such as air resistance or the damping imposed by the viscosity of an external

medium, and the term of (7.1) models an internal damping effect.

7.2 Important Features of the Deformation Models

The viscous model of an elongating column of fluid yields solutions

throughout the entire viscosity range which reveal the inherent ability of the

model to reflect the associated change in physical behaviour from non-

Newtonian to Newtonian. At high viscosities the model reveals a

proportionality between the rate of elongation and the weight distribution in the

column, whereas at low viscosities this proportionality is shown to break

down. The bending model is dependent upon the shearing forces for the
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loading of the network and therefore is dependent upon resultant stresses from

the elongational model to represent accurately the behaviour throughout the

viscosity range. The bending model, therefore, does not display the same

inherent ability to distinguish correctly between highly viscous and low viscous

behaviour, and is instead dependent upon the loading for this information. The

necessity for coupling of the two models at low viscosity is clearly apparent,

whereas at high viscosities the need for coupling is eliminated due to the

viscous body stresses being directly proportional to the weight distribution.

Results from the viscous bending model illustrate the viscous/elastic

analogy under constant shearing stress, which has been used by previous

investigators of ceramic deformation as mentioned earlier in chapter 6. It is

now apparent why results using this analogy did not yield good agreement in

industrial practice as the loading neglects the angular dependency given by

cos0 and is therefore incorrect for viscous deformation under gravity,

particularly when the deformation cannot be considered to be small strain.

An unfortunate aspect of the viscous model is the relationship between

rate of flow and the modelling timestep, such that highly viscous fluids, being

slow moving, necessitate very small timesteps compared to those associated

with fast moving fluids. However, this modelling disadvantage can be taken in

hand and minimised to an extent by effectively scaling the flow, which is

achieved by choosing a lower viscosity, but not so low that the proportionality

of stress and strain rate is no longer satisfied, accompanied by an associated

smaller time period.

In the application of the deformation models to ceramics the parameters

were lumped together rather than modelled as varying throughout the transient.

In this case, although the range of the parameters could be ascertained, the

precise variation of the parameters was not known. Reducing the total number

of parameters to the minimum possible, that is one per component, was
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therefore deemed the most efficient choice and retained simplicity within the

model. Clearly, in situations where the precise variation of the parameters of

the transient is known the true values may be modelled directly for the

associated flow periods. Time dependency of network parameters has been

addressed in chapter 3 and does not in itself pose a difficulty to the TLM

technique. The variation of series elastic component parameters, however,

may prove to be cumbersome due to the need of obtaining each solution for a

beam having initial curvature. As with any numerical model a balance must be

found between computing efficiency and true parameter representation, so that

in the case of continuously time varying parameters it may prove more

acceptable to simplify the model and use model parameter values which, like

the true parameter values and as shown for the ceramic testpieces, are

consistent over a range of geometries for a given material composition.

Clearly, however, modifications to the firing schedule, such as a sudden rise in

temperature at a particular point during the transient, may be more easily

modelled if the true parameter variations and time scale are used. The lumping

of parameters, therefore, lends itself more successfully to the prediction of

deformation of different geometric designs, once the firing schedule has been

decided upon and the model parameters have been determined.

The simplicity of the models is highly evident throughout and is

particularly apparent in the meshing of the networks. . As bodies deform the

TLM meshes retain their original configuration since only the loading,

modelled by the pulses, is deformation dependent and therefore re-meshing is

elegantly avoided.

Although, thus far, the elastic model has been applied only to cantilever

beams in order to obtain steady state elastic solutions it is anticipated that the

model may be equally applied to more complex structures, such as the hoop

shapes and the mushroom shell, as it adopts a similar loading approach to that
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of the viscous models. Due to the simplicity of the loading it is not

unreasonable to expect that the elastic TLM model would significantly facilitate

the calculation of these solutions when compared with the lengthy analytical

approach detailed in the previous chapter.

7.3 General Applicability of Models

All of the models that have been developed assume either pure traction

or pure bending, that is deformation occurs in one plane so that torque or in-

plane shearing effects are neglected. Deformation occurring in more than one

plane requires a fuller treatment that considers stresses acting in the remaining

dimensions. This leads to the incorporation of the full Navier-Stokes equations

which relate the velocity components in each of the three dimensions thus

demanding the coupling of three velocity meshes. Clearly, in all of the

examples considered and in each of the simulated results the present models

have proved to yield adequate results, as the deformation in each case is

predominantly in one plane due to the manner of support.

Other features of the bodies considered include geometric symmetry

and constant viscosity throughout the body, which eliminate considerations of

lateral yielding. Under gravity each body is subjected to a single force which,

in the case of a vertical column, acts so as to produce deformation in a vertical

direction. A horizontal force acting on the column, as depicted in figure 7.1,

will yield deformation similar to that of a cantilever subject to a vertical force

of the same magnitude and the component of the force acting on the column is

therefore Fsine, where 0 denotes the angle with respect to the horizontal.

When this column is subject to gravity the total force on each element of the

column is given by gcos0 + Fsine.
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viscosity
decreasing

Figure 7.1 Vertical column deforming under the effect of a horizontal force.

Lateral yielding due to a variation in viscosity or an asymmetric

geometry may produce an effect similar to that of figure 7.1, so that the

horizontal force F arising from the asymmetry must be determined in either

case. The present models do not account for such significant asymmetric

effects and therefore assume symmetry through the centre of gravity of each

body so that bodies standing upright are always assumed to be geometrically

stable. In the sanitary ware industry although articles are asymmetric

significant in plane shearing, perhaps due to a considerable variation in

viscosity and resulting in geometrically unstable bodies, is undesirable and

therefore avoided so that the modelling of such effects is not required.

An effect more predominant in the ware producing asymmetry is

surface rippling. Rippled surfaces may arise as a result of a slight variation in

the viscosity, probably due to variations in the temperature profile, and may be

modelled by the implementation of a two dimensional mesh. For example,

consider a 2-d plate supported along its width as in figure 7.2.

Figure 7.2 Plate supported as cantilever with varying viscosity.
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Here the viscosity decreases towards the centre of the plate so that the

resultant deformation yields a central dip in the plate. The simple two

dimensional model that neglects deformation parallel to the width may be used

to approximately model this effect provided that the viscosity variation is

slight. In this approach each strip of the plate deforms as a cantilever beam of

constant viscosity along its length, the central beam being of lowest viscosity.

Clearly, the central beam will yield the most deformation thereby producing

the central dip. However, although the variation in viscosity affects the

magnitude of deformation experienced by each strip of the plate, the bending

in the direction of the plate parallel to the width is unaccounted for so that

strips are displaced vertically with respect to one another, as shown in figure

7.3.

Figure 7.3 Cross-section of plate parallel to the width before and after

deformation.

In a full dimensional model bending in the direction parallel to the width would

be accounted for, yielding the deformation depicted in figure 7.4.

Figure 7.4 True bending of plate cross-section.

Clearly, provided that the variation in viscosity is slight the deformation

of figure 7.3 may be assumed to be in close approximation to that of figure

7.4.
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A viscosity variation in the height of the plate, however, cannot be

represented by the present approach as it is assumed that each vertical section

remains plane as the plate bends and so the area moment of inertia of each

element takes into account the total height of the plate.

370x555 370x585 356x550 360x570 380x565

Figure 7.5 A variety of bidet designs.

The consideration of undulating surfaces leads to the consideration of

geometrically asymmetric surfaces in bodies such as toilet pedestals, bidets and

wash basins which, although they have a plane of symmetry, do not exhibit

rotational symmetry. Figure 7.5 illustrates . a variety of bidet designs, each

having only one plane of symmetry. Each basin is slightly oval shaped so that

every segment of a particular bidet, stretching from the base to the top of the

article, is inclined at a. slightly different angle to the vertical. Therefore, the

body exhibits a variation in curvature both radially and along the length of each

segment. However, if the variation in radial curvature is very gradual and less

defined than the variation along a segment then again the basic two

dimensional equation, considering deformation in only one direction, may be

considered to give an accurate representation of the deformation.

The three dimensional bodies considered so far have single walls and

the models therefore may be applied to a variety of ware including vases, lamp

bases and bowls. Close inspection of sanitary ware pedestals and wash basins,

however, reveals that these bodies are double walled, as depicted in figure 7.6.
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Inside of
pedestal bowl

It is anticipated, therefore, that hoop-shaped shell structures may be required

for the representation of such geometries.

Figure 7.6 Cross-section of the front part of a pedestal.

7.4 Conclusion

Models of deformation for viscous, elastic and viscoelastic behaviour

have been developed using the transmission line modelling technique. The

models represent elongation and bending under the effect of gravity and in the

latter case have been validated theoretically. Three-component viscoelastic

models simulating the behaviour during firing of a range of vitreous china

testpieces have been shown to yield good experimental agreement. The

application of the models to the sanitary ware industry has also been discussed.
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Appendix I: Thevenin's Theorem Applied to a Node

The equivalent electrical circuit for an n-dimensional node consisting of

both resistors and transmission lines is depicted in figure 1. 1, where the

subscript m denotes the number of branches such that m=2n. The stub

transmission line is represented by the branch having subscript 0, the resistor

Ro only being included for completeness. Each branch terminates in an open

circuit so that the incident voltage pulses are perfectly reflected. The resulting

superposition of pulses is represented at the end of each branch by a voltage

source.

•

R1	 R2	 R

Z1 1z2	 iZm i ZO

Figure 1.1 Equivalent electrical circuit of an n-dimensional TLM node.

Kirchoff's Law states that the net current flow at the nodal junction is

zero, yielding

2 Vo - (1) + 2V1 ' - 0:1:0 + 2 V2 i (1)	 -2 V i (1)
	  + 	 m	 —

Ro + Zo	 R1 + Z 1	 R2 + Z2 	• R m + Zm

	 1
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Rearranging (1.1) gives

	

( m f m	 'N

1  1	  1 VI  2Vii
(1)	 =

RI +Z 1	Ld (RI +Zi)
1=0	 \1O

and solving for cto leads to

1 2n	 1	 [ 2n	 1
1  2-\/	 1	 1 =	 —	

.0	 where, Y /

	

(R 1 + Z 1 ) Y	 RI + Zi
n 1=0	 i	 1=0	 I

(1.2).

The expression for the reflected pulse values may be determined by

consideration of current flow along branch 1. The potential drop across the

resistor is given by cl) - (V 1i + V 1r) and the difference in potential across the

transmission line is given by V i i + Vi r - 2V 1i. The current flow through the

resistor must equal that through the transmission line, so that

(1) - (V1 i + Vi r ) _ Vii + Vir - 2V1i 

(I. 3).
R 1 Z1

Rearrangement of (1.3) yields the following general expression for the reflected

pulses,

	

Zi	 (R1 - Z1 )	 •
V r1 —	 _ 	 0 ± 	 Vli

(RI +	 Zi )	 (R1 +Z1)
(1.4).
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