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Outline of This Thesis 

This thesis discusses the unique nature of the shoe manufacturing industry, and 

how the introduction of robotics is likely to affect the structure of this industry. 

The thesis covers the problems involved in introducing robotic technology, the 

benefits the industry is likely to gain, and the novel techniques required for 

robotizing certain processes within shoe manufacture. One particular application is 

described in detail, that of shoe sole assembly. 

In addition to the introductory chapter there are 5 more chapters in this 

thesis. These chapters follow in a logical progression showing how this line of 

research progressed throughout its three year life span. 

The next chapter (chapter 2) outlines the various pieces of research 

undertaken by other establishments that have a relevancy to robotic assembly, or 

more specifically, to shoe assembly. In particular the project covers the sensors, 

and sensory techniques, available to those working on robotic assembly projects. 

Chapter 3 covers in detail one particular sensing device, the dynamic RAM 

camera. This inexpensive solid state device has a number of properties that are 

uncommon in other sensors. These properties are described along with potential 

applications in robotics. 



The fourth chapter is a chronological account of the shoe sole assembly 

research project. Various approaches were investigated and this chapter discusses the 

major milestones in the evolution of the project, giving the reasons behind each 

change in direction. 

Chapter 5 describes, in detail, the hardware and software aspects of the 

proposed final shoe sole assembly approach. 

The final chapter covers the possible future of the project and its contribution 

to industry and robotics in general. Further enhancements to the system are 

discussed which are designed to transform it from a research environment into a 

viable industrial assembly cell. 



'The woods are lovely, dark and deep. 
But I have promises to keep, 

And miles to go before I steep. 
Robert Frost 

Stopping by Woods on a Snowy Evening 
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1.0 INTRODUCTION. 

The United Kingdom suffers from a typical problem that is exhibited by all 

developed nations. This problem relates to the continuing need for its industries to 

improve productivity. It is the goal of all governments to improve what is called 

the standard of living for its electorate. One of the ways of gauging this standard 

of living is in the purchasing power of the people. The more they can afford, the 

better off they are. This has only been achieved to date by increasing wages. 

No country is completely self sufficient and must trade with others. The goods 

they produce must be competitively priced. It is very difficult to do this if labour 

costs are high compared to developing countries. There are two ways of getting 

round this problem: - 

1. Increase productivity per unit labour. 

2. Improve product quality per unit cost. 

Both can be achieved by using automatic production techniques. This is true for 

the shoe industry as for other industries. Once this lead has been obtained, it is 

necessary to maintain it. Industry must therefore look to research and development 

to look into ways of expanding on these two factors. 

One of the primary functions of a university is to form a centre for research 

and development. This thesis describes a university research project inspired by the 

shoe industry's requirement for a means of automating the standard shoe assembly 

process. As will be described later, shoe sole assembly has been identified as one 

of the most important and logical areas requiring automation using robots. 
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SATRA 

The Shoe and Allied Trades Research Association is classed as a company 

(company number 153475). As a company, SATRA possesses a charter or 

memorandum of association [1]. This charter outlines the work and aims that the 

employees of SATRA involve themselves with. As its name suggests, SATRA's 

statement of association requires that they involve themselves in all aspects of shoe 

manufacture. Being a 'research association' requires that the main emphasis of the 

company is geared towards research interests that would benefit the industry. Many 

of the functions of SATRA come under the category of services (materials testing, 

consultancy, etc. ). Being a non profit making organization, many results of 

SATRA's research activities are made freely available to subscribing member 

footwear companies. As well as doing independent research, SATRA monitors 

industrial developments and research activities being carried out by other industries. 

This relaxed viewpoint away from the need to make shoes and profits enables 

SATRA to analyse an industry that is mainly made up of small companies. This 

pooling of resources towards a common research establishment provides the shoe 

industry with a useful facility to view developments in industry in general and 

adapt and adopt techniques at SATRA for the shoe industry in particular. 

Technologists brought in from all areas of expertise are used to input fresh ideas 

and mix these with those of experienced shoemakers. All this goes a long way to 

improving the footwear industry and its product. A year or so prior to this project 

(around 1983), SATRA undertook to investigate how robots were affecting, and 

were likely to affect, the future of the footwear industry. 



1.2 Robots for shoe assembly. 

Shoe assembly in the UK cannot be considered as the most obvious place to 

introduce robotic systems. UK manufacturers in general are small companies coping 

with small batch sizes with considerable size and style variations between each 

batch. Even the larger shoe manufacturers like Clarks, Lotus, and K Shoes have 

found it difficult to adopt robotic assembly techniques. This reluctance owes 

considerably to the nature of the market. Trends vary rapidly, with styles changing 

seasonally in line with the weather. Individual tastes also vary considerably, creating 

a demand for a very large combination of colours, patterns, and styles quite aside 

from the necessary variation in sizes required. These factors tend to put a 

restriction on even the large scale manufacturers to increase batch sizes above a 

few dozen pairs before at least changing the shoe size if not the style. All of 

these factors become very important when applied to robots. If robotic techniques 

were to be introduced into the shoe manufacturing process, a great deal of 

consideration would have to be given to the flexibility and capability of coping with 

variations between batches. This flexibility must also be reflected by the robot 

hardware, keeping the number of tool changes to a minimum and maintaining a 

stable configuration regardless of batch type. 

All the basic steps in shoe assembly currently require manual input in 

conjunction with machinery. A great many of the operations require an operator to 

feed or place or guide an article in or through a machine. This is true for nearly 

all of the assembly line, from using presses to cut out leather shapes, through 

stitching of pieces of leather together and assembling them on to the solid shoe 

formers, or lasts. A simplistic diagram of the assembly process is shown in fig 1.1. 

This diagram shows the key operations required for a last built shoe with stick-on 

sole. The parallel operations (piece and pattern stitching) may or may not occur 
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depending on the style of shoe and the factory policy. Options also apply to some 

additional operations like drying stages, heat setting, leather styling and patterning, 

etc. 

All of the assembly operations require manually operated machinery. Most 

pieces of machinery require minimal reconfiguration between batch changes. Any 

reconfiguration that is required is decided upon by the operator. This decision 

making process would have to be synthesized should robots be required to replace 

an operator in an assembly station. A robot with these capabilities would be 

considered artificially intelligent, deciding on what changes have to be made to the 

assembly environment under certain conditions. This means that a robot assembly 

station for shoe assembly would not only be required to be flexible, being able to 

handle variations in assembly components, but also in possession of some form of 

intelligence, being able to recognize that these changes have occurred. 

Although costs are coming down, robot systems are still very expensive. In 

many cases it is very difficult to justify installing a robot system to replace a 

single operation. The shoe making process is essentially sequential, shoes travel 

along a single assembly line and individual operations occur in a sequential manner. 

The only place where this is not strictly true is in stitching. Here stitching 

operations for the same shoe can be carried out in parallel, one station doing the 

toe piece of a shoe whilst another is doing the heel or side. This is, however, 

merely component assembly and the operations are still being carried out on single 

machines. In the object assembly of the shoe on to the last, an appreciable time 

gap occurs between each operation. Each individual operation only requires one 

operator. It is safe to say, therefore, that it is only possible for there to be one 

robot per operation at a minimum. There are no places where a robot can be 

used to replace more than one operator. Most companies in the UK require a 
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payback on machinery of between 2 and 5 years. Judging by robot costs, this 

means that a robot has to be as fast, accurate, and attentive to detail as a human 

operator. 

Robot systems start to become more cost effective when considering the 

inclusion of a multi robot environment. If there is a certain amount of data that is 

used for more than one assembly operation then it may be possible to modularise 

a system in such a way as to reduce machine requirements. A supervisory 

computer may be used to alert each individual work station connected to it as to 

the nature of the assembly components. Such a system reduces the burden at the 

assembly station end making the robot requirements simpler and therefore cheaper 

(see figure 1.2). Only one supervisory computer need be used to control the flow 

of components to a large number of work stations. The investigation that SATRA 

undertook showed that a semblance of a system could be built into the shoe 

manufacturing process. Such a system was thought feasible if built around the shoe 

sole assembly area. There appeared to exist a commonality between three sequential 

operations: - 

1. Roughing. 

2. Adhesive application. 

3. Sole bonding. 

The procedure required for roughing is to scour a band of leather that is 

pulled around the base of a lasted upper. A typical l asted upper can be seen in 

figure 1.3. This scouring process is designed to remove the smooth outer leather 

surface to allow adhesive to soak in so that a strong bond may be produced. In 

the second operation adhesive is applied around this roughened band of leather. 

After a drying period designed to allow the adhesive contact to strengthen within 

6 
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the leather, a sole is bonded to the upper in the third operation. This operation 

entails firstly 'spotting' the sole on to the upper, achieving correct positioning with 

hand pressure just prior to insertion of the completed item into a press. 

Each of the three sole assembly operations use data that is common to them 

all. This data concerns the shape of the lasted upper profile that is to be bonded 

to the sole. A common technique used for roughing is to scour the profile with a 

wire brush. The same profile is used in adhesive application when using an 

adhesive brush. The spotting process also uses this shape, forming the sole around 

the profile. This spotting process was considered as the most complex of the three 

operations and, since little work had previously been done on it, a good place to 

consider research into how it may be robotized. 

1.3 Shoe sole assembly. 

Figure 1.4 shows a flow chart description of the key operations associated with 

the sole bonding assembly station. Note that this is a trace of a single shoe 

through the station where usually shoes go through in pairs. Note also that the 

flow chart is for the most common sequence of events and that there are slight 

alternatives to the procedure. The most common of these alternatives will be 

mentioned in the description that follows. 

Lasts are generally presented to the assembly station on a conveyer rail. This 

rail moves partly completed items around the factory. There are alternative systems 

to conveyer rails (e. g. pass through systems), all of which are designed to make 

the last easily available to the operator inside the work station. Matching soles are 

presented to the operator at the same time as the lasts. These are sometimes 

9 



lasted upper on 
conveyor rail 

sole units in 
feeder 

sole units to adhesive- 
heciter/ reac t1vator 

A spot J connect 
so[e to upper 

transfer unit to 
press, activate press 

return complete unit 
to conveyor rail 

fig 1.4 
Key operations for sole 

bonding process 

ic 



presented on the rail alongside the upper having been sorted out previously, but 

are usually presented in a bunch, separate from the rail, in boxes. The bonding 

surface of the sole unit is coated with a thin layer of adhesive. This adhesive will 

be dry to start with and is heat activated just prior to bonding. The adhesive on 

the lasts may or may not be activated prior to bonding, this varies from factory to 

factory and may also be dependent on material and adhesive types. 

The spotting operation is the accurate location of soles with respect to uppers. 

With the sole tacky from heat activation, it is carefully joined to the upper so that 

it looks correctly placed. Some soles have beaded borders which can allow for 

some margin of error but the sole bonding process is generally reliant on the 

operators judgement. All of the bonding area on the last must be covered by the 

sole. If this is not achieved the sole will not adhere to the upper, resulting in 

defective shoes. There is also the aesthetic property of the appearance of good 

alignment between sole and upper (particularly about the toe area) that must be 

considered when performing the spotting operation. This aesthetic quality is very 

difficult to quantify. 

After this operation the assembled unit is put into a press. The press exerts 

large pressures (up to 1OkN force) to make the bond more permanent. Jacks are 

used to clamp the last in position and hydraulic pressure is exerted from below the 

last forcing a compliant surface up around the bonding area thus distributing the 

force throughout this surface (fig 1.5). Another type of press, a bag press, is 

sometimes used as an alternative but this is not very common and is generally used 

on the more unusual shoe types. 

Although each event during the assembly is sequential for an individual shoe, 

there is an element of parallel handling at this station. The presses generally have 
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to be set up differently for left and right shoes. Therefore, the station has two 

presses. Since the press and heater are activated for set time periods, it is possible 

to coordinate the operation to overlap the work on one shoe with that on another. 

When one press is active the operator can spot the other sole on to the upper. 

When the heater is active, the presses can be loaded and unloaded accordingly. 

1.4 Outline of This Thesis 

In addition to this introductory chapter there are 5 more chapters in this 

thesis. These chapters follow in a logical progression showing how the project 

progressed throughout its three year life span. 

The next chapter (chapter 2) outlines the various pieces of research that have 

a relevancy to shoe assembly and to robotic assembly in general. In particular the 

project covers the sensors, and sensory techniques, available to those working on 

robotic assembly projects. 

Chapter 3 covers in detail one particular sensing device, the dynamic RAM 

camera. This inexpensive solid state device has a number of properties that are 

uncommon in other sensors. These properties are described along with potential 

applications in robotics. 

The fourth chapter is a chronological account of the shoe sole assembly 

research project. Various approaches were investigated and this chapter discusses the 

major milestones in the evolution of the project, giving the reasons behind each 

change in direction. 
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Chapter 5 describes, in detail, the hardware and software aspects of the 

proposed final shoe sole assembly approach. 

The final chapter covers the possible future of the project and its contribution 

to industry and robotics in general. Further enhancements to the system are 

discussed which are designed to transform it from a research environment into a 

viable industrial assembly cell. 
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2.0 ROBOTICS AND SENSORS FOR SHOE ASSEMBLY. 

The British Robot Association produced a document for 1984 outlining the way 

robots have developed in the UK [2]. At that time the UK had a population of 

2623 robots giving it a ranking of sixth in the world (excluding eastern block 

countries due to lack of information). Unlike many other countries, the growth of 

robots in the UK has been due to a steady increase rather than a rapid one. It is 

not surprising, after noting this small number, that virtually no robots are to be 

found in the UK shoe industry. 

The purpose of this chapter is to outline how the various existing robotic 

systems, and the sensory devices available for use in such systems have influenced 

the research strategy and system design for this particular project. 

2.1 Robots. 

The reason for the low number of robots in shoe manufacture in general 

(both in the UK and the rest of the world) is quite simple and has been intimated 

already in the first chapter. There already exists a high degree of sophistication in 

the footwear manufacturing process. The human input involves a high degree of 

skill in each assembly operation. The three main skills employed are decision 

making, dexterity, and adaptability. They may not be conscious skills but they are 

necessary, mainly because of the variable nature of the product. 
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Since there are so few examples of robotics with respect to shoe making, it is 

worth dwelling on some of the more interesting points of technology and outlining 

their relevance. Some of the following examples will not include robots, but the 

technology does apply to the problem of shoe sole assembly. 

A force controlled robot for bottom roughing (or carding) of lasted uppers was 

proposed by Chirouze [3] as far back as 1980. At the time of publication they had 

not demonstrated any force control nor did they propose any feasible means for 

last digitisation. The paper did however underline the obvious need for force 

control in this application. No further publications have since come from this 

source, but commercial bottom roughing machines do now exist, using force control 

to avoid uneccessary scouring of the leather [4]. 

Dedicated bottom roughing machines have been produced by shoe machinery 

manufacturers like USM in America [5]. These machines scour down both sides of 

a last simultaneously, a feat that robot based systems would find very difficult to 

do. Early versions of this type of machine still required an operator to finish off a 

lasted upper. Later versions are now using force feedback to produce comparable 

quality to a human operator on a number of shoe styles in a shorter time. These 

machines are, however, very expensive and still require an operator to feed in 

lasted uppers and recall programs for different sizes and styles of last. 

The next point Of interest on from roughing is adhesive application. This is 

perhaps the most likely operation to robotize since an adhesive brush is a very 

portable object and does not require large degrees of force or dexterity to 

manipulate. The adhesive application action must be more accurate than the 

roughing process and more attention to detail must be made. If a wire brush or a 

roughing wheel (without force feedback) goes off line, it just misses the surface 
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causing no damage to the last. Liquid adhesive is likely to flow over the sides of 

the upper causing damage that cannot always be rectified. 

Up to now any robotic devices designed for adhesive application have not 

been sensor based. Both the work done by SATRA [6] and the commercial device 

produced by Crantech [71 rely on a pre-programmed path for the robot to follow. 

In each of these systems the problem may not be how accurately the robot can 

follow the path, but in actually presenting the last to the system. The robot itself 

is required to do the adhesive application. Either sophisticated gripping mechanisms 

or complex feeding mechanisms will be required to make the system totally 

manually independent. Such requirements add considerably to the cost of a system 

and to the assembly time. 

To date, there have been very few attempts to automate the sole spotting 

process with no documentary evidence at all. The real difference between this 

operation and the two previous operations is the introduction of an extra part in 

the shape of the sole unit. Whilst sensory input would improve any robotic system 

for roughing and gluing, they are not essential to a working system. The spotting 

operation can only be realized with the use of sophisticated sensory input. The 

reason for this is that the robot has to know the relationship between one assembly 

component and another and then bring them together. Unlike most robotic 

assembly tasks the shoe sole assembly is vague. It is possible to join the sole to 

the upper in a number of positions and still achieve a good fit. This implies that 

vision type sensory devices are necessary for the assembly. Sensory robotics is still 

quite a new concept and not common in any branch of any industry. Shoe 

assembly is not a leader in any robotics and it is not surprising that there have 

been no attempts to robotize the sole spotting operation to date. 

1 
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The Danish run shoe company Eccolet have committed themselves to large 

scale automation [8]. Their factories are amongst the few that actually possess 

robots. Even in this case however the robots used are restricted to pick and place 

applications, no effort is made to use the sophisticated manipulative capabilities 

which robots possess. Part of the Eccolet approach is to use injection moulding 

techniques, injecting the sole directly onto the upper. The system is not flexible 

however, designed for the manufacture of a small number of shoe styles grouped 

together in very large batches. Such factories can only pay for themselves through 

large scale output and so only applies to a handful of cases where a company has 

access to a large worldwide market. 

When discussing assembly lines and shop floor facilities it is necessary to bear 

in mind that assembly stations are not autonomous. All workstations have to 

interact with others, even if this does not happen very often. Errors within the 

station have to be broadcast, requests for information have to be sent, as well as 

statistical data resulting from the various operations an assembly station may 

perform. All these conditions can be global to a number of assembly stations and 

so it is important that the communication structures are ordered and concise, with 

error correction facilities to avoid data corruption. There are a number of protocol 

systems [9,10] that are designed for robot assembly. The need for easily 

expandable robot systems is important since any future systems developed must 

possess some facility that enables communication with other processes. This would 

have the effect of improving system quality and the cost effectiveness of multiple 

robot systems. The system quality would be improved by the increase in versatility 

and the cost effectiveness by the decrease in the requirement for repetitious pieces 

of hardware. with regards to robotic research these fators dictate the choice of the 

practical development system. 
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2.2 Sensors. 

A large proportion of current industrial robot installations use only very 

rudimentary sensors to operate. These normally take the form of switch relays used 

to detect irregularities in the normal operation. It is evident that in order to 

improve reliability and independence from manual intervention, an increase in the 

use of sensors is necessary. Environmental sensing is also necessary to extend the 

number of applications for which robotics can be considered as a viable alternative 

to manual labour. 

Because of the lack of sophistication, robot installations are on the whole 

reduced to fixed path movement. This in turn means that most applications are 

restricted to pick and place. The robots themselves are capable of much greater 

sophistication, it is the sensors that let them down. Imagine having the dexterity to 

make a cup of tea: without sight and touch such a task would be impossible 

should any of the objects be incorrectly, or randomly placed. Since there are so 

few robot installations in shoe manufacture, it is evident that the required 

sophistication lies beyond that of current industrial robots. 

2.2.1 Contact sensing. 

There are two main sensing techniques, contact and non contact. Contact 

sensing relates to the human sense of touch, whereas non contact relates to those 

of hearing and seeing. A third medium, chemical sensing, relates to the senses of 

taste and smell. Since there is no intention of detecting parts by this means, 

chemical sensing will not be mentioned in this thesis. Indirect use of chemical 
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sensing may however be involved in some of the contact and non contact sensors 

mentioned. Aside from the unsophisticated collision detection, contact sensors in the 

world of robotics are generally used for one of two purposes: - 

1. Tactile sensors, used to detect shape and texture. 

2. Force sensors, used to detect mass and movement. 

Tactile sensors. 

The basic design of a tactile sensor uses an array of sensing elements. The 

size and spacing of these 'tactels' may vary along with the transduction principle 

and degree of depth quan tization. Tactile sensors are normally classified in terms of 

the transduction principle that is used. It is a muc h more useful idea to classify 

these sensors according to their potential application or physical characteristic (table 

2.1). It can be seen that tactile sensors can be split up into two distinct groups. 

The first group of tactile sensors are manufactured as an array of 

independently moving elements [11,12). Such sensors can be tailored to a number 

of purposes, like the Sussex sensor used to determine the orientation of parts on a 

conveyor belt [13]. The principle of operation is generally to measure the extension 

of each tactel and this means that fairly large depth contours can be measured. 

Because the physical construction involves the use of mechanically moving parts, 

the resolution is limited. Distances between tactels of less than lmm would be 

difficult to manufacture with the fragility of such a sensor limiting the number of 

possible uses. 

The second group of sensors are designed with the purpose of simulating 

human skin [14 to 21 ]. In this form the tactels are distributed in or under a 
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synthetic, flexible membrane. Often, the forces acting on the membranes are 

monitored rather than those on the individual tactels. Such sensors have the 

potential for very high density packing (around 0.1mm/tactel) since their 

construction lends easily to VLSI techniques. Also, the lack of mechanically moving 

parts and the use of resilient materials, provide the capability of monitoring much 

larger forces than the group one sensors with less danger of damage. However, for 

the same reasons, the depth measurement is limited to the thickness of the 

membrane. Cross coupling effects are also apparent since each tactel is connected 

to its neighbours via the membrane. Such a factor results in the tactile image 

being 'fuzzy', with poorly defined edges. 

Force sensin. 

Force sensing is a more generalised form of tactile sensing. Force sensors have 

been used for many years for measurement of mass and also in devices used to 

measure excess stresses in materials. Force sensing in robotics can be used for the 

same purposes but the req uired sensitivity is usually greater. An example would be 

the use of load cells in weighing machines. The most common use for force 

sensing in robotics is for active monitoring of robot motion for the purpose of 

path correction [22]. 

The most common transduction technique used in force measurement is the 

piezoresistive effect found in strain gauges. These devices are manufactured to give 

strain measurement along a line parallel to their long axis. This monodirectional 

behaviour means that forces can be split into axial components. This directionality, 

or vector quality, is what gives rise to the term force sensor. This is true whether 

the measurement is a simple spring extension or sophisticated laser monitoring [231. 

The positioning of force sensors is therefore paramount. 
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The axis isolation technique is used in one of the most common robotic force 

sensing devices, the instrumented remote centre compliance (IRCC) [24]. This 

device is mounted with force sensors to monitor the three primary axes as well as 

the rotational forces about these axes. Placed between a robot and its gripper, the 

IRCC can be used to determine the forces that act on the gripper. Since all six 

axes are monitored, it is possible to determine exactly what robot motion is 

required to compensate for or nullify the effect of these forces. 

Nearly all robot applications would benefit from the use of an IRCC or 

similar device [251. The limiting factor on the use is cost. A lower cost alternative 

would be to determine the points of interest and mount individual sensors on the 

gripper that will monitor in the direction of action only. This form of selective 

compliance [26] would have to be custom built but for less than 3 axes would be 

cost effective. 

2.2.2 Non contact sensing. 

The benefit of non contact sensing is that it is generally non destructive. This 

is important if the objects to be handled are fragile or easily deformed. Such 

sensors are also unobtrusive; contact sensors have to be moved into the area of 

interest, non contact sensors can sense at range. The technology of non contact 

sensing is very highly developed and its solid state nature makes for high accuracy, 

definition, and reliability. A great deal of work has been carried out on vision 

sensing, most of which is currently unsuitable for robot assembly applications. This 

unsuitability is mainly due to the environment in which the robot would have to be 

inserted. 
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Robot vision. 

By equating to the human definition of vision, robot vision is the use of 2 

dimensional array sensors that can detect radiation in the visible spectrum. Vision 

is used for a number of purposes, inspection, recognition, and location have all 

been studied with respect to robots. In human terms, visual inspection is the most 

passive activity of the three. Unless a part has to be manipulated in order to 

complete inspection, sophisticated control of motor activity is not normally required. 

In such cases, this can only be considered as a fairly loose definition of robotics. 

There are also cases where parts need to be recognised without the 

intervention of robots. However, there are many industrial applications where parts 

must be identified, and located, prior to manipulation. In bin picking and location 

of randomly positioned parts, 3 dimensional vision techniques are common topics 

for research [27]. Triangulation, shape from shading, and structured light [28 to 

30] have all been used to some degree of success but the techniques are generally 

non -cost-effective, slow, and unreliable. 2 dimensional vision techniques are much 

more reliable and better suited to robots. Such techniques are used to extract 

surface features and locate relatively flat objects [31 ]. For robot vision, binary 

images are generally most useful because of the speed of processing. Although the 

images are usually obtained from grey scale images, actual grey level processing is 

normally restricted to texture analysis and image enhancement [32]. 

There are two approaches to camera integration within a robot workcell. The 

original approach was to have cameras mounted above the cell to monitor areas 

where assembly takes place [33]. Because the view is detached, the resolution is 

necessarily high and preferably grey scale. Processing can be done in parallel with 
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other robot operations and generally requires the robot to be out of picture to 

avoid intrusion. The alternative technique is to use gripper mounted cameras [34]. 

Such cameras do not have to be high resolution since the robot can manipulate 

them into position. Parallax and transformation errors are reduced along with any 

problems of focussing and depth of field. One camera can be used in a number of 

places and images will not be obstructed by the robot. 

Although any type of camera can be used for overhead monitoring, thermionic 

tube cameras are far too large and fragile for use as gripper cameras. Solid state 

devices are much smaller and more robust. Cameras based on charge coupled 

devices (CCD cameras [35]) look very promising for future use, but at present are 

too expensive. Imaging devices have been built out of dynamic RAM chips (DRAM 

cameras [36]) which are both small and ine xpensive. Their potential for robot 

vision has yet to be fully exploited. 

Non vision. 

There are number of non vision, non contact sensing techniques that have 

been used in the past. Linear CCD sensors [37] are the most like vision but the 

single dimension makes for much lower cost and fast processing. User ranging 

techniques [38] are generally expensive and bulky although costs are coming down 

making them useful only where high accuracy (O. 1mm or better) is required. Light 

beams using cross fire sensors have been used for part announcing [391 and 

proximity detection can be achieved in a number of ways (inductive, air pressure 

reflex, hall effect, etc. ). All these devices are single dimension or point detectors. 

This is the main disadvantage when compared to vision. The only comparable 2 

dimensional system uses ultrasonics [40] which have a direct ranging capability but 

with no advantage in cost and lower definition. 
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2.3 Conclusions. 

It is quite evident that of all the sensing systems utilised in robotics, vision 

based systems are by the most widely used. This is unusual since vision is also the 

mos fragile and complex sensing medium. Although vision systems are widely used, 

this is not to say that this usage is well understood, or indeed that it is the best 

sense to use for the particular application. 

With the specific requirement of shoe sole assembly, however, much of the 

sensing lends itself best towards a non contact approach. The sole unit is quite 

flexible at the time of assembly, and both the sole and the upper are coated in 

adhesive at this time. The areas of interest are therefore difficult to handle and so 

remote sensing is the most obvious approach to overcome this problem. 

The high costs and complexity of most machine vision systems do not lend 

themselves well to the solution of the sensory requirements for the shoe sole 

assembly station. Although vision is desireable from a sensing point of view it is 

difficult to account for the cost and complexity of the hardware required for what 

should be a simple sensing operation. However, the possibility of using a vision 

system based on the use of a number of the simple and inexpensive DRAM 

cameras bears some measure of attraction. Such cameras have sufficient resolution 

and are sufficiently portable for use in robotics. A number of other characteristics 

that these cameras possess require further investigation. 

RIM 
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3.0 THE DYNAMIC RAM CAMERA. 

The IS32 optic RAM chip and cameras based on this chip are by no means 

new. However, such cameras have not been seriously used in the world of robotics 

and their potential in this field has not been thouroughly investigated. In the past, 

certain aspects of this chip have been considered a problem by the camera 

designers. These problems will be considered in detail in this chapter. Vision 

systems using these cameras have generally been designed with a view to either 

minimising or ignoring these problems. From a robotics context, such problems not 

only cease to exist, but can in fact be used to advantage, improving the response 

or performance for particular applications. 

The dynamic RAM camera has been used in a number of forms for a few 

years [41,42]. Such cameras are based on the IS32 optic RAM chip produced by 

Micron Technology Inc. in America [43]. The IS32 chip is a memory device 

developed from their MT4264 64k dynamic memory chip. It has been adapted to 

suit optical uses by removing the top cover of the chip and replacing it with a 

transparent sheet. Also, pin 1, normally disconnected, is connected to provide an 

external reference for a variable threshold voltage. 

The main advantage of cameras based on the IS32 chip is economy. The cost 

of the IS32, because it is a standard memory device, makes it possible to build a 

camera, complete with computer interface, for less than L100. This makes multiple 

camera sytems a viable alternative to other less sophisticated sensory options. 

Interfacing the cameras is easy and a5 camera, multiplexed image processing 

system can be built for less than L1000, the price of some CCD cameras. The 
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IS32 chip does possess certain unusual characteristics that have not been fully 

investigated with respect to robot vision. 

When light strikes a particular memory element, the capacitor associated with 

that element discharges from the +5V rail towards ground. The rate at which this 

discharge occurs is proportional to the intensity and duration that the element is 

exposed to light. The voltage is measured with respect to a threshold and can be 

read during the refresh cycle. This then recharges the capacitor ready for the next 

exposure. The elements in the array are not linearly arranged (as can be seen in 

the topology diagram 3.1) and so a small decoding circuit is required to unscramble 

the rows and columns. Using this linearising circuit an image can be obtained by 

merely clocking through each successive row of memory, reading and refreshing 

each individual element. 

3.1 Cameras based on the IS32.. 

The IS32 is fabricated in the same way as many memory devices with two 

arrays of memory elements arranged in columns (32k per column). These columns 

are separated by a 120 micron gap. This gap is totally devoid of light sensitive 

elements and from an imaging point of view must be considered as an optically 

blind area. Each element in one column of the IS32 is logically inverse to those in 

the other column. Such a property has the effect of making a black object appear 

white on one half of the array. 

Cameras based on the IS32 chip have been used at Hull for some time [441. 

These cameras were designed to make use of one half of the memory array, thus 

avoiding problems with the blind spot and minimising the size of the decoding 
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circuitry. Although each memory element is 6.4 microns square, they are spaced 

out as 128 rows with 256 elements per row. The elements are placed on a grid 

877 microns by 4420 microns giving an effective spacing of 6.8 micro ns per 

column. These dimensions result in an aspect ratio (or picture ratio) of 2.54: 1. 

The aspect ratio is defined as the measurement of height in an image to its width, 

a 1: 1 aspect ratio would give no deformation or elongation in either direction. 

The Hull camera was designed as a low resolution device, a hardware 

compression module was included in the image processor interface to reduce the 

resolution down to a 64 pixel square array. The operation diagram for the Hull 

DRAM camera and the hardware compression module can be seen in figures 3.2 

and 3.2(a). The compression module has the further effect of increasing the aspect 

ratio to 5.08: 1. A variable length clock pulse is used during the read/refresh cycle 

of the IS32. This has the effect of allowing a variation in the length of time it 

takes to read in an image. By clocking the image in at different rates it is 

possible to vary the exposure time. The decoding circuit is designed to continually 

read the chip, providing a synchronisation pulse for the image processor to know 

where the start of frame is. The physical size of the camera (30mmx2Ommx35mm) 

is very small since the decoding circuitry is separated from the IS32 by a short 

length (typically 20-30 cm) of parallel cable. The lens currently in use is 12mm in 

diameter with a 9mm focal length. 

The EV1 'Snap' camera [45] is built by micro robotics of Cambridge and 

based around a BBC micro computer. The philosophy behind the design of this 

camera is slightly different from the Hull DRAM camera (see fig 3.3). Both sides 

of the IS32 chip are used and it is intended as a medium resolution device 

(128x256 pixels). A machine code routine copes with the inverted logic on one side 

of the chip. By selecting every second row of the array, the two columns to one 
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row ratio is maintained, resulting in a favourable 1: 1.18 aspect ratio. Since both 

sides of the chip are used there is a blind line running centrally along the rows of 

the image due to the 120 micron gap separating the two chip halves. This results 

in disjointed images of any object crossing this line in the field of view. The EV1 

camera interface has a fixed clock pulse width. Variation of the exposure rate is 

obtained by varying the time between reading in successive frames using a software 

loop. This provides a high degree of sensitivity for image thresholding. The 

physical dimensions of the EVI camera are 50mmx7Ommx5Omm which is a modest 

size suitable for robot gripper mounting in many cases. The camera casing also 

houses the decoding circuitry and a Pentax 110 lens, with focussing adjustment, 

accounting for the difference in size from the Hull camera. 

It can be seen that although both cameras are based on the same imaging 

device, they are constructed and designed for different applications. It is also 

evident that the IS32 exhibits certain characteristics that are uncommon in other 

imaging devices. The highly uneven aspect ratio of the Hull DRAM camera and 

the blind line of the EV1 camera may cause difficulties with some familiar image 

processing applications. There are other applications, however, where these 

properties can be used to advantage. This chapter catalogues the behaviour of 

commonly used imaging parameters with both devices and discusses how this 

information may be used to advantage in robotic applications. 

3.2 Measurement of standard parameters. 

A great many robot assembly applications utilise binary vision systems for 

sensory input. The degree of reliance on these systems and the amount of 

information extracted varies enormously, but a large number of applications rely on 
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the extraction of a very simple set of parameters. A large proportion of robot 

tasks require vision systems for object recognition and for location. In order to 

recognise an object, the vision system must be able to measure its size and shape. 

For location and pick up, the centre of area and orientation are the two 

parameters that are generally used. Emphasis is always directed towards obtaining 

as much information about the object (or objects) in the camera view, in as little 

time as possible. The time it takes to process an image is a function of the 

complexity of the image, the resolution of the camera, the available processing 

power, and the feature extraction algorithms. The processing time can be minimised 

if the features to be extracted from the image are kept simple. Such parameters as 

the area, perimeter, centre of area, and the height and width of enclosing boxes 

are simple to extract. This is especially true where the number of pixels can be 

packed into a single byte or word and the algorithms used operating on these pixel 

blocks rather than individually [46]. 

The unusual qualities of the DRAM cameras mentioned distort some of these 

simple features. These anomalies will be discussed in this section. It should be 

noted that all these features are derived directly from a single image. Table 3.1 is 

a summary of the way standard parameters vary under certain conditions. In the 

case of the Hull DRAM camera, interesting variations are observable for the 

condition of rotation. The EV1 exhibits unusual qualities when the translational 

coordinates vary. The term 'generally variant' in the table refers to the way these 

cameras behave with respect to standard cameras with relatively square aspect ratios 

and linear ranges within their fields of view. 
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3.2.1 Hull DRAM camera. 

The most unusual feature of the Hull DRAM camera is its highly uneven 

aspect ratio. This section describes the effect this feature has on the shape of an 

object being viewed by one of these cameras. As the object is rotated it is clear 

that its perceived shape will change in a structured way and thus parameters based 

on this shape will also vary. The experimental procedure involved rotating an 

object whilst monitoring the area, perimeter, centre of area, and the dimensions of 

the enclosing box. The object size and camera position were chosen to optimise 

the field of view, providing as large a proportion of the image as possible without 

overlapping the image boundaries. 

Figure 3.4 shows how the area of a 19mmx7mm rectangle varies with 

rotation. It can be seen that there is a distinct pattern arising from this experiment 

for both area and perimeter (fig 3.5). The ratio between perimeter and area varies 

slightly (between 1.5-2.5) showing that the image also changes shape during 

rotation. Confirmation of this fact is shown by the way the enclosing box varies in 

shape (fig 3.6). The greatest variation in shape occurs when the major and minor 

axes of the object are perpendicular to the corresponding axes of the camera. 

Around this area, considerable changes of shape can be observed for small changes 

in rotation. Objects that possess smaller aspect ratios than the camera have higher 

area values but lower variations due to rotation. Objects with higher aspect ratios 

than the camera appear narrower and hence also have low area variations. The 

maximum aspect ratio for an object that the camera can see is: - 

no. of pixels (Nuare) 
aspect ratio of camera 

This means that objects with an aspect ratio greater than 64/5.08 will only be 
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visible at certain points throughout a 360 * rotation. As has already been suggested, 

objects possessing the same orientation as the camera will exhibit the greatest 

variation throughout 1 revolution. 

Fig 3.7 shows how the centre of area varies with rotation. There is no 

variation of this parameter when the object is rotated about its own centre of 

area. An ellipse is described when the centre of area of the object is offset from 

the centre of rotation. The ratio between the major and minor axes of the ellipse 

is equal to the aspect ratio of the camera. 

3.2.2. EV1 camera. 

Observations were made of the five parameters of an object as it was passed 

linearly through the optical blind line of the EV1 camera. Figures 3.8(a) to 3.8(e) 

show the measurements taken for a rectangular object. A stepper motor driven 

XY table was used to provide the object movement. 

All the parameters showed a symmetric response with the exception of the 

vector quantity, centre of area. The area value showed the most notable variation 

as the object was passed through the centre line (fig 3.8(a)). The two peaks on 

the perimeter line show when a few pixels of the object start to appear on the 

opposite side of the line. A trough in between these peaks corresponds to the 

object being aligned centrally along the axis of the gap. The height of the 

enclosing box varies less than its width and the centre of area shows little 

fluctuation as the object passes through. These factors are not consistent for all 

shapes (figs 3.9(a) and 3.9(b)), variations may be more or less pronounced 

depending on the shape of the object. 
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3.3 Applications. 

In the case of the Hull camera certain types of object can be orientated by 

merely looking at the area. The Hull DRAM camera can only do this quite 

coarsely, but there are many applications where regularly shaped objects require 

orientating to +/-2*. Such accuracy of alignment is sufficient to ensure repeatable 

positioning of an article within the jaws of a robot gripper. The final orientation 

of the article can usually be achieved without difficulty by the gripper itself. Using 

this technique alone would require the object to be symmetrical since the area 

characteristic of fig 3.4 shows repetition every 180*. Consider rectangular cardboard 

boxes travelling down a conveyor belt (e. g. shoe boxes). A camera mounted on a 

gripper carrying the box lid could determine the orientation of the box from one 

picture. Similarly, a gripper mounted camera can be used to locate DIL sockets 

prior to pick up. Non-symmetrical objects could also be orientated using this 

technique in conjunction with a method of coarse orientation from feature 

identification. The head of a screw could be located to give a quick reference as 

to which way round the screw is. The area or perimeter value would then be used 

for a finer measurement of orientation. 

As the number of points of rotational symmetry increase, so the repetition 

rate of the peaks in the area characteristic increases. This technique is still usable 

for objects with multiple points of rotational symmetry but there is also an increase 

in the number of constraints required. The Hull DRAM produced usable results 

(alignment to +/-3* at best) for a square object (4 points of rotational symmetry, 

see fig 3.10). More sensitive results could be obtained with higher resolution. 
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Since the centre of area parameter is invariant for all shapes, the Hull 

camera would be ideal for location and orientation of simple shapes for robotic 

pick and place applications. By using a camera mounted on a robot gripper, an 

object located anywhere in the field of view can be brought into the centre of the 

image. This makes optimum use of the orientation from area routine, ensuring that 

the camera is placed so that the entire object is in view for any orientation. Such 

an application exists for the location of lasted shoe uppers and will be discussed in 

a later chapter. 

A consequence of the uneven aspect ratio is that measurement along one axis 

is more accurate than measurement along the other. By taking a general view with 

a Hull DRAM camera, it is possible to choose the orientation with which to take a 

close up picture. The orientation would be chosen to optimise the accuracy of 

measurement by aligning the more sensitive camera axis with the line along which 

measurement is taken. For instance, different lengths of DIL chips or sockets would 

mean different numbers of pins. Once again a gripper mounted camera can be 

used to do a rough classification of a mixed batch of chips using pin numbers. A 

far shot can be used to determine the orientation of the chip whilst a closer shot 

will determine its length. 

Since the resolution of the EV1 camera is somewhat higher than that of the 

Hull camera, objects considerably smaller in size than the field of view can be 

located. A greater variety of shapes can also be considered for the same field of 

view giving much more scope for experiment. Tests have shown that different 

shapes leave a fingerprint like response to the fo ur object dependent parameters in 

table 3.1 (compare figs 3.8 and 3.9). This could help in recognition or orientation 

of objects being transported on a conveyor belt for example. Note that a 

'diamond' (rotated square) would be different to a square (orthogonal axes) using 

51 



this method. 

Again, there are a number of applications where alignment of an object in 

one dimension only is sufficient. For instance, an EV1 camera could be located 

between the jaws of a robot gripper. With the blind line running along the jaws' 

axis, an object could be detected when lying centrally between the jaws. If the 

jaws are coupled (or individually controlled using force feedback), they can be used 

to locate the object in the second axis. Similarly, there are many feeding and 

conveying mechanisms that restrict movement to one axis. An example of this 

exists in another Hull project [331 concerned with the assembly of thyristors. The 

main variation in position was along a single axis of robot movement. A DRAM 

camera was used to look down a small hole (diameter 0.7mm) into which a wire 

(diameter 0.5mm) was to be inserted. The clearance was close to the robot 

repeatability and variation in position was recorded mainly in the robot x direction. 

By using an EV1 camera and aligning the blind line perpendicular to the robot x 

axis, the centre of the hole could be located by looking at the area value alone. 

Intelligent use of camera placement can enable recognition and location data to be 

calculated using the very rapid image capture and processing techniques available 

with the EV1 system. 

3.4 Advantages in using, the IS32. 

As has already been mentioned, cameras based on the IS32 have one great 

advantage over all other cameras, the cost. Low cost imaging devices make multiple 

camera systems attainable for many more robotic applications than at present. A 

further advantage lies in the potential speed of a vision system based on the IS32. 

Although the IS32 is not a fast access RAM, it is however a direct source of 
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thresholded binary images. The simple feature extractions can be obtained quickly 

using small machine code routines. There is a possiblity of reducing the processing 

time by realising the feature extraction routines in hardware. As an example, an 

area calculation facility can easily be incorporated into the camera interface to give 

the pixel count at frame capture rate (fig 3.11). 

The unusual characteristics of cameras based on the IS32 could be realised 

using conventional technology. For instance, a high aspect ratio can be obtained by 

sampling a conventional image at different row sample rates to column sample 

rates. A blind spot or blind line can be obtained by deliberately missing out data 

from the image. It is difficult to appreciate that reducing the data intake would be 

advantageous. The use of the IS32 chip has made cameras available that have 

these qualities as a matter of course and has shown that, given the right 

conditions, these cameras can even be used to obtain better results than 

conventional imaging devices. 

3.5 Conclusions. 

The functional advantages of the IS32 based cameras described in this chapter 

are not relevant to the particular problem of shoe sole assembly. This is not to 

say that DRAM c ameras are of no use in this project. The cost factor in 

particular, with the need for a multi camera system makes their use very attractive 

indeed. T here may be uses for both the Hull or EV1 cameras but the particularly 

favourable aspect ra tio of the EV1 camera would make it quite useful provided the 

the larger size does not cause a problem. 



4.0 RESEARCH STRATEGY. 

It is necessary to lay out guidelines on how to approach a solution to the 

problem of devising a robotic shoe sole assembly rig. Certain goals may make it 

possible to eliminate particular lines of approach before too much time is spent in 

development towards the wrong aims. There are three main regulating factors to 

consider for this particular problem. These are cost, speed, and accuracy. 

A typical industrial robot costs upwards of Ll 5 000. Taking the unit 

production figures obtaine d in reference [8], it is possible to estimate the payback 

required for a piece of assembly equipment. A realistic figure for the cost of a 

robot shoe sole assembly station would be in the order of El 00 000. Suc a cost 

would take around three years to pay itself off if operating at tha average manual 

throughput. 

The time taken for an operator to spot assemble a sole onto an upper varies 

from factory to factory. Deciding factors can be the topology of the assembly 

system, the amount of skill and care the operator puts into the assembly, and the 

amount of inspection given to the finished article within the station. A typical 

collect, spot and deliver to press takes around 10-12 seconds. Coupled with time to 

feed the sole into the adhesive reactivator and time in between operations, this 

gives a realistic assembly time of around 20 seconds for the entire sole spotting 

operatio n by robot. An operator will generally have two presses, one configured for 

the left shoe, one for the right, operating in parallel. This improves the efficiency 

of the sequence shown in chapter 1 (fig 4.1) and can be timed so that the time 

waiting for the press to finish its function can be occupied by spotting the next 



sole and loading the other press. The human equivalent of the robot arm (i. e. the 

operator) is therefore inactive for only a small percentage of the cycle time. The 

speed of a robots movements or arm speed is generally the deciding factor on the 

operating time of the work cell. Sensor processing can generally be performed in 

parallel with robot motion and can be designed to produce the required result 

corresponding with the robot reaching its destination. However, robot gripper 

sensors have to be moved into position before they can be operated. Should the 

robot be required to move to many locations then the time overhead could be too 

large. 

The accuracy of a robot system can also have an undesirable effect on the 

speed of operation. It is quite often the case that the more accurate a sensor is, 

the more time is required to process the information from that sensor. Accuracy 

can also be a deciding factor on the system cost since more sensitive devices are 

generally more expensive. Aside from cost and speed, sensors may be too 

intolerant for the specified requirements. It is quite difficult to quantify the 

aesthetic look of a sole spotting operation in terms of the accuracy required to 

achieve a good fit. The amount of care required for the sole spot varies from style 

to style. Some soles can be placed on the upper with a tolerance of +/-3mm but 

the most stringent requirement, and therefore the required accuracy of the system, 

is +/-lmm. This means that all the accumulative errors resulting from robot 

inaccuracies, sensor inaccuracies and noise must still achieve this requirement of 

placement to within 1mm. 

Since a great deal of the manual process of sole spotting requires the use of 

vision (in product location and placement), this is a good starting place for the 

research involved. Camera systems, if they are readily available, are convenient 

research tools since they require a minimal amount of setting up in order to 
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investigate their suitability. Other sensory systems may be cheaper but this may 

come at the expense of time in the manufacture of mechanical hardware to house 

them before they can be used correctly. Because of the emphasis on system cost, a 

low resolution camera system was initially chosen to monitor image variation with 

respect to robot movement. 

4.1 Fixed overhead cameras monitoring sole movement. 

Low resolution cameras must be placed with great care in order to optimise 

their effectiveness. The cameras used for initial experiments were based on vidicon 

security cameras, sampled and thresholded to give a 64x64 pixel binary image with 

a 1: 1.46 aspect ratio. These cameras were initially used within the electronics 

department at Hull University for orientating motifs prior to positioning for garment 

assembly [22]. It was considered that it may be possible to monitor the shoe sole 

assembly procedure using these cameras with a robot gradually moving a sole unit 

into view. 

The toe area of a shoe is the area of most importance to the operator doing 

the sole spotting. The operator must bear in mind when assembling a shoe that a 

poorly aligned toe area can be sufficient to deter a person from purchasing it, thus 

affecting the value and quality of the product. In order to optimise the resolution 

a camera is positioned above the toe area of a lasted upper. As the sole is moved 

horizontally over the upper by a robot, the camera will see the union of the 

images of the sole and the upper (figure 4.2). As the position of the sole changes, 

so does the area and centre of area of the picture. By taking the centre of area 

of the original picture, an error between this and that of the composite picture 

with the sole in it can be calculated. By passing this error to the robot, a 
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compensating movement can be made. If this procedure is repeated a number of 

times, the error will eventually fall below the ability of the camera to detect it. 

When this happens the centres of area of the sole unit and that of the upper can 

be said to coincide. 

The use of the centre of area parameter is important because it is rotationally 

invariant. The sole unit can therefore be in any orientation prior to positioning. 

The rotational error can be determined using a further technique. Most robot 

controllers have the facility to calculate off-axis or tool transformations. By passing 

the centre of area to the robot it is possible for the robot to use this as a tool 

centre and rotate the sole unit in its gripper about this point. By monitoring the 

area of the union picture of sole and heel as it is rotated a minimum will be 

detected at the point of best alignment. Figure 4.3 shows how this area varies with 

respect to rotation for angular steps of 0.5 degrees. As can be seen from this plot, 

the minimum area is noisy and poorly defined with small variations in area around 

the minimum. Averaging the area by taking multiple images (fig 4.4) reduces the 

noise content but this increases the time factor and does not improve the slope 

variation which can be very small if the upper is not fully in the picture frame. 

The minimum was still poorly defined and graph matching techniques would be 

necessary in order to define it singularly. Figure 4.5 shows how bad the plot can 

be for an image that is offset to one side of the frame. 

The problem of low variation from point to point can be solved by using a 

second camera placed to monitor variation at the heel area. 0.5 degree steps are 

the maximum allowable variation to maintain the aesthetic quality of fit at the heel 

so it is not possible to increase the step length. However, placing a camera further 

away from the centre of rotation has the effect of accentuating the variation of 

area for the same size of increment. So, using the same initial procedure of 
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overlaying the centre of areas of sole and upper and rotating about this point it is 

possible to achieve a plot of the area such as in figure 4.6. Note that the 

minimum is singly defined for the same increments and so it is possible to achieve 

the correct fit for rotational errors without resorting to graph matching techniques. 

Note at this point that a slight drift in robot position was noted, giving an error 

from the centre of area value at the toe point. A further iteration was necessary 

to align the sole properly. 

This system was originally tested using silhouette cut out samples of sole units 

(see fig 4.7). In other words, the initial experiments were not carried out using 

actual sole and upper samples. The test pieces were designed to ease some of the 

possible problems that were envisaged when using real samples in order to test out 

the technique. Some of the problems that were encountered as a result of looking 

at the design of a system using this technique appeared insurmountable and a 

simpler method was investigated. 

The time taken to complete the image matching operation, including robot 

motion was typically around 30 seconds. The time varying for different locations of 

the object. The minimum time taken for any image was 25 seconds. Taking into 

account that it would be necessary to do further feeding and picking of objects, 

this time is by no means desirable. However, the use of search algorithms, a priori 

knowledge and non linear variations in step length could theoretically reduce the 

matching procedure to around 15 seconds. 

There are other problems with this technique which cannot be improved upon. 

If using actual sole and upper samples, there are quite often cases where either 

the sole overlaps the profile of the upper or vice versa. This can occur at the toe 

or the heel area and will have the effect of producing a flattening out of the area 
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trace with respect to rotation. This dead zone effect produces a misalignment error 

that is not detectable from the overhead camera position. The sole unit will also 

appear to be longer and wider than the upper because of the effect of parallax. 

The sole is also in effect a two dimensional net of the bonding surface of the 

upper. This will again have the effect of making the sole appear longer than the 

upper since the heels will not coincide when the toes are aligned. 

Thresholding, the extraction of object from background by exploiting the 

contrast, is difficult when the nature of the image is not predetermined. The 

colour of the sole may be considerably different from that of the upper. This then 

requires a very high contrast background to avoid conflicting data from the 

background merging with the object. To avoid shadowing from the upper, 

backlighting is necessary with the possible addition of active thresholding techniques 

to take into account variations in ambient lighting levels. 

Perhaps the main difficulty with the fixed overhead camera technique arises 

from the way the sole unit is gripped by the robot. The outer edge of the sole 

must be visible to the camera so that profile matching can take place. The gripper 

must therefore cause no obstruction to the camera view. Since the cameras are 

providing a windowing effect there is room for the gripper to enter in between the 

cameras. However, the sole unit will be warm and flexible from the adhesive 

reactivator at the time of mating. This means that the sole must be gripped 

somewhere near to the toe area and not just around the waist. Overhead gripping 

(figs 4.7 and 4.8) is the only solution, the gripper using suction to pick the soles 

up. Grippers involving suction cups are only useful where the surface to be picked 

up is fairly smooth. This is true for a number of shoes, particularly ladies court 

shoes. However, most mens shoes, and other types of ladies shoes have tread 

patterns moulded into the design. Such patterns provide to much air leakage for 
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suction to work. 

In order to optimise the use of the front camera, at least 30% of the camera 

window must be employed. In order to work correctly, the image must only cross 

the lower edge of the frame. If the object cuts the side of the frame, an incorrect 

value will be given for the centre of area. This restriction of the field of view 

makes it rather difficult for the toe camera to be positioned for viewing of both 

left and right uppers. With the camera set up for experiment the pixel depth (the 

amount of travel required to move between one pixel and an adjacent one) was 

measured at 0.76mm. This means that in order to view a wider field so that it is 

possible to deal with both left and right lasts, a higher resolution or a separate 

station would be required. 

4.2 Gripper mounted overhead cameras. 

If the vision system used could see through or around the sole unit then there 

would be no constraint on the design of the gripping mechanism. The best means 

of gripping the sole could be used without having to worry about obstructing the 

camera frame. This could be achieved if the cameras were made to look through 

the gripper jaws. In other words, with the cameras mounted on it, the gripper 

itself would not be in view. 

It is not possible to use the vidicon cameras on a robot gripper because of 

the physical size of the cameras. It is possible, however, to use use dynamic RAM 

cameras to the same effect. 
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The advantage in using dynamic RAM cameras in this case lies in their 

physical size. At the optical end, a camera need only comprise the RAM chip and 

a lens. A short length of ribbon cable can connect the camera to a small parallel 

to serial decoding circuit for transmission of the image data over a number of 

metres to the image processing unit. The cameras used for this experiment were 

manufactured within the department of electronics at Hull [36] and measured only 

30mmx2Ommx25mm. This makes it very simple to mount the cameras in a number 

of areas inaccessible to the majority of cameras. The IS32 chip has the ability to 

provide an array of elements 256pixels by 128pixels. The Hull DRAM camera was 

designed as a low resolution device for speed of processing and a hardware 

compression circuit was included in the computer interface to reduce the resolution 

to 64 by 64 elements. 

The principle behind the use of these cameras as gripper mounted devices is 

simple. The cameras were used to guide the robot over the sole unit (fig 4.8). 

The data from the cameras was used to position the gripper directly over the sole 

ready for pick up. The pick up does not take place straight away however, firstly 

the robot positions the gripper above the inverted last. The robot is directed using 

the data from the cameras to position the gripper in the same way above the 

upper as it did for the sole. Having remembered the position of both sole and 

upper, the spotting operation is reduced merely to a pick and place task. 

The tests on this system were carried out using actual sole and upper samples. 

Backlighting was used with the samples and the cameras were desensitized against 

colour variations by making sure that the lighting level was high. This also makes 

it possible to ensure fast picture capture by decreasing the exposure time. Like the 

previous experiment, the procedure involved looking at the centre of area 

parameter of the front camera to find a point of rotation for the rear camera. 
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This point of rotation is more easily defined, and therefore more accurate than the 

previous method because of the fact that the camera is gripper mounted. The 

robot can move the camera until a condition exists, i. e. the camera is centred over 

the centre of area of the object. This means that the point of rotation is always 

the same with respect to the robot tool coordinate system. The rear camera is 

rotated until the heel is centralized in the frame, again using the centre of area 

parameter. It is a simple operation in this case to use offsets rather than the 

quantized approach in the previous method. This considerably reduces the number 

of robot/camera iterations. 

The timing and accuracy of this operation depends upon the amount of the 

initial error. If the sole or upper were fed into the system with an accuracy of 

+/-50mm, the time taken to centralize the gripper over the object would be longer 

than if it were fed in with an accuracy of +/-10mm (but not 5 times as long! ). 

Similarly, if the object were fed into the system with a large tolerance, the object 

would have to be viewed from further away giving less pixel accuracy than for a 

low tolerance. The object could be centralized at a distance to reduce the 

tolerance and then viewed closer in to improve the accuracy, but this would be at 

the expense of robot movement time. 

The gripper design for this approach is not very flexible. The cameras have 

to be positioned fairly carefully to suit the size of the object. Since sizes vary 

quite considerably for the same assembly line, this is quite an extensive problem. 

The most sensible approach would be to motorise the gripper to cope with 

different shoe sizes. Another problem lies in the gripping mechanism. The idea is 

to position the gripper above the upper and then above the sole and then pick up 

the sole for spotting. The actual process of picking up the sole whilst maintaining 

the correct position and orientation is difficult to do since the gripper is likely to 
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pull the sole out of alignment. This misalignment would be very difficult to 

predetermine for all sole styles and sizes. A solution would be to equalize the 

gripper jaw forces by coupling them together using the same source for each jaw. 

Another solution would be to have individual jaw actuators with tactile sensing in 

each jaw. These problems can be overcome, there is however a more fundamental 

problem concerning the assembly approach that will be discussed in the next 

section. 

4.3 Problems with inverted last assembly. 

The previous two approaches rely on the sole and upper being fed into the 

system the upside down. The bonding surface of the upper is uppermost during 

assembly and the adhesive surface of the sole is face down. The sole has to be 

picked up by the gripper using the non-adhesive side. In order to activate the 

adhesive, the sticky side has to be upright and so a flip over mechanism is 

required. However, the process of picking up an active sole will require pushing 

down onto the surface it is resting on. Of course the sole will show a tendency to 

stick to the surface, or at least weaken the adhesive on the sole. It may be 

possible to present the sole to the heat activator but it will become very flexible 

and difficult to handle. Different gripping techniques are required for rigid and 

flexible soles. 

This problem of presentation also exists with the upper. The upper must be 

picked up and placed in an assembly area of some kind. Because of the awkward 

shape of any lasted upper, it will be difficult to build a gripper that will maintain 

position whilst the upper is in transit. Accurate positioning of the last is necessary 

since it will have to be presented to the assembly station and clamped in position. 
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Also, assuming that one robot is going to perform all operations, the gripper must 

be capable of picking up the two very different shapes of last and sole. 

A third problem occurs when considering the camera images. When the 

camera looks at a sole unit, it sees, barring shadow, a true view of the outline to 

be glued. This is true at least for some cases. Other sole units can have a border 

around the glueing profile. The outline will therefore appear bigger than it ought 

to. This is not really a problem since the centre of area parameter is used, which 

would vary little between samples with and without a border. The view of the 

upper is more of a problem. What the camera sees of the upper is not the outline 

of the bonding surface. Since the backlighting is necessary for thresholding, the 

camera actually sees a silhouette of the upper. This includes overhangs of the 

insole area and a slight border of overlap that varies from last to last. Without 

knowing the exact profile of the entire upper, it is impossible to compute the 

bonding profile. 

All these problems increase the need for system complexity. It is evident that 

if a simpler approach exists then it Ought to be used. The answer lies in upright 

assembly rather than inverted assembly. Although the human operator fixes the 

upper rigidly in the left hand and uses the right hand for the manipulative process, 

it seems that the robot ought to move the more massive last over a fixed sole 

unit. This approach is discussed in the next section. 

4.4. Upright assembly. 

In upright assembly the sole is fixed in the assembly area and the upper is 

placed on top of it. In this way the sole does not have to be manipulated by the 
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robot at all. It can be transferred from the heat activator to the assembly area 

using a linear transfer device (conveyer belt, transfer arm, etc. ). 

Cameras are fixed above the assembly area in order to process the sole 

profile. The cameras, since they are fixed and therefore positioned to take only 

one picture of the object, need to be slightly higher in resolution than the ones 

used previously. The cameras chosen were a commercial version of the 

uncompressed dynamic R AM cameras fitted with a higher quality lens with focussing 

facility (the EV1 'snap' cameras) [45]. The background is thresholded out without 

any difficulty because there is only one object to be viewed, toplit to minimize dirt 

problems and angled to avoid shadow problems. The technique is to process the 

outline of the sole so that point data can be extracted and transferred to the 

robot. Two cameras are used to extract the maximum information from the 

minimum amount of object data, optimizing the use of the camera resolution. The 

cameras are positioned at toe and heel, eliminating the need to include any 

superfluous data from the sole waist. The cameras are not used to monitor the 

mating operation or to view the lasted upper. This avoids any of the problems 

with overhang discussed earlier. 

The fact that the soles do not require robot intervention result in the 

possibility for paralleling operations in order to reduce time factors. Whilst the sole 

unit is being activated (automatically) and fed into the assembly area, the upper 

can be transferred from the presentation area. Time would also be available to 

empty an existing sole press in preparation for the next completed item. 

In some factories the uppers are presented using conveyer rail systems. 

However, other factories advocate a much cheaper system of upper presentation by 

placing them in trays. These trays allow easy access to the upper and keep the 
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batches together without cumbersome conveyer rail reconfiguration. The main 

difference between the two systems as far as the robot assembly station is 

concerned is orientation of the upper. The conveyer rail system presents the upper 

with the sole part upright, whereas the tray system presents the upper the other 

way round with the location peg hole clearly visible from the top. This location 

hole is common to all lasts and is used for location in many of the other shoe 

assembly operations. The tray presentation system with this hole visible, makes it 

simple to devise a vision guided gripper to locate this hole for pick up for 

manipulation of the lasted upper. 

The final problem with this form of assembly concerns the bonding profile of 

the lasted upper. Without resorting to sophisticated structured light techniques there 

is no sure way of learning the profile speed sufficiently fast to make it practical. It 

is quite feasible to say that in the future more and more shoes are going to be 

designed using computer aided design systems. If a shoe were designed in this way 

then it would be a fairly simple process to pass this data to a robot at the time 

of assembly without time overhead. Only the point data concerning the bonding 

profile need be used. In order for this to be useful the robot must know where 

the last is in the gripper (i. e. what orientation the last is), and so how the profile 

relates to some arbitrary reference point. 

4.5. Conclusions. 

Most of the problems in this system were seen to be solvable. The techniques 

seemed to be compatible with current assembly techniques, both manual and 

robotized. A demonstration system was devised to test the ideas behind the system 

and will be described in detail in the next chapter. 
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The key to solving the problem of shoe sole assembly lies in the adoption of 

the upright assembly technique. Although this is not mimicry of the manual 

assembly procedure, distinct advantages can be gained from the robotic 

manipulation of the rigid lasted upper rather than the flexible and rather 

incongruous sole unit. Advantages in adopting this approach will be seen in the 

streamlining of the assembly sequence and the simplification of the sensory 

requirements. 



5.0 DETAILED SYSTEM DESCRIPTION. 

This is the system used for the final demonstration module, and as such it is 

described in greater detail than systems in previous chapters. Some of the features 

of this system were used in previous experiments, confirming the advantages of a 

modular development system. The system described was the same as that 

demonstrated at SATRA for members day, 12th May 1987. That system was 

demonstrated in conjunction with a gluing station developed at SATRA [481 (see 

figure 5.1). This gluing station was adapted for control by the same central control 

unit. This was again a demonstration of the versatility of the system, requiring no 

further electronic hardware not essential to the gluing operation alone. 

5.1 System construction. 

The diagram in fig 5.2 shows the structure of the assembly control system. 

The system is based on the master-slave principle where the master is designed to 

control the communications and coordinate the actions of the slave devices. A 

typical slave device would be a robot, or any other sensor/actuator combination 

(cameras, X-Y tables etc. ). The master controller is based on the LASCAR system 

[49]. This system was developed within the department as a research project and 

was intended to be a complete operating system for robot assembly. High level 

commands could be constructed to perform specific assembly tasks, for example: - 

(1) GET AREA OF PICTURE; 
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(2) SEND AREA TO ROBOT; 

would both be valid LASCAR commands. Taking example (1), PICTURE is 

interpreted as a device, in this case probably an image processor, and from this 

LASCAR would know which slave to talk to. GET would be a command to request 

an input from the image processor and the input, which hopefully is an area value 

can be put into the variable AREA. The fill in word OF is an option used in the 

device command builder to make the command line more readable. The second 

example illustrates how the LASCAR system would cope with the transmission of 

data to a slave device using SEND as the command, AREA as the parameter, and 

ROBOT as th destination. Note that although these two examples appear similar, 

the underlying data format may be significantly different. For example, the first 

command may be sent as an ASCII string in the first example, but as a binary 

sequence in the second. 

Slaves communicate with the LASCAR master via a common bus termed 

ROBUS (RObots BUS [50]). This is a parallel bus designed as a general purpose 

connection between robots and peripherals. All slaves connected to ROBUS have a 

standard interface with 8 address lines, 8 interrupt lines, 8 data lines, plus a few 

handshaking lines. Each device has an address that uniquely defines it to the 

master. The type of system is dependent on the user and the purpose, it can be 

interrupt driven or polled. A standard ROBUS interface [51] has been designed 

using a Z80 microprocessor. The purpose behind this is to ease the hardware 

design burden on a system designer and provide him with the basis for a 'smart' 

ROBUS slave. The slave card is very versatile, having a direct memory connection 

to ROBUS, comprising 

1. Twin serial i/o ports with software programmable baud rates. 
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2. Intel 8255 parallel i/o port providing three, 8 bit ports. 

3. Software programmable timer. 

4. Four indicator LEDs and an audible warning device. 

5. Two jumper selectable 8k byte 'Jedec' sites for a variety of on board 

EPROM and RAM chips. 

6. Fully implemented interrupt structure using the Z80's mode 2. 

Item 5 means that it is possible to program the slave card using a number of 

EPROM types. This has recently been modified to cope with any normal EPROM 

size up to 128k. The software can be written in straight Z80 assembler, or via a 

Pascal/Z80 cross-compiler. A lot of the software (standard communications routines, 

hardware initialisation, etc. ) has already been written and put into libraries for ease 

of access. 

5.2 Robot. 

The robot used throughout the project was a Puma 560. For the experiments 

on inverted assembly this robot was controlled using the VAL [521 operating 

system. Efforts were always undertaken to maintain the simplicity of robot 

programming. The reason for this lies in the fact that the simpler the final system 

is, the lower the cost of the system would be. The robot software construct would 

be available using many robot systems, in particular many of the less expensive 

ones. The fairly rudimentary nature of the VAL operating system is not a burden 

since it is required to do fairly menial tasks. The more intelligent operations are 

performed by the LASCAR master. The acquisition by the department of a VAL2 

controlled Puma 560 did not change this philosophy very much. Although the 

temptation was great to take advantage of the advanced features, all efforts were 
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taken to keep the robot software as simple as possible. 

The choice of the Puma 560 was more a matter of convenience rather than 

necessity. The fact that software would have to be compatible with that written at 

SATRA for future amalgamation of systems was important since SATRA also 

possess a VAL2 [52] Puma. A six degree of freedom robot is very useful as a 

robotic research tool. The number of degrees of freedom anticipated is usually 

more than ultimately used. When developing a robot based system it is useful not 

to have to worry about whether it is possible to reach a particular point in space. 

The final system would have an optimal number of degrees of freedom to reduce 

robot cost. It was anticipated that a rocking motion may be required for the shoe 

sole assembly process and so at least five degrees of freedom (Le a robot 'wrist') 

were deemed necessary for the initial experiments. 

Control of the Puma was through a general purpose slave card. One of the 

serial lines was connected to the console terminal port of the Unimation controller 

for the robot. It would be possible to use the supervisor port on the controller 

unit which would enable the user to run programs from the console terminal as 

well as externally. This supervisor option is only available with a very few 

expensive robot controllers, and they differ from system to system. The DEC 

protocol (DDCMP) used by the Unimation controller is available only to Digital 

machines and is very difficult to synthesize using the general purpose slave as a 

terminal input device. Each individual operation is written as a separate program in 

VAL2. These programs are executed from the LASCAR system. In this way, 

operations can be modularised and updated very quickly. Individual signals directly 

associated with robot motion are interfaced directly to the robot signal i/o lines. 

These include signals to switch on air pressure and micro switch input lines. These 

were used because of their availability in the VAL2 system. Should a robot system 
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be used in the future that does not have the facility of i/o lines, the parallel ports 

on the general purpose slave card could be used instead. 

5.3 Cameras. 

The cameras used in the final system were a commercial version of the 

DRAM camera, similar to those developed at Hull. The EV1 'Snap' camera, 

produced by Micro-Robotics of Cambridge is based around a BBC micro computer 

[45]. The philosophy behind this camera is slightly different from that of the Hull 

camera. The camera uses both sides of the IS32 chip and is intended as a medium 

resolution device (128x256 pixels). The 6502 machine code driver inverts the logic 

on one side of the chip, hence allowing both sides of the chip to be used. By 

selecting every second row of the array, the 2 columns to 1 row ratio is 

maintained resulting in a very favourable 1: 1.18 aspect ratio. The consequence of 

using both sides of the IS32 chip is that there is a blind line running centrally 

along the rows of the resulting image. This is due to the 120 micron gap dividing 

the IS32 in two and results in disjointed images of any object crossing this line in 

the field of view (refer back to fig 3.1 ). 

External control of the BBC is enabled via the RS423 serial interface. This is 

connected again through a serial line on one of the general purpose slave cards. 

Part of the 6502 assembly routine for the camera sets up a parameter block 

containing various details concerning objects in view. Area, perimeter, centre of 

area, position, and dimensions of the enclosing box can all be extracted from this 

parameter block. The main program running on the BBC continually updates the 

image data and scans the input buffer for a command from the LASCAR master. 

LASCAR requests a parameter for the image and the BBC responds with the data 
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in a fixed format. The speed at which the camera responds depends on the 

lighting level. The vision system reads the IS32 at a rate of 1MHz. This means 

that the fastest a frame can be read into the BBC is 60ms. This corresponds to 

quite a high lighting level and a more likely rate is 0.3s/frame. 

LASCAR has a FORK facility, enabling processes to run in parallel with each 

other so long as separate slave devices are accessed in each branch of the fork. 

This is very useful for occasions where a robot is required to do a separate task 

from the vision system. In this case, for example, it is not required that a vision 

system operation is completed before a robot task. 

5.4 Gripper construction and piCk up. 

The gripper is designed to pick up lasted uppers. It is assumed that the lasted 

uppers will be presented in an upright form with the locating pin hole visible to a 

camera mounted on the gripper. The gripping technique used is an internal jaw 

technique, with forces exerted by the external sides of the jaws. One of the jaws 

is in the form of a pin, fitting into the locating pin hole. The other jaw is a 

plate, designed to push against the flat at the front of the last (fig 5.3). 

Lamps are placed and a threshold selected in such a way that the heel part 

of the upper is indistinct from the background. Since the hole is quite deep, the 

light does not shine down into it and so appears as the darkest object in the field 

of view. The centre of area of this hole image is then used to locate the upper. 

The hole image is brought into the centre of the field of view. Once this is done 

the position of the hole can be described relative to the robot position. The 

locating pin on the gripper is then inserted into this hole. 
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The top of the last with the locating pin hole does not lie parallel with the 

horizontal (X-Y) plane of the robot. The hole is however drilled perpendicular to 

the top of the last. Since the locating pin fits quite tightly into the hole, the angle 

of approach is fairly critical since the pin will catch in the hole if inserted at the 

wrong angle. This angle of approach can be determined from the CAD profile of 

the lasted upper. 

5.4.1 CAD data. 

The CAD data stored as a series of points relative to a datum or reference point. 

The reference point that is considered the most logical is the centre of the locating 

pin hole. Although the entire net of the lasted upper can be digitised using a 

CAD system, only the sole area (referred to in some parts of this thesis as the 

bond ing profile) was used in this experiment. This data was simulated CAD data 

and not actually generated from an existing system. The data was produced in fact 

by a VAL2 Puma using the following procedure: - 

1. The toe point of the last has to be defined since this is furthest away 

from the locating pin hole. 

2. The last is to be placed on a locating pin, the base of which is to be the 

reference point. A probe is attached to the robot and used to define this 

reference point by moving to it and learning it. 

3. The bare last is aligned, base up so that the toe point and the reference 

point lie parallel to one of the robot axes. 

4. The probe is used to digitize points on the sole of the last. Each point 

lies 10mm along the aligned axis from the previous one. 
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The digitised points are representative of CAD points. These points have to 

be modified in order to take into account the thickness of the leather when the 

upper has been assembled onto the last. 

5.4.2 Pick 

The angle of approach for pick up can be estimated from the CAD data. 

When the last is left to rest in an upright position, it can be seen to touch a flat 

surface at two points. One point of contact is at the heel area, the other is at the 

opposite end of the waist where the ball of the foot is. By taking the point at the 

rear of the heel, the first point of CAD data, one point can be extracted for the 

angle of approach (point A). The other point is taken where the height variation 

from the reference point is greatest (point B). These two points form the 

hypotenuse of a right angled triangle. The angle of approach being determined 

by: - 

tan-1 
(A7ý-B7)] I 
(Ax-Bx) 

The angle taken from this equation is the angle of approach. The actual sign 

of the angle is not really important since this will depend on the attitude of the 

initial CAD data. The angle of tilt will always be back towards the heel since 

there are no shoes that tilt the other way. This angle of tilt can easily be 

programmed into a robot as a rotation about the tip of the locating pin on the 

gripper. Calculation of the angle can be performed by the robot controller (if it is 

capable of trigonometric functions) or by the LASCAR system. 
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This angle of approach is of course only an approximation taken from the 

original data of a disassembled last. Slight variations, in the z-direction, in 

particular, can result from excess sole filler or strengtheners incorrectly placed in 

the waist of the last. The angle of approach can be determined sufficiently to 

avoid snagging of the pin during insertion, providing a compliant undersurface is 

used to take into account any slight variations. From a sample of 8 lasted uppers, 

all the same style, a variation of <0.5* was recorded. 

5.4.3 Last design. 

Most lasts produced today are not produced using CAD data or with robots in 

mind. As a result they are produced with convenience and speed in mind without 

much attention being paid to accurate finishing off. The reason behind this is not 

because it is impossible (or uneconomical) to do this but because shoe 

manufacturers do not require lasts to be made in this fashion. 

If robots are to be used in conjunction with CAD data, then it is necessary 

that greater care is taken in the last design. With the centre of the locating hole 

being used as a reference point for the CAD data, this hole must be drilled with 

accurate jigging to maintain the relative locations for the last. By having a fixed 

hole location the last can be correctly positioned within a robot gripper. There is 

still however a problem concerned with the rotational error involved during the 

pickup process. 

With the hole being circular, the last can be positioned in the gripper in a 

number of orientations. The orientation cannot be determined from the fact that 
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the gripping plate normalizes the forces to a fixed orientation but this factor can 

be used to orientate the last coarsely. By taking the line from the toe point and 

the centre of the locating hole and drilling a second hole with its centre on this 

line, a gripper can be built to utilize this three point contact to uniquely define 

the last to the upper [fig 5.4]. Since the third pin that is inserted into this hole is 

used only for location and not gripping, a single direction compliance has been 

built into the design. A chamfer on the pin allows the gripper to bring the last 

into correct orientation if there is a slight error. Tests have shown that a last can 

be positioned with a disorientation of +/-5* from that of the gripper and still bring 

it into alignment during the pick up sequence. 

5.5 Spotting operation. 

The sole spotting operation involves correlating between data obtained from 

cameras concerning the sole units and data obtained from the pseudo CAD system 

describing the upper. Since the upper is theoretically clamped in the gripper in a 

fixed position and orientation, any error involved will result from the location of 

the sole. The errors will result in positional and rotational misalignments. The sole 

will be positioned in the assembly area with reasonable tolerances. A feeding 

mechanism can be easily designed that will position the sole for assembly within 

+/-40mm of correct alignment at both the toe and heel areas. For a sole 210mm 

long this will result in a rotational error of approximately 20* one extreme to the 

other. 

An EV1 'Snap' camera, fixed above the toe area of the sole unit provides a 

point that can be correlated with that of the lasted upper. All the points from the 

CAD data are known to the robot, this toe point is particularly useful since it is 
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aligned with robot TOOL axis. The transfer of the robot tool to this variable 

location from the fixed pin location is therefore a simple translation along a single 

axis. The co rrelation procedure relies on a calibration point known to both the 

robot and th e camera. A shift along the axes of the camera of the error value 

between this calibration point and the given tip location results in the actual tip on 

the last lying above that of the sole. 

By defining the tip point as a tool location it is rotated about this tool 

centre, maintaining its position. A camera placed above the rear of the sole unit is 

used to calculate the rotational error resulting from incorrect positioning of the sole 

unit. The view from this camera is a parallelogram. If the locating hole on the 

last lies centrally in the sole area (which it does not), then the centre of this 

parallelogram would lie on the same line as that between the tip and the pin hole. 

A simple piece of geometry resulting from a calculation between the distance from 

the front camera window and the rear and the error data from the front and rear 

camera views gives the angular offset. Also, a small adjustment is required to take 

into account the offset of the locating pin hole from the centre of the heel area. 

This can be achieved by looking at the CAD data for the points adjacent to that 

of the pin (0 y-offset). By taking the arctan of the y components of the various 

pieces of data and dividing them by the x components, the resulting angle can be 

transferred to the robot for it to modify its position. 

The positional and rotational corrections are conducted before any contact is 

made between the upper and the sole. Since the full operation will involve a sole 

unit with activated adhesive on it, any contact will result in adhesion. With the 

sole not being held in position in any way, all the camera data will be lost and 

irretrievable. The final obstacle to overcome in this sole spotting process involves 

the contoured nature of the uppers with respect t o the relatively flat surface of the 
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sole units. The problem lies in how to mould the sole unit around the upper. 

The robot is used to clamp the upper to the sole at the tip location. This is 

achieved by approaching the point at an angle. Rather than bring the upper down 

on the sole, this position is maintained by the robot and the compliant 

undersurface the sole is lying on is moved upwards, pushing the sole into the 

upper (see figure 5.5). The movement is achieved by inflating a bag underneath 

the compliant (foam rubber) surface. Since the inflation of a bag is an equalising 

force and the distance travelled is greater the further away from the tip, the sole 

is pushed back from the tip to the heel. This avoids any buckling effect, and if 

used in conjunction with robot motion may be used to enable the stretch effect 

required for undersize sole units. 

5.6 Software 

This section describes the software used during the sole spotting demonstration. 

All the programs are listed at the end of the chapter and comprise three distinct 

groups: - 

1. LASCAR assembly station control programs. 

2. Robot software for Puma (VAL2). 

3. Vision software on BBC micro computer (BASIC and 6502). 

Each group is written on a different machine in a different language and it is best 

to describe each one in a separate section. 
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5.7 LASCAR programs. 

As has already been mentioned the LASCAR system is a means of writing 

assembly station control tasks in a quick and logical manner. Device operations can 

be described in intelligible english making it easy for an operator to write and for 

other people to read. Unfortunately the LASCAR system is only a development 

package and is not complete, lacking real number types, the full range of i/o 

routines, servo loops, and some of the more refined qualities that other languages 

possess. Some of the more important qualities that this system does possess are the 

ability to split processes for parallel operation, command line interpreter, full trace 

and debug facilities and system exit to lower levels. 

The device command build facility (LASCAR device build, or LDB) is the 

means by which the clarity of the top level program is obtained. The device name 

can be specified to enable the operator to be sure of which device he is dealing 

with at all times. Commands for the device can be identified by their purpose 

rather than, say, a job number. The device build software is again incomplete and 

is not possible at present to define string variables for input. The build is not 

complicated but it does require that the builder understand the reasons behind the 

facility, i. e. clarity and device association. Control characters, prompt strings, and 

terminator strings can all be embedded into the device description with the effect 

of masking them away from the assembly task writer or system designer. In this 

way, the commands can be used without concern for the underlying machine level 

instructions. As an example, strings sent to the Puma are always terminated by a 

carriage return. There is no point in making it necessary for the operator to put a 

carriage return into any commands to be sent to the Puma. Similarly, when the 

Puma controller has finished an instruction (or a sequence of instructions), the 

prompt string T@t@. ' (two null chars followed by a dot) is sent. Commands 

93 



executing robot programs can wait for this response to signify completion. 

The number of variables and the variable types (integer, string, boolean) are 

all defined by the device builder. This allows for the construction of similar looking 

commands to devices that may require different data formats. 

The description that follows is for the software written for SATRA members 

day demonstration (12th May 1987). This demonstration included some software 

written at SATRA by Nigel Cross which had to be integrated into that written at 

Hull. This was a very simple procedure, calling a program written in VAL2 to do 

the glue application operation. Since LASCAR programs are unfamiliar to most 

readers, a listing of the program used in the demonstration can be found in 

appendix A. 

5.7.1 Tasks 

At the end of the program SDEMOL. ROB there is a list of procedures, or 

tasks. The operation of each of these tasks is as follows: - 

1. INITIALISE is the variable declaration block. It also sets up the robot and 

the vision system into their default status. 

2. GET_COFA retrieves the centre of area parameter of the current image. 

3. SEND_TO_PUMA sets values to the VAL2 variables UP, DOWN, LEFT, 

and RIGHT and then executes the VAL2 program XYOFF which uses these 

values. 

4. SENDI sets a value in IN to the VAL2 variable held in the character 

variable B. 
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5. EXPROG executes the VAL2 program held in B. 

6. WAITROB waits for the Puma to finish a task before returning. 

7. GET_TIP_VALUES retrieves the coordinates of the tip of the image in 

view. 

8. DELAY waits a short period of time. 

9. SEND_TIP_VALUES sends the coordinates of the tip to the Puma for use 

in the VAL2 program OFFSET. 

Notice the rather cumbersome approach used for sending and receiving integer 

variables (tasks GET_COFA, GET_TIP_VALUES, and SENDI). This is because the 

devices are connected up through the terminal lines. All data is sent and received 

in the form of ASCII characters, including the integer variables via the use of 

print statements. An offset of 48 (decimal) must be used to convert the integer 

value into the ASCII equivalent. Because this has to be done to each character 

individually, a fixed format, or protocol must be used by both sender and receiver 

to ensure that the system does not hang waiting for data. Note also that it is 

possible to send ASCII characters for the execution of VAL2 programs. 

The task WAITROB is necessary when calling VAL2 programs that lasts an 

indeterminate length of time. To avoid system hangs from lost data, the LASCAR 

system has a timeout built in. The device commands for the Puma all wait until 

the Puma sends a 'task completed' message back to LASCAR. If the task has not 

completed after 15 seconds (due to a slow arm speed setting for example), the 

LASCAR system times and and goes on to the next instruction. WAITROB traps 

this possible error by looping back on the wait instruction so that the response is 

non zero from the Puma. 



5.7.2 Device commands 

There are references to 3 devices in the program SDEMOL, these are 

PUMA1, ROB, and BEEB. The first two devices refer to the same object, namely 

the Puma robot. ROB has just one command associated with it, that of WRITE. 

This command writes a string straight to the robot. This makes it useful for 

writing constant strings to the Puma, and is used primarily for system debugging. 

The commands associated with PUMAl are a little more sophisticated. This 

device has 4 commands associated with it 

1. INIT is used to enable the general purpose slave card associated with the 

Puma communications. 

2. SETI is used to set the values of variable integers in VAL2 in the form 

DO (string variable) = (value) <CR> 

the non-bracketed parts being part of the inbuilt command structure. This 

translates into the LASCAR form 

SETI (string variable) A1+48 A2+48 A3+48 PUMAl; 

being able to send up to a three figure value to the Puma. 

3. EX is used to execute VAL2 programs in the form 

EXECUTE (string variable) <CR> 

This will be written in LASCAR in the form 

EX (string variable) PUMA1; 

4. READ is an input command only, waiting for a value to be returned by 

the VAL2 controller. 

The device BEEB refers to the BBC micro computer running the vision 
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processing software. Each of the device commands selects a function from a lookup 

table within the BASIC program running on the BBC. These functions are self 

explanatory in most cases 

1. AREA returns the area of the current image. 

2. PERIMETER returns the perimeter of the current image. 

3. TIP provides the coordinates of the tip of the current image. 

4. EDGE gives the x coordinates of the external edges of the current image. 

5. INIT enables the general purpose slave concerned with communications with 

the BBC. 

6. COFA gives the centre of area of the current image. 

7. CHAN1, CHAN2, CHAN3, select the appropriate camera using the camera 

multiplexer unit connected to the BBC. 

8. BAR selects a fixed exposure value used for reading the bar code on a 

lasted upper. 

The actual operation of the BBC software will be described in a later section. 

5.7.3 Main Program. 

The operation of the main program is essentially sequential. There are only 

two loops, one is a servo loop, the other designed for error trapping. The FORK 

instruction is not used in this program although there is an opportunity to use it 

when executing the VAL2 program VGLURGETL. After this there are a number 

of robot independent instructions concerning the image data from the sole assembly 

area. These instructions could be executed at the same time as thosed used in 

VGLURGETL. 
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The main program performs simple sequential operations like telling the robot 

to move to certain locations and execute particular VAL2 programs. It also runs 

tasks to read in data from the cameras and then send this data to the Puma. 

The servo loop operation is basically a REPEAT loop, performing until a 

certain error condition has been minimized. In this case the operation is to read 

the centre of area of the location hole on the lasted upper and execute a VAL2 

program that moves the gripper camera to reduce this error. This loop is 

completed when the hole is in view directly in the centre of the picture frame 

(position (128,64) in camera coordinates). 

The error loop is found later on in the program and is used to trap the 

camera error condition. Due to a software bug in the image processing routines, 

the program will refuse to identify an image that appears to be valid. When this 

happens, the error condition coordinates of (64, -14) are returned by the image 

processor on request from LASCAR. Any occurrence of the value -14 (sent in 

ASCII form to the LASCAR system) has to be trapped. This bug, which emanates 

from the proprietry vision software supplied with the EV1 camera, does not surface 

often (less than 3% of the runs, depending on exposure setting) but requires 

manual intervention to rectify it. When this error occurs, the operator is notified 

from the terminal and the error is rectified by a slight adjustment of the exposure 

setting. 

5.8 VAL2 robot software. 

This section refers to the software written in VAL2 to directly control the 

robot motion. A substantial amount of the VAL2 software written for the 
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demonstration was written by Nigel Cross at SATRA and does not lie within the 

scope of this thesis. It is sufficient to say that the purpose of this software was to 

control the robot for the adhesive application section of the demonstration. 

Sub-programs for these operations are called from the two main programs 

VGLULGETR and VGLURGETL, the former program for starting off with the left 

upper and the latter for the right. The adhesive application demonstration does not 

make use of any other external devices and so does not require the intervention of 

LASCAR to direct the operation of the programs. The two main programs are 

therefore all that is required to be added into the LASCAR program at the 

appropriate points between the pick up and spotting operations. 

5.8.1 Pick up operation. 

The programs used here are for the purpose of location and pick up of a 

lasted upper using vision sensing for the input of the error values between present 

position and required position. The error values are calculated by the LASCAR 

control program and passed to the VAL2 program XYOFF. The error values are 

calculated from the position of the locating pin hole of the lasted upper as seen 

by the gripper mounted camera. 

The error values refer to movement in the horizontal XY plane. These values 

are passed using the LASCAR command SETI, changing the values of the integer 

variables UP, DOWN, LEFT, and RIGHT. The variables UP and DOWN refer to 

movement in the X direction of the horizontal plane, only one of these variables 

can be set to a non-zero value at any one time. The same applies to variables 

LEFT and RIGHT in the Y direction of the horizontal plane. 
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Before the camera is instructed to take another picture, the robot moves to 

where it thinks the locating hole of the last is. This new location may or may not 

have centralized the hole in the camer a frame and requires a further picture to 

confirm this. If the error is zero then the pick up operation can take place. A 

non-zero error on the second picture can result from one of two occurrences: - 

1. The hole was not fully in view in the previous picture. In this case the 

centre of area of the picture is not the centre of area of the hole. 

2. The robot did not move the correct distance required to bring the hole 

into the centre of the camera frame. This is because the pixel pitch in the 

robot memory is different from the actual required value. 

This second reason requires further explanation. The demonstration program works 

with only one style of shoe. A realistic system would use a number of shoe styles 

with the locating holes presented beneath the camera at varying heights. The 

distance between each individual pixel (the pixel pitch) will vary from style to style 

as a result of this. Rather than calculate this pitch for each individual style, an 

estimated value was used for all styles. This value was chosen to be smaller than 

required for most styles to avoid overshoot. The error value given to the Puma 

will fall short as a result by a short distance and so the number of iterations 

required for location is above the optimal value of 2 (for the hole being fully in 

view) but can be used for all shoe styles. The pixel depth used was 0.28mm/pixel 

for a distance between camera and object of less than 350mm. 

Once the hole has been centralized in the camera frame, the robot is then 

instructed to pick the last up using program GOFORHOLE. Once centralized, the 

gripper is always in the same position relative to the hole centre. VAL2 has 

contingencies for just such occurrences (like most other robot languages) in the 
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form of relative transformations. The program GOFORHOLE takes the present 

location (CAMCENT) and moves to a point relative to it, positioning the grippers 

peg locator above the hole (CAMCENT: TOP). The peg is then tilted and inserted 

into the hole. Once this has been done successfully, the gripper is then activated 

to clamp the upper in position. 

The angle of approach for each particular shoe type can be determined from 

the CAD profile of the upper. This angle of approach varies considerably because 

of different heel heights for different styles. The heel height is determined as the 

difference between the heel point (point A) and the point furthest away along the 

z axis from the reference (centre of locating hole) point (point B). The angle of 

approach is therefore: - 

tan-1 
AZ-Bz I 
AX-Bx 

This angle is of course approximate and so must be accommodated by the fact 

that the pin fits loosely in the hole and a compliant undersurface at the collection 

point. 

There are two error conditions during pick up. The first occurs if the peg has 

not been positioned correctly above the hole and collides with the upper rather 

than inserting into the hole. A micro switch on the tip of the pin will register a 

collision and the robot will stop the pick up operation (program REARPIN). This 

is a fatal error requiring human intervention since it can only occur if the upper is 

moved between location and pick up or if the camera has been knocked out of 

alignment. The other error will occur if the upper is positioned outside the +/-5* 

bounds of orientation. A micro switch on the forward peg will register if it has 
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not been inserted correctly into the front hole on the last. The reacting program 

(FRONTPIN) for this switch will attempt to relocate the peg by rotating the 

gripper about the axis of the larger locating peg. This is attempted for 5* in both 

the clockwise and anti-clockwise directions until the insertion is a success. If there 

is no success here then the insertion is abandoned. 

5.8.2 Spotting operation. 

The tool specification (i. e. where the robot thinks the tip of the tool or 

gripper is) is unimportant for the case of the pick up operation. For the spotting 

operation however, the location of the tool is very important. The actual tool 

location must correspond with the CAD point at the toe. This is because these are 

the points to be correlated at the start of the spotting operation. Once these points 

correspond, the correlation must be maintained when correcting the rotational error. 

This point must therefore be the centre of rotation and hence the TOOL centre. 

There are two programs associated with the spotting operation, OFFSET and 

ROTHETA. There is also a program called ROTHETA1 which is another version 

of ROTHETA. The centre of the picture frame is a reference point that is known 

to the robot as REFCAM. This point is the starting point that is adjusted in 

OFFSET to point to the location of the sole tip. This is done using the integer 

variables XOFF and YOFF set from the LASCAR system. The robot approaches 

this new tip point, toe down, and then finishes in a position ready for the 

rotational adjustment. 

Program ROTHETA makes this rotational adjustment. A second camera 

positioned above the heel of the sole gives the difference of the actual position of 
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the heel with respect to another reference point at the centre of the rear camera 

frame. This offset is passed through the variable ROFF which is the difference 

along the robot x-axis. The y variation is never more than 1 pixel and is 

discounted. The angle through which the upper is to be rotated is dependent on 

the physical distances between the cameras and the offsets (see figure 5.6). The 

formula for calculating this angle 0 is as follows: - 

tan 0 
(Xp*XOFF)-(R 

p *ROFF) + OFFCONS 
(Y p *YOFF)+132 

I 

Where :-Xp, Yp are the subsequent pitches for the toe camera 

Rp is the pitch for the rear camera in the x direction. 

OFFCONS is the difference along the x-axis between the two camera reference 

points. 

The value 132 is the physical distance (in mm) between the bottom 

edge of the front camera and the centre of the rear camera. 

Once this angle 0 has been found, it is possible then for the robot to rotate 

about the reference toe point to bring it into alignment at the rear as well as the 

toe. The program ROTHETA then brings the toe points of the sole and upper 

into contact and then signals an air line to inflate the air bag below the compliant 

undersurface, to push the sole into the upper. 

The program ROTHETA1 relies on the fact that the rear camera sees a 

parallelogram (fig 5.7). The he el area has two straight sides. The angle between 

the line from hole to toe and the straight sides can be calculated from the CAD 

data by taking the points about the hole point and looking at the x variation with 

respect to the y variation. For the samples given this was seen to be 4.6 *. The 

same can be done for the variation seen in the rear camera and then the 
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difference between these angles is the angle through which the upper must be 

rotated to bring it into alignment above the sole. 

5.9 Vision software. 

The vision system used is based around the 'Snap' camera system marketed by 

Micro Ro botics of Cambridge. The ca meras are based on the IS32 optic RAM chip 

produced by Micron Technology of Boise, Idaho, USA. The camera connects 

directly into the User Port of the BBC microcomputer. A multiplexer unit was 

designed to enable the connection of the three cameras to one mi cro. The 

computer was connected to LASCAR via the RS423 second serial port and 

keyboard input was redirected so that it could be operated remotely. 

5.9.1 EV1 software 

The term EV1 software refers to that supplied by the camera manufacturers. 

A number of hobbyist utilities were provided with the camera to enable the 

purchaser to use them straight away. Machine source codes and BASIC listings 

were both available to the user, enabling changes to be made without reference to 

the manufacturer. The most useful utility that came with the camera was called 

OBJECT and was designed as an object recognition demonstration. 

The program OBJECT is written entirely in BASIC but it loads and calls 

subroutines from a machine code program called OUTL. This program provides all 

the utilities that would be too slow if written in BASIC. There are four utilities 

called in OUTL: - 
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1. Viewing routine (camera driver). 

2. Object removal initialization routine. 

3. Subsequent object removal routine. 

4. Enclosure test routine. 

The viewing routine reads in an image from the camera. This is done serially via 

the user port and is translated directly to the screen memory of the BBC micro. 

Rather than have the display show the background in one colour and the object in 

the other, a pixel is only lit where a transition takes place. This has the effect of 

producing an outline of the objects in view. This call is performed in a tight loop, 

updating the view according to the exposure time. 

The second machine code utility is called on intervention with the main 

display loop. The program jumps out of this loop and analyses the image. If an 

object (i. e. a complete enclosed outline) is found by this utility, an object 

description block is formed. This block provides the parameters used to describe 

the characteristics of the object. These characteristics are: - 

1. Area of the object. 

2. Perimeter. 

3. Location within the picture frame (X and Y). 

4. Centre of area of the object with respect to location. 

5. The coordinates of the box, edges orthogonal to the frame axes, that 

would surround the object. 

This is done in the second utility for the first object only. The description blocks 

for all subsequent objects are calculated using the third call in OUTL. 
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The enclosure test routine is used to determine whether the object in question 

has any holes in it. This routine also determines whether other objects are 

enclosed by this object. This information is transferred to the object description 

block. These routines are called recursively until all the objects have been 

processed. The block of description blocks can then be used for the purpose of 

recognition. 

The exposure time for the camera is set by varying the time between each 

read cycle. This time is obtained from a tight loop (written in BASIC) making it 

possible to finely adjust the thresholding. Apart from calling the machine code 

routines, the BASIC driver is used to recognize the image. A 'learn' routine is 

used to store area, shape, and number of holes for a good image. When 

interrupted, this stored data can then be used to correlate with that of the current 

image. If the match is sufficiently close, the program will then tell the user the 

name of the current object. Although some of the BASIC techniques are used, 

most of the driver program is not usable for the shoe sole assembly demonstration. 

5.9.2 BASIC software. 

This section describes the software that was developed for the spotting 

demonstration. This software is an expanded version of OBJECT and has been 

renamed IOBJECT. There are four main procedures in the program: - 

1. PROCIMAGE 

2. PROCOUTLINE 

3. PROCCONTAINS 
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4. PROCIDENTIFY 

PROCIMAGE calls the machine code routine to read in an image and put it to 

the screen. The program sits in t his procedure continually reading in images until a 

key is pressed. If the up arrow key (t) is pressed, the exposure loop counter is 

increased for a longer exposure time. The down arrow key (1) decreases the 

exposure time. Other key presses are read in to boolean variables for use later on. 

PROCOUTLINE recursively calls the machine code routines that build up the 

object description tables. This has been directly ported over from the original 

software. The same applies to the procedure PROCCONTAINS which is used to 

update the object description block according to the relationships between objects. 

In particular this refers to objects contained within others. 

PROCIDENTIFY is the procedure that has been modified the most. This 

procedure originally performed the learn and recognize facility described in the 

EV1 camera handbook [151. The procedure has been subdivided into a number of 

subutilities, returning the object parameters via the RS423 serial interface. This is a 

separate procedure within PROCIDENTIFY called PROCSEND423. Each parameter 

within this procedure has a different key to identify it to the program. The 

responses given by the program will be one of the following: - 

1. COFA, the centre of area of the object. 

2. AREA. 

3. PERIM, the perimeter. 

4. CAM1, select camera number 1 for input. 

5. CAM2, camera 2. 

6. CAM3, camera 3. 
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7. EDGES, the maximum and minimum x coordinates of the object. 

8. CHEX, change of exposure by a small amount. 

9. BAR, a fixed exposure value for the purpose of reading a bar code. 

Not all of these responses will return data back along the RS423. CHEX, BAR, 

CAM1, CAM2, and CAM3 will affect the picture instead. The data that is sent 

back is sent back in a fixed format so that LASCAR can cope easily with it. 

LASCAR cannot cope with variable length input variable structures. This format is 

two, 3 digit numbers for COFA and EDGES, and one 6 digit number for PERIM 

and AREA. COFA, AREA, PERIM, and EDGES are peeks into the area of 

memory that is the object description block. 

There are a number of calls to the operating system (OSBYTE calls) within 

the program. Such calls are usually hardware specific and perform functions like 

selecting the input device (i. e. RS423 instead of the keyboard) and manipulating 

the user port (for camera selection). For a full detailed description of the purpose 

of these calls it is best to refer to the BBC user manual [551. 

5.9.3 6502 assembler software. 

There is an unfortunate bug in the machine code software (OUTL) written for 

object recognition utility. It was observed that although a satisfactory picture was 

placed on the monitor screen, the software refused to accept the presence of the 

object. On consultation with the manufacturers, this problem was seen to be a 

result of a lack of ruggedness in the software. Pixels that exhibited a castling effect 

were interpreted as unconnected and the software rejected the object data. 
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Although the assembler source listings are available for OUTL, they are not 

on disc and so it is extremely difficult to edit them. Also, after a few random 

peeks into the relevant memory blocks, it is evident that these sources are not the 

latest version. This problem was increased by the fact that the software was cross 

assembled from 68000 to 6502, with assembler directives for 68000 confusing the 

listing. Any software written for the BBC, incorporating this software must 

therefore be written separately from OUTL and positioned to avoid corruption. 

Since all the available BASIC program memory is filled by OBJECT and OUTL 

then the amount of available space is dispersed about the machine and limited to 

only a few kilobytes. 

One of the most important characteristics used for the spotting demonstration 

is that of determining the tip of the sole. In terms of the camera software this is 

the reference point where the object is said to start. A raster scan from the top 

left hand of the picture searches for the first white (set) pixel. With the camera 

positioned so that the toe point of a sole is also the start point of the object, this 

start point can be correlated with that on the upper. An alternative tip location 

program was written to perform the tip location function. This function performed 

more reliably, obtaining the tip directly from the screen rather than a compressed 

image. 

The BBC micro screen memory is not presented in a linear form and the 

block size and number of colours is determined by the character mode selected. 

The Snap camera software uses a two colour graphics mode (mode 4) that is 

presented in columns of 1 byte by 8, each pixel represented by 1 bit. A number 

of counters search the picture in order from the start position of the frame 

(location 5800 Hex). X and Y counters are incremented accordingly until the point 

position is detected. The program then returns to the calling point with the tip 
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data stored in particular memory locations that have to be peeked and displayed. 

Note that only the first point is returned and so only one object must be 

displayed. The lighting level must be quite high to maintain a high contrast and 

prevent noise creeping in to the picture. 

This alternative function has been written so that it may be expanded with 

little difficulty. The BASIC program cannot however hold the assembler listing since 

it will be overwritten by variables. The test sequence of compilation, storing and 

then calling from another program is unfortunately laborious. It would be a simple 

task to use the techniques displayed in this piece of software to perform the 

EDGE function described earlier. This will provide further points to be correlated 

with those in the CAD data. 

5.10 System Performance. 

Tests performed during the SATRA member's day showed that the system was 

capable of spot connecting lasted uppers to sole units with some degree of success. 

Of a total of 100 monitored trials carried out both at SATRA and at Hull, only 

8% resulted in wholly fatal errors, requiring manual intervention to reset the 

system. 65% of the runs performed adequate sole spotting with the required 

accuracy. All the errors were traceable with the majority of them rectifiable (see 

chapter 6). Such figures, although far from perfect, are sufficient to confirm that 

the system concept works and further development is worth pursuing, using these 

ideas, to produce a functioning robotic assembly station. 
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6.0 ERROR RECOVERY AND FUTURE DEVELOPMENTS. 

The system described in the last chapter, like all robotic development projects, 

is prone to occassional errors. Errors can occur in varying degrees at all points in 

the assembly process. Identification, location, and mating can all go wrong and 

result in actions that can be fatal to the entire assembly. During assembly runs it 

was noted that error sources could be divided into 3 categories: - 

1. Marginal errors, deviating from the intended assembly process but still 

resulting in a good assembly. A good assembly was achieved either through 

error recovery processes or because of the marginal effect of the error. An 

example of such an error would be a slight slippage of the upper whilst in 

the robot gripper. 

2. Singular fatal errors, affecting the performance of one run and thus 

resulting in the poor assembly of one part. An example of such an error 

would be incorrect placement of the upper on the sole due to varying lighting 

conditions. 

3. Wholly fatal errors resulting in the need for outside intervention in order 

to continue any further assemblies. An example of such an error would be a 

blown light bulb. 

Of course, not all errors can be foreseen and so there is no such thing as an 

error free environment. In fact it is only necessary to address the problem of those 

errors whose probability of occuring exceeds a certain level. This chapter therefore 
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covers the commonly occuring errors that have been observed with the present 

system. These errors are discussed with emphasis on how they may be recovered or 

reduced to give only a marginal effect. 

6.0.1 Environment Sensina. 

Sensing of the robotic assembly environment is necessary for two reasons: - 

1. Detection of minor deviations resulting in poor location of part. 

2. Detection of large deviations resulting in collision and possible damage. 

Should a camera, or a reference position be knocked slightly out of alignment 

it is possible that all subsequent part mating operations will be incorrect. Contact 

sensors may be placed at relevant areas to detect collisions that may cause large 

deviations but they cannot be used to confirm that small misalignment errors exist. 

By positioning lights, or beacons at known positions fixed to any non permanent 

surfaces (e. g. pallets) it is possible to check the alignment of various components. 

This can be done for any location relative to the robot by using the gripper 

mounted camera. This approach would ideally be used as an enhancement to 

collision detection sensor (force sensing, micro switches etc. ), the calibration 

procedure with the camera only being used at regular intervals or when an unusual 

event happens. 

Since the robot is the main likely source of collision it is essential that a 

collision sensor be included in the gripper design. A simple but effective design is 

shown in figure 6.1, consisting of a U-shaped section with strain gauges mounted 
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inside and outside the bend. This will detect forces acting in a vertical direction, 

excessive forces being the result of collisions, incorrect insertions, etc., depending 

on the region these errors occur within the robot work space. Such a sensor could 

be used to generate a force profile during insertion and mating which could give 

information regarding the quality of assembly. 

6.0.2 Lighting Levels. 

All vision systems are susceptible to variations in ambient lighting levels. The 

human eye is a self compensating device and it is difficult to accept the effect that 

the sun coming from behind a cloud has on the ambient lighting level (table 6.1). 

There are two ways of dealing with the problems caused by ambient lighting 

effects, screening and vision compensation. 

Screening is probably the less elegant approach and involves the construction 

of a controlled lighting environment. This is done by either enclosing the assembly 

area and blocking off the outside lights, or by increasing the level of the system 

lighting above any effects from outside. Both these approaches can be restrictive on 

the mechanics of the system. 

Vision compensation relies on optical feedback to adjust the sensitivity of the 

vision system. Tests using an eye response diode (a device sensitive to light in a 

similar way to the human eye) showed that it was possible to monitor the ambient 

light level. The exposure time of a camera can then be linked to this level via the 

vision processor to ensure that the picture threshold is set to an optimum level. 

Incidental lighting is therefore only necessary to eliminate shadowing effects and 

maintain an acceptable level for the maximum exposure time (during night time 
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Blue 

10 000 Clear blue sky 

9 000 

8 000 

7 000 

Overcast sky 

Illuminant IDI 

6 000 Summer, noon 

Camera flash bulb 

5 000 Early morning, late afternoon 

Dusk and dawn 

4 000 White flourescent tube 

Halogen bulbs 'normal' setting 

3 000 Tungsten bulbs (studio) for camera 

Tungsten bulbs (domestic) 

2 000 

1 000 

.K 

Red 

Candlelight 

Firelight 

Table 6.1 

Colour temperature characteristics of common 

light emitters 
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operation for example). The lighting intensity and positioning is not so rigorously 

constrained in this form. This approach is the recommended of the two, minimising 

cost and excessive hardware which would restrict the usefulness of the robot cell. 

6.0.3 Vision Errors. 

The errors resulting from poor location of the sole tip are a direct measure 

of the robustness of the vision algorithm. Quantisation error from the camera is 

not a direct problem, but with errors resulting from the mixed topology of the 

IS32 chip the location of the sole tip can only be gauranteed to within two or 

three pixels. In order to improve the position of the sole relative to the upper it 

is necessary to make use of more than one camera reference point. 

The most sensible approach to improve the sole location involves an iteration 

between the vision processor for the two fixed cameras and the processor 

manipulating the CAD data. The logical points to use in conjunction with the tip 

point are those that meet the edge of the camera field of view. These points will 

not correlate directly to any CAD points but when used with the orientation data 

from the heel camera, they can be processed to give a more reliable fit than using 

just the tip location alone. 

It should be noted that the cameras on the demonstration rig were positioned 

to provide a larger than necessary field of view. With the present system, sole 

units could be fed into the assembly area with a positional tolerance of +/-6mm. It 

is not infeasible to say that this tolerance could be halved, giving twice the present 

pixel accuracy, without any increased burden on the system design. 
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6.0.4 CAD Errors. 

The CAD information is common to all the lasts in the batch. The lasts used 

were noted to be different from each other and therefore from this data. The 

reason for this is that some of the last manufacturing processes are still performed 

under manual control, in particular deburring and positioning of the sole plate. 

Such errors resulting from incorrect CAD data cannot be reduced without more 

stringent control of the last manufacturing process. This could easily be achieved 

through greater use of automated manufacturing techniques. 

An alternative approach would be to develop a means of cheaply and quickly 

digitising the lasted upper. Such a device could be incorporated into the design of 

a bottom roughing machine performing the digitising at the same time as the 

roughing process. Lasts could then be identified using a bar code approach to the 

subsequent assembly stations of roughing and sole placement. 

6.1 The development of Robotics in the Shoe Industr 

The shoe sole assembly cell discussed in this thesis would never be considered 

as a viable element of any present day shoe assembly line. The software used and 

the supporting hardware makes it a very costly individual system. However, it was 

never envisaged as such by any of the instigators of the research. Much emphasis 

has been given, throughout this thesis, of the importance of a multi robot 

environment. The shoe manufacturing industry is a prime target for multi robot 

systems. With a number of assembly tasks using similar information the benifits of 

a master/slave hierarchy is highlighted. Such a system would depend on networking 
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making the branch into automatic warehousing and stock control into a logical 

advancement. This would increase the need for lasts to be bar code identified and 

make it easy to monitor the throughput and identify potential bottlenecks and 

problem areas. Such embelishments to assembly start to outline how adoption of 

robotic techniques in one part of a line can emanate and contribute to a 

completely different area of interest. Although the cost savings become difficult to 

assess because of these interelationships it is not hard to appreciate that the bigger 

the system, the more cost effective it becomes. 

It is obvious from the networking systems and data highways now available 

commercially that other industries have already begun to appreciate the importance 

of multi system integration. Such systems are also available with a number of robot 

controllers making them available for this type of expansion. It is just as important 

to the shoe industry, as any other, that data integrity is maintained. A positional 

point downloaded incorrectly to a target workstation could result in a whole batch 

of badly assembled goods. It is essential that a good networking protocol be 

adopted. The ROBUS system could easily be adapted for networking use, assigning 

an intelligent slave as a protocol handling device for the local assembly station, 

communicating over long distances to the master process controller via its serial 

channels. An industrial system (e. g. utilising the MAP system) would probably be 

the more logical choice however. 

One of the most important lessons to be learnt as a result of this research 

would be that the more sensors in a robot cell the better. This could be extended 

to say that the cheaper the sensors, the more you can afford to add into the 

robot cell. This is true for both environmental and direct assembly sensors. The 

more a robot is aware of the environment and the assembly process, the more 

difficulties can be coped with. The human is a superior animal because of the 
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power of its central processor and its sensory support, the very same reasons why 

robots should be superior machines. 

To finally sum up how this research project fits into the future of the shoe 

industry the following points must be made. The objective of this project was to 

investigate the feasibility of a flexible shoe sole assembly cell. Such a system was 

indeed found to be possible and the philosophy behind the solution has lead to 

rethink of how this particular assembly process is carried out. The software and 

communication integration techniques involved are also novel, illustrating how a 

robot system can be constructed, and how robotic tasks can be modularised to 

allow ease of modification. The extensive use of the Dynamic RAM cameras 

illustrates how these inexpensive yet versatile devices can be used to great effect, 

belying the premise that vision systems need to be highly complex before they can 

become of any use. These factors, combined with the novel gripping and handling 

techniques, show that this project has not only provided a significant contribution 

to the shoe industry, but to robotics research in general. 
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Appgndix A 

Listing of LASCAR progjam used in demonstration at SATRA. 

SET AUTOGENERATE; ! Allows automatic generation of variable names 

INITIALISE; Wariables used in run 

WRITE 'DO SET #WCAM=#WCAMLI ROB; 

BAR BEEB; ! set up BBC camera for reading bar code 

B='READBAR'; 

EXPROG; ! execute VAL2 program READBAR 

CHAN1 BEEB; DELAY; ! select camera number 

WRITE 'DO MOVE WABOVELI ROB; ! send instructions to robot 

WRITE 'DO SET TOP=TOPL' ROB; ! locations for left upper 

REPEAT JGET-COFA; ! lst half of demo 

SEND-TO-PUMA; 

UNTIL CY--O; ! wait until hole in centre of picture 

PRINT; PRINT LOCATION HOLE FOUND '; PRINT; 

CHAN2 BEEB; 

B=IGOFORHOLE'; 

EXPROG; ! pick up last 

PRINT; PRINT LAST NOW IN GRIPPER '; PRINT; 

B=IVGLULGETR'; ! execute last gluing program 

EXPROG; 

WRITE 'DO SET TIPTOE=TIPTOERI ROB; Rocations for right upper 

WRITE 'DO RCONS=RCONSRI ROB; ! used in 2nd half of demo 

WRITE 'DO MOVE #AWAY' ROB; 
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REPEAT IGET-TIP-VALUES; 

DELAY; 

I UNTIL YOFF<>14; 

CHAN3 BEEB; DELAY; 

! get toe point fro' sole image 

GET-COFA; 

SEND-TIP-VALUES; 

! get heel location 

Nend all values to robot 

B='OFFSET'; ! position upper above sole, activate press 

EXPROG; Weposit completed item 

PRINT; PRINT PROGRAM FINISHED @; PRINT; 

END; 

! Tasks used in program 

Unitialise variables used in rest of program 

TASK INITIALISE I INIT PUMAl; Unitialise slave device Puma robot 

INIT BEEB; ! and BBC image processor 

Al =0; 

A2=0; 

A3=0; 

Bl =0; 

B2=0; 

B3=0; 

B=ol; 

CX=O; 

CY=O; 
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IN=O; 

ROFF--O; 

XOFF=O; 

YOFF--O; 

CHAM BEEB; ! default camera value 

B='ZCOMMENCE ';! start off robot program 

EXPROG; } 

! get centre of area from chosen camera channel 

TASK GET-COFA I COFA Al A2 A3 B1 B2 B3 BEEB; 

Iget 2 fixed format numbers from BBC 

land convert them from ASCII into numerals 

CX=(((Al -48)*l 00)+((A2-48)*l 0)+(A3-48)); 

CY=(((Bl -48)*l 00)+((B2-48)*l 0)+(B3-48)); 

ROFF=CX; 

CX=128-CX; ! adjust to suit centre of camera as reference 

CY=64-CY; 

PRINT; PRINT 'CX= ' CX ' CY= ' CY; PRINT; 

} 

! send compensating commands to robot to bring hole into centre of camera 

TASK SEND-TO-PUMA I IF CX<O THEN {B= 'RIGHT '; IN=-CX; } 

ELSE fB= 'LEFT '; IN=CX; } 

IF CX< >0 THEN SENDI; 

IF CY<O THEN {B='UP'; IN=-CY; } 

ELSE fB='DOVv'N'; IN=CY; l 

IF CY<>O THEN SENDI; 
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B='X-YOFF'; 

EXPROG; 

I 

Nend integer value held in Al. A2 A3 to be set in variable held by B 

TASK SENDI f Al=IN/100; 

A2=(IN-(100*Al))/10; 

A3=IN-((l 00*Al)+(l O*A2)); 

SETI B A1+48 A2+48 A3+48 PUMAl; 

I 

ftell VAL2 controller to execute program held in variable B 

TASK EXPROG f C=O; 

EX BC PUMAl; 

IF C<>46 THEN IREPEAT READ C PUMAl UNTIL C=46; 1 

} 

! get location of tip point from BBC image processor 

TASK GET-TIP-VALUES ITIP Al A2 A3 B1 B2 B3 BEEB; 

XOFF=(((Al -48)*1 00)+((A2-48)*l 0)+(A3-48)); 

YOFF=(((Bl-48)*100)+((B2-48)*10)+(B3-48)); 

PRINT 'TIP VALUES I XOFF YOFF; 

I 

! short delay 

TASK DELAY {Al=O; 

REPEAT A1=A1+1 UNTIL A1>50; 

} 
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Nend integer values to VAL2 controller 

TASK SEND-TIP-VALUES I B='XOFF'; IN=XOFF; SENDI; 

B='YOFF'; IN=YOFF; SENDI; 

B='ROFF'; IN=ROFF; SENDI; 
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