

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTORES

Dominguez Delgado, Anabel Anai (orcid.org/0000-0001-7858-8762) Santillan Aranda, Elkin Solis (orcid.org/0000-0002-4594-0587)

ASESOR:

Mg. Ing. Villar Quiroz, Josualdo Carlos (orcid.org/0000-0003-3392-9580)

LÍNEA DE INVESTIGACIÓN:

Diseño de infraestructura vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA

Desarrollo sostenible y adaptación al cambio climático.

TRUJILLO – PERÚ 2022

Dedicatoria

A dios por ser siempre mi guía y permitirme cumplir uno de mis objetivos y así lograr una de las metas que tenía trazada en esta vida y por siempre darme fuerzas para seguir adelante.

A mis padres por todo su esfuerzo, sacrificio y su amor incondicional, por a ver sido el motor de mi vida en transcurso de esta etapa.

Domínguez Delgado, Anabel Anai.

Dedico este proyecto de investigación a Dios, quien siempre cuida de mí, dándome oportunidad de la la existencia, para así cumplir con mis metas trazadas a lo largo mi vida, También por ayudarme a seguir con mis estudios con éxito. También a mis familiares por el apoyo incondicional, por siempre impulsarme a ser mejor cada día. Y a mis amigos cercanos por ayudarme a lograr a seguir adelante y no dejar que me rinda.

Santillan Aranda, Elkin Solis

Agradecimiento

Agradezco a Dios por las bendiciones durante mi vida, por la fortaleza dada en todos los momentos complicados. Seguidamente a mi gran familia por el sustento y apoyo incondicional, por los consejos, valores y principios que me han impuesto para superarme cada día como persona y profesionalmente. Sin dejar de lado a mis a todos los docentes que, con el conocimiento y educación, motivaron a desarrollarme como futura profesional en la Universidad Cesar Vallejo.

Domínguez Delgado, Anabel Anai.

Tengo un gran agradecimiento hoy y en el mañana a Dios, a quien siento su cuidado y por ser quien me guía hacia un buen futuro. Agradezco también a mi familia, en especial mis padres por su sacrificio y esfuerzo por apoyarme en día a día.

Agradezco a mis dientes quienes durante la etapa universitaria me enseñaron a pensar un futuro profesional en la Universidad Cesar Vallejo.

Santillan Aranda, Elkin Solis

Índice de contenidos

De	dicatoria	ii
Agı	radecimiento	iii
ĺnd	lice de contenidos	iv
ĺnd	lice de tablas	v
ĺnd	lice de figuras	vii
Re	sumen	ix
Ab	stract	x
l.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	9
III.	METODOLOGÍA	30
	3.1. Enfoque, Tipo y diseño de investigación	30
	3.2. Variables y operacionalización	33
	3.3. Población, muestra y muestreo	34
	3.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad	34
	3.5. Procedimientos	38
	3.6. Método de análisis de datos	41
	3.7. Aspectos éticos	42
	3.8. Desarrollo de la tesis.	42
IV.	RESULTADOS	74
٧.	DISCUSIÓN	96
VI.	CONCLUSIONES	101
VII.	RECOMENDACIONES	102
RE	FERENCIAS	103
ΑN	EXOS	110

Índice de tablas

Tabla 1. Valores de Desviación Standar Normal	28
Tabla 2. Cálculo aproximado del Mr. de subrasante respecto al CBR	29
Tabla 3. Niveles de Confianza según los tipos de carreteras	29
Tabla 4. Clasificación de variables	33
Tabla 5. Instrumentos y Validaciones	36
Tabla 6. Método de análisis	41
Tabla 7. Resumen conteo de vehículos	44
Tabla 8. Cálculo de índice medio diario y anual	45
Tabla 9. Guía de observación para conteo peatonal	47
Tabla 10. Valores de Desviación Standar Normal	49
Tabla 11. Cálculo aproximado del Mr. de subrasante respecto al CBR	50
Tabla 12. Niveles de Confianza según los tipos de carreteras	50
Tabla 13. Requisitos para pavimentos especiales	51
Tabla 14. Coordenadas UTM de ubicación de BM'S	54
Tabla 15. Periodo de Análisis - según AASHTO	60
Tabla 16. Tasa de crecimiento de vehículos ligeros y pesados	61
Tabla 17. Factores de crecimiento acumulado (Fca)	62
Tabla 18. Factor Direccional y Factor Carril	63
Tabla 19. Factores Equivalente y Factor Camión	64
Tabla 20. ESAL de Diseño encontrado	64
Tabla 21. Clasificación de la vía	65
Tabla 22. Rango de tráfico pesado expresado en EE	66
Tabla 23. Categoría de la subrasante	67
Tabla 24. Categoría de la subrasante	67

Tabla 25. Categoría de la subrasante	68
Tabla 26. Índice de serviciabilidad inicial	69
Tabla 27. Índice de serviciabilidad final	70
Tabla 28. Coeficiente estructural de la capa superior del pavimento	71
Tabla 29. Coeficiente estructural de la base	72
Tabla 30. Coeficiente estructural de la Sub-Base	72
Tabla 31. Valores recomendados para el coeficiente de drenaje	73
Tabla 32. Valores recomendados para el coeficiente de drenaje	73
Tabla 33: Conteo vehicular semanal de vehículos de entrada y salida	74
Tabla 34. Resumen conteo de vehículos	75
Tabla 35. IMD sin corrección	75
Tabla 36. IMD y clasificación vehicular	76
Tabla 37. Cálculo de índice medio diario y anual	78
Tabla 38. Coordenadas UTM	80
Tabla 39. Puntos topográficos	81
Tabla 40. Resumen de exploraciones realizadas	83
Tabla 41. Análisis granulométrico y clasificación de suelos	83
Tabla 42. Ensayos de laboratorio C. Humedad, Proctor y CBR	83
Tabla 43. Resumen de CBR compactado al 95 %	84
Tabla 44. Relación de ensayos de laboratorio	84
Tabla 45. Periodo de Análisis - según AASHTO	84
Tabla 46. Tasa de crecimiento de vehículos ligeros y pesados	85

Índice de figuras

Figura 1. Diagrama del diseño de investigación	32
Figura 2. Esquema de procedimientos	39
Figura 3. Figura de método de análisis por la estadística descriptiva	41
Figura 4. variación diaria de vehículos de mes septiembre	46
Figura 5. Estructura según tipo de pavimento	48
Figura 6. capas de la estructura del pavimento flexible	52
Figura 7. Detalle de la carpeta asfáltica	53
Figura 8. Vista Satelital del Área del Proyecto	55
Figura 9. ensayos realizados	57
Figura 10. variación diaria de vehículos de jueves a miércoles	76
Figura 11. IMD anual y clasificación vehicular (Veh/día)	77
Figura 12. Clasificación vehicular IMD según tipo de vehículos	77
Figura 13. Estructura del pavimento	79
Figura 14. Estructura final del pavimento	90
Figura 15. Sector alto Laredo, Av. Principal	167
Figura 16. Campo de futbol	167
Figura 17. Vía en mal estado	168
Figura 18. Sector colindante con el cementerio	169
Figura 19. Local comunal, sector Alto Laredo	169
Figura 20. Calle 2, sector Alto Laredo	170
Figura 21. Excavación de para estudio de suelos	170
Figura 22. Medición de las calles y avenidas, sector Alto Laredo	171
Figura 23. Informe técnico del estudio de suelos	172
Figura 24. Generalidades del estudio de suelos para el diseño de vías	173

Figura 25. Localización de la zona de estudio y ubicación de calicatas 1	74
Figura 26. Perfil estratigráficos y ensayo de campo en 4 calicatas 1	75
Figura 27. Conclusiones y recomendaciones del estudio de suelos1	76
<i>igura 28.</i> Análisis granulométrico por tamizado1	77
Figura 29. Límites de consistencia1	78
<i>igura 34</i> . Informe del estudio topográfico1	83
<i>igura 35.</i> Vista satelital, sector Alto Laredo1	84
Figura 36. Plano topográfico, sector Alto Laredo1	85
Figura 37. Ubicación de BM´S, sector Alto Laredo1	86
Figura 38. Registro fotográfico del estudio topográfico	87
Figura 39. Registro fotográfico de BM-1 y punto geodésico	88

Resumen

La investigación se realizó en el sector de Alto Laredo. El diseño de vías se

determinó utilizando la metodología AASHTO 93 para mejorar el tráfico de

vehículos y peatones en el sector Alto Laredo para el 2022. Cabe señalar que el

diseño de la investigación fue no experimental, la población fue todo el sector de

Alto Laredo. Para la presente investigación se utilizó la técnica de la observación

para recolección de datos, y como instrumentos se usaron guías de observación.

La transitabilidad vehicular y peatonal en el sector Alto Laredo del distrito de

Laredo siguen sin desarrollarse, como resultado, tanto el tránsito vehicular como

peatonal en esta área se ve afectado. Por ello se planteó determinar el diseño

de vías mediante metodología AASHTO 93 para mejorar la transitabilidad

vehicular y peatonal del sector Alto Laredo, 2022.

Se logró evaluar la transitabilidad mediante un estudio de tráfico, teniendo como

resultado un IMD de 2343 de vehículos y un IMDa de 855,195 vehículos. Con los

elementos claves analizados y estructurados que se consideró de la metodología

AASHTO 93, se logró realizar el diseño de vías logrando así mejorar la

transitabilidad del sector Alto Laredo.

Palabras Clave: transitabilidad, vías, trafico

iχ

Abstract

The research was initiated in the Alto Laredo district. The roadway design was

determined using the AASHTO 93 methodology to improve vehicular and

pedestrian traffic in the Alto Laredo sector area by 2022. It should be noted that

the research design was non-experimental, the population was the entire Alto

Laredo sector. For the present investigation, the observation technique was used

for data collection. Observation guides were used as instruments.

The vehicular and pedestrian trafficability in the Alto Laredo sector of the Laredo

district remains undeveloped, as a result, both vehicular and pedestrian traffic in

this area is affected. Therefore, it was proposed to determine the design of roads

using AASHTO 93 methodology to improve vehicular and pedestrian trafficability

in the Alto Laredo sector, 2022.

The trafficability was evaluated through a traffic study, 2022, resulting in an IMD

of 2343 vehicles and an IMDA of 855,195 vehicles. With the key elements

analyzed and structured according to the AASHTO 93 methodology, the roadway

design was carried out, thus improving the trafficability of the Alto Laredo sector.

Key words: trafficability, roads, traffic, traffic

Х

I. INTRODUCCIÓN

1.1. Realidad problemática

La transitabilidad vehicular y peatonal en el mundo no es la adecuada. Más de 270.000 peatones pierden la vida en las vías públicas cada año en el mundo. Lo mismo ocurre con el 22% de todas las muertes relacionadas con el tráfico de automóviles en todo el mundo. Algunos países vieron una tasa de muerte de peatones del 66% (OMS, 2019). El sitio web de BBC World, a partir de 2017, muestra una batalla regional por cuestiones ambientales y de transporte. Estos problemas enfrentan ciudades como Bogotá de Colombia, Sao Paulo de Brasil, México y Caracas de Venezuela. Son el resultado de un importante aumento de la población y del aumento de la transitabilidad. Además, la accesibilidad de los automóviles ha aumentado el número de preocupaciones ambientales relacionadas con el transporte urbano y rural. Estos incluyen congestión, accidentes, demoras y otras complicaciones (Thomson y Bull, 2001).

En México, Torres (2016), comenta que la planeación de la transitabilidad representa un reto para los gobiernos, así como también para las instituciones públicas y privadas. Son pocas las se densifican que cada vez más y aumentan sus demandas de bienes, servicios y recursos dentro de ellas. Estas ciudades no siempre cuentan con una planeación y normatividad vial urbana adecuada, lo que dificulta el establecimiento de sistemas adecuados de vías de movilidad (p.18).

En el Ecuador, Yugcha (2016), comenta que el sistema de la transitabilidad cuenta como uno de los servicios con gran importancia y además atención sobre otros servicios, su finalidad siempre impulsa un gran desarrollo del país, aun así, siempre se ejecuta con incumplimientos de las normas y requerimientos nacionales, sin estudios básicos y entre otras omisiones, dejando de lado y sin importancia las geométricas de las vías (p.15).

En Paraguay, las obras de infraestructura vial ayudan a diversificar la comercialización gracias al desarrollo del transporte, las poblaciones a alejadas de las grandes ciudades dedicadas a la comercialización o diversificación e industrialización de los productos del sector agropecuario, contribuyen a la competitividad en los comercios exteriores y todo esto se debe a una gran y adecuada y transitabilidad (IP, 2022.p12).

En el Perú, Rojas (2017), el investigador menciona que la transitabilidad se viene afectando por aumento excesivo de unidades de transporte vehicular que se usan a diariamente, ya sea en el sector público o privado, todos los vehículos pesados inclusive los más livianos como las mototaxis, producen en varios puntos e intersecciones de las vías sobre aforos así como también ocupación de un área de circulación, lo que hace que aumente la transitabilidad y accidentes en las vías inadecuadas (p.16).

En el lugar de estudio, en el sector Altor Laredo, se puede notar que la transitabilidad vehicular y peatonal es inadecuada, y son muy evidentes ya que las vías vehiculares y peatonales no se encuentra en un estado adecuado. Además, los pobladores de la zona se ven afectados por los disgustos que genera el tránsito vehicular diariamente. Existe abandono por parte del gobierno local para ayudar a tener una mejor transitabilidad con las vías adecuadas.

La capacidad de vehículos y peatones se define mediante evaluaciones realizadas por Traffic Research. Esto nos permite entender las condiciones de tráfico actuales en nuestra zona de estudio según el MTC (Ministerio de Transporte), entender y analizar la tarifa diaria promedio y determinar la tarifa diaria promedio del año.

Ashhad et al. (2020), encontró que, de la transitabilidad, los datos de velocidad obtenidos de una capacidad vehicular de aproximadamente 900 m equidistantes entre las dos estaciones indicaron que en este tramo velocidades bajas de 18 km/h a 25 km/h aumentaron el disgusto de los usuarios, aumentaron las emisiones de CO2 y resultaron en riesgo de

accidentes. Además, retrasos en el tiempo de viaje del usuario y otros factores, también es probable que estos problemas aumenten en 2025 debido a posibles aumentos en la carga de vehículos. Por lo tanto, cada resultado de esta investigación intriga a las autoridades competentes para encontrar soluciones de la transitabilidad.

Yugcha (2016), encontró que el ensanchamiento o mejoramiento de las vías, permiten que la estructura del pavimento y la geometría tridimensional sea una obra de arte complementaria propuesta, son importantes para cumplir con los objetivos básicos de la transitabilidad, es decir, funcionalidad, seguridad, comodidad, integración con el entorno, estética y economía, minimizando los inconvenientes existentes en las vías.

León (2020), los estudios de tráfico deben tener en cuenta las circunstancias especiales de cada alternativa. Un error común es que todas las propuestas pueden resolver todos los problemas. De hecho, muchas alternativas carecen de factores atípicos que las hagan inadecuadas para determinadas situaciones. Por lo tanto, es fundamental analizar minuciosamente cada componente de un estudio de tráfico. Esto incluye analizar la distribución geométrica tridimensional de la carretera actual y el entorno circundante. Posteriormente, estas observaciones ayudan a determinar las deficiencias y limitaciones del camino. A continuación, se debe diseñar un plan de respuesta para solucionar cualquier problema con el diseño y la construcción de intersecciones.

La transitabilidad para el gobierno municipal de Trujillo viene teniendo descuido en dar mantenimiento a las vías de la ciudad; en consecuencia, su pavimento se desgasta prematuramente y debe ser reemplazado. Además, se debe tener en cuenta que estos problemas de mantenimiento generan una carga financiera significativa, ya que las pistas en ruinas conducen a reparaciones costosas. La transitabilidad no debe ser dejada en segundo plano ya que es primordial para el desarrollo del país.

En el 2019 la Municipalidad de la Provincia de Tarara ejecutó el proyecto "Mejoramiento de los servicios de tránsito vehicular y peatonal en los Parques 70, 71, 72, Distrito de Parignas, Provincia de Tarara-Piura". Donde se ejecutó la construcción del pavimento, mejorando así sus vías de transitabilidad. La población de los parques tenía una inadecuada transitabilidad y debido a que se encontraban en crisis debido a la su baja producción de su economía, debido a los agentes climatológicos y crisis económica mundial, por tal motivo los pobladores pidieron todo el apoyo posible a la autoridad encargada.

A través del Fondo Metropolitano de Inversiones (Invermet), la Municipalidad de Lima iniciará la ejecución y supervisión su proyecto que mejorará la calidad de transitabilidad vehicular así mismo la peatonal en la Av. Haya de la Torre del distrito de San Martín de Porres. El proyecto, que cuenta con una inversión que supera los S/7 millones, su objetivo es velar por la calidad de vida de la población que son más de 46,000 vecinos de la zona. También busca implementar una adecuada infraestructura peatonal y vehicular, además de jardineras, a fin de beneficiar las áreas verdes del distrito (Municipalidad de Lima, 2021).

La problemática que se planteó fue una ausencia de una adecuada transitabilidad vehicular también peatonal en el sector Alto Laredo del distrito de Laredo, debido a que las vías vehiculares se encuentran deterioradas y a la vez, solo tiene un carril en la mayoría de sus calles, lo cual limita que exista un mayor flujo de autos en horas de tráfico.

Asimismo, la transitabilidad peatonal, debido a que las veredas existentes se encuentran en un mal estado, y la municipalidad no las ha mejorado ni les ha dado mantenimiento adecuado tampoco diseñó nuevas veredas. Como resultado, tanto el tránsito vehicular como peatonal en esta área se ve afectado. Muchas personas que viven y trabajan en esta área se han cansado de las malas condiciones.

Además, muchos residentes se han sentido frustrados con el desprecio de los no residentes por estos problemas. Además, las viviendas adyacentes a las vías principales son las que más sufren día a día con el polvo que de genera por la velocidad en la que los vehículos transitan.

Es importante señalar que muchas de las calles de esta zona no cuentan con vías asfaltadas y no existe señalización. Esto dificulta que los visitantes se orienten en el área. Además, los vehículos pesados circulan diariamente por dos avenidas principales en esta área, denominadas "avenidas de alta velocidad". Estos vehículos producen grandes cantidades de polvo mientras viajan rápidamente. En consecuencia, es fundamental señalar que transitar por estas avenidas hace que los automovilistas sean susceptibles a accidentes debido a su alta velocidad.

Por ende, esta investigación espera brindar una solución alternativa viable y sostenible para esta parte particular de Alto Laredo. También es necesario para la contribución social porque analiza la viabilidad de modernizar la infraestructura vial en la zona urbana. Si no se realiza este trabajo entonces no se podrá saber de qué manera se puede realizar una mejora con respecto a la transitabilidad vehicular y peatonal, lo cual perjudicaría a toda la población cercana de Alto laredo.

1.2. Planteamiento del problema

¿Cuál es el diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022?

1.3. Justificación

1.3.1. Justificación general

El desarrollo de este proyecto se justifica en los beneficios, también en las ventajas que se tendrá en la población del sector Alto laredo, con aspectos muy importantes como facilitar un adecuado acceso a los visitantes

generando un mejor turismo, teniendo un tránsito seguro y agradable, también facilita las relaciones y el desarrollo comercial y también la socialización entre sectores cercanos. Estos aspectos son razones principales por la que este proyecto o desarrollo de la investigación se justifica.

Resolviendo el problema de investigación se mejorará la transitabilidad vehicular, también la transitabilidad peatonal en sector de Alto Laredo, generándose un transporte más seguro y agradable para la comunidad, tiene esta justificación por los impactos positivos que genera en la localidad, no solo eso también genera impacto positivo a nivel regional y además nacional.

Es importante que la población del sector de Alto Laredo conozca el beneficio que se tendrá con el desarrollo de este proyecto, tiendo en cuenta que podrán tener un desarrollo en su calidad de vida con Transitabilidad vehicular y peatonal adecuada y segura.

El beneficio directo lo tendrá el sector de Alto Laredo, debido a que se mejorará la transitabilidad vehicular como también peatonal de todo el sector. Teniendo un diseño de vías completo reducirá significativamente la polvareda que se vive diariamente en el sector. En el sector de alto laredo cuenta con más de 200 domicilios y un albergue que serán beneficiados directamente. Es importante mencionar también que un 30 por ciento de la población transita con movilidad propia la cual será significativamente beneficiada teniendo una mejorar calidad de transitabilidad vehicular por la mejora de sus vías.

El benefició también será con los sectores locales cercanos a Alto Laredo que utilizan carreteras como vías de acceso a su lugar de destino, como son San Carlos, Las Uvas, San Idelfonso y Las Torres que son colindantes a este sector y que transitan diariamente. Además, al costado del sector Alto Laredo se tiene el cementerio, siendo este propio de la municipalidad distrital de Laredo y que es usado por todos los sectores urbanos del distrito, teniendo así visitas diarias al sector de alto Laredo debido a que utilizan la avenida principal para llegar al cementerio, de manera directa e indirecta también dan un beneficio a la comercialización y turismo por las personas que llegan.

1.3.2. Justificación teórica

Con respecto a la justificación teórica, esta investigación permitirá ampliar los conocimientos y aspectos teóricos de la metodología AASHTO 93, este método nos permitirá realizar el diseño de vías, con el objetivo de mejorar la transitabilidad vehicular y además la transitabilidad peatonal. También se hará una revisión del método para ver sus características técnicas y elementos más importantes para ser utilizados en la en la infraestructura vial.

1.3.3. Justificación práctica

Además, como justificación práctica, permitirá a los transportistas beneficiarse de una mejor transitabilidad y mantenimiento del vehículo, reduciendo así el costo económico de la reparación de piezas de repuesto. Por lo tanto, con la metodología AASHTO 93 se podrá realizar un diseño completo y ayudará a los futuros ingenieros civiles a considerar la investigación, para diseñar superficies de carreteras más estables, duraderas y de mayor calidad.

1.3.4. Justificación metodológica

La justificación metodológica consistió en analizar los elementos necesarios del método AASHTO 93 para realizar el diseño de vías, tanto de pavimento asfaltico como veredas considerando cuidadosamente la aplicación del sistema AASHTO 93. Mediante la técnica observación se hizo uso del instrumento de las guías de observación para la recolección de datos de laboratorio, del estudio de mecánica de suelos. También guías de observación para obtener los resultados del conteo de tráfico; un elemento base de la metodología AASHTO 93 para el diseño de vías.

1.3.5. Justificación Económica

la justificación económica permitirá la reducción de tiempo mantenimiento y costo ya que, al no contar con las calles adecuadas o pavimentadas, existen problemas de salud, afectando directamente al sistema respiratorio e infección o irritaciones de la población y esto genera mayor gasto en tema de salud de los pobladores y del estado.

1.3.6. Justificación social

La justificación social Ayudará a mejorar de manera eficaz y optima la transitabilidad vehicular y peatonal ya que al tener una buena transitabilidad se va a mejorar la circulación de flujos vehiculares y peatonales iniciando así un mejor desarrollo social.

1.4. Objetivos

1.4.1. Objetivo general

Determinar el diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022.

1.4.2. Objetivos específicos

- Evaluar la transitabilidad vehicular y peatonal mediante un estudio de tráfico, 2022.
- Analizar la metodología AASHTO 93.
- Analizar y estructurar los elementos claves a considerar de la metodología AASHTO 93, 2022.
- Elaborar y validar el diseño de vías para mejorar la transitabilidad vehicular y peatonal mediante la metodología AASHTO 93 en el sector Alto Laredo, 2022.

1.5. Hipótesis

La presente investigación es de tipo por diseño no experimental, descriptiva y propositiva, por lo tanto, no requiere hipótesis.

II. MARCO TEÓRICO

2.1. Antecedentes

Para el desarrollo del presente proyecto se encontraron los siguientes trabajos de investigación.

"Análisis del congestionamiento vehicular para el mejoramiento de vía principal en Guayaquil-Ecuador".

Ashhad et al. (2020), tiene como objetivo proponer posibles soluciones a la problemática de transitabilidad, el objetivo de esta investigación fue encontrar mejores formas de mejorar el nivel de servicio. Los datos se recopilaron mediante la observación del tráfico, con trabajo de campo al principio y al final de un segmento de 900 yardas. También se realizaron categorizaciones de vehículos y conteo manual de autos pasados durante una semana. Además, se contó el tiempo entre semáforos de peatones utilizando vehículos. Un estudio anterior proyectó que se produciría un aumento de 5 años en la cantidad de automóviles en la carretera durante un período de tiempo. Esto llevó a un aumento esperado de 135.170 a 190.424 vehículos por día. Las ubicaciones de estas intersecciones, como semáforos y rutas, fueron determinadas por los ángulos y geometrías de las carreteras. La principal causa de congestión son los buses alimentadores y colectores de metrovía. Además, los intervalos de tiempo de los semáforos provocan congestión. Varias soluciones recomendadas incluyen abrir una ruta existente como salida antes de la intersección y ajustar el sistema de semáforos.

El aporte de la investigación señala que, al mejorar el flujo de tráfico, las modificaciones de las carreteras en realidad causan congestión de tráfico en sentido inverso. A medida que las redes de carreteras se vuelven más eficientes, el enfoque debe centrarse en mantener la capacidad existente. De este modo, se mejora el flujo de tráfico y se reducen las emisiones de CO2, el ruido, el riesgo de accidentes y el desgaste de la calzada.

"Soluciones de tránsito en alta congestión vehicular de intersecciones urbanas. Una revisión sistemática entre 2010-2020".

León (2020), el objetivo era proponer mejoras para la vía y analizar su transitabilidad. En línea con esto, se implementaron cuatro sub-fases. La propuesta de mejora de la vía terciaria de la vereda El Cucharal da una solución móvil a los problemas de transporte de personas. Cuenta con coordinación entre el equipo de trabajo, uso de herramientas y recursos para desarrollar los objetivos y altas velocidades de 30 kilómetros por hora para los conductores. La realización del proyecto permite comprender cómo funcionó este proceso. Esto condujo al desarrollo de planes específicos para implementar estas ideas.

El aporte de esta investigación señala que es necesario tomar medidas con largos periodos de tiempo ayuda a medir información precisa. Es importante medir el comportamiento de los automóviles y las diferencias en los vehículos para obtener datos precisos. También es importante ajustar la carretera con la señalización adecuada vertical y horizontalmente, incluidas las marcas viales verticales y horizontales, para crear una experiencia de viaje segura y fácil para los automovilistas.

"Transitabilidad de la vía terciaria en la vereda el cucharal, municipio de fusagasugá".

Gomez y Larrota (2020), la investigación tiene como objetivo analizar la transitabilidad para proponer un mejoramiento para la vía terciaria. Su metodología de investigación consiste en cuatro fases para su realización que se tendrán en cuenta. En estas fases podemos encontrar el proceso que toma en cuenta para el desarrollo de los objetivos propuestos para el proyecto, que fue por medio de recursos, también herramientas, desplazamientos y además coordinación del equipo de trabajo. En conclusión, se tiene que la propuesta de mejorar su vía tendrá gran beneficio de una adecuada transitabilidad.

Como aporte se tiene que la creación de una ruta terciaria a través de la región de El Cucharal proporciona un remedio para los problemas de

transporte e impulsa la economía con una mayor productividad y crecimiento del sector agrícola. Esto se debe a que ayuda a mejorar la eficiencia de la producción agrícola y aumentar la productividad.

"Análisis de la problemática del tráfico y vialidad del centro histórico de la Ciudad de Sucre".

Gardilcic (2014), tiene como objetivo un diagnóstico completo de la situación de tráfico de la ciudad de Sucre, tomando en cuenta sólo el centro histórico de la ciudad, casi coincidente con la extensión del distrito 1. El reporte de la información lo realizaron con ayuda de estudiantes de la Carrera de Gestión Pública, que realizaron la medición en todas las esquinas a cuatro cuadras de la plaza principal de 25 de mayo. La investigación analiza en gran porcentaje de tráfico existente y se propone mejorar la transitabilidad ante la problemática. Finalmente, se hace una valoración de los actores que tendrían que intervenir para cada una de las alternativas y se realizó una valoración de la viabilidad por parte de actores representativos en su calidad de autoridades del sector de tráfico.

Como aporte se tiene un análisis de existencia de alto tráfico en el distrito en las zonas más principales dependiendo del horario. El diagnostico que se realiza a las vías muestras de nivel de congestionamiento por carriles que son aprovechadas para evitar la congestión del tránsito. Las autoridades involucradas al igual que las instituciones deben estar conscientes para planificar soluciones, visualizando horizontes de crecimiento urbano y mejoras de transitabilidad que permitan mitigar los problemas de tráfico vehicular en el centro de las ciudades sino además en otros lugares en donde se suscitan para desarrollarse y quieran ser lugares con mayor cantidad de población.

"Análisis y diseño para la pavimentación de las calles comprendidas dentro del perímetro de la calle Eloy Ureta, la Av. Imperio, la Av. los Incas y los Terrenos Agrícolas Del Sur, la Victoria, Chiclayo, 2020".

Gonzales (2021), en su tesis tuvo como objetivo analizar y deseñar una pavimentación para mejorar la transitabilidad vehicular también peatonal en algunas de las calles del distrito. Menciona que, en el Perú, el crecimiento de las poblaciones y la transitabilidad vehicular y peatonal no se detiene y aumenta en gran porcentaje, es por ello que es necesario la construcción de nuevas calles, carreteras o mejorar las existentes, con ello se tiene un mayor acceso. Las vías o carreteras de acceso son de gran importancia y necesarias en la integración social de las poblaciones o localidades cercanas a las otras, esto mejora la economía.

Fue un estudio descriptivo por lo que se caracterizó por de describir la información encontrada mediante la recoleccione de datos. Los instrumentos realizados fueron mediante la técnica de recolección de datos de tesis, libros, artículos de investigación, ensayos de laboratorio y planos. Los principales resultados fueron determinar el nivel de transitabilidad a través de un estudio de tráfico, también se realizó un estudio de suelos y también un diseño estructural de las alternativas de pavimentación.

Como aporte, la investigación señala que, que los elementos básicos para un deseño de vías se debe considerar el estudio de tráfico como elemento clave, sin dejar de lado al estudio de mecánica de suelos. El estudio destaca por la gran importancia que es para el desarrollo de nuestra investigación, debido a sus objetivos y estudios que se realizó para mejorar la transitabilidad vehicular y peatonal mediante el diseño de pavimento.

"Estudio y optimización de la red vial avenida América Sur tramo prolongación Cesar Vallejo - avenida Ricardo Palma, Trujillo".

Pereda y Montoya (2018), tuvieron como objetivo realizar un estudio para una optimización de red vial para mejorar la transitabilidad. Comentan que el avance socioeconómico de los países se debe a una adecuada transitabilidad por la gran infraestructura, principalmente de la infraestructura vial como también de la capacidad y desarrollo humano y de la investigación de las

ciudadanías. La investigación descriptiva reconoce la información y características encontradas poniendo énfasis en una la optimización. Los Instrumentos fueron ficha de datos como por ejemplo para recolección del IMD. Loa principales resultados fueron el estudio de tráfico, el nivel de servicio. Como conclusión se señala que el Perú está muy lejos de los países con mejor desarrollo en el mundo y que aún no encontramos el camino rápido para estar a su altura, la falta de desarrollo urbanístico y gestión intelectual por parte de los gobernantes y las empresas ejecutoras son los que nos tienen estancados.

La presente investigación aporta que, según la situación actual, el incremento de los vehículos se ve año por año y el problema de desarrollo que tenemos es la causa principal por la cual la ciudadanía no está satisfecha, además no se tiene conocimiento amplio de las normas de seguridad y peatonal y con infraestructuras sin señalización no pone en situaciones complicadas y peor aún si no se tiene una adecuada transitabilidad vehicular y peatonal.

"Diagnóstico de la transitabilidad vial y propuesta del diseño estructural del pavimento en las calles 5 y 9 del centro poblado Alto Trujillo - Trujillo - La Libertad".

Albino y Cisneros (2017), tuvieron como objetivo en su tesis un diagnóstico de la transitabilidad y propuesta estructural de pavimento para dos calles del Alto Trujillo. Mencionan que no existe una transitabilidad eficiente, el transporte trujillano no está siendo bien fiscalizado y existen enormes problemas de control vehicular, pero la administración pública de control vehicular no solo ha sido el problema, sino también la falta de infraestructura urbana que no ofrece buenas condiciones, que sean adecuadas para el tránsito vehicular, así como también peatonal. Fue un estudio de tipo descriptivo. Los instrumentos utilizados fueron el estudio de tráfico y mecánica de suelos. Los principales resultados de la investigación fueron el estudio de tráfico teniendo el IMD y IMA, análisis de la metodología AASHTO 93 y diseño vial.

Este trabajo aporta en la medida que el estudio destaca por su importancia que tiene al hacer un diagnóstico de la vía antes de proponer el tipo de diseño estructural vial, para darle una mejora a la transitabilidad vehicular y peatonal

teniendo así una satisfacción de quienes lo necesitan diariamente y además con ello se logra un mejor desarrollo de la economía beneficiando al país.

"Evaluación y optimización de la transitabilidad vehicular y peatonal de la intersección avenidas Mansiche y Pablo Casals, Trujillo – La Libertad"

Castillo y Nolasco (2019), este estudio mejora según su objetivo el flujo de tráfico vehicular y peatonal a través de la intersección Pablo Casals y Av Mansiche. el área cuenta con una pendiente transversal de 2.55% en su topografía plana. La temperatura es 17°C en promedia en la región. Adicionalmente, el Ministerio de Transportes y Comunicaciones utilizó un formato para su estudio. Este método arrojó un Índice Promedio Diario de 4001 a 6000 vehículos por día. El estudio fue cuantitativo debido a las técnicas y pruebas estadísticas que realizaron. Además, el nombre descriptivo del nivel se debe a que detalla los aspectos más importantes de la infraestructura vial. En concreto, identifica las particularidades de la vía para un diagnóstico de su estado actual. Se trabajó con una población de la la urbanización Los Cedros, colonia San Salvador y además también con 200 metros a ambos lados de la Av. Mansiche. Se cree que Pablo Casals se benefició enormemente de la implementación de semáforos inteligentes, marcas de carril verticales y marcas de carril horizontales en su vida. También se implementaron nuevos carriles de desaceleración con giros a la izquierda. También, al ensanchar la Av. Pablo Casals a 3,60 metros del cruce en cualquier sentido, el tráfico puede transitar sin obstáculos en las horas punta. Esto se debe a que la Avenida Mansiche y la Avenida Pablo Casals se cruzan.

Como aporte se considera un logro por su alcance, ya que siempre necesita hacer mejoras para seguir siendo innovador. La solución no debe estar ligada a preocupaciones financieras al momento de determinar cómo eliminar la congestión vehicular en el cruce de la Av. Mansiche y Av. También la Av. Pablo Casals. En su lugar, el mejor enfoque debería centrarse en resultados duraderos y eliminar la circulación libre de congestión de peatones y vehículos.

"Mejoramiento de la Transitabilidad vehicular de la carretera Costanera Huanchaco – Santiago de Cao, La Libertad, 2020."

Ayala y Valderrama (2020), en donde se tuvo como objetivo realizar el diseño para el Mejoramiento de la Transitabilidad vehicular de la carretera Costanera Huanchaco – Santiago de Cao, La Libertad, 2020. Además, el levantamiento original se realizó tierra adentro, a través de la carretera costera entre Huanchaco y Santiago de Cao en la región de La Libertad. Esta carretera de segunda clase con diseño geométrico se formó debido a las dificultades de acceso peatonal a lo largo de la vía. Varias fallas y causas dieron lugar a una capa de carretera transitable deficiente, que tenía una base granular gruesa. Se realizó una verificación de ingeniería adicional a través de levantamientos de campo y estudios topográficos que determinaron la orografía de la región. Esta vía que es clasificada como segunda clase por ser autopista, debe estar pavimentado y bien señalizado. Los requisitos de diseño descritos por la norma DG-2018 deben tenerse en cuenta al completar este tipo de proyecto de investigación. Esta investigación trabaja de manera cuantitativa con un propósito aplicado. También es descriptivo y no experimental con un diseño transversal que brinda oportunidades para el turismo y el comercio.

Como aporte se tiene en cuenta las normas de seguridad durante la construcción, los materiales de construcción deben mantener líneas rectas para disminuir el tiempo de construcción. Además, los accidentes no deben resultar en riesgos elevados.

"Diseño Para El Mejoramiento De La Carretera Del Tramo Puente Quirihuac – Anexo Las Cocas – Jesús María, Distrito De Laredo, Provincia De Trujillo, Departamento La Libertad".

Zavaleta (2018), tuvo como objetivo realizar un diseño de vía para mejorar la carretera del tramo puente Quirihuac, con ello se estaría mejorando la transitabilidad vehicular y peatonal. Indica que como principales problemáticas que tiene el sector son las vías o carreteras de comunicación que se encuentran en un mal estado para un buen servicio de transitabilidad, y para algunas localidades no se tiene y al no tener calles pavimentadas o

peor aún, al no tener calles habilitadas dificulta el tránsito de vehículos de carga pesada y vehículos livianos. Este estudio fue descriptivo, se utilizaron varios instrumentos de recolección de datos. Los principales resultados obtenidos fueron el estudio topográfico, estudio de mecánica de suelos entre otro muy importantes para el diseño. En conclusión, el proyecto se desarrolló debido a la problemática que se tiene una ciudadanía disgustada por generarse sobrecostos en el trasporte de sus mercancías, los transportistas no tienen acceso a más lugares, y no se tiene la visita de los turistas para el aumento de la economía, todo esto no permite el desarrollo ciudadano y localidades para mejoramiento en condiciones de vida.

Esta investigación aporta en la medida que, debido a la problemática similar que existe por problemas de transitabilidad por la falta de una inadecuada infraestructura vial, se debe realizar el diseño de carreteras o vías de comunicación para darle una mitigación a la problemática existente. Los resultados obtenidos de la investigación serán como guía para el desarrollo del nuestro.

2.2. Bases teóricas

2.2.1. Transitabilidad

La transitabilidad es un servicio ofrecido por una o más vías por donde un usuario se traslada por un determinado tiempo. (Glosario de Términos MTC, 2018, pg.22). El servicio de transitabilidad se puede dar por diferentes tipos de vías que pueden ser desde una autopista de primera clase que se encuentra completamente estructurada con todos los parámetros de seguridad vial hasta una trocha carrozable.

a) Estudio de Tráfico

Para los estudios de tránsito se seleccionan puntos de conteo de vehículos para analizar el estado del tránsito, sus características y extensión futura para determinar la vida útil de la vía propuesta (Manual de Carreteras-Sección Suelos y Pavimentos, 2014, p.62).

b) Índice medio diario anual

Según el Reglamento Nacional de Gestión de Infraestructura Vial (2006), menciona que el IMDa se puede determinar realizado un conteo y teniendo de vehículos que circulan en una vía durante 24 horas promedio en un año (p. 3).

La fórmula determinar el IMDa es:

$$IMDa = FC \times IMDa...$$
 (1)

Donde:

• FC = factor de corrección estacional

c) Demanda Peatonal

La demanda peatonal se puede determinar mediante la cantidad de peatones que caminan por un lugar determinado, esta demanda peatonal siempre será mayor que la de vehículos (Guío, 2010, p.191). También se entiende que el volumen peatonal se puede determinar realizando el conteo de usuarios teniendo en cuenta características o atributos (Guío, 2010, p.188).

2.2.2. Transitabilidad vehicular y peatonal

El otro aspecto esencial es la transitabilidad vehicular o peatonal: la capacidad de transitar por vías que involucran infraestructura. Esto facilita la unión con un lugar específico, lo cual es necesario para construir cualquier pavimento. Los metadatos, como los espectros de carga, se pueden encontrar en metadatos como las guías de diseño de la Asociación Estadounidense de Oficiales de Transporte de Carreteras Estatales. Cada uno de estos diseños varía de una manera específica utilizando métodos como las pautas de AASHTO.

Esto permite a los diseñadores mostrar cuántas veces pasó el mismo peso sobre cada sección de pavimento. Como resultado de los principios de

circulación peatonal, se puede determinar que en el tráfico vehicular aparecen variables inexistentes. Estos incluyen la circulación o el tráfico contra la corriente, la posibilidad de cruzar una corriente de peatones en el lado que no está obstruido o poder cambiar de dirección sin causar conflicto. También se ha establecido que el análisis del tráfico de peatones no debe centrarse en la cantidad de carriles que aparecen en cada carril individual. Los peatones no forman filas o carriles secuencialmente, sino que se mueven en una dirección con poca o ninguna interrupción. Esto se ha demostrado de hecho a través de la experimentación. Además, se considera que 75 centímetros es la distancia o longitud mínima cuando se cruzan dos peatones.

Más tiempo que esto podría conducir a un conflicto entre ellos. Debido a la alta probabilidad de contacto o fricción, la distancia recomendada para cruzar caminos es de 65 centímetros. Además, esto se derivó de las pruebas en carretera del Comité de Diseño de AASHTO en Ottawa, Illinois, en las décadas de 1950 y 1960.

2.2.3. Vía vehicular y peatonal

se entiende que una infraestructura de transporte debe permitir el desplazamiento de peatones y vehículos. Una carretera o calle requiere una variedad de equipos que permitan que los automóviles, autobuses, camiones y otras formas de transporte se desplacen con seguridad de un lugar a otro. También es necesario contar con espacio para peatones, así como estaciones, terminales, intersecciones y demás elementos que componen una vía. Esto proviene de la investigación de Vargas, que establece que cualquier fundamento teórico debe incluir la infraestructura vial (2012). Un impulso económico proviene de tener un país unido al hacer que los automóviles se muevan por cada estado. El movimiento de automóviles requiere muchos elementos diferentes para funcionar, y estos elementos forman la superestructura de la carretera.

2.2.4. Pavimento vial

Las carreteras necesitan materiales compactados para crear divisiones entre cada área. El pavimento de concreto se coloca sobre una base sólida; su espesor varía según el volumen de carros que debe soportar. Las construcciones viales comunes siguen este estilo de pavimento rígido. Las aceras de hormigón son resistentes a la presión debido a la consistencia dura del asfalto en comparación con el hormigón. Por lo que el principal componente de una acera de cemento es la pasta de cemento, el agua y el aire. Además, la grava, la arena y la piedra constituyen el componente secundario de la acera.

Estructura: Está compuesto por varias capas que trabajan juntas para crear una estructura. Estos son la subrasante, la placa base y la capa de rodadura. La capa de rodadura estabiliza la subrasante y evita que se flexione. También mejora el drenaje en la subrasante y sirve como capa protectora para las placas que sirven para fines estructurales. Finalmente, proporciona una superficie rodante para vehículos que es a la vez impermeable y no friable. (Rondon, 2009)

Sub base: La razón original de la existencia de una subbase granular es evitar el bombeo sobre superficies duras. Las bases granulares funcionan como la capa debajo de las bases granulares. Cualquier capa de suelo subyacente que soporte el pavimento de una carretera tiende a mantener cualquier carga de tráfico.

Diseño: El Ministerio de Transportes y Comunicaciones exige que se analice la transitabilidad antes de diseñar cualquier pavimento. Esto se debe a que el proceso arroja información sobre los diferentes tipos de pavimentos que se pueden realizar.

Según Juan Carmona (2018), se determina con procedimientos matemáticos a fin de establecer los aspectos geométricos de una vía y su

sección a una recolección de datos, puede iniciar desde la topografía del lugar, según los diferentes vehículos que transitan, el diseño puede variar, además las recciones saben ser diseñadas a fin de dar una comodidad a los usuarios teniendo una seguridad completa.

2.2.5. Vereda

La vereda limita entre la vía y las viviendas adyacentes, las veredas o aceras están destinadas al uso del peatón. Pueden ser construidas de concreto simple, también podrían ser de asfalto, adoquines, o cualquier otro material Inter trabada o material apropiado. Según el ICG. Norma Técnica CE-10 Pavimentos Urbanos "Las veredas son construidas con mayor elevación respecto a la calzada y además solo está disponible para el tránsito de peatones. Sus dimensiones de cordón y acondicionamiento son determinantes de su capacidad y nivel de necesidad de la transitabilidad en relación social de los peatones.

2.2.6. Congestión vehicular

El volumen de la transitabilidad se origina por la cantidad de vehículos y personar que están en gran cantidad, todos estos en una calzada o vereda por un determinado tiempo. La intensidad y la velocidad determinada el volumen o grado de tránsito, se existe transito nulo entonces la intensidad es la misma, la relación que existe entre la congestión con el volumen de tráfico siempre será la misma. National Academies of Science (2010).

2.2.7. Tipos y clases de vías

2.2.7.1. Según la su demanda:

Autopistas de primera clase: Deben tener un control total de los accesos de entrada y salida para proporcionar un flujo vehicular permanente, no tienen intersecciones ni pasos a nivel, estas carreteras terminan en puentes peatonales en las zonas urbanas. Se caracteriza por obtener un IMDA superior a 6.000 vehículos/día, las vías se dividen en 6,00 m, cada vía tiene

2 o más vías, y el ancho mínimo es de 3,60 m. Las superficies rodantes de estas carreteras deben estar pavimentadas.

Autopistas de segunda clase: Estos, al igual que los de primera clase, deben tener un control de acceso total para proporcionar un flujo vehicular óptimo, se pueden hacer cumplir a través de intersecciones o pasos a nivel, este tipo de carretera debe hacerse cumplir en áreas urbanas con puentes peatonales. debe estar pavimentado en la carretera. Entonces, cabe señalar que se puede caracterizar por la obtención de un IMDA de 6.000 a 4.001 vehículos por día, la divisoria central actúa como línea divisoria entre 6,00 m y 1,00 m, y la calzada debe tener 2 o más carriles con un ancho mínimo de 3,60 m.

Carreteras de primera clase: este se caracteriza por su IMD de 4.000 y 2.001 vehículos/día, cuanta solo con una calzada, 2 carriles de 3.60 m de ancho como mínimo. A su nivel pueden existir o construirse pases peatonales, para las zonas urbanas se recomienda construirse puentes para los peatones.

Carreteras de segunda clase: estas deben contar con medidas de seguridad vial, que permitan velocidades de operación. Estas al igual que las carreteras de primera clase pueden construirse cruces o pasos vehiculares a su nivel de altura, de ser necesario se recomienda construirse también puentes peatonales. La pavimentación es importante. su IMDA varia de entre 2.000 y 400 vehículos/día, debe tener carriles de 3.30 m de ancho mínimo.

Carreteras de tercera clase: Estas carreteras pueden usar asfalto emulsionado o una superficie micro pavimentada; o ciertamente, en su superficie. Si está pavimentado, debe cumplir con las condiciones geométricas estipuladas por el camino secundario. Se caracteriza por un IMDA de menos de 400 vehículos/día y una calzada de 2 carriles con un ancho mínimo de 3,00 m.

Trochas carrozables: Las vías pertenecientes a la clase más baja pero transitables, deben tener las características geométricas de otras vías,

IMDA menos de 200 vehículos/día, además, la vía no debe ser menor de 4.00 m, la misma puede ensancharse para cruzar a una distancia de al menos 500 m.

2.2.7.2. Según las condiciones orográficas

Terreno plano: estos terrenos son las menos complicadas para trazarlas, sus pendientes trasversales a la vía solo llegan hasta un diez por ciento y su pendiente longitudinal solo puede ser menor al tres por ciento. Al momento de su ejecución demanda un mínimo movimiento de tierras.

Terreno ondulado: El terreno tiene una pendiente transversal entre el 11% y el 50% respecto al eje de la vía, y además su trazado es sin complejidad, con pendientes longitudinales que varían entre el 3% y el 6%. Para su construcción no requiere mucho movimiento de tierra.

Terreno accidentado: Este terreno es difícil de rastrear, su pendiente de tipo transversal al eje de la carretera varía entre 51% y 100%, y su pendiente de forma longitudinal varía entre 6% y 8%. En este caso, si requiere movimiento de tierras, entonces su construcción.

Terreno escarpado: En tales terrenos en el momento de la ejecución, hubo dificultades con el diseño. También requiere el movimiento de la Tierra, y es complicado hacerlo. Su pendiente de tipo transversal al eje de la vía es superior al 100 por ciento, y su pendiente longitudinal especial es superior al 8 por ciento.

2.2.7.3. Importancia

La transitabilidad es uno de las razones más relevantes en la época contemporánea para el desarrollo de cualquier país, dando importancia un flujo optimo al volumen del tránsito, tanto peatonal como vehicular. La transitabilidad puede volverse incomoda si tiene mejo flujo de tránsito y si las condiciones de la vía no son las adecuadas. Las consecuencias de una inadecuada transitabilidad puede traer retrasos para los usuarios además de existir otras consecuencias.

2.2.7. Diseño de la Infraestructura Vial

Es la construcción de un medio de transporte que se conforma por una variedad de servicios que pueden usarse como medio de transporte ara uso comercial, también lo más importan para traslado de pasajeros en las vías terrestres (Vásquez y Bendezú,2008, p.25).

Para lograr lo previo, las infraestructuras viales pueden definirse como constituidas por elementos físicos relacionados con criterios de diseño y tecnología (Hernández y Torres, 2016, p.128).

Vallverdu (2010) señaló que la infraestructura vial es una parte crítica de los países que quieren desarrollar en el ámbito económico como de mejora de los servicios. Promover la interconexión de ciudades y pueblos cercanos y lejanos, y promover la integración de áreas urbanas y rurales (p. 12).

2.2.7.1. Estudio Topográfico

La topografía puede representarse de manera o de forma plana del tramo estudiado para alguna ejecución de un proyecto y construcción de carretera o diseño de pavimento urbano o rural, antes de esto siempre existe un levantamiento topográfico, en esta detalla todo lo que contempla el proyecto, todo esto se verá reflejado en áreas topográficas (García, Rosique, Segado, 1994, p. 1).

La investigación topográfica consiste en lo que se ve en una superficie de terreno ayudando de una estación total, de tal manera, que procesará conocimiento de la superficie, medirá la ubicación de obras, calles u otras estructuras que existen en el sitio estas son relevantes y basarse en su La comprensión en el plan se ajusta (Casanova, 2010, p.7).

a). Levantamiento Planimétrico

El levantamiento Planimétrico forma parte de la topografía, observándose detalles importantes de la superficie terrestre del lugar de estudio, son mostrados con curvas de nivel, también cuerpos y objetos, también se detallan las coordenadas de ubicación (Apuntes de topografía, 1999, p.8).

b). Secciones Transversales

Es la representación en planos, tomado desde un punto de vía detallando el corte de la carretera plasmado desde la sub rasante existente en el lugar de estudio, se detalla el espesor de la base y sub base, también de la capa de rodadura se lo hay (DG, 2014, p. 204). Las secciones pueden presentarse de diferentes tramos en secuencia regular.

2.2.7.8. Estudio de Suelos

El análisis del suelo nos resultados de las características del suelo, como ejemplo el CBR que es un elemento muy importante para el diseño de una infraestructura vial, además es importe conocer las características del suelo para determinar si necesita mejorar la subrasante o no (Manual de carreteras, 2014, p.25). Todas las características y propiedades del suelo son muy importantes antes de realizar un diseño de vía.

a.) Análisis Granulométrico

Nos permite conocer mediante de este ensayo los valores de partículas existentes que hay en el lugar de estudio bajo una excavación mostrada desde un estrato o muestra de suelo (Montejo, 2002, 63). El ASTM D 422 - Ensayo 107, es el ensayo con el que se realiza la granulometría, por lo cual se observará los tamaños de las partículas del suelo.

b.) Límites Plástico, Liquido e Índice de Plasticidad

Límite plástico: es la determinación de la humedad en menor cantidad por la que el suelo tomado de un punto de estudio regresa a un estado de plasticidad, esto lo puede llevar a tener que deformarse rápidamente como también puede moldearse sin que pueda recuperar su forma original, además no poder recuperar su volumen, pueda generar grietas (Montejo, 2002, p. 63). Para este procedimiento será mediante el ASTM D 4318 – Ensayo 110.

Límite líquido: Está determinada por la humedad máxima del suelo antes de que cambie de un estado plástico a un estado líquido, este último estado

puede estar determinado por su resistencia al corte del suelo o el valor mínimo de la muestra, que fácilmente puede llegar a fluir (Montejo, 2002, p.63). Al igual que los límites plásticos, también se prueba mediante el método ASTM D 4318 - Test 110.

Índice de plasticidad: Así, determinando el valor de la intensidad de humedad en el que el suelo puede permanecer en estado plástico previamente de entrar en estado líquido, se hace también la diferencia o inversión entre los estados plástico y líquido (Montejo, 2002, p. 63). Además, pasa el método ASTM D 4318 - Test 110.

Contenido de Humedad

Esta prueba muestra el nivel de humedad de la muestra de suelo, no su peso completamente seco (Montejo, 2002, p. 62). Esta prueba permite una comparación con la humedad óptima, que es la humedad existente obtenida por la prueba Proctor, que también se realiza por el método ASTM D 2216 - Prueba 108.

c.) CBR (California Bearing Ratio)

El Ensayo de Relación de Soporte de California o tambien conocido por sus siglas CBR, este ensayo sirve para poder hacer el cálculo de resistencia que el suelo puede tener, tomando en cuenta la resistencia al esfuerzo cortante (Montejo, 2002, p.64).

Se realiza por el método ASTM D 1883 – Ensayo E 132. También se tiene como definición que es un parámetro del suelo, cuantificando la capacidad que resiste como subrasante, sub base y base según las capas para el diseño de pavimentos.

2.2.8. Metodología AASHTO 93

Arregui (2016), menciona que existen variables las cuales nos otorgan un adecuado diseño estructural de diseño del pavimento mediante este método, siendo estos el número de los ejes equivalentes, tambien su desviación normal y estándar, número estructural, la serviciabilidad y el módulo resiliente. (p.34). para las capas calculadas de espesor del

pavimento se pone énfasis en el estudio de tráfico, que ayudan a hallar el ESAL, es decir las cargas por ejes, la serviciabilidad, llegando a poder considerar la desviación estándar y el módulo resiliente. (p. 35). También dentro de este método es indispensable la confiabilidad donde se rigen factores que nos otorgarán coeficientes para una buena seguridad. (p.37)

NIVELES DE CONFIABILIDAD				
TIPO DE CAMPAO	CONFIABILIDAD	RECOMENDADA		
TIPO DE CAMINO	ZONA URBANA	ZONA RURAL		
Rutas interestatales y autopistas	85 a 99	80 a 99		
Arterias principales	80 a 99	75 a 99		
Colectoras	80 a 95	75 a 95		
Locales	50 a 80	50 a 80		

Figura 1. Niveles de confiabilidad

Fuente: Guía Metodológica ASSHTO 93

Es importante hablar del drenaje que debe de tener el pavimento para un adecuado funcionamiento, el efecto que se tiene en cuenta en los pavimentos flexibles donde setos están relacionados al efecto de agua que se tendrá en la resistencia de los materiales en sus capas o estructura del pavimento (pág. 41)

COEFICIENTES DE DRENAJE		
Calidad del Drenaje	m	
Excelente	1.20	
Bueno	1.00	
Regular	0.80	
Pobre	0.60	
Muy pobre	0.40	

Figura 2. Coeficientes de drenaje

Fuente: Guía Metodológica ASSHTO 93

El equipo consultor del proyecto 20-7/24 del NCHRP y el subcomité de diseño de pavimentos colaboraron para crear nuevos diseños que publicado en 1986. Muchas de las fórmulas utilizadas para calcular las ecuaciones de rendimiento obtenidas de la prueba de carretera de AASHO permanecen sin cambios. Es importante señalar que las fórmulas iniciales

se crearon bajo condiciones climáticas específicas y con materiales de pavimento y suelos de subrasante específicos. El clima del sitio de prueba es templado y experimenta una precipitación anual promedio de 864 milímetros. La profundidad de congelación es de aproximadamente 711 milímetros en promedio.

2.2.8.1. Estructura del método AASHTO 1993

Para el desarrollo de este proyecto se optó por la metodología AASHTO 1993. Este método fue elegido debido a su aceptación mundial y se basa en determinar el valor del Número de Estructura "SN" requerido para que el diseño del pavimento resista las cargas verticales en el período o periodo de diseño.

El método AASHTO 93 se fundamenta en la siguiente ecuación:

$$Log W_{18} = Z_r * S_o + 9.36 * Log (SN + 1) - 0.20 + \frac{Log \frac{(\Delta PSI)}{4.2 - 1.5}}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 * Log Mr - 8.07$$
... (2)

Dónde:

W 18 = Trafico equivalente o ESAL's

ZR = Factor de desviación normal para un nivel de confiabilidad

So = Desviación estándar

 ΔPSI = Diferencia entre los índices de servicio inicial y el final deseado

MR = módulo de resiliencia efectivo de la subrasante

SN = Número estructural

a) Carga por Eje Simple Equivalente (W18) – ESAL

La definición de ESAL es determinar el número de repeticiones de una carga equivalente para un eje, esta puede ser ruedas simples o dobles con una capacidad igualitaria de 18,000 lbs (8.2 toneladas) almacenadas durante el diseño, también se denota como W18 (Ministerio de Transporte, 2011, página 12).

Esto se especifica en función de la cantidad de ejes equivalentes con una carga de 8,2 toneladas que circulan en los carriles correspondientes al período de diseño. El número 18 indica el volumen de EE en kilo libras. (Rondón y Reyes, 2015, p. 573).

b) Desviación Estándar Normal (ZR):

Se aceptan valores normales de desviación estándar con niveles de confianza. Como se muestra en la siguiente tabla. "R" es el nivel de confiabilidad y "ZR" es la desviación estándar. Valores para cada muestra en la siguiente tabla:

Tabla 1. Valores de Desviación Standar Normal

	NIVEL DE CONFIABLIDAD													
R	75	80	85	90	91	92	93	94	95	96	97	98	99	99.99
	DESVIACION ESTÁNDAR													
ZR	-0.674	-0.841	-1.037	-1.282	-1.34	-1.405	-1.476	-1.555	-1.645	-1.751	-1.881	-2.054	-3.09	-3.746

Fuente: AASHTO guide for designe of paviment structures (1993).

c) Índice de serviciabilidad:

El índice de servicio inicial Po se deriva de la práctica empírica de las pruebas AASHTO Roas, y el resultado es 4.2 Para pavimentos flexibles, el índice de servicio final (Pt) es el índice más bajo aceptable antes de la reparación o reparación, y Pt = 2.0 (ruta local) y Pt = 2.25 (ruta recolección-distribuidor), entonces la diferencia en el índice de aplicabilidad ΔPSI es 2.2 y 1.95 (Ministerio de Transporte, 2011, p. 10).

d) Módulo Resiliencia (MR):

En la técnica AASHTO de 1993 se utilizó como variable el módulo de elasticidad en sustitución de CBR al representar subrasante, subbase y base, este módulo sirve como medida de las propiedades elásticas del suelo y también determina la naturaleza no lineal de su comportamiento

(Departamento de Comunicaciones y Comunicaciones, 2011, p.12).

Esta métrica se puede establecer mediante pruebas dinámicas y repetición de carga, pero las pautas de AASHTO establecen que algunas oficinas no han encontrado el equipo necesario para MR, por lo que recomienda utilizar la asociación popular con CBR (Departamento de Transporte). Comunicación, 2011, p.12).

Tabla 2. Cálculo aproximado del Mr. de subrasante respecto al CBR

MODULO DE RESILIENTE PSI	CBR SUBRASANTE
Mr (psi) = 1500 x CBR	CBR < 10%
$Mr (psi) = 3000 \times CBR^{0.65}$	10% < CBR < 20%
Mr (psi) = 4326 x Ln (CBR) + 241	Suelos Granulares

Fuente: Standard Test Method for Particle-size Analysis of Soils (ASTM)

e) Confiabilidad (R):

Al evaluar las variables de diseño anteriores se debe tomar en cuenta el nivel de incertidumbre que se puede medir, para ello se utiliza un nivel de seguridad diseñado, mencionando que para entender este indicador se debe hallar que la confiabilidad es lo opuesto a la probabilidad de fracaso (Rondón y Reyes, 2015, p. 577). Además, la confianza se puede señalar como una característica que agregará un grado de certeza y confianza en el proceso de diseño a la seguridad de que las porciones del pavimento proyectado cumplirán con los requisitos.

Tabla 3. Niveles de Confianza según los tipos de carreteras

CLASIFICACION	NIVELES DE CONFIABLIDAD RECMENDADO (%)					
	URBANA	RURAL				
INTERESTATALES Y OTRAS	85 - 99.9	80 - 99.9				
ARTERIAS PRINCIPALES	80 - 99	75 - 95				
COLECTORAS	80 - 95	75 - 95				
LOCALES	50 - 80	50 - 80				

Fuente: AASHTO guide for designe of paviment structures (1993)

III. METODOLOGÍA

3.1. Enfoque, Tipo y diseño de investigación.

3.1.1 Enfoque de Investigación

Una investigación puede ser de enfoque cuantitativo, cuando a la variable de estudio se le puede medir en un determinado contexto. Las variables pueden ser dependientes e independientes (Hernández, Fernández y Baptista, 2014, p.15).

Por lo expuesto en el párrafo anterior, la presente investigación es de enfoque cuantitativo. Esto es debido a que se midió la variable fáctica que es la transitabilidad vehicular y peatonal. Se realizó un conteo de tráfico para para medir y evaluar la transitabilidad vehicular y peatonal.

3.1.2. Tipo de investigación:

3.1.2.1 Tipo de investigación por el propósito

Gonzales y Manay (2020), en su investigación mencionan que la elaboración del diseño de pavimento aplicando la metodología AASHTO 93, en una zona determinada de estudio, se aplica por lo que va a ayudar a optimizar la calidad de vida de las personas que habitan en dicho lugar, permitiendo optimizar la circulación peatonal y vehicular.

Por lo expuesto en el párrafo anterior, la presente investigación es de tipo aplicada, esto dado que se busca aplicar la metodología AASHTO 93 para diseñar vías, con la finalidad de mejorar la transitabilidad en el sector de Alto Laredo.

3.1.2.2 Tipo de investigación por el diseño

Las investigaciones pueden ser de diseño no experimental mientras no se manipula a las variables para comprobar algo

distinto a lo que ya es, no existe manipulación deliberadamente o que sea intencional (Hernández, Fernández y Baptista, 2014).

Por lo expuesto en el párrafo anterior, esta investigación es de tipo por diseño no experimental, debido a que la variable de la transitabilidad vehicular y peatonal; no se tomó para hacerle manipulación, modificación intencionada para tener algún resultado.

Así mismo la presente investigación es de tipo por diseño descriptivo porque se planteó un análisis de solución ante el problema encontrado; como también es de tipo propositivo ya que se realizó un análisis de metodología AASHTO 93 para el diseño de vías para mejorar la transitabilidad.

3.1.2.3 Tipo de investigación por el nivel de estudio

Toda investigación es descriptiva cuando para el trabajo de investigación se recopila datos e información sobre características, atributos y aspectos, todo con el fin de establecer su estructura (Hernández, Fernández & Bautista, 2014).

La investigación actual es descriptiva en el sentido de que contiene hechos reales. Por lo tanto, esta investigación se analizó mediante el método AASHTO 93 para el diseño de vías para mejorar la transitabilidad en el sector de Alto Laredo.

3.1.3. Diseño de investigación

Hernández (2014) afirma que el diseño no experimental de una investigación no utiliza ningún tipo de manipulación, y lo mismo ocurre cuando utiliza un diseño no experimental de corte transversal. Además, nadie maneja las variables en el estudio porque hacerlo rompería el diseño y se medirá en un intervalo de tiempo específico (p. 152).

La presente investigación tiene un diseño no experimental porque no se manipularon los resultados de la variable. También es un diseño transversal porque la variable se midió en un solo período de tiempo. Además, también es propositivo ya que se propone un diseño vial basado en el método AASHTO93 para mejorar la transitabilidad de vehículos y peatones. Según Hernández, (2014), el estudio del propósito se refiere a cómo las cosas deben lograr su propósito y funcionar correctamente.

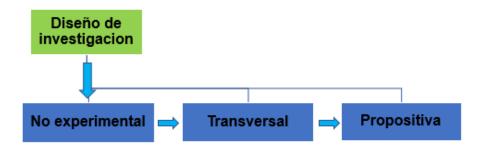
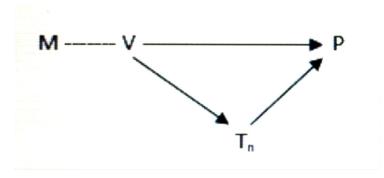



Figura 1. Diagrama del diseño de investigación.

Se utilizó también el esquema de diseño propositivo

Donde:

M: MuestraV: Variable

Tn: Análisis y fundamentación teórica

P: Propuesta

3.2. Variables y operacionalización

3.2.1. Variable Fáctica:

La presente investigación tuvo una sola variable que es "Transitabilidad vehicular y peatonal".

Fabian (2021), Indica que, si un sector o cualquiera que este como zona de estudio no cuenta con una transitabilidad vehicular y peatonal regular, esto perjudicaría a la población de dicho lugar, además las viviendas adyacentes a las vías tendrán disgustos por la existencia de partículas de polvo, sin mencionar que también están más propensos a sufrir accidentes (p.14).

3.2.2. Clasificación de variables

Tabla 4. Clasificación de variables

CLASIFICACION DE LAS VARIABLES										
Variable fáctica	Relación	Naturaleza	Escala de medición	Dimensión	Forma de medición					
Transitabilidad vehicular y peatonal	Independiente	cuantitativa	Razón	Bidimensional	indirecta					

3.2.3. Matriz de convergencia

Para este estudio solo se cuenta con una variable fáctica la cual es "Transitabilidad vehicular y peatonal". Por otro lado, se tiene a un eje temático que es la "Metodología AASHTO 93. También se tiene al eje propositivo que es "Diseño de vías" tal como se muestra en el anexo 3.3.

3.2.4. Operacionalización de variables

En el anexo 3.1. Se presenta la matriz de operacionalización de variable, la variable fáctica presentada en la matriz es transitabilidad vehicular y peatonal. La variable fáctica tiene una definición conceptual y dos dimensiones, cada uno con sus indicadores y escala de medición.

3.3. Población, muestra y muestreo

3.3.1. Población

La población es el universo o población que se está estudiando. (Pineda,1994,108).

La población está formada por todo el sector Alto Laredo, 2022.

3.3.2. Muestra

Una muestra es un subconjunto limitado y representativo extraído de la población accesible. Además, la muestra es representativa porque sus características son parecidos a las del grupo, generalizando los resultados al resto de la población tomando en cuenta un error que se pueda conocer. (Arias, 2006, p. 83).

Por lo expuesto, para la presente investigación, la muestra está conformada por el sector de Alto Laredo, debido a que solo se tiene una sola población.

3.3.3. Unidad de análisis

La unidad de análisis para la presente investigación fue considerada todas las vías del sector Alto Laredo.

3.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

3.4.1. Técnicas de recolección de datos

La técnica de recolección de datos mediante la observación, permite buscar información sobre la investigación realizada, la técnica de observación conlleva a obtener la información inevitable para realizar estudios de suelos, levantamientos topográficos, estudio de tráfico y diseños adecuados. (Behar, 2008).

Por lo expuesto, para el desarrollo de la presente investigación se ha determinó utilizar la técnica de la observación.

3.4.2. Instrumentos De Recolección De Datos

Según el estudio de Palella y Martins (2020), para investigar es necesario un instrumento que utilizan para recopilar datos para estar más cerca de los efectos que observan (p. 125).

Según la técnica de observación se utilizará la **Guía de observación**1, la cual nos permitirá obtener información del IMD (Índice de medio diario) del tráfico actual, así como también el IMDa (Índice medio diario anual) que existe en el Sector Alto De Laredo, 2022. Mediante un conteo de vehículos según su característica tal como se muestra en el anexo 4.1.

Guía de observación 2: Nos permitirá obtener información y registro de personas que transitan por la vía elegida para el conteo. Se verifican las personas ingresantes y salientes, tomando las características de vulnerables y no vulnerables, tal como se muestra en el anexo 4.2. Con estos datos podremos obtener la demanda de peatones que serán beneficiados con el diseño de vías.

Guía de observación 3: Nos permitirá adquirir los datos del levantamiento topográfico, como las coordenadas de puntos topográficos y distancias. Estos datos se obtienen de acuerdo con la ficha de datos 3 que se puede verificar en el anexo 4.3.

Guía de observación 4. Nos permitirá obtener la información de las propiedades del suelo, así mismo nos brinda datos importantes como lo es el CBR, granulometría, límite de consistencia y contenido de humedad, todos estos se pudieron obtener de las muestras sacadas de las calicatas. Los datos que obtuvieron fueron de a acuerdo al anexo 4.4.

Tabla 5. *Instrumentos y Validaciones*

Etapas de la investigación	Instrumentos	Validación		
Estudio de Trafico	Guía de observación 1	MTC		
Estudio peatonal	Guía de observación 2	Juicio de expertos		
Levantamiento topográfico	Guía de observación 3	Juicio de expertos		
Estudio de suelos	Guía de observación 4	Juicio de expertos		

Estudio de tráfico

La base para el registro, conteo y observación de vehículos es identificar la hora del día más congestionada. Esta información se puede registrar en hojas de cálculo de acuerdo con las categorías del Manual de Carreteras.

El estudio de tráfico incorporó 7 días consecutivos de observaciones. Se determina el ESAL, el cual es un valor numérico utilizado para calcular el espesor del pavimento necesario para los carriles flexibles.

Estudio peatonal

Se realizó la observación, conteo y registro de personas que transitan por la vía elegida, identificando así cuál era la hora pico de mayor afluencia. Además, se usa una encuesta para poder determinar la satisfacción de los transeúntes sobre la vía peatonal.

Levantamiento topográfico

Para analizar correctamente los datos recopilados en el campo, se utiliza un programa como Excel y AutoCAD para una inspección de estación total. Se determinar las medidas topográficas de la vía y finalmente se tendrá una ficha de datos de todos los puntos topográficos. Las curvas de nivel, elevaciones y la planimetría se puede representar en plano.

Estudio de mecánica de suelos

Este proyecto consistirá en recopilar datos sobre el suelo a través de una tabla que resuma sus propiedades. Esto será realizado por expertos en el tema y siguiendo los lineamientos de la American Association for Testing and Materials (ASTM). Después de esto, se tomará en cuenta los elementos claves para el diseño.

Validación de los instrumentos de recolección de datos

En su investigación de Carrillo, Sánchez y Leenen (2020), mencionan que la "validez para una investigación, debe estar acompañada de detalles específicos con información coherente para que las conclusiones sean lógicas y sus argumentos sean completos y verificables" (p. 106).

La presente investigación se basó en 4 guías de observación validadas por 2 expertos presentadas en el anexo 6 para recolección de datos, estas han sido validadas y aprobadas en base a juicio de expertos tal como se muestra en los anexos 6.1, 6.2, 6.3. Para la aprobación se contó con dos ingenieros: Josualdo

Carlos Villar Quiroz, con CIP: 106997 y Cesar Augusto Abad Vela, con CIP: 180467.

3.4.4 Confiabilidad de los instrumentos de recolección de datos

- El estudio de tráfico está garantizado por el MTC (Ministerio de transportes y comunicaciones), la confiabilidad lo garantiza en todos sus reglamentos y manuales que son usados para obras o proyectos de infraestructura vial.
- El estudio topográfico su confiabilidad está garantizada por el ingeniero consultor quien realizó el levantamiento para un expediente técnico de un proyecto de inversión que se ejecutó en el año 2020, el proyecto de saneamiento contempló todo el sector de Alto Laredo, por lo que se tiene toda lo topografía con confiabilidad tal como se muestra en el anexo 8.2.
- Del estudio de suelos también se presenta su confiabilidad y está garantizada en los ensayos de laboratorio por tres ingenieros quienes dan confiabilidad al estudio, mediante un requerimiento al Grupo "B&F" Ingenieros contratistas E.I.R.L se pudo elaborar el estudio de suelos la cual la confiabilidad está completamente garantizada por el laboratorio, tal como se muestra en el anexo 8.2.

3.5. Procedimientos

Al investigar la situación y recopilar datos relevantes mediante el uso de herramientas de recopilación, se puede recopilar la información requerida. La presente investigación sigue un proceso o una con estructura del siguiente procedimiento.

Esquema de procedimientos:

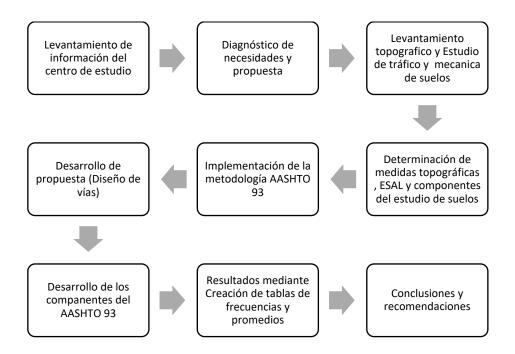


Figura 2. Esquema de procedimientos

3.5.1. Procedimiento para realizar el diseño de vías.

3.5.1.1. Levantamiento topográfico

Para analizar correctamente los datos recopilados en el campo, se utiliza un programa como Excel y AutoCAD para una inspección de estación total. Se determinar las medidas topográficas de la vía y finalmente se tendrá una guía de datos de todos los puntos topográficos. Las curvas de nivel, elevaciones y la planimetría la cual se presenta en planos.

3.5.1.2. Estudio de mecánica de suelos

Este proyecto consistirá en recopilar datos y propiedades sobre el suelo a través de un estudio de suelos con análisis de laboratorio. Esto será realizado por expertos en el tema y siguiendo los lineamientos de la American Association for Testing and Materials

(ASTM). Después de esto, se tomará en cuenta los elementos claves como el CBR, dato importante para el diseño.

3.5.1.3. Estudio de tráfico

La base para el registro, conteo y observación de vehículos es identificar la hora del día más congestionada. Esta información se puede registrar en hojas de cálculo de acuerdo con las categorías del Manual de Carreteras. El estudio de tráfico incorporó 7 días consecutivos de observaciones. Se determina el ESAL, el cual es un valor numérico utilizado para calcular el espesor del pavimento necesario para los carriles flexibles.

3.5.1.4. Estudio peatonal

Se realizó la observación, conteo y registro de personas que transitan por la vía elegida, identificando así cuál era la hora pico de mayor afluencia. Además, con ello se conocerá la demanda y beneficio para los peatones existentes en la zona o población.

3.5.1.5. AASHTO 93

Se debe analizar todos los elementos claves de esta metodología antes de ser aplicada. Cabe señalar que los estándares de geología de caminos y suelos del método estándar AASHTO 93 dictan que cada 1,5 metros perimétricos, o alrededor de 5 pies, de profundidad requiere un pozo de investigación de suelos. Además, se requiere CBR.

A partir de los datos recopilados a través del método AASHTO 93, calculamos el grosor de las vías vehiculares y peatonales. Además, podemos medir cuántos vehículos y personas atraviesan una ubicación en un período de tiempo determinado. Y, por último, podemos recopilar datos sobre cualquier pregunta específica sobre la accesibilidad peatonal en ese lugar.

Después de recopilar la información de la encuesta en un programa específico, los datos se organizaron y almacenaron en una base de datos. Este proceso permitió la creación de tablas de frecuencia y gráficos que facilitaron la comprensión de los resultados. Al conectar los resultados de diferentes ensayos, se puede formar una imagen más clara de la información.

3.5.1.6. Método de análisis de datos

Intenta planificar con precisión los procedimientos que nos llevan a recolectar datos con fines específicos (Hernández, 2018, p. 198).

El análisis de datos de este proyecto utiliza estadísticas descriptivas simples, ya que se usó el software Excel para hacer tablas y gráficos estadísticos, también se usaron las normas ASTM, las normas MTC, el software AutoCAD y las ecuaciones de la metodología AASHTO-93, la cual se utiliza para desarrollar diseños de vías.

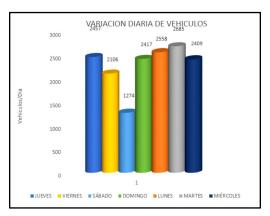


Figura 3. Figura de método de análisis por la estadística descriptiva.

Tabla 6. Método de análisis

Etapas de la	Instrumentos	Método de		
investigación	mstrumentos	análisis		
Estudio de Trafico	Guía de observación 1	Excel y estadística descriptiva		
Estudio peatonal	Guía de observación 2	Excel y estadística		
Estadio podioriai	Gala do obcorvación 2	descriptiva		
Levantamiento topográfico	Guía de observación 3	Excel y AutoCAD		

Estudio de suelos	Guía de observación 4	Excel y estadística
Estudio de suelos	Guia de observacion 4	descriptiva

3.6. Aspectos éticos

Tomando en cuenta las normas de la universidad, se consideró la legislación nacional al crear el estudio. Esto incluía la Ley Universitaria No. 30220, artículo 48 y 45. Además la investigación se redactó en base al manual de la Organización Internacional de Normalización (ISO).

Se deben seguir las pautas de investigación de la universidad al realizar este proyecto. Estos lineamientos, al igual que la resolución N° 110-2022-VIUCV, se establecieron para evitar alteraciones en los datos obtenidos. Además, se debe tener el cuidado adecuado para proteger los derechos de los participantes sin dejar de adherirse a las pautas.

Para la Validez original de este proyecto se pasará minuciosamente por el programa Turnitin, para demostrar que no existió plagio y así mismo por nuestro asesor técnico para dar validez a los resultados obtenidos. se puede verificar en el anexo 9.

3.8. Desarrollo de la tesis.

3.8.1. Tránsito vehicular

El objetivo de un estudio de transitabilidad vehicular es medir cuántos vehículos pasan por un área determinada en cualquier día del año. Las medidas IMD e IMDa resultantes proporcionan un índice promedio anual y diario. Un estudio en profundidad cuenta los vehículos circulando por un área específica.

La principal razón para el diseño de una carretera es la cantidad de vehículos contados para el estudio. Esto se debe a que los vehículos determinan el desempeño de un pavimento y determinan su diseño general. Estos resultados están siendo estudiados actualmente en el área de Alto Laredo.

a) Estación de conteo

Se realiza la cuenta diaria de los tipos de vehículos transitando por el área de estudio para crear un punto estratégico para el recorrido. La Avenida Principal, el lugar más transitado por vehículos y peatones, sirve como la estación adecuada para el recorrido. Considerando una sola estación para el estudio de tráfico.

b) Periodo de estudio

La cuenta regresiva finalizó el miércoles 14 de septiembre de 2022. Comenzó el jueves 8 de septiembre de 2022 y duró 7 días. El horario elegido fue de 6:00 am a 7:00 pm. Este es el momento en que hay más vehículos en la carretera.

Desde la entrada al sector de Alto Laredo, solo se tomó un punto para el conteo.

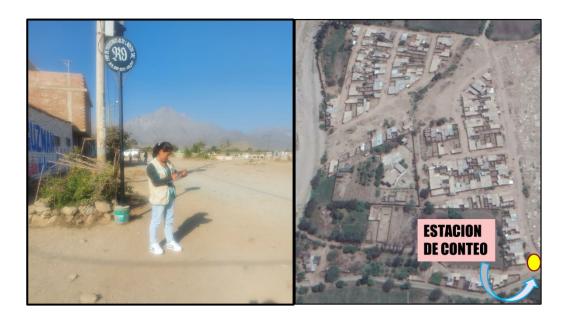


Figura 3. Estación de conteo vehicular en la avenida principal del sector Alto Laredo

3.8.1.1. IMD (índice medio diario)

Del 8 al 14 de septiembre se contaron 24 horas por día, 7 días consecutivos, para el índice diario promedio anual. Este índice es el número promedio de vehículos transitan por una intersección cada día. Luego se calculó el porcentaje diario y el índice promedio.

Tabla 7. Resumen conteo de vehículos

BIA	TOTAL	PORC.
DIA		%
JUEVES	-	-
VIERNES	-	-
SÁBADO	-	-
DOMINGO	-	-
LUNES	-	-
MARTES	-	-
MIÉRCOLES	-	-
TOTAL	-	-
IMD	-	100
%	100.00	

3.8.1.2. IMDa (índice medio diario anual)

El puente de peaje de Menocucho es la mejor opción para determinar el movimiento vehicular diario en Laredo, IMD. Esto se representa en la siguiente figura, que también muestra el método IMDa para calcular.

Tabla 8. Cálculo de índice medio diario y anual

CALCULO DEL IMD y IMDa Resumen de Metodología									
IMD =	VS 7 S = Volumen Pi	romedio Semanal							
Fo	Veh. Ligero	1.085361							
	Veh. esados =	1.000124							
IMD =	-	Vehículos	por día						
IMDa =	-	V. x año							

PEAJE: MENOCUCHO									
Mes	Mes Ligero Pesado								
Enero	0.9317	1.0902							
Febrero	1.0027	1.0710							
Marzo	1.0511	1.1233							
Abril	1.0791	1.0356							
Mayo	1.0349	0.9978							
Junio	1.0573	0.9628							
Julio	0.9502	0.9467							
Agosto	0.9064	0.9518							
Septiembre	1.0854	1.0001							
Octubre	0.8523	0.8032							
Noviembre	0.7838	0.7510							
Diciembre	0.5208	0.6242							
Factor de Corrección promedio para vehículos ligeros y pesados (2022-2022) del mes de septembre. Información Base: Ficha Técnica Estándar para Carreteras_MTC D.SNº027-2017-EF)									

Figura 4. variación diaria de vehículos de mes septiembre.

* Recolección de datos para evaluar la transitabilidad vehicular

Los datos tomados del conteo vehicular del sector se recolectaron en forma de información estadística recopilada de la cantidad de vehículos que ingresan y egresan del área. Esta información se puede verificar en 4.5. La guía de observación de datos se encuentra en el anexo 4.1.

3.8.2. Transitabilidad peatonal

El número de personas que caminan por el sector de Alto Laredo se considera al calcular el conteo de población. Además, se tiene en cuenta el tráfico de visitantes y peatones de esta zona. También se consideran aquellos que utilizan las carreteras de esta zona como rutas alternas para llegar a sus destinos.

a) Demanda Peatonal

El número de personas que caminan por el sector de Alto Laredo se considera al calcular el conteo de población. Además, se tiene en cuenta el tráfico de visitantes y peatones de esta zona. También se consideran aquellos que utilizan las carreteras de esta zona como rutas alternas para llegar a sus destinos.

❖ Recolección de datos para evaluar la transitabilidad peatonal

Tomando en consideración, el anexo 4.2 contiene la guía de observación de datos. Se recopiló información de los peatones que pasaban por el área, como visitantes y residentes locales. Además, los resultados se pueden encontrar en el anexo 4.6, que contiene la guía de observación con todos los datos recogidos.

Tabla 9. Guía de observación para conteo peatonal

		UNIV	/ERSIDAD	CÉSAR VAI	LLEJO					
PROYECTO:	Diseño de	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022								
TESISTAS:	_	.Domínguez Delgado, Anabel Anai (ORCID: 0000-0001-7858-8762) .Santillan Aranda, Elkin Solis (ORCID: 0000-0002-4594-0587)								
		Ficha de reco	lección de dato	s 2, para conte	o peatonal					
Dia		LUNES		Ubicacion		ALTO LAREDO				
Cod Estació	n	D-1		Sentido						
Estación				Fecha		19-Set-20				
			RE SUI	MEN						
Dĺa	PEATON V	ULNERABLE	PEATON NO	VULNERABLE	TO	TAL	TOTAL			
Did	ENTRADA	SALIDA	ENTRA DA	SALIDA	ENTRADA	SALIDA	IUIAL			
LUNES					0	0	0			
MARTES					0	0	0			
MIÉRCOLES					0	0	0			
JUEVES					0	0	0			
VIERNES					0	0	0			
SÁBADO					0	0	0			
DOMINGO	0	0	0	0	0	0	0			
TOTAL	0	0	0	0	0	0	0			

3.8.3. Tipo de pavimento

Después de considerar el nivel de tráfico del pavimento, las propiedades físicas del suelo donde se construirá la estructura y las teorías sobre las regulaciones existentes se tuvieron que elegir un tipo específico de pavimento. Esto implicó considerar diferentes ideas, como pavimento flexible o rígido, y otros factores importantes.

3.8.3.1. Pavimento rígido

Un pavimento con una subbase rígida soporta una losa de hormigón que no se flexiona. Esto aumenta la elasticidad y la resistencia del pavimento, lo que da como resultado una distribución más uniforme de las cargas de las ruedas. Con este grado de apoyo, se ejerce poca presión sobre la subrasante.

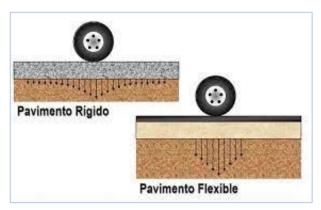


Figura 5. Estructura según tipo de pavimento

Los altos costos de mantenimiento y las diferentes expectativas de vida hacen que las alternativas de pavimento de concreto parezcan prometedoras. Sin embargo, los costos iniciales son más altos para el pavimento de hormigón en comparación con el asfalto, además también tiene un refuerzo de acero en algunas losas. El pavimento de hormigón se desgasta entre 20 y 40 años al igual que el pavimento flexible. No se considerará viable ninguna alternativa al pavimento rígido debido al bajo tráfico en el sector o zona de estudio. Y por motivo económico se dejó de lado esta alternativa.

3.8.3.2. Pavimento flexible

a) Diseño de pavimento flexible con la Metodología AASHTO 93.

Se eligió el método AASHTO 1993 para este proyecto porque está destinado a ser adoptado en todo el mundo y utiliza un valor "SN" determinado por el diseño del pavimento que puede resistir cargas verticales durante su vida útil prevista.

El método AASHTO 93 se fundamenta en la siguiente ecuación:

$$Log W_{18} = Z_r * S_o + 9.36 * Log (SN + 1) - 0.20 + \frac{Log \frac{(\Delta PSI)}{4.2 - 1.5}}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 * Log Mr - 8.07$$
...(2)

Dónde:

SN = Número estructural

ZR = Factor de desviación normal para un nivel de confiabilidad

W 18 = Trafico equivalente o ESAL's

MR = módulo de resiliencia efectivo de la subrasante

So = Desviación estándar

 ΔPSI = Diferencia entre los índices de servicio inicial y el final deseado

❖ Carga por Eje Simple Equivalente (W18) – ESAL

Las cargas por eje estáticas equivalentes de la ESAL se pueden encontrar calculando de dos a 18 ruedas con una capacidad de carga común de 8,2 toneladas. Este número es el número de veces que se puede cargar un vehículo de una o dos ruedas con 18,000 libras.

❖ Desviación Estándar Normal (ZR):

Los niveles de confianza cambiaron la desviación estándar aceptada. Esto se muestra en la siguiente tabla, con valores de desviación estándar que cambian de línea a línea.

Tabla 10. Valores de Desviación Standar Normal

	NIVEL DE CONFIABLIDAD													
R	75	80	85	90	91	92	93	94	95	96	97	98	99	99.99
	DESVIACION ESTÁNDAR													
ZR	-0.674	-0.841	-1.037	-1.282	-1.34	-1.405	-1.476	-1.555	-1.645	-1.751	-1.881	-2.054	-3.09	-3.746

Fuente: AASHTO guide for designe of paviment structures (1993).

❖ Índice de serviciabilidad:

Antes de emprender cualquier trabajo de restauración o reparación, se debe lograr un índice de servicio mínimo de 2.0 o superior. Esto se conoce como índice de servicio final Pt; se puede calcular como 2.0 o 2.25 para rutas locales y colectoras, respectivamente. Para pavimentos flexibles se utiliza un índice de servicio final mínimo de 1,95.

❖ Módulo Resiliencia (MR):

La convención AASHTO de 1993 utilizó un módulo de resiliencia para representar la subrasante, la subbase y la base. Esta variable reemplazó al CBR al estudiar estos materiales. Probó la elasticidad del suelo y evaluó sus propiedades no lineales.

Tabla 11. Cálculo aproximado del Mr. de subrasante respecto al CBR

MODULO DE RESILIENTE PSI	CBR SUBRASANTE
Mr (psi) = 1500 x CBR	CBR < 10%
$Mr (psi) = 3000 \times CBR^{0.65}$	10% < CBR < 20%
Mr (psi) = 4326 x Ln (CBR) + 241	Suelos Granulares

Fuente: Standard Test Method for Particle-size Analysis of Soils (ASTM)

❖ Confiabilidad (R):

La confianza en el proceso de diseño se logra asegurando que la sección de pavimento propuesta cumpla con los requisitos. Esto se logra al incluir la seguridad como un objetivo para el proceso de diseño. Es importante considerar qué tan inseguro alguien ve un diseño en un momento dado durante el proceso.

Tabla 12. Niveles de Confianza según los tipos de carreteras

CLASIEICACION	NIVELES DE CONFIABLIDAD
CLASIFICACION	RECMENDADO (%)

	URBANA	RURAL
ARTERIAS PRINCIPALES	80 - 99	75 - 95
INTERESTATALES Y OTRAS	85 - 99.9	80 - 99.9
LOCALES	50 - 80	50 - 80
COLECTORAS	80 - 95	75 - 95

Fuente: AASHTO guide for designe of paviment structures (1993)

❖ Diseño de vereda

El diseño de la acera o pavimento requería ciertos requisitos. Estos requisitos incluían consideraciones de otros diseños de carreteras, así como un diseño de carretera completamente estructurado. Estos parámetros se cumplieron al desarrollar una acera o pavimento.

Tabla 13. Requisitos para pavimentos especiales

EL	MENTO	ACERARAS O VEREDAS		
		Espesor compactado: ≥ 150 mm		
SUB - RASANTE		95% de compactación: Suelos Cohesivos - Proctor Estándar Suelos Granulares - Proctor Modificado		
Base		CBR ≥ 30%		
Espesor de la capa	Concreto de cemento Portland	≥ 100 mm		
Material	Concreto de cemento Fc ≥ 17,5 Mpa (175 kg/cm2) Portland			

3.8.4. Estructura del pavimento

La estructura de pavimento flexible se define por materiales granulares que comienzan desde una sub base, luego una capa base de afirmado, a esto le sigue una capa final de asfalto. Las estructuras de pavimentos flexibles están soportadas por suelo natural y otras capas apiladas una encima de la otra.

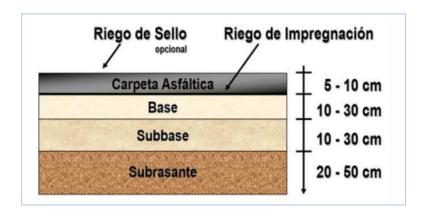


Figura 6. capas de la estructura del pavimento flexible

3.8.4.1. Capa subbase

Se utiliza una capa de material más sustancial que la suciedad para agregar peso adicional a la subbase. Esto permite que la capa base se haga más delgada sin comprometer la investigación.

3.8.4.2. Capa base

La capa base se considera parte de la estructura del pavimento, lo que tiene el efecto de reducir la tensión vertical ejercida por la carga por eje sobre la capa base de la carretera y el suelo natural. También puede reducir la deformación por tracción del revestimiento asfáltico impuesta por la carga por eje y brinda que el agua que se filtre en la superficie de la carretera se drene a través de los canalones longitudinales y transversales.

3.8.4.3. Carpeta de rodadura (asfáltica)

La capa superficial o revestimiento asfáltico actúa como impermeabilizante del pavimento, permitiendo que la capa subyacente mantenga su capacidad portante. También proporcionan una superficie antideslizante, incluso en pistas mojadas. Además, las tensiones verticales impuestas sobre la capa base por las cargas por

eje se reducen para controlar la acumulación de deformación plástica en dichas capas.

Figura 7. Detalle de la carpeta asfáltica.

3.8.5. Levantamiento topográfico.

El levantamiento topográfico es un componente clave de la propuesta general de la tesis "Diseño de vías utilizando la metodología AASHTO 93 para mejorar el tránsito de vehículos y peatones en el sector de Alto Laredo, 2022". El levantamiento topográfico fue considerado de un proyecto ejecutado en año 2020, dicho proyecto denominado "Mejoramiento del servicio de saneamiento básico en el sistema de desagüe del sector Alto Laredo, del distrito de laredo - provincia de Trujillo - departamento de la Libertad", cuenta con un código único de inversión (CUI: 2457045) registrado en el sistema de inversiones públicas del ministerio de economía y finanzas – INVIERTE.PE.

Figura 7. Seguimiento de proyecto en Invierte.pe.

De este proyecto se pudo tomar datos como referencia y uso para el diseño de vías.

a) Trabajo de campo: Para recopilar datos de múltiples ubicaciones, las estaciones y el BMS se eligieron según los requisitos del caso. Se utilizaron marcadores para indicar qué punto de la estación se estaba señalizando.

Ubicación de SM'S:

Tabla 14. Coordenadas UTM de ubicación de BM'S

ВМ	COODENADAS UT	СОТА	
DIVI	NORTE	ESTE	COTA
BM-1	BM-1 9´107,380.465 725,882		146.61
DIVI-1	9 107,380.403	725,882.89	msnm
BM-2	9′107,248.575 725,923.34		145.19
DIVI-Z	9 107,246.373	723,323.34	msnm
BM-3	9′107,231.432	725,760.19	142.39
DIVI-3	9 107,231.432	723,700.19	msnm
BM-4	9′107,128.650	725,849.76	142.58
DIVI-4	BIVI-4 9 107,128.650 725,849.7		msnm
BM-5	9′106,981.141	725,782.72	138.86
כ-ועום	9 100,901.141	123,102.12	msnm

b) Libreta topográfica.

Además de las tablas incluidas en el lugar para estudio, los anexos proporcionan una lista completa de puntos topográficos utilizados en el diseño de caminos. Estos puntos suman 500 tal como se muestran en el anexo 4.7 esto según la de la guía de datos 3 del anexo 4.3. Estudiar el terreno requería recopilar información sobre su topografía, esto condujo a la creación de un perfil del terreno para realizarse el diseño de vías.

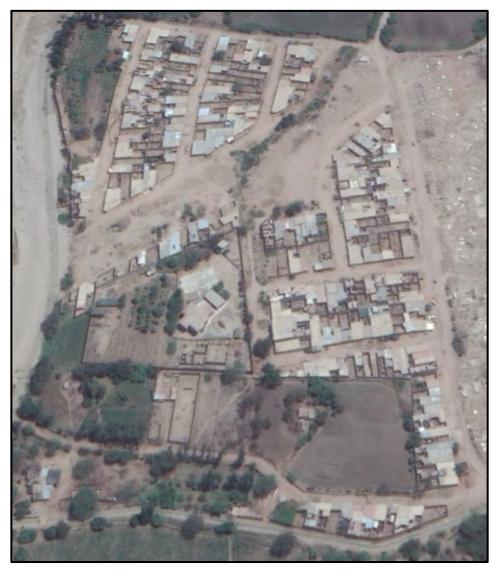


Figura 8. Vista Satelital del Área del Proyecto

3.8.6. Estudio de mecánica de suelos.

Ubicación y Descripción de la zona de Estudio

La presente investigación se enfoca en el área de terreno donde se implementarán las normas de diseño vial AASHTO 93 para mejorar el tránsito vehicular y peatonal en el año 2022. Este evento se desarrolla en el distrito de Alto Laredo, que pertenece a la provincia de Trujillo y departamento de La Libertad. El terreno se encuentra en el estudio.

El Distrito de Laredo se encuentra aproximadamente a 9 km de la ciudad de Trujillo. Tiene una superficie de 335,44 kilómetros cuadrados y una altitud de 89 metros sobre el nivel del mar. Los límites de Laredo son los siguientes distritos y provincias:

- Al Norte: Distritos de Huanchaco y Simbal.
- Distrito de Salaverry.
- Distritos de Moche, Trujillo y El Porvenir.
- Distrito de Poroto.

Geología

A profundidades superiores a 4 metros, los investigadores no tenían conocimiento del nivel de agua subterránea (NAF) de North American Flatland. Para probar la validez de su tesis, los investigadores necesitan obtener datos que respalden la afirmación "El flujo de tráfico se puede mejorar aplicando las pautas de diseño de carreteras AASHTO 93 al sector de Alto Laredo para 2022". Por eso decidieron sacar muestras de suelo en el distrito de Laredo y analizarlas. Una vez que terminen este proceso, tendrán un argumento más sólido para su teoría.

a) Investigación de campo

Para llegar a realizar el análisis de los resultados de este trabajo, se realizaron 04 exploraciones a cielo abierto, denominadas Calicatas. Estas exploraciones se realizaron en el mismo lugar, a una distancia de considerada como máximo a 100 metros, con el fin de cubrir el área de investigación y obtener similitud con los resultados. Cada exploración se realizó a una profundidad máxima de 1.2 metros, la cual se determinó observando el terreno natural. Cada pozo de prueba requirió múltiples pruebas en el laboratorio y muestras para la prueba CBR.

PROYECTO: DISEÑO DE VÍAS MEDIANTE METODOLOGÍA AASHTO 93 PARA MEJORAR LA TRANSITABILIDAD VEHICULAR Y PEATONAL DEL SECTOR ALTO LAREDO, 2022.											
LUGAR	SONDAJE	TIPO DE	PROF. (m)	MUESTRAS	PROF.		COORDENADAS (UTM) WGS84 - 17S				
SON	SONDAJE		EXTRAÍDAS	DE NAF	(msnm)	ESTE	NORTE				
	C-01/E-1	Calicata	0.60 - 1.50	01	-	146	725770.449	9107232.026			
Alto	C-02/E-1	Calicata	0.30 – 1.50	01	-	141	725795.192	9106977.043			
Laredo	C-03/E-1	Calicata	0.25 - 1.50	01	-	148	725883.926	9107251.422			
	C-04/E-1	Calicata	0.15 - 1.50	01	-	145	725842.640	9107128.075			

Figura 8. Resumen de Exploraciones Realizadas.

b) Ensayos de laboratorio

Los ensayos de subrasantes realizados en laboratorio fueron en base a la siguiente figura.

ENSAYO	NORMA MTC	NORMA ASTM
Análisis Granulométrico	MTC E 107	ASTM D 422
Límite Plástico	MTC E 111	ASTM D 4318
Límite Líquido	MTC E 110	ASTM D 4318
Contenido de Humedad	MTC E 108	ASTM D 2216
Clasificación de SUCS		ASTM D 2487
Clasificación de AASHTO		AASHTO M 145
Contenido de Sales Solubles	MTC E 219	ASTM D 1888
CBR	MTC E 132	ASTM D 1883

Figura 9. ensayos realizados.

c). Perfil estratigráficos y ensayo de campo

De acuerdo con la exploración efectuada, la estratigrafía presenta las siguientes características:

Calicata N°01

E-01 / **0.60** – **1.50** m. Estrato compuesto por la mezcla de Arenas pobremente gradadas con gravas de color beige claro y material que pasa el 3.40 % el tamiz N°200. Clasificado en el sistema "SUCS", como un suelo "SP" y de acuerdo con la clasificación "AASHTO", como un suelo "A-1-a (0)". Con una humedad natural de 1.79 %.

Calicata N°02

E-01 / 0.30 – 1.50 m. Estrato compuesto por la mezcla de arena limosa con gravas y material que pasa el 25.75 % el tamiz N°200. Clasificado en el sistema "SUCS", como un suelo "SM" y de acuerdo con la clasificación "AASHTO", como un suelo "A-2-4(0)". Con una humedad natural de 2.31%.

Calicata N°03

E-01 / 0.25 – 1.50 m. Estrato compuesto por arenas limosas, mezcla de arena - limo y material que pasa el 23.77 % el tamiz N°200. Clasificado en el sistema "SUCS", como un suelo "SM" y de acuerdo con la clasificación "AASHTO", como un suelo "A-2-4(0)". Con una humedad natural de 2.98%.

Calicata N°04

E-01 / **0.15** – **1.50** m. Estrato compuesto por la mezcla de Arenas pobremente gradadas y limos, con material que pasa el 9.27 % el tamiz N°200. Clasificado en el sistema "SUCS", como un suelo "SP-SM" y de acuerdo con la clasificación "AASHTO", como un suelo "A-3 (0)". Con una humedad natural de 1.27%.

Tabla 13. Análisis granulométrico y clasificación de Suelos Calicatas.

SONDAJE/ CALICATA MUESTRA PROF.(m)		GRAN	GRANULOMETRÍA (%)			MITES ((%)	CONT. HUMEDAD	CLASIF. SUCS	CLASIF.		
57121571171				GRAVA	ARENA	FINOS	L.L	L.P	I.P	(%)		70.00
C-01	E-01	0.60	1.50	46.65	49.96	3.40	NP	NP	NP	1.79	SP	A-1-a (0)
C-02	E-01	0.30	1.50	34.52	39.73	25.75	NP	NP	NP	2.31	SM	A-2-4 (0)
C-03	E-01	0.25	1.50	21.99	54.24	23.77	NP	NP	NP	2.98	SM	A-2-4 (0)
C-04	E-01	0.15	1.50	23.83	66.90	9.27	NP	NP	NP	1.27	SP-SM	A-3 (0)

Fuente. Reporte de Laboratorio/Departamento de Ciencia de Materiales/Grupo B&F Ingenieros

Tabla 14. Ensayos de Laboratorio C. Humedad, Proctor y CBR.

	COMPENSACIÓN		COMPENSACIÓN HUMEDAD CLASIFICACIÓN		COMPAC	TACIÓN	CBR 0.1"		
CALICATA	ESTRATO	DE PARTÍCULAS (%)	NATURAL (%)	SUCS	AASHTO	M.D.S (gr./cm³)	O.C.H (%)	95% MDS	100% MDS
C-01	E-01	25.19	1.79	SP	A-1-a (0)	2.05	4.07	14.3	24.3
C-02	E-01	12.80	2.31	SM	A-2-4 (0)	1.83	7.43	13.2	20.2
C-03	E-01	5.68	2.98	SM	A-2-4 (0)	1.75	7.88	12.4	18.8
C-04	E-01	23.83	1.27	SP-SM	A-3 (0)	2.01	5.67	14.0	23.2

Fuente: Reporte de Laboratorio/Departamento de Ciencia de Materiales/Grupo B&F Ingenieros

Recolección de datos para analizar estudio de suelos.

El anexo 4.8 contiene los resultados de la resistencia general del suelo, granulometría, contenido de humedad y calificación CBR. El anexo 8.2.1 también contiene los resultados completos del laboratorio.

3.8.7. Elementos clave a considerar del estudio de trafico

3.8.7.1. Proyección del tránsito

Debido a que las carreteras deben repararse y mantenerse constantemente, cualquier proyecto relacionado con la construcción o el diseño de carreteras emplea una vida útil. Con el tiempo, los vehículos viajan sobre el pavimento y agregan más estrés con sus cargas constantes.

Vida útil o Periodo de Diseño

Se debe completar un nuevo diseño de carretera antes de que sea necesaria o requerida una primera rehabilitación. Este es el punto en el tiempo al que se hace referencia como el período de diseño en la guía AASHTO. Debido a que solo se permitía el tránsito de vehículos livianos en la carretera, tomó 20 años completar este proyecto.

Tabla 15. Periodo de Análisis - según AASHTO

Clasificación de la vía	Periodo de análisis (Años)
Rural de alto volumen de trafico	20 - 30
Urbana de alto volumen de trafico	30 - 50
Pavimentada de bajo volumen d trafico	15 - 25
No pavimentada de bajo volumen de trafico	10 - 20

3.8.7.2. Demanda Proyectada

La demanda que se proyecta será dada por la siguiente formula:

$$T_n = T_O(1+R)^{(n-1)}$$
.....(4)

Donde:

r = Tasa anual de crecimiento de transito

To = Transito actual en vehículo por día

n = Año futuro para ser proyectado

Tn = Tránsito que se proyecta al año en vehículo por día

* Tasa de Crecimiento por Región en Porcentaje

Los datos de flujo vehicular del INEI nos brindan actualizaciones cada dos meses. Este dato muestra el incremento mensual en ambos tipos de vehículos. La siguiente tabla muestra las tasas de crecimiento para cada tipo de vehículo.

Tabla 16. Tasa de crecimiento de vehículos ligeros y pesados

TASA DE CRECIN VEHÍCULOS L		TASA DE CRECII VEHÍCULOS P	
	TC		PBI
Callao	1.56 %	Ayacucho	3.60 %
Junín	0.77 %	Cajamarca	1.29 %
Amazonas	0.62 %	Cusco	4.43 %
Arequipa	1.07 %	Huancavelica	2.33 %
Apurímac	0.59 %	Arequipa	3.37 %
Ancash	0.59 %	Amazonas	3.42 %
Cusco	0.75 %	Apurímac	6.65 %
Huánuco	0.91 %	Ancash	1.05 %
Cajamarca	0.57 %	Junín	3.90 %
Huancavelica	0.83 %	Ica	3.54 %
Ayacucho	1.18 %	Huánuco	3.85 %
Ica	1.15 %	La Libertad	2.83 %
La Libertad	1.26 %	Callao	3.41 %
Lambayeque	0.97 %	Lambayeque	3.45 %
Lima Provincia	1.45 %	Lima Provincia	3.07 %
Pasco	0.84 %	Lima	3.69 %
Piura	0.87 %	Loreto	1.29 %
Puno	0.92 %	Madre De Dios	1.98 %
Madre De Dios	2.58 %	San Martin	3.84 %
San Martin	1.49 %	Ucayali	2.77 %
Ucayali	1.51 %	Tumbes	2.60 %
Moquegua	1.08 %	Tacna	2.88 %
Tacna	1.50 %	Piura	3.23 %
Lima	1.45 %	Puno	3.21 %
Tumbes	1.58 %	Moquegua	0.27 %
Loreto	1.30 %	Pasco	0.36 %

Fuente: INEI "Informe técnico de flujo vehicular por unidades de peaje" – 2019

La tasa de crecimiento anual de vehículos livianos en La Libertad es de 1.26%. Esta tabla de datos indica que los vehículos pesados crecen a una tasa del 2,83%.

3.8.7.3. Cálculo de EAL

El EAL promedia alrededor de 80,000 libras; 18,000 libras de este es el peso promedio de un eje simple o simple conformado por dos ruedas. Este objeto pesado puede causar un desgaste significativo en el pavimento debido a la cantidad de tiempo que se conduce.

❖ Tasa de Anual de Crecimiento

Las tasas de crecimiento anual se calculan en función de la tasa a la que aumenta la población general. Esto se demuestra comúnmente a través de aumentos en la población de vehículos ligeros y el tráfico de vehículos pesados. Estas tasas pueden variar del 2 al 6% en muchos de los países. Para hallar qué factor de crecimiento elegir para este estudio, se utilizó la siguiente tabla. Establece que elegir "4%" daría como resultado un escenario de bajo tráfico y bajo crecimiento. Entonces se eligió 29.78 como factor de crecimiento debido a su alto valor.

Tabla 17. Factores de crecimiento acumulado (Fca)

Periodo de Análisis (años)	Factor sin	Tasa anual de crecimiento (r)							
	Crecimiento	2	3	4	5	6	7	8	10
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	2.00	2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.10
3	3.00	3.06	3.09	3.12	3.15	3.18	3.21	3.25	3.31
4	4.00	4.12	4.18	4.25	4.31	4.37	4,44	4.51	4.64
5	5.00	5.20	3,19	5.42	5.53	5.64	5.75	5.87	6.11
6	6.00	6.31	6.47	6.63	6.80	6.98	7.15	7.34	7.72
7	7.00	7.43	7.66	7.90	8.14	8.39	8.65	8.92	9.49
8	8.00	8.58	8.89	9.21	9.55	9.90	10.26	10.64	11.44
9	9.00	9.75	10.16	10.58	11.03	11.49	11.98	12.49	13.58
10	10.00	10.95	11.46	12.01	12.58	13.18	13.82	14.49	15.94
11	11.00	12.17	12.81	13.49	14.21	14.97	15.78	16.65	18.53
12	12.00	13.41	14.19	15.03	15.92	16.87	17.89	18.98	21.38
13	13.00	14.68	15.62	16.63	17.71	18.88	20.14	21.50	24.52
14	14.00	15.97	17.09	18.29	19.16	21.01	22.55	24.21	27.97
15	15.00	17.29	18.60	20.02	21.58	23.28	25.13	27.15	31.77
16	16.00	18.64	20.16	21.82	23.66	25.67	27.89	30.32	35.95
17	17.00	20.01	21.76	23.70	25.84	28.21	30.84	33.75	40.5
18	18.00	21.41	23.41	25.65	28.13	30.91	34.00	37.45	45.60
19	19.00	22.84	25.12	27.67	30.54	33.76	37.38	41.45	51.16
20	20.00	24.30	26.87	29.78	33.06	36.79	41.00	45.76	57.2

Fuente: Table D-20 AASHTO Guide for Design of Paviment Structures

❖ Factor Direccional y Factor Carril:

La fuerza direccional de los vehículos pesados está representada por la proporción de cuántos vehículos pesados viajan en una dirección con

respecto al tráfico total y la fuerza del carril está representada por la proporción de qué carril recibe la mayor cantidad de ejes equivalentes.

Tabla 18. Factor Direccional y Factor Carril

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado Fd x Fc para carril de diseño
	1 sentido	1	1.00	1.00	1.00
-	1 sentido	2	1.00	0.80	0.80
1 calzada —	1 sentido	3	1.00	0.60	0.60
(para IMDa total de la calzada)	1 sentido	4	1.00	0.50	0.50
	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
2 calzadas con separador central (para IMDa total de las dos calzadas)	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
	2 sentidos	3	0.50	0.60	0.30
	2 sentidos	4	0.50	0.50	0.25

Fuente: Guía AASHTO 93

La infraestructura vial del distrito de Alto Laredo cuenta con 1 calzada de dos carriles y 1 calzada de dos sentidos. Se eligieron dos calzadas con divisor central y 2 carriles por sentido para las avenidas más anchas del distrito.

Factores Equivales y Factor Camión

Los factores calculados incluyen vehículos, que reflejan los viajes más regulares a través del área de estudio. Se prestó cierta atención a las motocicletas y los mototaxis; debido a que no impactan significativamente en el pavimento, su inclusión es innecesaria. En cambio, el cálculo tuvo en cuenta los vehículos ligeros. Esto se debe a que circulan más en el sector de Alto Laredo.

Tabla 19. Factores Equivalente y Factor Camión

Tipo de vehiculo	peso	peso xe	je (TN)	TIPO EJE	FACTOR EE	FACTOR CAMION
ripo de veniculo	total	EJE	LX	TIPO EJE	FACTOR EE	FACTOR CAMION
AUTOMOVIL	2	DEL.	1	SIMPLE	0.00052	0.001
AUTOWOVIL	2	POST.01	1	SIMPLE	0.00052	0.001
CAMIONETA	3.9	DEL.	1.6	SIMPLE	0.00345	0.066
CAMIONETA	5.9	POST.01	3.3	SIMPLE	0.06250	0.000
MICRO	18	DEL.	7	SIMPLE	1.26537	4 504
IVIICRO		POST.01	11	SIMPLE	3.23828	4.504
CAMION 2E (C2)	40	DEL.	7	SIMPLE	1.26536	4.504
CAMION 2E (C2) 18	10	POST.01	11	SIMPLE	3.23828	4.504
CAMION 3E (32)	25	DEL.	7	SIMPLE	1.26536	3.285
CAMION 3E (32)	25	POST.01	18	TAMDEM	2.01921	3.203
OEMITDAII ED		DEL.	7	SIMPLE	1.26536	
SEMITRAILER T2S1	29	POST.01	11	SIMPLE	3.23828	7.742
1231		POST.02	11	SIMPLE	3.23828	
BUS (B2)	18	DEL.	7	SIMPLE	1.26536	4.504
DOS (BZ)	10	POST.01	11	SIMPLE	3.23828	4.304

Número de ejes equivalentes

Es el producto del factor neumáticos, factor direccional, factor rieles y factor vehículos pesados multiplicado por el índice diario anual.

$$EE_{dia-carril} = IMDpi * Fd * Fc * Fvpi * Fpi \dots (4)$$

❖ ESAL de diseño

ESAL se calcula multiplicando el número de ejes equivalentes (también conocidos como días EE) por el factor de crecimiento acumulativo y el número de días en un año.

Nrep de EE 8.2 ton =
$$EE_{dia-carril}xFcax$$
365(5)

En la siguiente tabla se puede verificar el resultado del ESAL

Tabla 20. ESAL de Diseño encontrado

TPOS DE	EE DIA- CARRIL	FCA	AÑO	Nrep DE EE
automovil	0.018	29.78	365	144.2357871
camioneta	1.984	29.78	365	15505.00532
micro	32.440	29.78	365	253492.2312
bus (B2)	7.749	29.78	365	60550.77587
camion 2 EE	45.742	29.78	365	357431.3193
camion 3 EE	2.395	29.78	365	18713.05532
Semitrailer 2s1	0.677	29.78	365	5292.291298
TOTAL	91.005			639415.0027

Luego, en la tabla, de acuerdo al tipo de vehículo, se encuentra que el diseño ESAL tiene un total de 639,415.00 ejes equivalentes o el número de veces que viajarán en carretera.

3.8.8. Diseño vías con pavimento flexible - Método AASHTO 93

El diseño vial para este proyecto utilizó la metodología AASHTO 93 para seleccionar un pavimento flexible que sea menos costoso y lleve menos tráfico. Este método brinda una ecuación determinando la estructura de pavimentos flexibles. Por esta razón, primero necesitamos conocer las variables. La fórmula AASHTO 93 es:

$$Log W_{18} = Z_r * S_o + 9.36 * Log (SN + 1) - 0.20 + \frac{Log \frac{(\Delta PSI)}{4.2 - 1.5}}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 * Log Mr - 8.07$$

$$(4)$$

3.8.8.1. Variables de diseño

a) Variable de tiempo

Se consideraron dos variables: período de análisis y vida útil del pavimento. La vida útil se considera en el diseño y el período de análisis se usa para comparar los esquemas de diseño, en otras palabras, el análisis económico del proyecto.

Tabla 21. Clasificación de la vía

CLASIFICACION DE LA VIA	PERIODO DE ANALISIS
Rural de alto volumen de tráfico	20 - 50
Urbana de alto volumen de tráfico	30 - 50
No pavimentada de bajo volumen de tráfico	10 - 20
Pavimentada de bajo volumen de tráfico	15 - 25

Pavimentada de bajo volumen de tráfico = 20 Años

b) Transito

En el método AASHTO, un pavimento está diseñado para soportar un número específico de cargas en su vida útil.

Para tener en cuenta esta discrepancia, el volumen de tráfico se convirtió a una carga uniaxial que es equivalente de 18 kip (80 kN), o ESAL (carga uniaxial equivalente). De esta forma, los efectos destructivos de cualquier eje pueden ser representados por el número de cargas por eje.

Según la investigación de tráfico, el número de repeticiones es: 639.415,00

En el caso del tráfico y diseño de pavimentos flexibles, se definen 2 categorías:

Tabla 22. Rango de tráfico pesado expresado en EE

CATEGORIA	RANGO DE TRÁ		TIPO DE TRÁFICO
CATEGORIA	EXPRESAD	O EN EE	EXPRESADO EN EE
BAJO VOLUMEN	De 150001	A 300000	TP1
DE TRANSITO	De 300001	A 500000	TP2
DE 150,001 A	De 500001	A 750000	TP3
1'000,000 EE	De 750001	A 1000000	TP4
	De 1000001	A 1500000	TP5
	De 1500001	A 3000000	TP6
	De 3000001	A 5000000	TP7
CAMINOS QUE	De 5000001	A 7500000	TP8
TRAFICO	De 7500001	A 10000000	TP9
COMPRENDIDO ENTRE 1'000,000	De 10000001	A 12500000	TP10
Y 30'000,000 EE	De 12500001	A 15000000	TP11
	De 15000001	A 20000000	TP12
	De 20000001	A 25000000	TP13
	De 25000001	A 30000000	TP14

Según el número de repeticiones de eje equivalente, el tipo de flujo es: **TP3**

c) Subrasante

Las propiedades de la subbase sobre la que descansa el pavimento se definen en seis categorías de subbase según su capacidad portante CBR.

Según investigaciones de mecánica de suelos, el CBR de la subrasante es: 13,45%.

Tabla 23. Categoría de la subrasante

CBR DE LA SUBRASANTE		CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
CBR MENORES	A 3%	S0	Subrasante Inadecuada
De CBR = 3%	A CBR < 6%	S1	Subrasante Pobre
De CBR = 6%	A CBR < 10%	S2	Subrasante Regular
De CBR = 10%	A CBR < 20%	S 3	Subrasante Buena
De CBR = 20%		S4	Subrasante Muy Buena
CBR MAYORES 30%	O IGUALES A	S 5	Subrasante Extraordinaria

Basado en Estudio de Mecánica de Suelos: \$3

d) Desviación estándar

La desviación estándar es la aquella total de los valores obtenidos por AASHTO, teniendo en cuenta la variabilidad inherente del material y su estructura. La tabla a continuación, muestra los valores de la desviación estándar.

Tabla 24. Categoría de la subrasante

CONDICION DE DISEÑO	DESVIACIÓN ESTANDAR	
CONDICION DE DISENO	PAV. RÍGIDO	PAV. FLEXIBLE
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.	0.40	0.50
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40

Desviación estándar (SO) = 0.45

e) Factor confiabilidad (R).

Esto conlleva la utilización prevista de la carretera. Por lo tanto, para las carreteras principales, el nivel de confiabilidad es alto, ya que el subdimensionamiento del espesor del pavimento podría hacer que alcance su nivel mínimo de uso antes de lo esperado ya que la estructura se deteriora rápidamente.

Tabla 25. Categoría de la subrasante

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO PESADO EXPRESA	NIVEL DE CONFIABIL IDAD	
TP1	De 150001	A 300000	70%
TP2	De 300001	A 500000	75%
TP3	De 500001	A 750000	80%
TP4	De 750001	A 1000000	80%
TP5	De 1000001	A 1500000	85%
TP6	De 1500001	A 3000000	85%
TP7	De 3000001	A 5000000	85%
TP8	De 5000001	A 7500000	90%
TP9	De 7500001	A 10000000	90%
TP10	De 10000001	A 12500000	90%
TP11	De 12500001	A 15000000	90%
TP12	De 15000001	A 20000000	95%
TP13	De 20000001	A 25000000	95%
TP14	De 25000001	A 30000000	95%

El factor de confiabilidad R para el tipo de tráfico TP3 es: 80%

f) Probabilidad (ZR)

Es el valor "Z" (el área bajo la curva de distribución normal corresponde a la curva normalizada de confiabilidad "R")

$$ZR = -0.842$$

3.8.8.2. Criterios de comportamiento

a) Índice de serviciabilidad inicial (Po)

Si no hay información de diseño disponible, AASHTO 93 establece un valor inicial ideal de 4.2 para pavimentos flexibles. El índice de servicio inicial (P0) es la condición original del pavimento determinada inmediatamente después de la construcción o restauración.

Tabla 26. Índice de serviciabilidad inicial

TIPO DE TRÁFICO EXPRESADO EN	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		INDICE DE SERVICIABILIDAD INICIAL
TP1	De 150001	A 300000	3.8
TP2	De 300001	A 500000	3.8
TP3	De 500001	A 750000	3.8
TP4	De 750001	A 1000000	3.8
TP5	De 1000001	A 1500000	4.0
TP6	De 1500001	A 3000000	4.0
TP7	De 3000001	A 5000000	4.0
TP8	De 5000001	A 7500000	4.0
TP9	De 7500001	A 10000000	4.0
TP10	De 10000001	A 12500000	4.0
TP11	De 12500001	A 15000000	4.0
TP12	De 15000001	A 20000000	4.2
TP13	De 20000001	A 25000000	4.2
TP14	De 25000001	A 30000000	4.2

El índice de idoneidad inicial P0 que considera como tipo de tráfico TP3 es: **3,8.**

b) Índice de serviciabilidad final (Pt)

Esto sucede cuando el pavimento no cumple con los requisitos de comodidad y seguridad del usuario. Dependiendo de la importancia de la vía, se pueden considerar los valores de Pt que se muestran en la siguiente tabla.

Tabla 27. Índice de serviciabilidad final

TIPO DE TRÁFICO EXPRESADO EN	RANGO DE PESADO EXPRE		INDICE DE SERVICIABILIDAD FINAL
TP1	De 150001	A 300000	2.0
TP2	De 300001	A 500000	2.0
TP3	De 500001	A 750000	2.0
TP4	De 750001	A 1000000	2.0
TP5	De 1000001	A 1500000	2.5
TP6	De 1500001	A 3000000	2.5
TP7	De 3000001	A 5000000	2.5
TP8	De 5000001	A 7500000	2.5
TP9	De 7500001	A 10000000	2.5
TP10	De 10000001	A 12500000	2.5
TP11	De 12500001	A 15000000	2.5
TP12	De 15000001	A 20000000	3.0
TP13	De 20000001	A 25000000	3.0
TP14	De 25000001	A 30000000	3.0

Se consideró como Índice de Serviciabilidad Final PF para el tipo de tráfico TP3 es: **2.00**.

3.8.8.3. Propiedades de los materiales

a) Modulo resiliente (MR)

Se calcula mediante la prueba AASHTO T274, que es un método difícil en muchos lugares porque no hay equipo para esta prueba. Por lo tanto, el módulo se puede aproximar por la relación. Con CBR como parámetro principal, se puede calcular Datos a partir de Pruebas AASHTO y ASTM.

$$M_R = 2555 \times CBR^{0.64} \dots$$
 (6)

El Módulo Resiliente en PSI para un CBR DE 13.45% es 13482.58psi

b) Coeficiente estructural de la capa

La capacidad estructural de un material para resistir las cargas aplicadas. Estos coeficientes se basan en correlaciones obtenidas de las pruebas AASHTO de 1958-60 y pruebas posteriores que se han extendido a otros materiales para generalizar la aplicación del método.

Tabla 28. Coeficiente estructural de la capa superior del pavimento

COEFICIENTE ESTRUCTURAL DE LA CAPA SUPERIOR DEI PAVIMENTO				
COMPONENTE DEL PAVIMENTO	COEFICIE NTE ESTRUCTU RAL	OBSERVACIÓN		
Carpeta asfáltica en caliente módulo 2965 Mpa a 20°C	0.170	Capa superficial recomendada paratodos los tipos de tráfico		
Capa asfáltica en frío, mezcla asfáltica con emulsión.	0.125	Capa superficial recomendada paratráficos menores a 1'000,000 EE		
Micro pavimento 25 mm	0.130	Capa superficial recomendada para tráficos menores a 1'000,000 EE		
Tratamiento superficialBicapa	0.250	Capa superficial recomendada para tráficos menores a 500,000 EE, no aplicable en tramos con pendientes > 8%, con curvas pronunciadas		

El componente del pavimento será: El módulo de la capa asfáltica caliente a 20°C es 2965 Mpa Por lo tanto el factor de estructura a1 será: 0.170

Tabla 29. Coeficiente estructural de la base

COEFICIENTE ESTRUCTURAL DE LA BASE				
COMPONENTE DE LA BASE	COEFICIENTE ESTRUCTURAL	OBSERVACIÓN		
Base granular 80% CBR compactada al 100% de la MDS		Capa de base recomendada para tráfico menor a 5'000,000 EE		
Base granular 100% CBR compactada al 100% de laMDS	0.054	Capa de base recomendada para tráfico mayor a 5'000,000 EE		
Base granular tratada con asfalto (Estabilidad mrshall=1500Lb)		Capa de base recomendada para todos los tipos de tráficos		
Base granular tratada con cemento (fc= 35 kg/cm2 a los 7 días)	0.070	Capa de base recomendada para todos los tipos de tráficos		
Base granular tratada con cal (fc= 12 kg/cm2 a los 7 días)		Capa de base recomendada para todos los tipos de tráficos		

Los componentes base serán: 100% base granular CBR compactada a 100% MDS. Por tanto, el coeficiente de estructura a2 es: 0,052.

Tabla 30. Coeficiente estructural de la Sub-Base

COEFICIENTE ESTRUCTURAL DE LA SUB-BASE								
COMPONENTE DE LA SUB- BASE	COEFICIENTE ESTRUCTURAL	OBSERVACIÓN						
Sub-Base granular 40% CBR compactada al 100% de la MDS	0.047	Capa de base recomendada para tráfico menor a 15'000,000 EE						
Sub-Base granular 60% CBR compactada al 100% de la MDS	0.050	Capa de base recomendada para tráfico mayor a 15'000,000 EE						

Componente de la Sub-Base será de: Por lo tanto, el coeficiente estructural a3 será: 0.047, por lo tanto, se consideró: a1 = 0.170, a2 = 0.052, a3 = 0.047.

c) Coeficiente de drenaje de la capa

Tabla 31. Valores recomendados para el coeficiente de drenaje

C _d	Tiempo en que tarda el agua en ser adecuada	Porcentaje de tiempo en que la estructura del pavimento esta expuesto a niveles de humedad cercanas a la saturación							
CALIFICACIÓN		< 1%	1 - 5%	5 - 25%	>25%				
EXCELENTE	2 horas	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20				
BUENO	1 día	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00				
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80				
POBRE	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60				
MUY POBRE	El agua no evacua	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40				

El coeficiente de drenaje para base será: m2 = 1.25

El coeficiente de drenaje para sub-base será: m3 = 1.15

d) Cálculo de los espesores de la capa

Tabla 32. Valores recomendados para el coeficiente de drenaje

EN BEOLIEBIDO	SN CALCULADO	ESPESORES EN CM					
SN REQUERIDO	SN CALCULADO	D_1	D_2	D_3			
2.38	2.475	5.00	25	0			

❖ Para el suelo se considerará:

$$D1 = 5$$
 cm, $D2 = 25$ cm, $D3 = 0$ cm

IV. RESULTADOS

4.1. Tránsito vehicular

a) Tránsito actual

Tabla 33: Conteo vehicular semanal de vehículos de entrada y salida.

	VOLUMEN DE TRAFICO PROMEDIO DIARIO																					
Carretera		Diseño	de vías	mediar	ite meto	dologi	a AAS	нто 9	3 para	n mejo	rar la t	ransita	abilida	ıd vehi	cular	y peat	onal d	el sect	tor Alt	o Lared	o, 2022	
Tramo Cod Estación Estación		ENTRADA E - 1 ESTACION			R ALTO LA	REDO								Ubicaci Sentido Dia			LAREDO TOTAL Del 08/0		al 14/09/2	2022		
		STATION	С	AMIONET A	ıs		МО	то	В	us		CAMION			SEMITI	RAYLER			TR	AYLERS		TOTAL
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL (Combi)	MICRO	M.TAXI	LINEAL	2E	>=3E	2E	3E	4E	2S1/2S2	283	3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3	
JUEVES																						
08/09/2022																						
ENTRADA	116	89	80	121	87	72	482	76	22	2	33	4	0	0	0	0	1	0	0	0	0	1,185
SALIDA	198	72	88	124	74	74	457	92	27	0	62	3	0	0	0	0	1	0	0	0	0	1,272
Ambos	314	161	168	245	161	146	939	168	49	2	95	7	0	0	0	0	2	0	0	0	0	2,457
VIERNES																			1			
09/09/2022																						
ENTRADA	94 78	59 90	27 97	94 85	88 85	79 72	381 326	124 87	15 24	2 2	96 94	3	1	0	0	0	0	0	0	0	0	1,063
SALIDA	172	149	124	179	173	151	707	87 211	24 39	4	190	2 5	1 2	0	0	0	0	0	0	0	0	
Ambos SÁBADO	1/2	149	124	1/9	1/3	151	707	211	39	4	190	5		U	U	U	U	U	U	U	U	2,106
10/09/2022																						
ENTRADA	58	29	21	20	21	12	318	71	8	6	38	29	1	0	1	0	0	0	0	0	2	635
SALIDA	50	25	24	9	11	25	345	54	26	12	39	16	1	ŏ	Ö	ő	Ö	Ö	ő	ő	2	639
Ambos	108	54	45	29	32	37	663	125	34	18	77	45	2	0	1	0	0	0	0	0	4	1.274
DOMINGO																						-,
11/09/2022																						
ENTRADA	94	85	91	76	79	65	502	81	10	0	91	4	0	0	0	0	0	0	1	0	0	1,179
SALIDA	98	87	86	98	91	65	518	87	6	0	94	5	1	0	0	0	0	0	0	0	2	1,238
Ambos	192	172	177	174	170	130	1020	168	16	0	185	9	1	0	0	0	0	0	1	0	2	2,417
LUNES																						
12/09/2022		l					١			١.	l		_		_	_	١.		١.	_		l
ENTRADA	120	87	77	108	83	68	482	76	22	2	33	4	0	0	0	0	1	0	1	0	0	1,164
SALIDA	113	120	85	107	84	66	599	104	6	0	99	7	1	0	1	0	0	0	0	0	2	1,394
Ambos MARTES	233	207	162	215	167	134	1081	180	28	2	132	11	11	0	1	0	1	0	1	0	2	2,558
13/09/2022																						
13/09/2022 ENTRADA	99	96	101	89	104	65	588	109	7	0	96	4	1	0	0	0	0	0	0	0	0	1359
SALIDA	109	57	88	102	104	67	582	109	5	0	98	6	0	0	2	0	0	0	0	0	3	1326
Ambos	208	153	189	191	205	132	1170	215	12	0	194	10	1	0	2	0	0	0	0	0	3	2.68
MIERCOLES	200				200			2.0		Ť			-		_	_	_	Ť		_		2,000
14/09/2022																						
ENTRADA	106	72	95	82	96	68	557	90	18	2	64	4	0	0	0	0	1	0	0	0	0	1255
SALIDA	63	66	85	80	84	70	544	81	17	0	61	2	0	0	0	ō	1	Ō	Ō	0	Ö	1154
Ambos	169	138	180	162	180	138	1101	171	35	2	125	6	0	0	0	0	2	0	0	0	0	2,409
TOTAL	1.396	1.034	1.045	1.195	1.088	868	6.681	1.238	213	28	998	93	7	0	4	0	5	0	2	0	11	15.90

Tabla 34. Resumen conteo de vehículos

DIA	TOTAL	PORC.
JUEVES	2457	15.45
VIERNES	2106	13.24
SÁBADO	1274	8.01
DOMINGO	2417	15.20
LUNES	2558	16.08
MARTES	2685	16.88
MIÉRCOLES	2409	15.15
TOTAL	15906	100.00
IMD	2343	
%	100.00	

b) Tráfico vehicular IMD sin corrección (Veh/día)

Tabla 35. IMD sin corrección

Tine de Vehíaules	IMDS	Distrib.
Tipo de Vehículos	IIVIDS	%
Autos	199	8.8%
Satation Wagon	148	6.5%
Camioneta Pick Up	149	6.6%
Camioneta Panel	171	7.5%
Camioneta Rural	155	6.8%
Micro	124	5.5%
moto taxi	954	42.0%
moto linela	177	7.8%
Omnibus 2E	30	1.3%
Omnibus 3E	4	0.2%
Camión 2E	143	6.3%
Camión 3E	13	0.6%
Camión 4E	1	0.0%
Semi trayler	2	0.1%
Trayler	2	0.1%
TOTAL IMD	2272	100.0%

Tabla 36. IMD y clasificación vehicular

Tipo de Vehículos	IMD	Distrib.
Autos	216	9.2%
Satation Wagon	161	6.9%
Camioneta Pick Up	162	6.9%
Camioneta Panel	186	7.9%
Camioneta Rural	168	7.2%
Micro	124	5.3%
moto taxi	954	40.7%
moto linela	177	7.6%
Omnibus 2E	30	1.3%
Omnibus 3E	4	0.2%
Camión 2E	143	6.1%
Camión 3E	13	0.6%
Camión 4E	1	0.0%
Semi trayler	2	0.1%
Trayler	2	0.1%
TOTAL IMD	2343	100.0%

c) variación diaria de vehículos

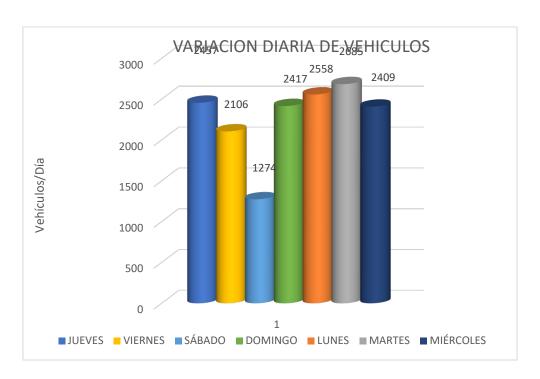


Figura 10. variación diaria de vehículos de jueves a miércoles.

d) IMD anual y clasificación vehicular (Veh/día)

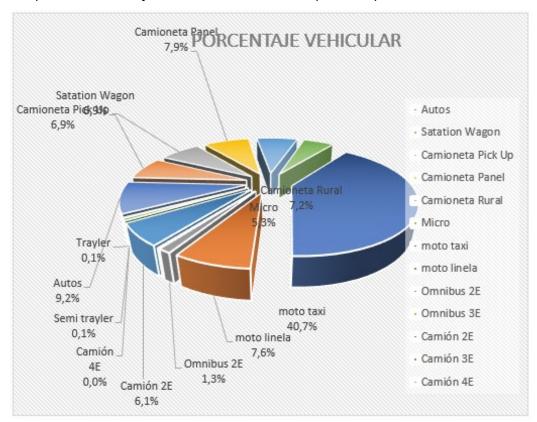


Figura 11. IMD anual y clasificación vehicular (Veh/día)

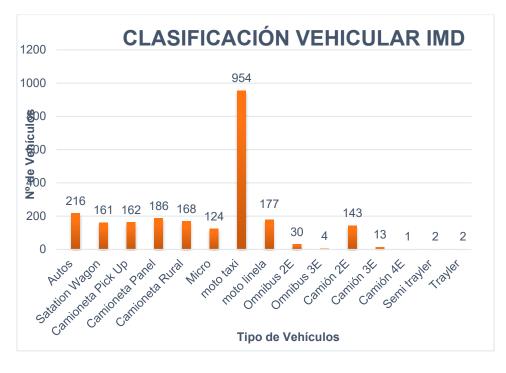


Figura 12. Clasificación vehicular IMD según tipo de vehículos

e) Cálculo de IMD y IMDa

Tabla 37. Cálculo de índice medio diario y anual

CALCULO DEL IMD Resumen de Metodología							
IMD =	VS 7						
VS = Volum	en Promedio	Semanal					
Fc Veh. Lig	eros =	1.085361					
Fc Veh. Pes	sados =	1.000124					
IMD =	2343	Vehículos por día					
IMDA =	855,195	V. x año					

4.2. Tránsito peatonal

Tabla 37. Cálculo de índice medio diario y anual

	Conteo peatonal									
RESUMEN DIARIO										
Día	PEAT VULNER	_	PEATO VULNER	_	тот	TOTAL				
Dia	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	101712			
LUNES	175	192	16	17	191	209	400			
MARTES	180	199	24	16	204	215	419			
MIÉRCOLES	400	290	9	4	409	294	703			
JUEVES	251	188	2	20	253	208	461			
VIERNES	275	243	9	12	284	255	539			
SÁBADO	230	250	12	15	242	265	507			
DOMINGO	273	259	16	19	289	278	567			
TOTAL	1784	1621	88	103	1872	1724	3596			

Tabla 37. Demanda peatonal

Cálculo de demanda peatonal							
Demanda daría	=						
promedio de conte	ео	513 peatones					
diario en 7 días-							
Demanda anual	=	187, 245 peatones					
demanda diaria x 365							

4.3. Tipo de pavimento en el diseño

Tabla 38. Tipo de pavimento

Diseño de vías						
Tipo de pavimento	Flexible					

4.4. Estructura del pavimento

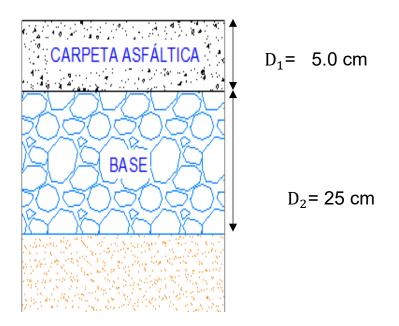


Figura 13. Estructura del pavimento

4.5. Levantamiento topográfico

a) Ubicación de SM'S:

Tabla 38. Coordenadas UTM.

ВМ	COODENAD (WGS-	СОТА	
DIVI	NORTE	ESTE	COTA
BM-1	9′107,380.465	725,882.89	146.61 msnm
BM-2	9′107,248.575	725,923.34	145.19 msnm
BM-3	9′107,231.432	725,760.19	142.39 msnm
BM-4	9′107,128.650	725,849.76	142.58 msnm
BM-5	9′106,981.141	725,782.72	138.86 msnm

b) Puntos topográficos.

Se presenta los puntos topográficos en el anexo 4.7, tomando el formado de la guía de observación 3 que se presenta en el anexo 4.3.

Tabla 39. Puntos topográficos

	UNIV	ERSIDAD CI	ÉSAR VAL	LE10			
PROYECTO:	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022						
TESISTAS:	. Santillan Ara	Delgado, Anabe anda, Elkin Soli	s				
	de observaciór	n 3, para levan		opográfico			
Punto	Norte	Este	Cota	Descripción			
1	9106977.490	725819.084	139.385	С			
2	9106972.586	725813.412	139.343	С			
3	9106966.035	725809.555	139.386	С			
4	9106961.247	725817.696	139.104	С			
5	9106964.262	725820.855	139.106	С			
6	9106967.858	725824.210	139.101	С			
7	9106954.825	725838.032	139.288	С			
8	9106951.541	725835.162	139.091	С			
9	9106948.070	725832.660	139.208	С			
10	9106941.036	725851.950	139.178	С			
11	9106934.102	725845.744	139.167	С			
12	9106937.830	725849.388	139.124	С			
13	9106918.230	725859.529	139.401	С			
14	9106928.640	725868.992	139.504	С			
15	9106923.686	725864.531	139.268	С			
16	9106916.215	725881.288	139.281	С			
17	9106907.817	725871.825	139.349	С			
18	9106912.911	725878.135	139.167	С			
19	9106894.311	725886.849	139.159	PA			
20	9106891.210	725887.460	139.053	С			
21	9106900.497	725896.785	139.132	С			
22	9106896.133	725892.679	139.100	С			
23	9106887.397	725912.843	139.378	С			
24	9106883.115	725908.658	139.019	С			
25	9106877.846	725904.403	138.999	С			
26	9106872.101	725929.887	139.491	С			
27	9106863.072	725921.390	139.515	С			
28	9106868.286	725926.413	139.412	С			
29	9106853.398	725933.321	139.395	С			
30	9106853.401	725941.880	139.336	С			

4.6. Estudio de mecánica de suelos

Figura 13. Ubicación de calicatas

Tabla 39. Ubicación de calicatas según coordenadas

UBICACIÓN DE CALICATAS						
N° de	COORD	ENADAS				
Calicata	ESTE	NORTE				
N° 01	725770.449	9107232.026				
N° 02	725795.192	9106977.043				
N° 03	725883.926	9107251.422				
N° 04	725842.640	9107128.075				

 Tabla 40. Resumen de exploraciones realizadas.

Resumen de Exploraciones Realizadas.							
				Cota	Coordenadas (UTM)		
Sondaje	Tipo de sondaje	Prof. (m)	Muestras extraídas	Relativa (msnm)	WGS84 - 17S		
					ESTE	NORTE	
C-01/E-1	Calicata	0.60 - 1.50	1	146	725770.449	9107232.026	
C-02/E-1	Calicata	0.30 - 1.50	1	141	725795.192	9106977.043	
C-03/E-1	Calicata	0.25 – 1.50	1	148	725883.926	9107251.422	
C-04/E-1	Calicata	0.15 – 1.50	1	145	725842.640	9107128.075	

Tabla 41. Análisis granulométrico y clasificación de suelos

Análisis granulométrico y clasificación de Suelos Calicatas.						
SONDAJE/	MUESTRA	PROF.(m)		GRAI	NULOMETRÍ	A (%)
CALICATA	WIDESTRA	PROF.(111)	GRAVA	ARENA	FINOS
C-01	E-01	0.6	1.5	46.65	49.96	3.4
C-02	E-01	0.3	1.5	34.52	39.73	25.75
C-03	E-01	0.25	1.5	21.99	54.24	23.77
C-04	E-01	0.15	0.15 1.5		66.9	9.27
	Análisis	granulométrico y	y clasificació	n de Suelos	Calicatas.	
SONDAJE/		LÍMITES (%)		CONT.	CLASIF.	CLASIF.
CALICATA	L.L	L.P	I.P	HUMEDAD	SUCS	AASHTO
C-01	NP	NP	NP	1.79	SP	A-1-a (0)
C-02	NP	NP	NP	2.31	SM	A-2-4 (0)
C-03	NP	NP	NP	2.98	SM	A-2-4 (0)
C-04	NP	NP	NP	1.27	SP-SM	A-3 (0)

Tabla 42. Ensayos de laboratorio C. Humedad, Proctor y CBR

	Ensayos de Laboratorio C. Humedad, Próctor y CBR.							
Calianta	Fatuata	Compensac	ción de	Humedad Natural	Clasifi	cación		
Calicata	Estrato	partículas (%) (%)	-		sucs	AASHTO		
C-01	E-01	25.19)	1.79	SP	A-1-a (0)		
C-02	E-01	12.8		2.31	SM	A-2-4 (0)		
C-03	E-01	5.68		2.98	SM	A-2-4 (0)		
C-04	E-01	23.83	23.83		SP-SM	A-3 (0)		
	Ensa	ayos de Laborato	rio C. Humed	dad, Próctor	y CBR.			
		Compensación	Compa	ctación	CBR	R 0.1"		
Calicata	Estrato	de partículas	M.D.S	0.011.00()	95%	4000/ MDC		
		(%)	(gr./cm ³)	O.C.H (%)	MDS	100% MDS		
C-01	E-01	25.19	2.05	4.07	14.3	24.3		
C-02	E-01	12.8 1.83		7.43	13.2	20.2		
C-03	E-01	5.68	1.75	7.88	12.4	18.8		
C-04	E-01	23.83	2.01	5.67	14	23.2		

Tabla 43. Resumen de CBR compactado al 95 %

N° DE CALICATA	COMPACTADO AL 95%
N° 01	14.25
N° 02	13.20
N° 03	12.35
N° 04	14.00
PROMEDIO	13.45 %

Tabla 44. Relación de ensayos de laboratorio

Relación de Ensayos	Norma	Propósito del Ensayo		
Contenido de Humedad	ASTM	Determinó el contenido de humedad del		
Contenido de Fidiricada	D2216	suelo		
Análisis Granulométrico por	ASTM	Determinó la distribución del tamaño de		
Tamizado	D6913	partículas del suelo		
Límito Líquido (malla Nº 40)	ASTM	Halló el contenido de agua entre los		
Límite Líquido (malla N° 40)	D4318	estados Líquido y Plástico		
Límito Diáctico (malla Nº40)	ASTM	Halló el contenido de agua entre los		
Límite Plástico (malla N°40)	D4318	estados Plástico y semi sólido		
Clasificación de Suelos	ASTM	Clasificación del cuelo		
SUCS	D2487	Clasificación del suelo		
Clasificación de Suelos	ASTM	Clasificación del suelo		
AASHTO	D3282	Clasificación del suelo		
Compactación de suelo en		Determinó la relación entre el contenido		
Laboratorio utilizando una	ASTM			
energía modificada, 2700 kN-	D1557	de agua y Peso unitario de los suelos (curva de compactación)		
m/m3		(curva de compactación)		
CBR Relación de Soporte de	ASTM	Determinó la canacidad de carga y		
California de suelos		Determinó la capacidad de carga y permite inferir el módulo de resilente		
compactados en Laboratorio	D1883	permite interit et modulo de resilente		

4.7. Elementos a considerar del estudio de trafico

4.7.1. Proyección del tránsito

Vida útil o Periodo de Diseño

Tabla 45. Periodo de Análisis - según AASHTO

Clasificación de la vía	Periodo de análisis (Años)
Pavimentada de bajo volumen de trafico	15 - 25

❖ Tasa de Crecimiento por Región en Porcentaje

Tabla 46. *Tasa de crecimiento de vehículos ligeros y pesados*

TASA DE CRECIMIENTO DE VEHÍCULOS LIGEROS		TASA CRECIMIEI VEHÍCU PESAD	NTO DE LOS
	TC		PBI
Amazonas	0.62 %	Amazonas	3.42 %
Ancash	0.59 %	Ancash	1.05 %
Apurímac	0.59 %	Apurímac	6.65 %
Arequipa	1.07 %	Arequipa	3.37 %
Ayacucho	1.18 %	Ayacucho	3.60 %
Cajamarca	0.57 %	Cajamarca	1.29 %
Callao	1.56 %	Cusco	4.43 %
Cusco	0.75 %	Huancavelica	2.33 %
Huancavelica	0.83 %	Huánuco	3.85 %
Huánuco	0.91 %	Ica	3.54 %
Ica	1.15 %	Junín	3.90 %
Junín	0.77 %	La Libertad	2.83 %
La Libertad	1.26 %	Lambayeque	3.45 %
Lambayeque	0.97 %	Callao	3.41 %
Lima Provincia	1.45 %	Lima Provincia	3.07 %
Lima	1.45 %	Lima	3.69 %
Loreto	1.30 %	Loreto	1.29 %

4.7.2. Cálculo de EAL

* Factores Equivales y Factor Camión

Tipo de vehiculo	peso	peso xe	je (TN)	TIPO EJE	FACTOR EE	FACTOR
ripo de veriiculo	total	EJE	LX	TIPOESE	FACTOR EE	CAMION
	2	DEL.	1	SIMPLE	0.00052702	
AUTOMOVIL	2	POST.01	1	SIMPLE	0.00052702	0.001
	3.9	DEL.	1.6	SIMPLE	0.00345386	
CAMIONETA	3.9	POST.01	3.3	SIMPLE	0.0625	0.066
MICRO	18	DEL.	7	SIMPLE	1.26536675	
IVIICRO	10	POST.01	11	SIMPLE	3.23828696	4.504
CAMION 2E (C2)	18	DEL.	7	SIMPLE	1.26536675	
CAMION ZE (CZ)	10	POST.01	11	SIMPLE	3.23828696	4.504
CAMION 3E (32)		DEL.	7	SIMPLE	1.26536675	
CAIVIION 3E (32)	25	POST.01	18	TAMDEM	2.01921345	3.285
CEMITDAILED		DEL.	7	SIMPLE	1.26536675	
SEMITRAILER T2S1		POST.01	11	SIMPLE	3.23828696	
1231	29	POST.02	11	SIMPLE	3.23828696	7.742
BUS (B2)		DEL.	7	SIMPLE	1.26536675	
BUS (BZ)	18	POST.01	11	SIMPLE	3.23828696	4.504

❖ Número de ejes equivalentes

Tabla 18. EE día-carril, según tipo de vehículo

TIPO DE VEHICULO	IMDA	FD	FC	FVP (TOTAL UNITARIO)	FP	EE-DIA CARRIL
AUTOMOVIL	317	0.5	0.5	0.001	1	0.018
CAMIONETA	516	0.5	0.5	0.066	1	1.984
MICRO	124	0.5	0.5	4.504	1	32.440
BUS(B2)	30	0.5	0.5	4.504	1	7.749
CAMION 2 EE	143	0.5	0.5	5.504	1	45.742
CAMION 3 EE	13	0.5	0.5	3.285	1	2.395
SEMITRAILER 2S1	2	0.5	0.5	7.742	1	0.677
TOTAL	1145					91.005

❖ ESAL de diseño

TPOS DE	EE DIA- CARRIL	FCA	AÑO	Nrep DE EE
automovil	0.018	29.78	365	144.2357871
camioneta	1.984	29.78	365	15505.00532
micro	32.440	29.78	365	253492.2312
bus (B2)	7.749	29.78	365	60550.77587
camion 2 EE	45.742	29.78	365	357431.3193
camion 3 EE	2.395	29.78	365	18713.05532
Semitrailer 2s1	0.677	29.78	365	5292.291298
TOTAL	91.005			639415.0027

4.8. Diseño de vías con pavimento flexible - Método AASHTO 93

4.8.1. Variables de diseño

a) Variable de tiempo

Tabla 20. Clasificación de la vía

CLASIFICACION DE LA VIA	PERIODO DE ANALISIS
Rural de alto volumen de tráfico	20 - 50
Urbana de alto volumen de tráfico	30 - 50
No pavimentada de bajo volumen de tráfico	10 - 20
Pavimentada de bajo volumen de tráfico	15 - 25

Pavimentada de bajo volumen de tráfico = 20 Años

b) Transito

Tabla 21. Rango de tráfico pesado expresado en EE

CATEGORIA	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		TIPO DE TRÁFICO EXPRESADO EN EE
BAJO VOLUMEN	De 150001	A 300000	TP1
DE TRÂNSITO	De 300001	A 500000	TP2
DE 150,001 A	De 500001	A 750000	TP3
1'000,000 EE	De 750001	A 1000000	TP4

De acuerdo al número de repeticiones de eje equivalente, el tipo de tráfico es: **TP3**

c) Subrasante

De acuerdo al estudio de mecánica de suelos el CBR de la subrasante es: 13.45%

Tabla 21. Categoría de la subrasante

CBR DE LA SUBRASANTE	CATEGORIA DE LA SUBRASANTE	DESCRIPCIÓN DE LA SUBRASANTE
De CBR = 10% A CBR < 20%	S3	Subrasante Buena

d) Desviación estándar

Tabla 21. Categoría de la subrasante

CONDICION DE DISEÑO	DESVIACIÓN ESTANDAR	
CONDICION DE DISENO	PAV. RÍGIDO	PAV. FLEXIBLE
Variación en la predicción del comportamiento del pavimento sin errores en el tránsito.	0.35	0.40
Variación en la predicción del comportamiento del pavimento con errores en el tránsito.	0.40	0.50

Desviación estándar (SO) = 0.45

e) Factor confiabilidad (R).

Tabla 22. Categoría de la subrasante

TIPO DE TRÁFICO EXPRESADO EN EE	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		NIVEL DE CONFIABIL IDAD
TP3	De 500001	A 750000	80%

El factor de confiabilidad R para el tipo de tráfico TP3 es: 80%

f) Probabilidad (ZR)

Tabla 23. Probabilidad

Probabilidad	
ZR	- 0.842

4.8.2. Criterios de comportamiento

a) Índice de serviciabilidad inicial (Po)

Tabla 23. Índice de serviciabilidad inicial

TIPO DE TRÁFICO EXPRESADO EN	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		INDICE DE SERVICIABILIDAD INICIAL
TP3	De 500001	A 750000	3.8

b) Índice de serviciabilidad final (Pt)

Tabla 23. Índice de serviciabilidad final

TIPO DE TRÁFICO EXPRESADO EN	RANGO DE TRÁFICO PESADO EXPRESADO EN EE		INDICE DE SERVICIABILIDAD FINAL
TP3	De 500001	A 750000	2.0

4.8.3. Propiedades de los materiales

a) Modulo resiliente (MR)

Tabla 26. Índice de serviciabilidad final

MR	CBR 13.45%
PSI	13482.58psi

b) Coeficiente estructural de la capa

Tabla 23. Coeficiente estructural de la capa superior del pavimento

COEFICIENTE ESTRUCTURAL DE LA CAPA SUPERIOR DEL PAVIMENTO		
COMPONENTE DEL PAVIMENTO	COEFICIENTE ESTRUCTURAL	OBSERVACIÓN
Carpeta asfáltica en caliente módulo 2965Mpa a 20°C	0.170	Capa superficial recomendada para todos los tipos de tráfico

Tabla 23. Coeficiente estructural de la base

COEFICIENTE ESTRUCTURAL DE LA BASE		
COMPONENTE DE LA BASE	COEFICIENTE ESTRUCTURAL	OBSERVACIÓN
Base granular 80% CBR compactada al 100% de la MDS	0.052	Capa de base recomendada para tráfico menor a 5'000,000 EE

Tabla 24. Coeficiente estructural de la Sub-Base

COEFICIENTE ESTRUCTURAL DE LA SUB-BASE		
COMPONENTE DE LA SUB- BASE	COEFICIENTE ESTRUCTURAL	OBSERVACIÓN
Sub-Base granular 40% CBR compactada al 100% de la MDS	0.047	Capa de base recomendada para tráfico menor a 15'000,000 EE

c) Coeficiente de drenaje de la capa

Tabla 25. Valores recomendados para el coeficiente de drenaje

C_d	Tiempo en que tarda el agua en ser Porcentaje de tiempo en que la es pavimento está expuesto a niveles d cercanas a la saturación				
CALIFICACIÓN	adecuada	< 1%	1 - 5%	5 - 25%	>25%
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80

El coeficiente de drenaje para base será: m2 = 1.25

El coeficiente de drenaje para sub-base será: m3 = 1.15

d) Cálculo de los espesores de la capa

Tabla 25. Valores recomendados para el coeficiente de drenaje

EN BEOLIEBIDO	SN CALCULADO	ESPESORES EN CM		
SN REQUERIDO	SN CALCULADO	D_1	D_2	D_3
2.38	2.475	5.00	25	0

Para el suelo se considerará:

D1 = 5 cm, D2 = 25 cm, D3 = 0 cm

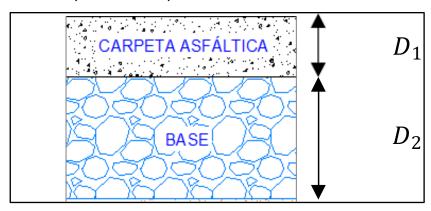


Figura 14. Estructura final del pavimento

Tabla 24. Área de pavimento para cada tramo

AREA DE PAVIMENTO			
VÍA	PAVIMENTO M2		
Avenida 1	2112.36		
Avenida 2	3075.28		
Avenida 3	4133.83		
Avenida 4	1259.98		
Calle 1	550.33		
Calle 2	604.06		
Calle 3	470.15		
Calle 4	1525.75		
Calle 5	356.93		
Calle 6	632.28		
Calle 7	1175.94		
TOTAL	15,896.89		

❖ Diseño de vereda

Tabla 25. Requisitos para pavimentos especiales

ELMENTO		ACERARAS O VEREDAS		
SUB - RASANTE		95% de compactación: Suelos Granulares - Proctor Modificado Suelos Cohesivos - Proctor Estándar		
		Espesor compactado: ≥ 150 mm		
	Base	CBR ≥ 30%		
Espesor de la capa	Concreto de cemento Portland	≥ 100 mm		
Material Concreto de cemento Portland		Fc ≥ 17,5 Mpa (175 kg/cm2)		

Tabla 26. Diseño final de vereda

DISEÑO DE VEI	Especificación técnica		
Espesor de capa 100 mm		Fc ≥ 17,5 Mpa (175	
Material	Concreto de cemento Portland	ka/cm2)	

Tabla 27. Calles pavimentadas.

Vías pavimentadas			
Avenidas 4			
Calles	7		

Tabla 28. Áreas de veredas proyectadas

ÁREA DE VEREDA				
VÍA	VEREDA M2			
Avenida 1	721.20			
Avenida 2	703.20			
Avenida 3	1191.84			
Avenida 4	441.60			
Calle 1	215.40			
Calle 2	220.80			
Calle 3	247.20			
Calle 4	453.98			
Calle 5	197.18			
Calle 6	282.55			
Calle 7	399.24			
Total	5074.19			

4.9. Resultados de intervención en el diseño de vías

Tabla 28. Metrado de intervención en el diseño de vías

METRADO GENERAL					
Componentes					Área
VÍA	Pavimento M2	Vereda M2	Sardinel ML	Jardín M2	intervención total m2
Avenida 1	2112.36	721.20	600.10	660.11	3553.68
Avenida 2	3075.28	703.20	293.00	322.30	4130.08
Avenida 3	4133.83	1191.84	993.20	1092.52	6517.51
Avenida 4	1259.98	441.60	368.00	404.80	2143.18
Calle 1	550.33	215.40	179.50	197.45	981.13
Calle 2	604.06	220.80	138.00	151.80	990.46
Calle 3	470.15	247.20	154.00	169.40	902.15
Calle 4	1525.75	453.98	283.74	312.11	2320.22
Calle 5	356.93	197.18	74.66	82.126	643.71
Calle 6	632.28	282.55	235.00	258.50	1196.83
Calle 7	1175.94	399.24	332.70	365.97	1974.42
TOTAL					25353.36

Plano de intervención y planteamiento general del diseño de vías

Figura 14. Plano proyectado del diseño de vías

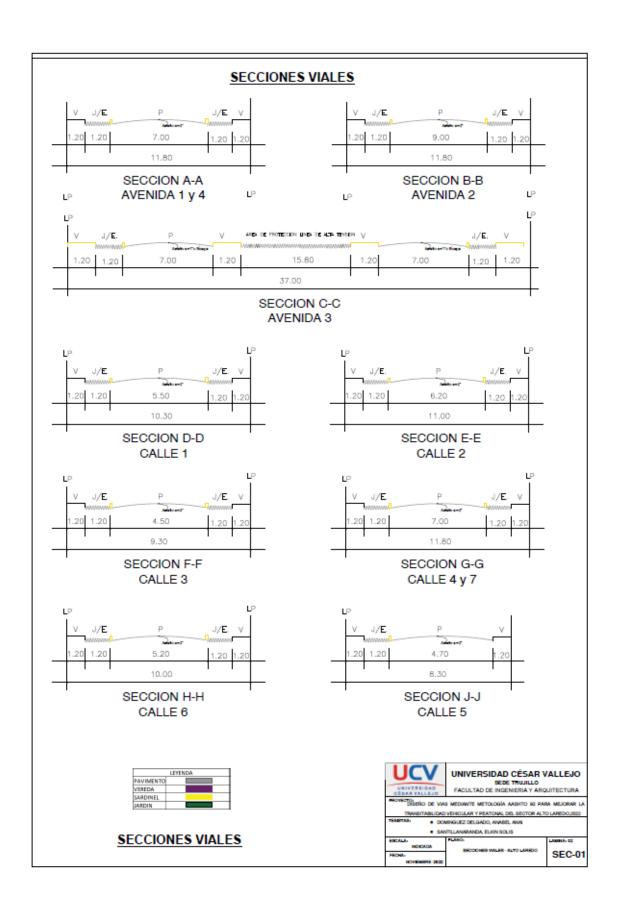


Figura 15. Plano proyectado del diseño de vías

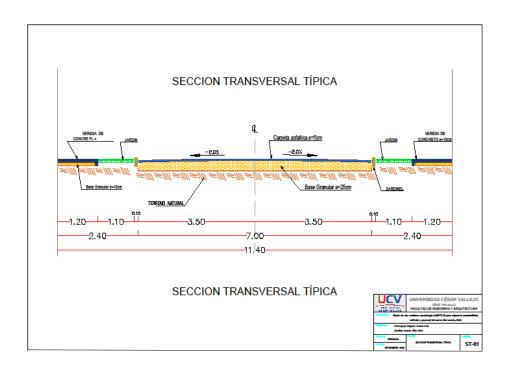


Figura 16. Sección transversal típica

Tabla 28. Estado de transitabilidad

ESTADO DE TRANSITABILIDAD					
	SIN DISI	EÑO DE VÍAS	CON DISEÑO DE VÍAS		
VIAS	Condición actual	% de Pavimentación	Condición	% de Pavimentación	
Calle 1	Mala	0.00%	Buena	100.00%	
Calle 2	Mala	0.00%	Buena	100.00%	
Calle 3	Mala	0.00%	Buena	100.00%	
Calle 4	Mala	0.00%	Buena	100.00%	
Calle 5	Mala	0.00%	Buena	100.00%	
Calle 6	Mala	0.00%	Buena	100.00%	
Calle 7	Mala	0.00%	Buena	100.00%	
Avenida 1	Mala	0.00%	Buena	100.00%	
Avenida 2	Mala	0.00%	Buena	100.00%	
Avenida 3	Mala	0.00%	Buena	100.00%	
Avenida 4	Mala	0.00%	Buena	100.00%	

Tabla 29. Nivel transitable

NIVEL DE TRANSITABLE					
	Sin dis	seño de vías	Con diseño de vías		
Vías	Condición Actual	% De Transitabilidad Adecuada	Condición Actual	% De Transitabilidad Adecuada	
Calle 1	Mala	50.00%	Buena	100.00%	
Calle 2	Mala	30.00%	Buena	100.00%	
Calle 3	Mala	50.00%	Buena	100.00%	
Calle 4	Mala	30.00%	Buena	100.00%	
Calle 5	Mala	20.00%	Buena	100.00%	
Calle 6	Mala	60.00%	Buena	100.00%	
Calle 7	Mala	40.00%	Buena	100.00%	
Avenida 1	Mala	30.00%	Buena	100.00%	
Avenida 2	Mala	50.00%	Buena	100.00%	
Avenida 3	Mala	30.00%	Buena	100.00%	
Avenida 4	Mala	50.00%	Buena	100.00%	
Total		40.00%		100.00%	

V. DISCUSIÓN

El diseño de vías se realizó utilizando la metodología AASHTO 93 para mejorar el tráfico de vehículos y peatones en el sector de Alto Laredo. Tiene un diseño de pavimento y aceras flexibles, completa el diseño integral de todas las calles de la zona, y los peatones con un diseño de tráfico vehicular suficiente pueden mejorar la calidad de vida de las personas. El diseño se basa en un pavimento flexible compuesto por una superficie de rodadura de 2" y una base de 8".

En la tesis titulada "Análisis del congestionamiento vehicular para el mejoramiento de vía principal en Guayaquil-Ecuador" de Tarek Ziad Ashhad Verdezoto, Fuasto Cabrera y Olga Beatriz Roa Medina. Señala en su investigación que hubo un aumento esperado de 135.170 a 190.424 vehículos por día, y asimismo, un aumento relativo de 10251 peatones en un día a 12523, lo cual señala que es necesario evaluar estos parámetros para poder realizar un posible diseño para optimizar el tránsito vehicular y peatones.

En el caso de nuestra tesis titulada "Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022", se obtuvo como resultado se obtuvo que la transitabilidad vehicular obteniendo con el índice medio diario es 2272 vehículos por día y 855,195 vehículos por año. También, el índice medio diario es 505 peatones por día y 184481 peatones por año.

De acuerdo con el objetivo específico 1, Se inicio evaluando la transitabilidad vehicular obteniendo con el índice medio diario es 2272 vehículos por día y 855,195 vehículos por año. Y el índice medio diario es 505 peatones por día y 184481 peatones por año.

Cabe señalar que Ashhad et al. (2020), tiene como objetivo proponer posibles soluciones a la problemática de transitabilidad, señala que hubo un aumento esperado de 135.170 a 190.424 vehículos por día. Las ubicaciones de estas intersecciones, como semáforos y rutas, fueron determinadas por los ángulos y geometrías de las carreteras. La principal causa de congestión son los buses alimentadores y colectores de metrovía. Además, los intervalos de tiempo de

los semáforos provocan congestión. Varias soluciones recomendadas incluyen abrir una ruta existente como salida antes de la intersección y ajustar el sistema de semáforos.

De acuerdo al objetivo 2, respecto al método AASHTO, para el desarrollo de este proyecto se planteó el método AASHTO 1993. Se eligió este método porque es aceptado a nivel mundial y se basa en el propósito de determinar el número de estructura "SN" requerido para que el diseño del pavimento resista las cargas verticales durante el período o tiempo de diseño. Se eligió el método AASHTO porque, a diferencia de otros métodos, introduce el concepto de serviciabilidad en el diseño del pavimento como una medida de su capacidad para proporcionar a los usuarios una superficie lisa y nivelada. Albino y Cisneros (2017) afirman que su principal producto de investigación es la investigación de tránsito con IMD e IMA, el análisis metodológico AASHTO 93 y el diseño vial. Además, el estudio destaca su importancia en el diagnóstico de caminos antes de proponer tipos de diseño estructural vial para mejorar la capacidad vehicular y peatonal para quienes lo necesitan todos los días. La economía se realiza y beneficia al país.

De acuerdo con el objetivo 3, para los proyectos de diseño y construcción de infraestructura vial, se realiza a lo largo de la vida útil debido a que las cargas constantes y el aumento del tránsito en las aceras provocan desgastes y daños en las vías con el paso del tiempo. Zavaleta (2018), señala estudios topográficos, viales diseño de geometría, estudios de tráfico, estudios de mecánica de suelos.

El proyecto se desarrolló debido a la problemática que se tiene una ciudadanía disgustada por generarse sobrecostos en el trasporte de sus mercancías, los transportistas no tienen acceso a más lugares, y no se tiene la visita de los turistas para el aumento de la economía, todo esto no permite el desarrollo ciudadano y localidades para mejoramiento en condiciones de vida.

De acuerdo con el Objetivo 4, el período de diseño es la vida útil o duración de un pavimento nuevo hasta que se realiza o requiere la primera restauración. En la guía AASHTO, nos da valor de análisis de diseño según el tipo de camino. Debido al bajo tráfico vehicular, el tiempo de desarrollo del

proyecto es de 20 años. devolver. El diseño que se le hará al pavimento flexible será un 9.00% CBR, el cual entra en la categoría de subrasante regular, es decir que no requiere mejoras topográficas.

Ayala y Valderrama (2020), en su trabajo señala que la carretera de segunda clase con diseño geométrico se formó debido a las dificultades de acceso peatonal a lo largo de la vía. Varias fallas y causas dieron lugar a una capa de carretera transitable deficiente, que tenía una base granular gruesa. Se realizó una verificación de ingeniería adicional a través de levantamientos de campo y estudios topográficos que determinaron la orografía de la región.

Además, el estudio de tráfico clasifica la vía como una autopista de segunda clase. Debe estar pavimentado y bien señalizado. Los requisitos de diseño descritos por la norma DG-2018 deben tenerse en cuenta al completar este tipo de proyecto de investigación. Esta investigación trabaja de manera cuantitativa con un propósito aplicado. También es descriptivo y no experimental con un diseño transversal que brinda oportunidades para el turismo y el comercio.

El índice medio diario es 2272 vehículos por día y 855,195 vehículos por año. También, el índice medio diario es 505 peatones por día y 184481 peatones por año. Cabe señalar que ese resultado puede compararse con lo que obtuvo Ashhad et al. (2020), quien señala en su investigación que hubo un aumento esperado de 135.170 a 190.424 vehículos por día, y asimismo, un aumento relativo de 10251 peatones en un día a 12523, lo cual señala que es necesario evaluar estos parámetros para poder realizar un posible diseño para optimizar el tránsito vehicular y peatones. Además, las ubicaciones de estas intersecciones, como semáforos y rutas, fueron determinadas por los ángulos y geometrías de las carreteras. La principal causa de congestión son los buses alimentadores y colectores de metrovía. Además, los intervalos de tiempo de los semáforos provocan congestión. Varias soluciones recomendadas incluyen abrir una ruta existente como salida antes de la intersección y ajustar el sistema de semáforos.

El método AASHTO, se eligió ya que, en primer lugar, se toma en consideración que éste es aceptado a nivel mundial y se basa en el propósito

de determinar el número de estructura "SN" requerido para que el diseño del pavimento resista las cargas verticales durante el período o tiempo de diseño. Además, a diferencia de otros métodos, introduce el concepto de serviciabilidad en el diseño del pavimento como una medida de su capacidad para proporcionar a los usuarios una superficie lisa y nivelada.

Albino y Cisneros (2017) aporta que en su investigación sobre el tránsito con IMD e IMA mediante la metodológico AASHTO 93 y el diseño vial señala que los sistemas de drenaje pluvial son necesarios en las obras viales porque el objetivo básico de estas obras es proteger las carreteras. Dada su importancia, los estudios climáticos, de suelos, hidrológicos, geológicos y ecológicos son necesarios para prevenir impactos negativos sobre el medio ambiente. Cabe señalar que lo que se propone es una medida precautoria, por lo que su construcción dependerá de la continuidad de las precipitaciones, ya que actualmente el índice de precipitaciones en la zona de estudio es bajo. Esta investigación tomo en cuenta que los elementos claves a considerar de la metodología AASHTO 93, se considera que el tipo de pavimiento es flexible, el tiempo de pavimentada de bajo volumen de tráfico es 20 años, el tipo de tráfico es TP3, al estudio de mecánica de suelos el CBR de la subrasante es 13.45%, el tipo de suelo es S3, el factor de confiabilidad R para el tipo de tráfico TP3 es 80% y el *ZR* es 0.842.

Asimismo, Zavaleta (2018), señala en su trabajo diversos estudios: topográficos, viales diseño de geometría, estudios de tráfico, estudios de mecánica de suelos. Y tuvo como resultados obtuvo: CBR de diseño de 13.5%, dando un espesor de sub-base granular de 20 cm, base granular de 25 cm y tratamiento superficial bicapa de 12 mm. Para el estudio hidrológico se escogió la información pluviométrica de la estación meteorológica más cercana "Estación Quirihuac". En base a los datos recolectados con ayuda de los softwares (ArcGis, Hidroesta y Hcanales), se diseñaron 5 alcantarillas de paso de 40", 48" y 60" respectivamente, 14 alcantarillas de alivio de 24" y cunetas de forma triangular de 0.30 m x 0.75 m.

Finalmente, período de diseño es la vida útil o duración de un pavimento nuevo hasta que se realiza o requiere la primera restauración. En la guía AASHTO, nos da valor de análisis de diseño según el tipo de camino. Se obtuvo que índice de serviciabilidad inicial es 3.8, además, el índice de serviciabilidad final es 2.0, el MR CBR 13.45%, los espesores son D1 = 5 cm, D2 = 25 cm, D3 = 0 cm. Asimismo para la vereda, se tiene que el grosor es 100 mm y CBR \geq 30%.

VI. CONCLUSIONES

- Se determinar el diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, realizándose con pavimento flexible y veredas de concreto para 7 calles y 4 avenidas cada una de ellas cuenta con veredas de un ancho de 1.2 metros y áreas verdes 1.1 metros de ancho de jardín. Se tuvo un área de intervención total de 25,353.36 m2.
- Se evaluó la transitabilidad vehicular y peatonal mediante un estudio de tráfico, obteniéndose un IMD de 2,343 Vehículos y un IMDa de 855,195 vehículos. Correspondiendo a la vía principal de sector de Alto Laredo en un conteo vehicular de 7 días continuos.
- Se analizó la metodología AASHTO 93, obteniéndose los cálculos para el diseño, considerando los estudios básicos de ingeniería, Tomando en cuenta el estudio de tráfico, el estudio de suelos con el que se conoció el CBR de la zona de estudio.
- Se analizó y estructuró los elementos claves a considerar de la metodología AASHTO 93, obteniéndose del estudio de tráfico el ESAL de diseño de 2,959,712.74, se obtuvo 13.45 % de promedio de CBR compactado al 95%.
- Se elaboró y validó el diseño de vías para mejorar la transitabilidad vehicular y peatonal mediante la metodología AASHTO 93 en el sector Alto Laredo, realizándose mediante pavimento flexible en las 7 calles colectoras y 4 avenidas. Obteniéndose un área de 5,074.19 m2 de vereda proyectada y 15,896.89 m2 de área de pavimento proyectado.

VII. RECOMENDACIONES

- Se recomienda al Gobierno Regional y a las autoridades pertinentes a realizar una inspección periódica con la finalidad de que las vías de estudio puedan tener mantenimientos a tiempos prudentes y necesarios, los cuales permitan extender la vida útil del pavimento y vereda, trayendo consigo la mejora a la inseguridad vial de la zona.
- Se recomienda a la Municipalidad Distrital de Laredo, ejecutar el diseño de vías vehiculares y peatonales para el sector de Alto Laredo, ya que su condición actual no la ubica dentro del estándar de transitabilidad aceptable generando así inseguridad vial para sus usuarios.
- Se recomienda a los profesionales seguir las indicaciones del proceso de la metodología AASHTO 93, asimismo el uso de sus manuales para su óptima aplicación, esto con la finalidad de que todo el procedimiento de la recolección de datos sea consistente. A su vez abarcar el diseño de vías en respuesta a sus evaluaciones del tipo de condición regular teniendo como enfoque a las alternativas de intervención aplicadas en esta investigación.
- Se recomienda a los pobladores del sector Alto Laredo que exijan la ejecución del proyecto de diseño de vías en todas sus calles y avenidas para una mejor transitabilidad vehicular y peatonal de los usuarios y no usuarios del sector.
- Se recomienda a los investigadores adentrarse en la información y normativa de la mitología AASHTO 93, la cual fue empleada en esta investigación e inducir a la implementación nuevas metodologías para las comparaciones pertinentes, generando así más estudios precisos a la comunidad científica.

REFERENCIAS

- ALBINO, Yoshiro y CISNEROS, Gerson. Diagnóstico de la transitabilidad vial y propuesta del diseño estructural del pavimento en las calles 5 y 9 del centro poblado Alto Trujillo Trujillo La Libertad, Ingeniería Civil, Universidad Privada Antenor Orrego UPAO, Perú, 2017. 15pp. Disponible en: https://hdl.handle.net/20.500.12759/3558
- ÁLVAREZ RISCO, Aldo. Clasificación de las investigaciones. Universidad de Lima, Facultad de Ciencias Empresariales y Económicas, Carrera de Negocios Internacionales, 2020. 03pp. Disponible en: https://hdl.handle.net/20.500.12724/10818
- ARISPE ALBURQUEQUE, Claudia et al. La investigación científica: una aproximación para los estudios de posgrado. Universidad Internacional del Ecuador (UIDE), Guayaquil, 2020. 58pp. Disponible en: https://repositorio.uide.edu.ec/handle/37000/4310
- ASHHAD, Tarek, CABRERA, Fausto, ROA, Olga. Análisis del congestionamiento vehicular para el mejoramiento de vía principal en Guayaquil-Ecuador. Universidad Centroccidental Lisandro Alvarado. Redalyc.

 2020.
 https://www.redalyc.org/journal/5703/570363740001/html/#:~:text=Sobre%
 20la%20base%20de%20un,y%20colectores%20de%20la%20Metrov%C3
 %ADa.
- AYALA, Tracy y VALDERRAMA, Jarvis. Mejoramiento de la Transitabilidad vehicular de la carretera Costanera Huanchaco Santiago de Cao, La Libertad, 2020. Universidad César Vallejo. 2020. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/65185/Ayala
 TTLA-Valderrama CJB-SD.pdf?sequence=1&isAllowed=y

- BEJARANO, Wilson. Aplicación de pavimentos flexibles reciclados en la construcción de nuevos pavimentos económicos en el Perú - 2020. Revisión sistemática (Trabajo de investigación). Repositorio de la Universidad Privada del Norte, 2020. 10pp. Recuperado de: https://hdl.handle.net/11537/24758
- CARMONA, Juan. Evaluación Del Diseño Geométrico De La Carretera No Pavimentada De Bajo Volumen De Transito Tramo C.P. El Tambo – C.P. Laguna Santa Úrsula Con Respecto Al Manual De Diseño De Carreteras De Bajo Volumen De Transito-Mtc, Cajamarca - Perú. 2018.
- CASTILLO, Anthony y NOLASCO, Herminia. Evaluación y optimización de la transitabilidad vehicular y peatonal de la intersección avenidas Mansiche y Pablo Casals, Trujillo – La Libertad. Universidad César Vallejo. 2019. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/38601/castillona.pdf?sequence=1&isAllowed=y
- 9. CANTARELLA Giuli y VITETTA Antonin. The Multi Criteria Road Network Design Problem", Italy, Springer Science. 2006.
- CHACASAGUAY, M. Rehabilitación del camino vecinal El Tejar San Lorenzo situado en la Provincia del Bolívar. Tesis de grado, Universidad Central del Ecuador, Quito. 2015. Disponible: http://www.dspace.uce.edu.ec/handle/25000/5417
- 11. CHUNA, J. Diseño de la infraestructura vial para mejorar la transitabilidad usando el Método AASHTO 93 en la Urbanización Santa Rosa Ventanilla. Tesis de grado, Universidad César Vallejo, Lima. 2019. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/44498/Chunaaycle/ AJCI%20-SD.pdf?sequence=1&isAllowed=y

- ESQUERRE, Michell and SILVA, Héctor. "Propuesta de diseño de pavimento drenante para la captación de agua de lluvias en zonas urbanas del norte del Perú," Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Perú, 2019. 05pp. Disponible en: https://doi.org/10.19083/tesis/625617
- 13. FABIAN, Clever. Mejoramiento del servicio de transitabilidad vehicular y peatonal en la AV. Salaverry, tramo: av. Mariscal Castilla jr. Callao en el AA.HH. La Victoria del distrito de el Tambo Huancayo Junín. Universidad Peruana los Andes. Huancayo, Perú, 2021. 14pp. Disponible en: https://hdl.handle.net/20.500.12848/2605
- FONTALBA, Hecto. Diseño de un pavimento alternativo para la avenida circunvalación Sector Guacamayo 1° Etapa. Tesis de grado, Universidad Austral de Chile, Valdivia Chile. 2015 Obtenido de http://cybertesis.uach.cl/tesis/uach/2015/bmfcif678d/doc/bmfcif678d.pd
- 15. GARDILCIC, Mirko, DAZA, José, CABALLERO, Gualberto, ROMERO, Ever. Análisis de la problemática del tráfico y vialidad del centro histórico de la Ciudad de Sucre. Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Facultad de Ciencias Económicas Empresariales, Calle Padilla s/n, Sucre, Bolivia. 2014. Disponible en: https://acortar.link/v6FJNS
- 16. GONZALES, Kelvin. Análisis y diseño para la pavimentación de las calles comprendidas dentro del perímetro de la calle Eloy Ureta, la Av. Imperio, la Av. los Incas y los Terrenos Agrícolas Del Sur, la Victoria, Chiclayo,2020, Ingeniero, Facultad de Ingeniería, Universidad Católica Santo Toribio de Mogrovejo, Chiclayo, Perú, 2021. 16pp. 2021. Disponible en: https://doi.org/20.500.12423/4170
- 17. GONZALES, Oscar y MANAY, Danny. Diseño de pavimento flexible aplicando el método AASHTO 93 para mejorar la transitabilidad en el centro poblado Ramiro Prialé, distrito de José Leonardo Ortiz provincia de

- Chiclayo departamento de Lambayeque. Facultad de ingeniería y arquitectura. Universidad de San Martin de Porres. Lima, Perú, 2020. 14pp. Disponible en: https://repositorio.usmp.edu.pe/handle/20.500.12727/7892
- HERNÁNDEZ, Roberto, FERNÁNDEZ, Carlos. y BAPTISTA, Patricia. Metodología de la Investigación. México: McGraw-Hill Interamericana;
 2010. Disponible en: http://es.slideshare.net/himmel.salinas/diseos-de-investigacin-cientfica-cap-7-sampieri
- HERNÁNDEZ, Roberto y MENDOZA, Christian. Metodología de la investigación. 6.a ed. México: Editorial Mc Graw Hill Education, 2018. 714 pp. ISBN: 978-1-4562-6096-7
- HUANG, Yipeng, SANTOS, Andrea Y DUHAMEL, Christophe, Model and Methods to Address Urban Road Network Problems with Disruptions, France, Wiley Magazine. 2018
- 21. IP. MOPC mejora la transitabilidad vial en zonas con alto potencial económico y productivo del país. 2022. https://www.ip.gov.py/ip/mopc-mejora-la-transitabilidad-vial-en-zonas-con-alto-potencial-economico-y-productivo-del-pais/
- 22. LARROTA, Bairon. & GÓMEZ, Cristian.Transitabilidad de la vía terciaria en la vereda el Cucharal, municipio de Fusagasugá. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ciencias Económicas y Administrativas. Programa de Economía. Bogotá, Colombia. 2020. https://repository.ucatolica.edu.co/handle/10983/25057
- 23. LEON, Oscar. Soluciones de tránsito en alta congestión vehicular de intersecciones urbanas". Una revisión sistemática entre 2010-2020. Universidad Privada del Norte. 2020. <a href="https://repositorio.upn.edu.pe/bitstream/handle/11537/25831/Trabajo%20de%20Investigacion%20%20Leon%20Vallejo.pdf?sequence=6&isAllowed="https://repositorio.upn.edu.pe/bitstream/handle/1537/25831/Trabajo%20de%20Investigacion%20%20Leon%20Vallejo.pdf?sequence=6&isAllowed=

- 24. MTC. Reglamento Nacional de Edificaciones Normal CE. 0.10 Pavimentos Urbanos. Servicio Nacional de Capacitación para la Industria de la Construcción (SENCICO), 2006. Lima: 2010. 79 pp.
- 25. MTC. Manual de Carreteras: Diseño Geométrico DG -2018. Lima. 2018.285 pp.
- 26. MUNICIPALIDAD DEL LIMA. San Martín de Porres: Municipalidad de Lima ejecutará proyecto de mejoramiento vial en la Av. Haya de la Torre. 2021. https://www.munlima.gob.pe/2021/11/30/san-martin-de-porres-municipalidad-de-lima-ejecutara-proyecto-de-mejoramiento-vial-en-la-av-haya-de-la-torre/
- 27. NATIONAL ACADEMIES OF SCIENCE. Highway Capacity Manual. United States, Transportation Research Board Magazine. 2010.
- 28. OMS. OMS/OIT: Casi 2 millones de personas mueren cada año por causas relacionadas con el trabajo. 2021. https://www.who.int/es/news/item/16-09-2021-who-ilo-almost-2-million-people-die-from-work-related-causes-each-year#:~:text=Las%20principales%20causas%20de%20muerte,muertes%20(360%20000%20muertes).
- 29. PICO MERCHÁN, María et al. Seguridad vial y peatonal: Una aproximación teórica desde la política pública. Hacia Promoc. Salud [citado 23 de junio de 2022];16(2):190-04. Disponible en: https://revistasojs.ucaldas.edu.co/index.php/hacialapromociondelasalud/article/view/1916
- PEREDA, Christopher y MONTOYA, Mario. Estudio y optimización de la red vial avenida América Sur, tramo prolongación Cesar Vallejo avenida Ricardo Palma, Trujillo", Ingeniería Civil, Universidad Privada Antenor Orrego UPAO, Perú, 2018. 10pp. Disponible en: https://hdl.handle.net/20.500.12759/4178

- 31. ROJAS MENDOZA, Faustino. Mejoramiento de la transitabilidad vehicular y peatonal de la av. César vallejo, tramo cruce con la av. Separadora industrial hasta el cruce con el cementerio, en el distrito de villa el salvador, provincia de lima, departamento de lima. Universidad Nacional Federico Villareal, Perú, 2017. 16pp. Disponible en: https://hdl.handle.net/20.500.13084/1905
- 32. RONDON, Hugo y REYES, Fredy. Pavimentos materiales, construcción y diseño. Bogotá: Ecoe Ediciones, 2015. 605 pp. ISBN: 978-958-771-175-2
- SANTUARIO TORRES, Alan. Infraestructura y accesibilidad para la movilidad peatonal: factores de caminabilidad en dos áreas habitacionales de Tijuana, B.C., 2015. El colegio de la frontera norte. Tijuana, B. C., México, 2016. 18pp. Disponible en: https://colef.repositorioinstitucional.mx/jspui/handle/1014/291
- 34. SANTUARIO, Alan. Infraestructura y accesibilidad para la Movilidad peatonal: factores de caminabilidad en dos áreas habitacionales de Tijuana, B.C., 2015. El colegio de la frontera Norte. https://colef.repositorioinstitucional.mx
- SUTRAN. Aprueban Reglamento Nacional de Administración de Transporte. DECRETO SUPREMO Nº 017-2009-MTC. 2020. https://www.sutran.gob.pe/wp-content/uploads/2020/06/Decreto-Supremo-N%C2%B0-017-2009-MTC-Reglamento-Nacional-de-Administraci%C3%B3n-de-Transporte.pdf
- 36. THOMSON, lan y BULL, Alberto. La congestión del tránsito urbano: causas y consecuencias económicas y sociales. Cepal, Eclac. División de Recursos Naturales e Infraestructura. 2001. https://repositorio.cepal.org/bitstream/handle/11362/6381/1/S01060513 e s.pdf

- 37. VERDE VARGAS, Carlos. Mantenimiento del servicio de transitabilidad y eficiencia vial reduciendo los tiempos de viajes por el camino vecinal de Tague Tague Molino Huánuco, 2020. Universidad Nacional José Faustino Sánchez Carrión. Facultad de Ingeniería Civil. 65pp. Disponible en: http://repositorio.unjfsc.edu.pe/handle/UNJFSC/5415
- 38. YACUPAICO AGUILAR, Yuberth. Diseño de infraestructura vial urbana caserío Cerro Colorado, Distrito Pacanga, Provincia Chepén La Libertad. Universidad César Vallejo, Facultad de Ingeniería y Arquitectura, Ingeniero Civil, Diseño de Infraestructura Vial, Perú, 2020. 09pp. Disponible en: https://hdl.handle.net/20.500.12692/61514
- 39. YUGCHA TISALEMA, Carlos. Mejoramiento del tránsito vehicular y peatonal con una propuesta de movilidad continua entre la vía Tisaleo-San Diego-Alobamba del cantón Tisaleo provincia de Tungurahua. Ambato, Ecuador. Universidad técnica de Ambato facultad de ingeniería civil y mecánica carrera de ingeniería civil. 2016. 15pp. Disponible en: http://repositorio.uta.edu.ec/jspui/handle/123456789/24445
- 40. ZAVALETA, Eling. Diseño para el mejoramiento de la carretera del tramo puente Quirihuac – anexo Las Cocas – Jesús María, distrito de Laredo, provincia de Trujillo, departamento la libertad, 2018. 14pp. Disponible en: https://hdl.handle.net/20.500.12692/22758

ANEXOS

Anexo 1. Declaratoria de autenticidad de autores.

DECLARATORIA DE AUTENTICIDAD DE LOS AUTORES

Nosotros, Anabel Anai Domínguez Delgado, Elkin Solis Santillan Aranda, alumnos de la Facultad de Ingeniería y Arquitectura, y Escuela profesional de Ingeniería Civil de la Universidad César Vallejo filial Trujillo, declaramos bajo juramento que todos los datos e información que acompañan a la tesis titulada "Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022", son:

- 1. De nuestra autoría.
- 2. La tesis no ha sido plagiado ni total, ni parcialmente.
- 3. La tesis no ha sido publicado ni presentado anteriormente.
- 4. Los resultados presentados en la presente tesis son reales, no falseados, ni duplicados, ni copiados.

Domínguez Delgado, Anabel Anai.

DNI: 72604987

Santillan Aranda, Elkin Solis

DNI: 72560052

Anexo 2. Declaratoria de autenticidad (asesor)

DECLARATORIA DE AUTENTICIDAD DEL ASESOR

Yo, Josualdo Carlos Villar Quiroz, docente de la Facultad de Ingeniería y Arquitectura, y Escuela profesional de Ingeniería Civil de la Universidad César Vallejo filial Trujillo, revisor de la tesis titulada "Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal

del sector Alto Laredo, 2022".

De los estudiantes:

Domínguez Delgado, Anabel Anai.

Santillan Aranda, Elkin Solis.

Constato que la investigación tiene un índice de similitud de % verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni

exclusiones.

Ing. Josualdo Carlos Villar Quiroz

CIP: 106997

Anexo 3.

Anexo 3.1. Matriz de Operacionalización de variable

Tabla 2. Operacionalización de variable

	Matriz de Op	eracionalización	de variable	
Variable	Definición	Dimensiones	Indicadores	Escala
fáctica	conceptual	Dimensiones	maicadores	LSCala
	El propósito	Tránsito	IMD	Razón
	de este	vehicular	IMDA	Razón
	conjunto de			
	estudios es			
	crear un			
	diseño que			
	se adhiera a			
	la normativa		IMD	Razón
	peruana.			
	Los			
Transitabilida	informes			
d vehicular y	tienen por			
peatonal	objeto	Tránsito		
poutonal	proporciona	peatonal		
	r carreteras			
	cómodas			
	para el uso		IMDA	Razón
	de			
	vehículos y			
	peatones			
	por parte			
	del público.			
	(Garcés,			
	2002)			

Anexo 3.2. Matriz de consistencia

Tabla 3. Matriz de consistencia

MATRIZ DE CONSISTECIA TÍTULO: Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022 **PROBLEMA OBJETIVOS** MARCO TEÓRICO **HIPÓTESIS VARIABLES METODOLOGÍA GENERAL** Enfoque: Cuantitativo Variable fáctica: O. General: (Gonzales, 2021) es su tesis titulada H. General: Transitabilidad vehicular y peatonal Tipo de investigación ¿Cuál es el diseño de "Análisis v diseño para la vías mediante Eje Temático Propósito: Aplicada pavimentación de las calles Determinar el diseño de vías metodología AASHTO La presente comprendidas dentro del perímetro mediante metodología AASHTO 93 para meiorar la investigación es de Metodología AASHTO 93 Por el diseño: No Experimental de la calle Eloy Ureta, la Av. Imperio 93 para mejorar la transitabilidad transitabilidad vehicular tipo por diseño no la Av. los Incas y los Terrenos Eje Propositivo Por el nivel: Descriptiva y peatonal del sector vehicular y peatonal del sector experimental, Agrícolas Del Sur, la Victoria, Alto Laredo, 2022. Alto Laredo, 2022? descriptiva y Diseño de Investigación: No experimental - Propositiva Chiclayo, 2020" Diseño de vías propositiva, por lo tanto, no requiere **Dimensiones** Unidad de Estudio: Transitabilidad vehicular y peatonal hipótesis. (Pereda y Montoya, 2018) en su O. Específicos: Transitabilidad vehicular Población: La población es todo el sector Alto Laredo, 2022 tesis titulada "Estudio y optimización La transitabilidad **OE1:** Evaluar la transitabilidad Transitabilidad peatonal Muestra: Muestreo no probabilístico- por conveniencia. de la red vial avenida América Sur vehicular v peatonal en vehicular y peatonal mediante un tramo prolongación Cesar Vallejo -Técnicas, instrumentos y procedimientos de recolección de el sector Alto Laredo Indicadores estudio de tráfico. 2022. avenida Ricardo Palma, Trujillo" datos: del distrito de Laredo siguen sin IMD Para recolectar los datos, se utilizará: desarrollarse. Como IMDA Técnica: resultado, tanto el OE2: Analizar la metodología (Esquerre y Silva, 2019) en su tesis tránsito vehicular como AASHTO 93. titulada "Propuesta de diseño de Sub Ejes - Temáticos Observación peatonal en esta área pavimento drenante para la se ve afectado. Muchas Tipos de pavimentos Revisión documental captación de agua de lluvias en personas que viven y zonas urbanas del norte del Perú" **OE3**: Analizar y estructurar los Estudios básicos trabajan en esta área Estructura del pavimento elementos claves a considerar de se han cansado de las Sub Ejes - Propositivos Instrumento: la metodología AASHTO 93, 2022. malas condiciones Levantamiento topográfico Guía de observación (Albino y Cisneros, 2017) en su tesis titulada "Diagnóstico de la OE4: Elaborar y validar el diseño Estudio de mecánica de suelos Ficha de resumen transitabilidad vial y propuesta del de vías para meiorar la diseño estructural del pavimento en Estudio de trafico Análisis de datos: transitabilidad vehicular y peatonal las calles 5 y 9 del centro poblado mediante la metodología AASHTO Alto Trujillo - Trujillo - La Libertad" Diseño de vías Estadística descriptiva 93 en el sector Alto Laredo, 2022.

		Matriz de convergenc	ria
Titulo:			AASHTO 93 para mejorar la el sector alto laredo, 2022"
	Variable	Dimensiones	Indicadores
tica		Tránsito vehicular	IMD
Fác	Transitabilidad vehicular y	Transite verilealar	IMDA
Variable Fáctica	peatonal	Tránsito peatonal	IMD
Va		Transito posterial	IMDA
	Tema	Eje Temático	Sub - Ejes temáticos
		Tipo de pavimento	Pavimento rígido
Eje Temático	Matadalasía	Tipo do parimento	Pavimento flexible
Tem	Metodología AASHTO 93		Capa Sub Base
Eje .		Estructura del pavimento	Capa Base
			Carpeta asfáltica
	Propuesta	Eje Propositivo	Sub - ejes Propositivos
		Lavantamianta	Distancia (m)
		Levantamiento topográfico	Área de estudio (m2)
		topogranico	,
		topogranico	Puntos topográficos
		topogranico	,
		Estudio de	Puntos topográficos Capacidad resistente del
tivo			Puntos topográficos Capacidad resistente del suelo (CBR)
ositivo		Estudio de	Puntos topográficos Capacidad resistente del suelo (CBR) Granulometría
ropositivo	Diseño de vías	Estudio de	Puntos topográficos Capacidad resistente del suelo (CBR) Granulometría Límite de consistencia
je Propositivo	Diseño de vías	Estudio de	Puntos topográficos Capacidad resistente del suelo (CBR) Granulometría Límite de consistencia Contenido de humedad Proyección del tránsito Demanda Proyectada
Eje Propositivo	Diseño de vías	Estudio de mecánica de suelos	Puntos topográficos Capacidad resistente del suelo (CBR) Granulometría Límite de consistencia Contenido de humedad Proyección del tránsito
Eje Propositivo	Diseño de vías	Estudio de mecánica de suelos	Puntos topográficos Capacidad resistente del suelo (CBR) Granulometría Límite de consistencia Contenido de humedad Proyección del tránsito Demanda Proyectada
Eje Propositivo	Diseño de vías	Estudio de mecánica de suelos Estudio de trafico	Puntos topográficos Capacidad resistente del suelo (CBR) Granulometría Límite de consistencia Contenido de humedad Proyección del tránsito Demanda Proyectada Cálculo de EAL
Eje Propositivo	Diseño de vías	Estudio de mecánica de suelos	Puntos topográficos Capacidad resistente del suelo (CBR) Granulometría Límite de consistencia Contenido de humedad Proyección del tránsito Demanda Proyectada Cálculo de EAL Bombeo
Eje Propositivo	Diseño de vías	Estudio de mecánica de suelos Estudio de trafico	Puntos topográficos Capacidad resistente del suelo (CBR) Granulometría Límite de consistencia Contenido de humedad Proyección del tránsito Demanda Proyectada Cálculo de EAL Bombeo Peralte

Anexo 4. Instrumentos de recolección de datos

Anexo 4.1. Guía de observación 1 para conteo de tráfico vehicular.

Tabla. guía de observación para conteo de tráfico vehicular.

						V	OLUME	N DE T	RAFIC	O PRO	MEDIC	DIARI	0										
oyecto		Diseño	de vías	mediar	nte meto	dologí	a AAS	HTO 9	3 para	mejo	rar la t	ransita	abilida	d vehi	cular	y peato	onal de	el sect	or Alto	Lared	o, 2022		
amo od Estación tación														Ubicaci Sentido Dia			LAREDO ENTRAI	DA	Fecha				
tacion	1	STATION		AMIONET	AS		M C	то	В	US		CAMION		Dia	SEMIT	RAYLER				AYLERS		TOTAL	POR
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL (Combi)	MICRO			2E	>=3E	2E	3E	4E	2S1/2S2		3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3		%
														ļ									
00-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
01-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
02-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
03-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
04-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
05-06				ļ		ļ	ļ							ļ	ļ	-	-	-	-	-		0	0.0
06-07	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
07-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
08-09																-	-	-	-	-	-	0	0.00
09-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
10-11	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		0	0.0
11-12																-	-	-	-	-	-	0	0.00
12-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	0	0.0
13-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
14-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
15-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	1	100.0
16-17																-	-	-	-	-		0	0.0
17-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
18-19																-	-	-	-	-	-	0	0.0
19-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
20-21			<u> </u>						***************************************							-	-	-	-	-	-	0	0.0
21-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
22-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
23-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	100.0
%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	100.00	1

Anexo 4.2. Guía de observación 2, del estudio peatonal

		UNI	IVERSIDAD	CÉSAR VA	LLEJO										
PROYECTO:	Diseño de	vías mediante	e metodología /		-	nsitabilidad v	ehicular y								
				l sector Alto La											
TESISTAS:	_	_	abel Anai (ORC Solis (ORCID: 00												
		Guía d	le observación 2	2, para conteo ¡	peatonal										
Dia				Ubicacion											
Cod Esta	ción			Sentido											
Estación				Fecha											
			T				1								
HORAS DE	PEATON VULNERABLE PEATON NO VULNERABLE TOTAL ENTRADA SALIDA ENTRADA SALIDA ENTRADA SALIDA														
CONTROL	ENTRADA	SALIDA	ENTRADA	SALIDA											
05-06															
06-07															
07-08															
08-09															
09-10															
10-11															
11-12															
12-13															
13-14															
14-15															
15-16															
16-17															
17-18															
18-19															
19-20						_									
20-21															
21-22															
TOTAL															

Anexo 4.3. Guía de observación 3, del Levantamiento topográfico

	UNIV	/ERSIDAD C	ÉSAR V AL	LEJO
PROYECTO:			_	O 93 para mejorar la or Alto Laredo, 2022
TESISTAS:		Delgado, Anabel Anda, Elkin Solis (C		0000-0001-7858-8762) 0002-4594-0587)
	Guía de observació	ón 3, para levant	amiento topo	gráfico
PUNTO	NORTE	ESTE	COTA	DESCRIPCION
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

		UNIVER	SIDAD CÉS	AR VALLEJO		
PROY		ño de vías media idad vehicular y p		_	-	-
		Guia de observ	acion 4. Estud	dio de suelos		
		Resumen de E	xploraciones	Realizadas.		
				COTA	COORDEN	ADAS (UTM)
SONDAJE	TIPO DE SONDAJE	PROF. (m)	MUESTRAS EXTRAÍDAS	RELATIVA (msnm)	WGS	34 - 17S
					ESTE	NORTE
C-01/E-1						
	Análisis	granulométrico	y clasificació			,
SONDAJE/	MUESTRA	PROF.((m)		NULOMETR	
CALICATA			,	GRAVA	ARENA	FINOS
C-01	E-01					
	Analisis	granulométrico	y clasificació			T
SONDAJE/		LÍMITES (%)	1	CONT.	CLASIF.	CLASIF.
CALICATA	L.L	L.P	I.P	HUMEDAD	SUCS	AASHTO
C-01						
			<u> </u>			ļ
	Ensa	yos de Laborato	rio C. Humed		y CBR.	
		Compensa	oián do	Humedad	Clasif	icación
Calicata	Estrato	partícula		Natural (%)		
		particula	5 (/0)	(70)	SUCS	AASHTO
C-01	E-01					
O-0 I	L-U1					
	Ensa	ıyos de Laborato	rio C. Humeo	dad. Próctor y	v CBR	1
		Compensación		ctación		₹ 0.1"
Calicata	Estrato	de partículas	M.D.S		95%	
Junuau		(%)	(gr./cm³)	O.C.H (%)	MDS	100% MDS
C-01	E-01	(70)	(gr./ciii)		11100	
U-U I	<u></u> ⊏-U1					
	ļ.		l	J		ļ

Anexo 4.5. Guía de observación 1, resumen del conteo de tráfico vehicular

						VOLU	MEN D	E TRAF	ICO P	ROME	DIO DIA	ARIO										
Proyecto		Diseño	de vías	mediar	nte meto	odologí	a AAS	нто 9	3 para	a mejo	rar la t	ransit	abilida	ıd vehi	cular	y peat	onal de	el sect	tor Alte	o Lared	o, 2022	
Tramo Cod Estación		ENTRADA E - 1 ESTACION			R ALTO LA	AREDO								Ubicaci Sentido Dia			LAREDO TOTAL		-1.44/00/5	2022		
Estación				AMIONETA			٠.,	то	_	us				Dia	051417	D 43/1 ED	Del 06/0	19/2022 2	al 14/09/2			TOTAL
HORA	AUTO	STATION	C	AMIONETA	48	MICRO	MC	,10	В	us		CAMION			SEMIII	RAYLER			IRA	AYLERS	1	TOTAL
HORA	A010	WAGON	PICK UP	PANEL	RURAL (Combi)	WICKO	м.тахі	LINEAL	2E	>=3E	2E	3E	4E	2S1/2S2	283	3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3	
JUEVES																						
08/09/2022																						
ENTRADA	116	89	80	121	87	72	482	76	22	2	33	4	0	0	0	0	1	0	0	0	0	1,185
SALIDA	198	72	88	124	74	74	457	92	27	0	62	3	0	0	0	0	1	0	0	0	0	1,272
Ambos VIERNES	314	161	168	245	161	146	939	168	49	2	95	7	0	0	0	0	2	0	0	0	0	2,457
09/09/2022																						
ENTRADA	94	59	27	94	88	79	381	124	15	2	96	3	1	0	0		0	0	0	0	0	1.063
SALIDA	78	90	27 97	85	85	79	326	87	24	2	96	2	1	0	0	0	0	0	0	0	0	1,063
Ambos	172	149	124	179	173	151	707	211	39	4	190	5	2	0	0	0	0	0	0	0	0	2,106
SÁBADO	11/2	143	124	173	173	131	707	211	33		130	-		-	•	-	•	_	_	-	•	2,100
10/09/2022																						
ENTRADA	58	29	21	20	21	12	318	71	8	6	38	29	1	0	1	0	0	0	0	0	2	635
SALIDA	50	25	24	9	11	25	345	54	26	12	39	16	i	ő	Ó	ő	ő	Ö	lő	ő	2	639
Ambos	108	54	45	29	32	37	663	125	34	18	77	45	2	0	1	0	0	0	Ŏ	0	4	1.274
DOMINGO						•			•										Ť			,
11/09/2022																						
ENTRADA	94	85	91	76	79	65	502	81	10	0	91	4	0	0	0	0	0	0	1	0	0	1,179
SALIDA	98	87	86	98	91	65	518	87	6	0	94	5	1	0	0	0	0	0	0	0	2	1,238
Ambos	192	172	177	174	170	130	1020	168	16	0	185	9	1	0	0	0	0	0	1	0	2	2,417
LUNES																						
12/09/2022																						
ENTRADA	120	87	77	108	83	68	482	76	22	2	33	4	0	0	0	0	1	0	1	0	0	1,164
SALIDA	113	120	85	107	84	66	599	104	6	0	99	7	1	0	1	0	0	0	0	0	2	1,394
Ambos	233	207	162	215	167	134	1081	180	28	2	132	11	1	0	1	0	1	0	1	0	2	2,558
MARTES																						
13/09/2022					l				_	_			١.					_	_			
ENTRADA	99	96	101	89	104	65	588	109	7	0	96	4	1	0	0	0	0	0	0	0	0	1359
SALIDA	109	57	88	102	101	67	582	106	5	0	98	6	0	0	2	0	0	0	0	0	3	1326
Ambos	208	153	189	191	205	132	1170	215	12	0	194	10	1	0	2	0	0	0	0	0	3	2,685
MIERCOLES 14/09/2022																						
14/09/2022 ENTRADA	106	72	95	82	96	60	557	90	10	2	64				0		1	0	0		0	1255
SALIDA	63	66	95 85	82 80	84	68 70	544	81	18 17	2	64 61	4 2	0	0	0	0	1	0	0	0	0	1255
Ambos	169	138	180	162	180	138	1101	171	35	2	125	6	0	0	0	0	2	0	0	0	0	2,409
TOTAL	1.396	1,034	1.045	1,195	1.088	868	6,681	1,238	213	28	998	93	7	0	4	0	5	0	2	0	11	15,906

Anexo 4.5.1. Conteo de vehículos día 1.

						V	OLUME	N DE T	RAFIC	O PRO	MEDIC	DIARI	0										
Proyecto		Diseño	de vías	median	nte meto	dologí	a AAS	HTO 9	3 para	mejo	ar la t	ransita	bilida	ıd vehi	cular	y peato	onal de	el sect	or Alto) Laredo	o, 2022		
Ггато			PRINCIPA	AL -SECTO	R ALTO LA	REDO								Ubicaci			LARED						
Cod Estación		E - 1 ESTACION		AL E 1										Sentido Dia)		AMBOS JUEVES		Facha	08-Set-22			
Estación		STATION		AMIONETA	AS		МС	то	BI	US		CAMION		Dia	SEMITI	RAYLER	JUEVES	•		AYLERS		TOTAL	PORC.
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL	MICRO	M.TAXI		2E	>=3E	2E	3E	4E	2S1/2S2		3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3	TOTAL	%
					(Combi)																		
00-01	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.06
01-02	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.06
02-03	2	4	-	1	-	-	-	-	-	-	-	1	-	_	-	-	-	-	-	-	-	8	0.48
03-04	6	5	4	8	6	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	35	2.11
04-05	10	8	4	6	11	4	11	4	-	-	1	-	-	-	-	-	-	-	-	-	-	59	3.56
05-06	14	9	7	10	8	6	8	6	-	-	2	-	-	-	-	-	-	-	-	-	-	70	4.22
06-07	17	9	4	11	5	7	5	7	-	-	4	-	-	-	-	-	-	-	-	-	-	69	4.16
07-08	16	8	11	17	13	9	13	9	-	-	9	-	-	-	-	-	-	-	-	-	-	105	6.34
08-09	11	13	5	11	9	9	9	9	1	-	10	-	-	-	-	-	-	-	-	-	-	87	5.25
09-10	12	8	9	13	13	10	13	10	-	1	8	1	-	-	-	-	-	-	-	-	-	98	5.91
10-11	25	11	7	16	10	12	10	12	1	-	17	-	-	-	-	-	-	-	-	-	-	121	7.30
11-12	18	9	10	16	12	9	12	9	1	1	10	-	-	-	-	-	-	-	-	-	-	107	6.46
12-13	26	12	13	15	11	9	11	9	3	-	7	-	-	-	-	-	-	-	-	-	-	116	7.00
13-14	23	8	7	6	9	2	9	2	-	-	-	1	-	-	-	-	-	-	-	-	-	67	4.04
14-15	10	3	13	15	3	11	3	11	2	-	5	-	-	-	-	-	-	-	-	-	-	76	4.59
15-16	10	18	12	13	5	12	5	12	6	-	6	-	-	-	-	-	2	-	-	-	-	101	6.10
16-17	22	3	15	-	10	10	10	10	2	-	11	2	-	-	-	-	-	-	-	-	-	95	5.73
17-18	21	9	10	21	7	10	7	10	11	-	2	2	-	-	-	-	-	-	-	-	-	110	6.64
18-19	22	14	11	30	7	9	7	9	13	-	2	-	-	-	-	-	-	-	-	-	-	124	7.48
19-20	22	3	9	16	10	9	10	9	8	-	-	-	-	-	-	-	-	-	-	-	-	96	5.79
20-21	23	2	10	20	9	8	9	8	1	-	1	-	-	-	-	-	-	-	-	-	-	91	5.49
21-22	2	5	7	-	3	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	1.21
22-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
23-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
TOTAL	314	161	168	245	161	146	161	146	49	2	95	7	0	0	0	0	2	0	0	0	0	1,657	100.00
%	18.95	9.72	10.14	14.79	9.72	8.81	9.72	8.81	2.96	0.12	5.73	0.42	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.00	0.00	100.00	

Anexo 4.5.2. Conteo de vehículos día 2.

						VC	OLUME	N DE T	RAFIC	O PRO	MEDIO	DIARI	0										
Proyecto		Diseño	de vías	median	ite meto	dología	a AAS	HTO 9	3 para	mejoi	ar la tı	ransita	bilida	d vehi	cular y	peato	onal de	el sect	or Alto	Laredo	o, 2022		
ramo Cod Estación Estación		E - 1	N PRINCIPA	AL -SECTO AL E-1	R ALTO LA	REDO								Ubicaci Sentido Dia			LAREDO AMBOS VIERNE		Fecha	09-Set-22			
		STATION	С	AMIONETA			MO	ТО	В	JS		CAMION			SEMITE	RAYLER			TR/	AYLERS		TOTAL	PORC.
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL (Combi)	MICRO	M.TAXI	LINEA	2E	>=3E	2E	3E	4E	2S1/2S2	2S3	3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3		%
00-01	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_		0	0.00
	_			1						_													
01-02	3	2	-	4	-	-		-		-	1			-	-	_	-	-	-	-	-	1 10	0.07
02-03	5		3	4	ļ	-	5	-	-	-	1	-	-	-	-	-	-	-	-	-	-	10	0.66
03-04	6	5	4	9	-	3	7	3			1	-		-	-	-	-	-		-		22	1.46
04-05	4	3		6	-	7	10	7	1	-	1	-	-	-	-	-	-	-	-	-	-	45	2.98
05-06	2	5	ļ	ļ		7	14	·		-	-	-	-	-	-	-	-	-	-	-	-	50	3.31
06-07	9	14	8	3 8	ļ	9	7	7	1	-	9	-	-	-	-	-	-	-	-	-	-	55	3.64
07-08	9	11	3	9		9	8	9	1	-	6	1	-	-	-	-	-	-	-	-	-	81	5.36
08-09	13	16		13		9	14	9	1	1	18	1	-	-	-	-	-	-	-	-	-	74	4.89
09-10	9	3		9					2		32	1	-	-		-	-	-	-	-	-	116	7.67
10-11	13	10			ļ	15 9	13	15		-	27	'	-	-	-	-	-	-	-	-	-	118	7.80
11-12	8			13 8	····	9	12 9	9	1	3	8	-	-	-	-	-	-	-	-	-	-	115	7.61
12-13	9	12	7	9		4	8	4	4	-	0	-	-	-	-	-	-		-	-		85	5.62
13-14	6	3 6	10	7	8		6	9	2	-	9	-	-	-	-	-	-	-	-	-	-	52	3.44
14-15	7	11	ļ	7		9	10	Ü	4	-	23	-	1	-	-	-	-	-	-	-	-	71	4.70
15-16			11					14		-		1	-	-	-	-	-	-	-	-	-	112	7.41
16-17	6	14	4	6		13	14	13	4	-	13	-	-	-	-	-	-	-	-	-	-	101	6.68
17-18	13	10		13		9	7 9	9	6 5	-	17	1	-	-	-	-	-	-	-	-	-	105	6.94
18-19	14	17	10	14					5 7	-	15	-	1	-	-	-	-	-	-	-	-	112	7.41
19-20	17	5		17			6	8		-	11	-	-	-	-	-	-	-	-	-	-	95	6.28
20-21	19	2	7	19		8	12	8	1	-	-	-	-	-	-	-	-	-	-	-	-	88	5.82
21-22	-	-	-	-	2	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	0.26
22-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
23-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
TOTAL %	172	149 9.85	124 8.20	179	173	151 9.99	173	151	39 2.58	4 0.26	190	5 0.33	2	0	0	0	0	0	0	0	0	1,512 100.00	100.00

Anexo 4.5.3. Conteo de vehículos día 3.

						V	OLUME	N DE T	RAFIC	O PRO	MEDIC	DIARI)										
Proyecto		Diseño	de vías	median	nte meto	odologí	a AAS	HTO 9	3 para	ı mejo	rar la t	ransita	ıbilida	d vehi	cular	y peato	onal de	el sect	or Alto	o Lared	o, 2022		
Tramo Cod Estación Estación		ENTRADA E - 1 ESTACION	N PRINCIPA			AREDO								Ubicaci Sentido Dia)		LAREDO AMBOS SÁBAD	;		10-Set-22	!		
HORA	AUTO	STATION	c	AMIONETA	AS RURAL	MICRO	МС	то	В	us		CAMION			SEMIT	RAYLER			TR	AYLERS		TOTAL	PORC.
HOKA	AUTO	WAGON	PICK UP	PANEL	(Combi)	WICKO	M.TAXI	LINEA	2E	>=3E	2E	3E	4E	2S1/2S2	2S3	3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3		%
00-01	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.17
01-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	0	0.00
02-03	3	ļ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	0.52
03-04	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	0.70
04-05	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	1.57
05-06	11	3	4	6	3	3	3	3	1	-	1	-	-	-	-	-	-	-	-	-	-	38	6.62
06-07	12	3	1	1	1	17	1	17	1	1	-	-	-	-	-	-	-	-	-	-	-	55	9.58
07-08	6	2	2	3	3	1	3	1	2	2	6	5	-	-	-	-	-	-	-	-	-	36	6.27
08-09	8	1	-	1	2	1	2	1	-	3	6	4	1	-	-	-	-	-	-	-	-	30	5.23
09-10	13	5	2	2	2	3	2	3	4	1	13	9	-	-	1	-	-	-	-	-	1	61	10.63
10-11	12	10	9	2	3	3	3	3	2	3	18	8	-	-	-	-	-	-	-	-	3	79	13.76
11-12	4	3	7	2	4	5	4	5	11	3	9	6	-	-	-	-	-	-	-	-	-	63	10.98
12-13	6	7	5	4	5	1	5	1	2	3	9	10	1	-	-	-	-	-	-	-	-	59	10.28
13-14	4	5		1	1	-	1	-	1	-	_	_		_	_	_	_	_	_	_	_	16	2.79
14-15	11	3	6		_			_		l	1				l -		_	_	_	_	l .	22	3.83
	7	-	1	5	3		3		1		3											27	4.70
15-16 16-17	7	}	-	3	1	1	1	1	2	-	6	3		-	-	-	-	-	-	-	-	27	
	9	ļ	2	1		1	<u>'</u>	1	1	1	4	3		-	-	_	-	-	_	-	-		4.01
17-18		ļ			-	1	-	1		1		-	-	-	-	<u> </u>	-	-	-	-	-	22	3.83
18-19	10	5	3	-	4	1	-	1	-	1	1	-	-	-	-	-	-	-	-	-	-	26	4.53
19-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
20-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
21-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
22-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
23-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
TOTAL	137	54	45	29	32	37	28	37	28	18	77	45	2	0	1	0	0	0	0	0	4	574	100.00
%	23.87	9.41	7.84	5.05	5.57	6.45	4.88	6.45	4.88	3.14	13.41	7.84	0.35	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.70	100.00	

Anexo 4.5.4. Conteo de vehículos día 4.

						V	DLUME	N DE T	RAFIC	O PRO	MEDIO	DIARI	0										
Proyecto		Diseño	de vías	median	ite meto	dologí	a AAS	HTO 9	3 para	mejo	rar la tı	ransita	abilida	d vehi	cular	y peato	onal de	el sect	or Alto	Laredo	o, 2022		
Tramo Cod Estación Estación		ENTRADA E - 1 ESTACION		AL -SECTO	R ALTO LA	AREDO								Ubicaci Sentido Dia			LAREDO AMBOS DOMINO		Fecha	11-Set-22			
		STATION		AMIONETA	AS		МО	то	В	US		CAMION			SEMITI	RAYLER	20			AYLERS		TOTAL	PORC.
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL (Combi)	MICRO	M.TAXI	LINEA	2E	>=3E	2E	3E	4E	2S1/2S2	283	3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3		%
00-01		_		_	_	_	_	_	-	_	_	-		_	_		_	_	_	_	_	0	0.00
01-02	_	_	_		_		_	_	_	_	_	_	_	_			_		<u> </u>		_	0	0.00
		3		1				-			-				_				-			4	0.00
02-03 03-04	3		12	3	3		3	-		-	_			-	-	<u> </u>	_			-	-	33	2.18
03-04	7	13	6	ļ	14	<u> </u>	14			<u> </u>	1			-	_	<u> </u>	-		-	-		59	3.89
05-06	10		9	ļ		3	2	3	_		<u>.</u>	_	_	_	_	_	_				_	47	3.10
05-06	2		8		ł	6	8	6			1			<u> </u>		 	-					58	3.82
07-08	7	9	9			8	8	8	-	-	8	-	-	-	-	-	-	-	-	-	-	73	4.81
08-09	11	10	13	-	-	10	8	10	1	_	10	1	-	-	_	-	_	-	-	-	_	96	6.33
09-10	9		12	ļ		9	12	9	1	-	17	2	-	-	-	-	-	-	-	-	-	91	6.00
10-11	12	7	11		ļ	10	13	10	-	-	16	1	1	-	-	-	-	-	1	-	1	110	7.25
11-12	15	10	12		ļ	11	12	11	-	-	21	-	-	-	-	-	-	-	-	-	-	113	7.45
12-13	13	13	7	-	-	8	9	8	1	-	21	4	-	-	-	-	-	-	-	-	1	110	7.25
13-14	10	11	6	2	7	3	7	3	-	-	-	1	-	-	-	-	-	-	-	-	-	50	3.30
14-15	12	10	14	11	14	9	14	9	3	-	12	-	-	-	-	-	-	-	-	-	-	108	7.12
15-16	10	9	12	14	9	10	9	10	1	-	15	-	-	-	-	-	-	-	-	-	-	99	6.53
16-17	19	13	12	14	5	9	5	9	2	-	17	-	-	-	-	-	-	-	-	-	-	105	6.92
17-18	13	9	12	14	15	9	15	9	2	-	12	-	-	-	-	-	-	-	-	-	-	110	7.25
18-19	13	2	7	14	10	10		10	***************************************	-	14	-	-	-	-	-	-	-	-	-	-	80	5.27
19-20	14	14	8	13	12	8	12	8	2	-	13	-	-	-	-	-	-	-	-	-	-	104	6.86
20-21	12	6	7	2	9	7	9	7	1	-	7	-	-	-	-	-	-	-	-	-	-	67	4.42
21-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
22-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
23-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
TOTAL	192	172	177	174	170	130	160	130	14	0	185	9	1	0	0	0	0	0	1	0	2	1,517	100.00
%	12.66	11.34	11.67	11.47	11.21	8.57	10.55	8.57	0.92	0.00	12.20	0.59	0.07	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.13	100.00	

Anexo 4.5.5. Conteo de vehículos día 5.

						V	OLUME	N DE T	RAFIC	O PRO	MEDIC	DIARI	0										
Proyecto		Diseño	de vías	median	ite meto	dologí	a AASI	HTO 9:	3 para	mejor	ar la t	ransita	bilida	d vehi	cular y	y peato	onal de	el sect	or Alto	Lared	o, 2022		
Tramo Cod Estación Estación		ENTRADA E - 1 ESTACION			R ALTO LA	REDO								Ubicaci Sentido Dia			LAREDO AMBOS LUNES		Fecha	12-Set-22			
11004	41170	STATION	С	AMIONETA		Mana	МО	то	В	JS		CAMION			SEMITE	RAYLER			TRA	YLERS		TOTAL	PORC.
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL (Combi)	MICRO	M.TAXI	LINEA	2E	>=3E	2E	3E	4E	2S1/2S2	2S3	3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3		%
***************************************									***************************************		***************************************											***************************************	
00-01	-	-	-	-	-	-	4	1	-	-	-	-	-	-	-	-	-	-	-	-	-	5	0.20
01-02	-	4	-	-	-	-	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-	13	0.51
02-03	2	2	5	2	-	-	9	4	-	-	-	-	-	-	-	-	-	-	-	-	-	24	0.94
03-04	9	9	12	9	1	-	10	2	-	-	1	-	-	-	-	-	-	-	-	-	-	53	2.07
04-05	5	12	10	7	6	3	22	5	-	-	2	-	-	-	-	-	-	-	-	-	-	72	2.81
05-06	8	12	9	11	11	3	30	5	-	-	3	-	-	-	-	-	-	-	-	-	-	92	3.60
06-07	11	12	3	10	4	7	42	4	-	-	2	-	-	-	-	-	-	-	-	-	-	95	3.71
07-08	11	7	6	10	11	8	79	8	-	-	8	-	-	-	-	-	-	-	-	-	-	148	5.79
08-09	12	14	5	11	9	6	90	10	1	-	9	-	-	-	-	-	-	-	-	-	-	167	6.53
09-10	14	4	7	14	15	9	90	14	1	1	8	4	-	-	-	-	-	-	-	-	-	181	7.08
10-11	12	8	6	8	13	12	70	15	1	-	15	2	1	-	1	-	-	-	1	-	-	165	6.45
11-12	16	8	10	18	12	10	69	13	-	1	16	-	-	-	-	-	-	-	-	-	2	175	6.84
12-13	17	12	6	12	9	9	67	13	2	-	13	2	-	-	-	-	-	-	-	-	-	162	6.33
13-14	13	7	5	3	6	2	8	6	-	-	-	1	-	-	-	-	-	-	-	-	-	51	1.99
14-15	13	13	8	12	8	10	60	8	2	-	8	-	-	-	-	-	-	-	-	-	-	142	5.55
15-16	14	17	8	16	9	11	61	8	3	-	8	-	-	-	-	-	1	-	-	-	-	156	6.10
16-17	10	9	13	8	7	9	66	10	2	-	9	1	-	-	-	-	-	-	-	-	-	144	5.63
17-18	15	22	12	20	8	9	63	9	6	-	10	1	-	-	-	-	-	-	-	-	-	175	6.84
18-19	16	10	15	26	11	8	67	13	6	-	9	-	-	-	-	-	-	-	-	-	-	181	7.08
19-20	18	3	8	13	8	9	70	8	3	-	7	-	-	-	-	-	-	-	-	-	-	147	5.75
20-21	15	4	6	1	10	7	59	9	1	-	-	-	-	-	-	-	-	-	-	-	-	112	4.38
21-22	2	18	8	4	9	2	42	9	-	-	4	-	-	-	-	-	-	-	-	-	-	98	3.83
22-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
23-24	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
TOTAL	233	207	162	215	167	134	1,081	180	28	2	132	11	1	0	1	0	1	0	1	0	2	2,558	100.00
%	9.11	8.09	6.33	8.41	6.53	5.24	42.26	7.04	1.09	0.08	5.16	0.43	0.04	0.00	0.04	0.00	0.04	0.00	0.04	0.00	0.08	100.00	

Anexo 4.5.6. Conteo de vehículos día 6.

						V	OLUME	N DE T	RAFIC	O PRO	MEDIC	DIARI	0										
Proyecto		Diseño	de vías	median	nte meto	dologí	a AASI	HTO 9:	3 para	mejor	ar la t	ransita	bilida	d vehi	cular y	, peato	onal de	el sect	or Alto	Lared	o, 2022		
Γramo Cod Estación Estación		ENTRADA E - 1 ESTACION			R ALTO LA	REDO								Ubicaci Sentido Dia			LAREDO AMBOS MARTES	i	Fecha	13-Set-22	!		
	4117.0	STATION	С	AMIONETA		Mono	МО	то	ВІ	JS		CAMION			SEMITE	RAYLER			TRA	AYLERS		TOTAL	PORC.
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL (Combi)	MICRO	M.TAXI	LINEA	2E	>=3E	2E	3E	4E	2S1/2S2	2S3	3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3		%

00-01	-	2	5	-	-	-	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	13	0.86
01-02	2	5	2	2	-	-	2	8	-	-	-	-	-	-	-	-	-	-	-	-	-	21	1.38
02-03	2	6	7	3	-	-	7	8	-	-	1	-	-	-	-	-	-	-	-	-	-	34	2.24
03-04	1	8	18	2	-	-	15	9	-	-	1	-	-	-	-	-	-	-	-	-	-	54	3.56
04-05	4	14	9	7	4	-	22	7	-	-	1	-	-	-	-	-	-	-	-	-	-	68	4.48
05-06	8	15	7	10	10	5	50	14	-	-	3	-	-	-	-	-	-	-	-	-	-	122	8.04
06-07	7	10	6	13	8	5	62	5	-	-	-	-	1	-	-	-	-	-	-	-	-	117	7.71
07-08	11	7	6	16	9	8	88	14	-	-	9	-	-	-	-	-	-	-	-	-	-	168	11.07
08-09	11	2	11	14	10	10	88	14	1	-	9	1	-	-	-	-	-	-	-	-	-	171	11.27
09-10	18	4	9	9	10	11	96	11	1	-	17	3	-	-	-	-	-	-	-	-	-	189	12.46
10-11	19	4	6	8	13	8	67	9	1	-	20	1	-	-	1	-	-	-	-	-	-	157	10.35
11-12	14	9	7	12	13	11	69	13	-	-	25	2	-	-	-	-	-	-	-	-	2	177	11.67
12-13	14	9	11	14	9	9	59	10	-	-	18	3	-	-	-	-	-	-	-	-	-	156	10.28
13-14	4	7	7	6	7	1	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-	42	2.77
14-15	7	3	8	8	13	9	66	8	1	-	10	-	-	-	-	-	-	-	-	-	-	133	8.77
15-16	17	3	7	9	9	9	77	9	1	-	14	-	-	-	1	-	-	-	-	-	1	157	10.35
16-17	11	3	7	6	11	9	71	12	1	-	15	-	-	-	-	-	-	-	-	-	-	146	9.62
17-18	15	8	12	14	13	9	61	8	2	-	19	-	-	-	-	-	-	-	-	-	-	161	10.61
18-19	15	3	11	16	13	8	68	12	2	-	15	-	-	-	-	-	-	-	-	-	-	163	10.74
19-20	14	11	8	14	9	9	72	14	2	-	12	-	-	-	-	-	-	-	-	-	-	165	10.88
20-21	5	3	8	5	10	6	57	9	-	-	-	-	-	-	-	-	-	-	-	-	-	103	6.79
21-22	4	9	9	2	14	5	46	3	-	-	5	-	-	-	-	-	-	-	-	-	-	97	6.39
22-23	5	8	7	1	19	-	20	7	-	-	-	-	-	-	-	-	-	-	-	-	-	67	4.42
23-24	-	-	1	-	1	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	4	0.26
TOTAL	208	153	189	191	205	132	1,170	215	12	0	194	10	1	0	2	0	0	0	0	0	3	2,685	176.99
%	7.75	5.70	7.04	7.11	7.64	4.92	43.58	8.01	0.45	0.00	7.23	0.37	0.04	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.11	100.00	

Anexo 4.5.7. Conteo de vehículos día 7.

						V	OLUME	N DE T	RAFIC	O PRO	MEDIC	DIARI	0										
Proyecto		Diseño	de vías	median	ite meto	dologí	a AAS	HTO 9	3 para	mejor	ar la t	ransita	bilida	d vehi	cular y	/ peato	onal de	el sect	or Alto	Lared	o, 2022		
Γramo Cod Estación Estación		ENTRADA E - 1 ESTACION		AL -SECTO AL E-1	R ALTO LA	REDO								Ubicaci Sentido Dia			LAREDO AMBOS MIERCO		Fecha	14-Set-22	!		
		STATION	С	AMIONETA			MO	то	Вι	JS		CAMION			SEMITE	RAYLER			TRA	AYLERS		TOTAL	PORC
HORA	AUTO	WAGON	PICK UP	PANEL	RURAL (Combi)	MICRO	M.TAXI	LINEAL	2E	>=3E	2E	3E	4E	2S1/2S2	2S3	3S1/3S2	>=3S3	2T2	2T3	3T2	>=3T3		%

00-01	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.04
01-02	1	2	-	-	-	-	4	7	-	-	-	-	-	-	-	-	-	-	-	-	-	14	0.55
02-03	4	8	1	3	-	-	15	10	-	-	2	-	-	-	-	-	-	-	-	-	-	43	1.68
03-04	6	5	10	ļ	-	-	12	2	-	-	-	-	-	-	-	-	-	-	-	-	-	41	1.60
04-05	5	14	6	7	6	2	21	3	-	-	4	-	-	-	-	-	-	-	-	-	-	68	2.66
05-06	10	6	12	ļ	5	5	48	5	-	-	2	-	-	-	-	-	-	-	-	-	-	102	3.99
06-07	9	9	3	-	18	7	58	7	-	-	2	-	-	-	-	-	-	-	-	-	-	113	4.42
07-08	2	2	6	16	13	9	81	9	-	-	9	-	-	-	-	-	-	-	-	-	-	147	5.75
08-09	2	14	5	11	9	9	81	7	1	-	10	-	-	-	-	-	-	-	-	-	-	149	5.82
09-10	3	1	9	13	9	10	73	11	-	1	16	1	-	-	-	-	-	-	-	-	-	147	5.75
10-11	6	7	8	16	10	9	70	8	1	-	13	-	-	-	-	-	-	-	-	-	-	148	5.79
11-12	11	4	12	14	16	9	74	8	1	1	19	-	-	-	-	-	-	-	-	-	-	169	6.6
12-13	8	5	13	16	13	10	89	8	2	-	8	1	-	-	-	-	-	-	-	-	-	173	6.76
13-14	13	5	13	4	15	2	7	5	-	-	-	-	-	-	-	-	-	-	-	-	-	64	2.50
14-15	14	4	9	15	4	11	65	11	2	-	5	-	-	-	-	-	-	-	-	-	-	140	5.47
15-16	6	8	12	6	5	9	56	15	4	-	6	-	-	-	-	-	2	-	-	-	-	129	5.04
16-17	16	7	8	13	7	9	57	9	2	-	15	2	-	-	-	-	-	-	-	-	-	145	5.67
17-18	9	8	8	2	9	10	65	13	7	-	2	2	-	-	-	-	-	-	-	-	-	135	5.28
18-19	11	4	11	2	10	9	65	9	7	-	2	-	-	-	-	-	-	-	-	-	-	130	5.08
19-20	8	4	8	7	9	9	67	7	8	-	5	-	-	-	-	-	-	-	-	-	-	132	5.16
20-21	9	10	4	2	6	7	62	5	-	-	5	-	-	-	-	-	-	-	-	-	-	110	4.30
21-22	8	8	6	-	2	2	13	2	-	-	-	-	-	-	-	-	-	-	-	-	-	41	1.60
22-23	6	-	9	-	9	-	10	1	-	-	-	-	-	-	-	-	-	-	-	-	-	35	1.37
23-24	1	3	7	-	5	-	8	9	-	-	-	-	-	-	-	-	-	-	-	-	-	33	1.29
TOTAL	169	138	180	162	180	138	1,101	171	35	2	125	6	0	0	0	0	2	0	0	0	0	2,409	94.1
%	7.02	5.73	7.47	6.72	7.47	5.73	45.70	7.10	1.45	0.08	5.19	0.25	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00	100.00	+

Anexo 4.6. Guía de observación 2, del estudio peatonal

		TINU TINU	VERSIDAD	CÉSAR VAI	LLEJO						
PROYECTO:	Diseño de	vías mediante	_	AASHTO 93 para I sector Alto La	-	nsitabilidad ve	hicular y				
TESISTAS:	.Domínguez Delgado, Anabel Anai (ORCID: 0000-0001-7858-8762) .Santillan Aranda, Elkin Solis (ORCID: 0000-0002-4594-0587)										
Guia de observacion 2, para conteo peatonal											
Dia Lunes - Domingo Ubicacion ALTO LAREDO											
Cod Estació	n			Sentido							
Estación				Fecha		19/09/2020 - 25	5/09/2020				
RESUMEN											
Día	PEATON V	ULNERABLE	PEATON NO	VULNERABLE	то	TAL	TOTAL				
Dia	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	IOIAL				
LUNES	175	192	16	17	191	209	400				
MARTES	180	199	24	16	204	215	419				
MIÉRCOLES	400	290	9	4	409	294	703				
JUEVES	251	188	2	20	253	208	461				
VIERNES	275	243	9	12	284	255	539				
SÁBADO	230	250	12	15	242	265	507				
DOMINGO	273	259	16	19	289	278	567				
TOTAL	1784	1621	88	103	1872	1724	3596				

Anexo 4.6.1. Conteo peatonal día 1.

		- UNIV	VERSIDAD	CÉSAR VA	LLEIO							
		J J J	VERSIDAD	CESAR VA	LLEJO							
PROYECTO:	Diseño de	vías mediante	_	ASHTO 93 para	-	nsitabilidad ve	hicular y					
	.Domíngue:	z Delgado, Ana										
TESISTAS:	_	randa, Elkin Sc	-		-							
	Guia de observacion 2, para conteo peatonal											
DiaLUNESUbicacionALTO LAREDO												
Cod Estació	n	D-1		Sentido								
Estación				Fecha			19-Set-20					
HORAS DE	PEATON VI	JLNERABLE	PEATON NO	VULNERABLE	TO	TAL						
CONTROL							TOTAL					
001111102	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA						
05-06	3	9	0	0	3	9	12					
06-07	9	20	0	0	9	20	29					
07-08	2	13	0	2	2	15	17					
08-09	12	19	2	0	14	19	33					
09-10	18	28	0	1	18	29	47					
10-11	4	12	0	2	4	14	18					
11-12	13	11	1	0	14	11	25					
12-13	25	5	3	1	28	6	34					
13-14	2	8	1	1	3	9	12					
14-15	7	15	2	0	9	15	24					
15-16	11	7	0	0	11	7	18					
16-17	17	5	1	8	18	13	31					
17-18	13	9	5	1	18	10	28					
18-19	6	19	1	1	7	20	27					
19-20	15	8	0	0	15	8	23					
20-21	12	2	0	0	12	2	14					
21-22	6	2	0	0	6	2	8					
TOTAL	175	192	16	17	191	209	400					

Anexo 4.6.2. Conteo peatonal día 2.

UNIVERSIDAD CÉSAR VALLEJO												
	Diseño de ví	4 1'	metodología /			transitahilid	ad vehicular					
PROYECTO:	Discrib de Vi		y peatonal de	•	-	r transitabilia	aa vernearar					
	Domíngu		Anabel Anai (52)						
TESISTAS:	_	_	Solis (ORCID			,						
		Guia de observacion 2, para conteo peatonal										
Dia												
Cod Estac	ión	D-2		Sentido								
Estación				Fecha			20-Set-20					
							20 00120					
HORAS DE	PEATON VI	JLNERABLE	PEATON NO	VULNERABLE	тот	TOTAL						
CONTROL	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	TOTAL					
05-06	2	0	0	0	2	0	2					
06-07	7	4	0	0	7	4	11					
07-08	11	9	0	1	11	10	21					
08-09	9	20	3	1	12	21	33					
09-10	19	3	3	1	22	4	26					
10-11	3	17	5	1	8	18	26					
11-12	4	14	0	0	4	14	18					
12-13	9	5	0	0	9	5	14					
13-14	20	9	1	0	21	9	30					
14-15	15	3	1	0	16	3	19					
15-16	19	15	1	3	20	18	38					
16-17	11	18	5	6	16	24	40					
17-18	16	23	2	1	18	24	42					
18-19	10	29	3	0	13	29	42					
19-20	8	11	0	2	8	13	21					
20-21	12	9	0	0	12	9	21					
21-22	5	10	0	0	5	10	15					
TOTAL	180	199	24	16	204	215	419					

Anexo 4.6.3. Conteo peatonal día 3.

		1 10	NIVERSID	AD CÉSAR	VALLEJO					
PROYECTO:	Diseño de ví	as mediante ı	_	-	ara mejorar la Laredo, 2022		ad vehicular			
TESISTAS:	_	ez Delgado, <i>A</i> Aranda, Elkir	-			52)				
Guia de observacion 2, para conteo peatonal										
Dia MIERCOLES Ubicacion										
Cod Estac	ión	D-3		Sentido						
Estación				Fecha			21-Set-20			
HORAS DE	PEATON VI	ULNERABLE	PEATON NO	VULNERABLE	то	TOTAL				
CONTROL	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	TOTAL			
05-06	0	2	0	0	0	2	2			
06-07	11	8	0	0	11	8	19			
07-08	19	11	0	0	19	11	30			
08-09	23	19	0	0	23	19	42			
09-10	30	33	0	0	30	33	63			
10-11	35	60	0	0	35	60	95			
11-12	19	37	2	0	21	37	58			
12-13	41	14	2	0	43	14	57			
13-14	23	19	2	0	25	19	44			
14-15	29	13	0	1	29	14	43			
15-16	38	8	0	0	38	8	46			
16-17	33	11	1	3	34	14	48			
17-18	39	11	1	0	40	11	51			
18-19	18	7	1	0	19	7	26			
19-20	19	16	0	0	19	16	35			
20-21	17	12	0	0	17	12	29			
21-22	6	9	0	0	6	9	15			
TOTAL	400	290	9	4	409	294	703			

Anexo 4.6.4. Conteo peatonal día 4.

		ייט קד	NIVERSID	AD CÉSAR	VALLEJO						
PROYECTO:	Diseño de ví		_		ara mejorar la Laredo, 2022		ad vehicular				
TESISTAS:	_	ez Delgado, <i>A</i>		ORCID: 0000-0	0001-7858-876						
	Guia de observacion 2, para conteo peatonal										
Dia JUEVES Ubicacion											
Cod Estac	ión	D-4		Sentido							
Estación				Fecha			22-Set-20				
HORAS DE	PEATON VI	ULNERABLE	PEATON NO	VULNERABLE	то	TOTAL					
CONTROL	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	TOTAL				
05-06	8	3	0	0	8	3	11				
06-07	3	11	0	0	3	11	14				
07-08	11	2	0	0	11	2	13				
08-09	19	11	0	0	19	11	30				
09-10	23	23	0	0	23	23	46				
10-11	27	19	0	0	27	19	46				
11-12	10	13	0	1	10	14	24				
12-13	19	5	0	1	19	6	25				
13-14	14	16	0	2	14	18	32				
14-15	15	14	0	3	15	17	32				
15-16	21	11	1	5	22	16	38				
16-17	23	9	0	8	23	17	40				
17-18	17	7	0	0	17	7	24				
18-19	11	24	1	0	12	24	36				
19-20	8	11	0	0	8	11	19				
20-21	11	7	0	0	11	7	18				
21-22	11	2	0	0	11	2	13				
TOTAL	251	188	2	20	253	208	461				

Anexo 4.6.5. Conteo peatonal día 5.

	UNIVERSIDAD CÉSAR VALLEJO											
PROYECTO:	Diseño de ví		•	AASHTO 93 pa	-	ı transitabilid	ad vehicular					
TESISTAS:	_	ez Delgado, <i>A</i>	Anabel Anai (ORCID: 0000-0 0: 0000-0002-4	0001-7858-876	52)						
	Guia de observacion 2, para conteo peatonal											
Dia VIERNES Ubicacion												
Cod Estac	ión	D-5		Sentido								
Estación				Fecha			23-Set-20					
				-								
HORAS DE	PEATON VI	JLNERABLE	PEATON NO	VULNERABLE	тот	TOTAL						
CONTROL	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	TOTAL					
05-06	2	11	0	0	2	11	13					
06-07	8	3	0	0	8	3	11					
07-08	13	19	0	0	13	19	32					
08-09	17	8	0	0	17	8	25					
09-10	9	19	0	0	9	19	28					
10-11	15	7	1	1	16	8	24					
11-12	10	23	1	3	11	26	37					
12-13	24	6	1	1	25	7	32					
13-14	29	18	0	1	29	19	48					
14-15	31	21	1	0	32	21	53					
15-16	39	29	1	3	40	32	72					
16-17	18	30	0	0	18	30	48					
17-18	12	9	1	0	13	9	22					
18-19	17	11	1	3	18	14	32					
19-20	20	18	1	0	21	18	39					
20-21	9	5	1	0	10	5	15					
21-22	2	6	0	0	2	6	8					
TOTAL	275	243	9	12	284	255	539					

Anexo 4.6.6. Conteo peatonal día 6.

	UNIVERSIDAD CÉSAR VALLEJO											
PROYECTO:	Diseño de ví		_	AASHTO 93 pa	-	ı transitabilid	ad vehicular					
TESISTAS:	_	ez Delgado, <i>A</i>	Anabel Anai (ORCID: 0000-0	0001-7858-876	52)						
	Guia de observacion 2, para conteo peatonal											
Dia SABADO Ubicacion												
Cod Estac	ión	D-6		Sentido								
Estación				Fecha			24-Set-20					
	Lotto III Colla 24-061-20											
HORAS DE	PEATON VI	JLNERABLE	PEATON NO	VULNERABLE	тот	TOTAL						
CONTROL	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	TOTAL					
05-06	3	2	0	0	3	2	5					
06-07	2	5	0	0	2	5	7					
07-08	11	9	0	0	11	9	20					
08-09	12	15	0	0	12	15	27					
09-10	10	13	2	0	12	13	25					
10-11	16	14	1	3	17	17	34					
11-12	19	19	1	0	20	19	39					
12-13	23	29	1	6	24	35	59					
13-14	29	23	1	0	30	23	53					
14-15	30	27	1	0	31	27	58					
15-16	9	28	3	0	12	28	40					
16-17	15	17	0	2	15	19	34					
17-18	14	19	1	2	15	21	36					
18-19	17	11	1	2	18	13	31					
19-20	12	10	0	0	12	10	22					
20-21	5	3	0	0	5	3	8					
21-22	3	6	0	0	3	6	9					
TOTAL	230	250	12	15	242	265	507					

Anexo 4.6.7. Conteo peatonal día 7.

UNIVERSIDAD CÉSAR VALLEJO												
PROYECTO:	Diseño de ví		metodología	•	-	ı transitabilid	ad vehicular					
			y peatonal de		-							
TESISTAS:	_	_	Anabel Anai (0 n Solis (ORCID			52)						
	Guia de observacion 2, para conteo peatonal											
Dia DOMINGO Ubicacion												
Cod Estac	ión	D-7		Sentido								
Estación				Fecha			25-Set-20					
							,					
HORAS DE	PEATON VI	JLNERABLE	PEATON NO	VULNERABLE	то	TOTAL						
CONTROL	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	TOTAL					
05-06	3	7	0	0	3	7	10					
06-07	11	11	0	0	11	11	22					
07-08	17	13	0	0	17	13	30					
08-09	11	19	0	1	11	20	31					
09-10	29	17	3	0	32	17	49					
10-11	20	11	0	3	20	14	34					
11-12	14	11	1	2	15	13	28					
12-13	13	19	1	0	14	19	33					
13-14	18	29	1	5	19	34	53					
14-15	8	20	4	2	12	22	34					
15-16	50	30	3	1	53	31	84					
16-17	23	15	0	4	23	19	42					
17-18	28	19	1	0	29	19	48					
18-19	3	16	0	0	3	16	19					
19-20	5	8	2	1	7	9	16					
20-21	11	11	0	0	11	11	22					
21-22	9	3	0	0	9	3	12					
TOTAL	273	259	16	19	289	278	567					

Anexo 4.7. Guía de observación 3, del levantamiento topográfico

	UNIV	ERSIDAD C	ÉSAR VAL	LEJO
PROYECTO:				O 93 para mejorar la or Alto Laredo, 2022
TESISTAS:	_	elgado, Anabel An da, Elkin Solis (OR	-	00-0001-7858-8762) 02-4594-0587)
	Guía de observació	on 3, para levanta	miento topo	gráfico
PUNTO	NORTE	ESTE	COTA	DESCRIPCION
1	9106977.490	725819.084	139.385	С
2	9106972.586	725813.412	139.343	С
3	9106966.035	725809.555	139.386	С
4	9106961.247	725817.696	139.104	С
5	9106964.262	725820.855	139.106	С
6	9106967.858	725824.210	139.101	С
7	9106954.825	725838.032	139.288	С
8	9106951.541	725835.162	139.091	С
9	9106948.070	725832.660	139.208	С
10	9106941.036	725851.950	139.178	С
11	9106934.102	725845.744	139.167	С
12	9106937.830	725849.388	139.124	С
13	9106918.230	725859.529	139.401	С
14	9106928.640	725868.992	139.504	С
15	9106923.686	725864.531	139.268	С
16	9106916.215	725881.288	139.281	С
17	9106907.817	725871.825	139.349	С
18	9106912.911	725878.135	139.167	С
19	9106894.311	725886.849	139.159	PA
20	9106891.210	725887.460	139.053	С
21	9106900.497	725896.785	139.132	С
22	9106896.133	725892.679	139.100	С
23	9106887.397	725912.843	139.378	C
24	9106883.115	725908.658	139.019	С
25	9106877.846	725904.403	138.999	С
26	9106872.101	725929.887	139.491	C
27	9106863.072	725921.390	139.515	C
28	9106868.286	725926.413	139.412	C
29	9106853.398	725933.321	139.395	C
30	9106853.401	725941.880	139.336	C

31	9106857.330	725946.020	139.328	С
32	9106850.106	725939.617	139.420	С
33	9106840.361	725964.699	139.434	С
34	9106834.718	725957.511	139.476	С
35	9106837.149	725961.495	139.401	С
36	9106833.621	725956.968	139.149	PA
37	9106826.027	725982.554	139.433	С
38	9106824.293	725981.638	139.427	Α
39	9106820.029	725977.667	139.446	Α
40	9106822.069	725979.952	139.453	Α
41	9106819.628	725977.404	139.577	С
42	9106818.265	725976.600	139.678	С
43	9106810.351	726003.133	139.606	TN
44	9106801.744	725996.071	139.842	TN
45	9106809.418	726002.421	139.603	TN
46	9106803.597	725997.580	139.590	TN
47	9106804.099	725997.896	139.350	AS
48	9106809.086	726001.941	139.357	AS
49	9106806.513	726000.017	139.428	AS
50	9106790.856	726014.993	139.322	AS
51	9106796.169	726018.780	139.349	AS
52	9106793.495	726016.930	139.360	AS
53	9106796.479	726019.024	139.509	TN
54	9106790.583	726014.884	139.457	TN
55	9106797.482	726019.909	139.499	TN
56	9106787.110	726012.465	139.436	TN
57	9106784.254	726038.247	139.286	TN
58	9106773.975	726029.693	139.221	TN
59	9106777.051	726032.189	139.350	TN
60	9106782.509	726037.079	139.358	TN
61	9106777.335	726032.512	139.236	AS
62	9106782.081	726036.694	139.264	AS
63	9106779.710	726034.651	139.307	AS
64	9106772.489	726049.547	139.232	AS
65	9106767.227	726046.440	139.207	AS
66	9106769.758	726048.147	139.273	AS
67	9106766.682	726046.227	139.284	TN
68	9106772.843	726050.143	139.491	TN
69	9106774.482	726050.989	139.432	TN
70	9106762.089	726042.168	139.280	TN
71	9106758.960	726045.497	139.252	PA
72	9106753.425	726049.587	139.090	PU
73	9106749.917	726054.546	139.084	PU
74	9106749.692	726047.435	139.086	PU
75	9106746.343	726052.226	139.083	PU

76	9106752.337	726059.217	138.995	TN
77	9106750.844	726064.526	138.939	TN
78	9106757.086	726067.354	138.851	TN
79	9106757.978	726067.908	138.847	AS
80	9106763.555	726070.912	138.787	AS
81	9106760.126	726069.229	138.858	AS
82	9106757.088	726055.574	139.000	BZ
83	9106986.061	725794.337	139.356	MZ
84	9106982.377	725781.734	139.094	MZ
85	9106978.107	725778.298	138.657	MZ
86	9106983.361	725785.869	138.998	С
87	9106984.529	725787.247	139.011	С
88	9106970.034	725799.247	139.564	С
89	9106973.422	725800.901	139.426	С
90	9106978.906	725804.139	139.489	С
91	9106964.808	725805.705	138.892	PA
92	9106988.839	725798.620	139.507	PA
93	9106985.049	725815.892	139.546	LI
94	9106985.137	725807.948	139.620	TN
95	9106985.551	725811.730	139.542	TN
96	9106992.689	725815.530	139.601	LI
97	9106995.340	725810.391	139.738	TN
98	9106999.843	725804.427	139.869	L
99	9107006.164	725816.868	139.845	TN
100	9107002.925	725820.920	139.868	LI
101	9107017.697	725819.950	140.286	PL
102	9107021.548	725828.359	140.203	TN
103	9107019.022	725832.173	140.260	LI
104	9107038.850	725836.081	141.080	PA
105	9107033.959	725844.274	140.629	LI
106	9107041.566	725835.188	141.078	L
107	9107037.396	725840.153	140.658	TN
108	9107056.193	725845.959	141.348	MZ
109	9107048.748	725856.709	141.321	LI
110	9107052.090	725851.602	141.265	TN
111	9107058.968	725857.877	141.532	TN
112	9107064.230	725851.749	141.567	MZ
113	9107059.735	725848.473	141.515	TN
114	9107009.592	725811.653	140.056	L
115	9107025.530	725823.381	140.502	L
116	9107054.830	725862.905	141.669	LI
117	9107074.661	725859.535	142.125	L
118	9107065.274	725870.409	142.110	LI
119	9107073.337	725861.094	142.064	PL
120	9107069.410	725866.659	141.974	TN

121	9107077.968	725879.760	142.487	l u
122	9107085.859	725867.883	142.532	
123	9107081.394	725874.680	142.345	TN
124	9107096.364	725875.638	142.868	MZ
125	9107087.139	725887.253	142.837	LI
126	9107090.294	725883.113	142.660	TN
127	9107096.526	725894.529	143.239	LI
128	9107105.819	725882.870	143.054	MZ
129	9107101.357	725879.328	142.942	TN
130	9107061.426	725841.142	141.618	PT
131	9107076.601	725834.762	141.643	L
132	9107071.884	725832.250	141.374	TN
133	9107068.089	725829.881	141.332	L
134	9107075.272	725820.115	141.311	L
135	9107079.456	725822.470	141.215	TN
136	9107081.587	725813.253	140.913	PL
137	9107082.989	725826.261	141.389	P
138	9107083.328	725809.330	140.906	L
139	9107086.667	725811.905	140.866	TN
140	9107090.978	725815.508	140.938	P
141	9107092.810	725796.539	140.565	L
142	9107101.479	725800.882	140.506	L
143	9107095.905	725799.163	140.538	TN
144	9107101.274	725784.796	140.564	L
145	9107109.288	725790.373	140.725	P
146	9107105.739	725787.135	140.380	TN
147	9107117.409	725779.126	140.555	L
148	9107109.698	725773.135	140.475	L
149	9107113.850	725776.261	140.305	TN
150	9107115.101	725770.810	140.648	R
151	9107116.875	725773.107	140.539	R
152	9107096.463	725894.743	143.263	LI
153	9107100.264	725890.306	143.041	TN
154	9107107.571	725887.365	143.166	PTRA
155	9107121.940	725895.043	143.522	L
156	9107112.110	725906.701	143.864	LI
157	9107116.142	725901.823	143.501	TN
158	9107126.020	725917.594	144.261	LI
159	9107130.464	725917.354	144.047	TN
160	9107128.520	725903.021	143.746	PL
161	9107141.688	725928.751	144.731	L
162	9107141.693	725928.756	144.731	LI
163	9107150.736	725916.486	144.575	L
164	3107130.730	, 23310.700	<u> </u>	
1114	9107146.263	725923.087	144.424	TN

166	9107155.838	725939.336	145.156	l u
167	9107165.203	725927.274	144.864	L
168	9107160.198	725934.041	144.980	TN
169	9107171.247	725935.263	144.979	PL
170	9107173.200	725950.898	145.558	LI
171	9107181.763	725939.480	145.540	
172	9107177.029	725946.265	145.450	TN
173	9107192.439	725951.183	145.673	PA
174	9107192.100	725966.450	145.957	LI
175	9107198.342	725951.173	145.769	MZ
176	9107194.931	725959.571	145.797	TN
177	9107201.053	725953.018	145.757	TN
178	9107204.256	725973.176	146.177	LI
179	9107206.267	725965.297	145.839	TN
180	9107208.155	725957.263	145.908	TN
181	9107213.068	725982.220	146.412	LI
182	9107220.539	725967.052	146.366	TN
183	9107217.519	725973.980	146.337	TN
184	9107233.362	725975.128	146.712	TN
185	9107230.544	725980.441	146.668	TN
186	9107222.924	725989.642	147.052	LI
187	9107240.780	725989.447	146.988	TN
188	9107228.237	725993.636	147.368	TN
189	9107246.028	725992.523	146.998	TN
190	9107248.556	725990.275	146.964	TN
191	9107231.191	725982.434	146.744	TN
192	9107235.538	725984.693	146.816	TN
193	9107101.057	725872.140	142.881	PT
194	9107113.843	725871.888	143.116	L
195	9107103.499	725866.111	142.907	L
196	9107108.685	725868.586	142.859	TN
197	9107112.501	725853.949	142.803	L
198	9107121.723	725861.338	143.073	L
199	9107117.150	725857.374	142.707	TN
200	9107129.835	725850.380	142.590	MZ
201	9107119.738	725844.382	142.393	L
202	9107125.305	725848.386	142.539	TN
203	9107132.666	725846.623	142.289	TN
204	9107122.077	725843.341	142.369	L L
205	9107122.077	725843.341	142.351	MZ
206	9107133.987	725838.881	142.285	TN
207	9107131.893	725838.881	142.285	L
208	9107120.703	725826.118	142.330	L
209	9107142.506	725823.194	142.137	TN
210		725823.194	141.588	PL
Z10	9107144.608	/23812./29	141.588	PL PL

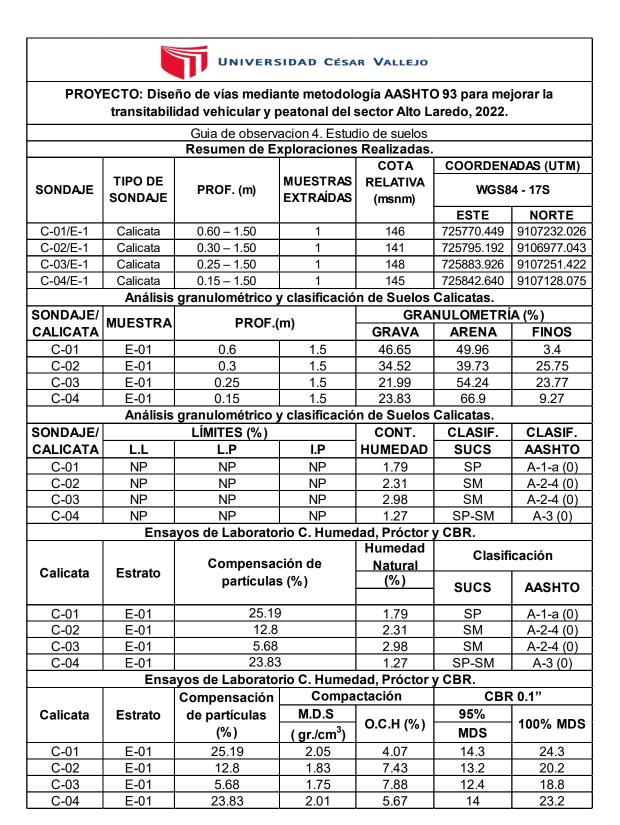
211	9107151.621	725820.876	142.046	L
212	9107137.517	725819.994	141.599	L
213	9107147.463	725816.404	141.818	TN
214	9107143.359	725811.965	141.601	P
215	9107159.222	725811.303	141.879	MZ
216	9107149.712	725810.433	141.404	MZ
217	9107154.454	725803.101	141.546	TN
218	9107153.528	725807.194	141.466	PU
219	9107157.062	725806.679	141.481	PU
220	9107157.931	725805.454	141.487	PU
221	9107154.467	725803.434	141.448	PU
222	9107294.924	725949.925	146.446	TN
223	9107286.037	725949.455	146.600	L
224	9107296.980	725952.226	146.679	LI
225	9107291.544	725957.021	146.658	LI
226	9107288.673	725953.037	146.484	TN .
227	9107280.610	725953.329	146.568	L
228	9107286.312	725961.629	146.747	LI
229	9107283.783	725957.590	146.479	TN
230	9107275.055	725957.201	146.433	MZ
231	9107278.305	725961.438	146.553	TN
232	9107276.080	725958.183	146.548	PL
233	9107280.958	725965.300	146.774	LI
234	9107263.187	725963.965	146.532	TN
235	9107268.801	725961.420	146.385	TN
236	9107273.429	725970.408	146.764	LI
237	9107262.695	725971.550	146.708	TN
238	9107271.414	725967.261	146.560	TN
239	9107266.210	725975.383	146.964	LI
240	9107264.286	725973.778	146.724	TN
241	9107258.093	725975.658	147.239	PU
242	9107256.159	725975.732	147.254	PU
243	9107256.444	725981.987	147.223	PU
244	9107258.278	725981.618	147.259	PU
245	9107243.488	725975.751	147.120	RESER
246	9107240.348	725972.266	147.124	RESER
247	9107247.529	725972.060	147.116	RESER
248	9107243.420	725976.614	147.120	V
249	9107239.558	725972.189	147.150	V
250	9107248.303	725972.161	147.100	V
251	9107244.453	725967.857	147.126	V
252	9107244.545	725968.659	147.134	RESER
253	9107237.579	725969.908	146.863	PA
254	9107257.703	725975.471	146.938	CA
255	9107256.200	725975.594	147.005	CA

256	9107257.198	725966.786	146.766	l ca
257	9107256.131	725967.227	146.688	CA
258	9107258.495	725972.378	146.894	CA
259	9107256.955	725972.544	146.889	CA
260	9107254.448	725960.189	146.525	CA
261	9107253.247	725960.866	146.491	CA
262	9107239.414	725960.515	146.558	TN
263	9107239.391	725948.321	146.369	TN
264	9107237.045	725933.135	145.770	TN
265	9107229.612	725961.817	146.569	TN
266	9107227.469	725950.855	146.252	TN
267	9107224.651	725935.068	145.907	TN
268	9107219.660	725961.947	146.329	TN
269	9107217.842	725951.248	146.163	TN
270	9107215.911	725940.200	145.886	TN
271	9107211.981	725958.345	146.083	TN
272	9107212.324	725951.083	146.072	TN
273	9107213.852	725939.485	145.760	TN
274	9107207.564	725950.550	145.983	TN
275	9107214.263	725936.040	145.699	AR
276	9107199.924	725950.413	145.790	MZ
277	9107198.269	725951.183	145.778	MZ
278	9107215.165	725927.826	145.622	AR
279	9107207.002	725932.842	145.584	TN
280	9107214.227	725932.523	145.670	TN
281	9107199.296	725932.327	145.618	L
282	9107213.121	725917.706	145.307	TN
283	9107207.299	725918.280	145.187	TN
284	9107198.787	725918.048	145.288	L
285	9107222.985	725917.359	145.585	TN
286	9107205.554	725902.762	144.953	TN
287	9107199.531	725911.164	145.249	PL
288	9107198.188	725902.712	144.982	MZ
289	9107211.458	725902.571	144.975	TN
290	9107222.786	725901.391	145.023	TN
291	9107204.386	725896.280	144.750	TN
292	9107214.203	725890.348	144.641	TN
293	9107232.018	725901.244	145.061	TN
294	9107222.627	725883.768	144.605	TN
295	9107232.357	725883.708	144.695	TN
296	9107232.337	725869.947	144.564	TN
297	9107231.887	725869.947	144.017	TN
298	9107213.472	725850.928	144.017	TN
299	9107223.802	725878.368	144.203	TN
300	9107215.909	725845.465	143.954	TN

301	9107216.644	725845.210	143.955	TN
302	9107198.482	725869.044	143.904	TN
303	9107191.096	725858.609	143.528	TN
304	9107205.889	725840.635	143.530	TN
305	9107208.681	725855.468	143.762	TN
306	9107200.979	725851.858	143.478	TN
307	9107185.126	725866.016	143.672	TN
308	9107195.647	725849.436	143.134	TN
309	9107263.067	725941.113	146.039	L
310	9107259.457	725943.817	146.111	TN
311	9107256.343	725947.694	146.197	TN
312	9107290.674	725944.307	146.494	MZ
313	9107285.421	725948.099	146.529	Q
314	9107286.221	725949.223	146.531	Q
315	9107298.951	725938.697	146.497	MZ
316	9107300.733	725939.000	146.509	MZ
317	9107294.877	725942.007	146.449	TN
318	9107303.685	725943.666	146.544	TN
319	9107305.583	725946.430	146.629	LI
320	9107304.982	725937.857	146.518	PL
321	9107310.630	725931.970	146.689	L
322	9107313.373	725935.802	146.533	TN
323	9107315.530	725939.198	146.777	LI
324	9107315.932	725928.209	146.680	L
325	9107320.236	725935.540	146.954	LI
326	9107294.943	725936.192	146.387	PT
327	9107279.629	725929.441	146.213	L
328	9107286.762	725923.133	146.092	L
329	9107283.307	725926.877	146.127	TN
330	9107276.091	725916.698	145.654	TN
331	9107279.678	725913.433	145.593	L
332	9107272.435	725919.753	145.652	L
333	9107276.920	725912.161	145.539	PL
334	9107268.446	725906.924	145.237	TN
335	9107265.185	725910.118	145.312	L
336	9107272.463	725903.802	145.339	L
337	9107265.773	725895.037	144.830	L
338	9107262.041	725897.842	144.875	TN
339	9107258.411	725900.951	145.003	P
340	9107255.546	725897.194	144.894	MZ
341	9107258.882	725888.397	144.449	PT
342	9107255.720	725890.463	144.450	TN
343	9107256.111	725882.376	144.339	MZ
344	9107326.779	725920.682	146.786	L
345	9107331.203	725927.711	146.827	LI

346	9107329.235	725924.643	146.698	TN
347	9107332.184	725916.912	146.777	MZ
348	9107332.736	725918.033	146.785	PL
349	9107336.576	725923.463	147.028	LI
350	9107335.019	725921.259	146.809	TN
351	9107340.376	725911.347	146.803	MZ
352	9107343.400	725915.123	146.866	TN
353	9107345.243	725917.657	147.075	LI
354	9107351.633	725903.167	146.875	
355	9107354.090	725907.130	146.954	TN
356	9107355.870	725909.490	147.055	LI
357	9107358.656	725912.630	147.282	ITO
358	9107358.864	725899.802	146.954	PL
359	9107365.336	725899.817	146.820	TN
360	9107367.216	725901.686	147.069	LI
361	9107362.230	725895.455	146.897	L
362	9107337.009	725928.324	147.172	ITO
363	9107335.485	725914.550	146.698	TN
364	9107327.864	725894.356	146.456	L
365	9107320.413	725900.791	146.156	L
366	9107323.661	725897.664	146.333	TN
367	9107313.154	725883.161	145.946	TN
368	9107319.819	725885.884	146.185	PL
369	9107309.492	725886.427	145.933	L
370	9107316.746	725880.028	146.031	L
371	9107302.249	725876.745	145.476	L
372	9107309.649	725870.522	145.626	L
373	9107305.849	725873.536	145.522	TN
374	9107296.580	725869.803	145.253	L
375	9107303.283	725862.551	145.431	L
376	9107299.957	725866.323	145.331	TN
377	9107302.229	725863.487	145.415	PL
378	9107288.335	725861.039	144.907	L
379	9107294.942	725853.748	145.103	L
380	9107292.083	725857.585	145.032	TN
381	9107288.319	725861.013	144.908	L
382	9107286.620	725844.848	144.730	L
383	9107280.161	725852.303	144.882	L
384	9107283.376	725848.427	144.620	TN
385	9107284.386	725843.994	144.601	PL
386	9107266.685	725837.738	144.233	MZ
387	9107274.019	725831.291	144.385	1012
388	9107270.547	725834.497	144.216	TN
389	9107263.703	725834.457	144.123	MZ
390	9107262.872	725827.087	144.068	TN

391	9107261.089	725831.781	144.113	TN
392	9107268.281	725826.821	144.177	PL
393	9107367.572	725891.574	146.721	L
394	9107370.260	725895.449	146.820	TN
395	9107372.132	725898.194	146.966	LI
396	9107373.016	725887.594	146.582	MZ
397	9107377.236	725894.142	146.800	LI
398	9107375.860	725891.440	146.708	TN
399	9107385.882	725888.191	146.621	LI
400	9107383.673	725885.320	146.615	TN
401	9107413.075	725858.535	146.130	MZ
402	9107412.310	725866.839	145.190	TN
403	9107413.518	725869.618	145.395	LI
404	9107397.319	725870.865	146.206	TN
405	9107400.886	725873.851	146.024	TN
406	9107403.453	725876.480	146.133	LI
407	9107381.164	725881.992	146.589	MZ
408	9107383.848	725885.824	146.599	TN
409	9107391.119	725880.303	146.337	TN
410	9107388.657	725876.633	146.396	P
411	9107385.855	725888.369	146.662	LI
412	9107393.130	725882.967	146.459	LI
413	9107376.486	725884.699	146.630	TN
414	9107371.801	725869.606	146.260	P
415	9107367.667	725873.181	146.291	TN
416	9107364.603	725876.193	146.485	L
417	9107362.202	725871.118	146.359	PL
418	9107364.945	725860.496	146.373	P
419	9107360.923	725863.894	146.334	TN
420	9107357.371	725866.651	146.456	L
421	9107357.802	725851.005	146.231	P
422	9107353.593	725853.882	146.177	TN
423	9107349.934	725856.815	146.201	L
424	9107342.616	725847.175	146.112	L
425	9107346.384	725843.720	146.059	TN
426	9107350.147	725840.792	146.065	P
427	9107339.147	725842.431	145.980	L
428	9107346.134	725835.475	145.783	P
429	9107342.950	725838.729	145.746	TN
430	9107342.930	725841.582	145.740	PL
431	9107335.763	725824.253	145.406	P
432	9107332.613	725827.837	145.354	TN
433	9107329.195	725831.345	145.379	L
434	9107324.049	725818.472	144.832	TN
435	9107324.049	725822.486	144.832	L
433	J 310/320.001	1 /23022.400	144.301	<u> </u>


436	9107327.045	725814.976	144.985	Р
437	9107319.278	725819.158	145.021	PL
438	9107312.104	725805.179	144.528	TN
439	9107308.313	725809.051	144.635	L
440	9107315.324	725802.378	144.610	P
441	9107301.392	725787.385	144.026	
442	9107299.313	725790.967	143.964	TN
443	9107295.886	725795.795	144.045	L
444	9107288.279	725773.647	143.655	L
445	9107285.737	725776.835	143.443	TN
446	9107282.406	725781.418	143.747	L
447	9107275.349	725765.214	143.056	TN
448	9107277.842	725762.476	143.157	L
449	9107271.089	725769.492	143.462	MZ
450	9107270.455	725754.569	142.973	MZ
451	9107275.741	725771.087	143.224	PL1
452	9107294.389	725793.923	143.903	PL1
453	9107263.133	725760.171	142.873	PT
454	9107266.366	725755.304	142.679	TN
455	9107260.726	725751.299	142.448	TN
456	9107268.809	725770.376	143.340	MZ
457	9107263.957	725769.563	143.164	TN
458	9107258.206	725769.451	142.770	TN
459	9107266.394	725778.046	143.412	PT
460	9107261.659	725780.002	143.142	TN
461	9107255.206	725779.994	142.858	TN
462	9107267.795	725780.279	143.479	L
463	9107266.122	725796.762	143.718	L
464	9107258.748	725795.032	143.650	TN
465	9107253.024	725793.900	143.511	TN
466	9107265.171	725806.098	143.965	L
467	9107258.255	725805.044	143.784	TN
468	9107254.084	725804.796	143.796	TN
469	9107262.500	725810.923	144.002	PL
470	9107256.413	725819.404	143.989	TN
471	9107249.164	725818.699	143.973	TN
472	9107250.161	725824.835	143.967	TN
473	9107257.304	725826.519	143.960	TN
474	9107245.138	725824.187	143.935	TN
475	9107258.461	725833.852	144.000	TN
476	9107251.890	725832.058	143.804	TN
477	9107246.779	725831.166	143.875	TN
478	9107261.100	725843.813	144.228	MZ
479	9107249.016	725842.992	143.945	TN
480	9107254.197	725842.995	143.883	TN

481	9107259.017	725843.097	143.982	PL
482	9107250.028	725858.553	143.742	TN
483	9107253.738	725858.114	143.912	TN
484	9107258.916	725858.825	144.253	L
485	9107258.354	725865.609	144.216	Р
486	9107252.499	725864.913	143.796	TN
487	9107249.458	725864.744	143.772	TN
488	9107247.738	725872.691	143.875	TN
489	9107251.203	725872.877	143.919	TN
490	9107257.307	725873.613	144.174	L
491	9107253.510	725875.622	143.975	PTRANS
492	9107246.806	725879.318	143.990	TN
493	9107250.333	725880.121	143.992	TN
494	9107249.480	725888.183	144.300	TN
495	9107247.063	725895.205	144.485	TN
496	9107244.794	725887.415	144.204	TN
497	9107252.732	725898.478	144.922	MZ
498	9107243.159	725896.309	144.475	TN
499	9107246.695	725896.780	144.506	TN
500	9107250.289	725908.467	144.942	Р
501	9107242.392	725906.435	144.606	TN
502	9107245.085	725907.263	144.657	TN
503	9107247.433	725920.185	145.059	MZ
504	9107246.573	725916.641	144.971	MZ
505	9107242.134	725920.341	145.138	TN
506	9107244.464	725920.317	145.030	TN
507	9107246.414	725927.492	145.284	TN
508	9107243.557	725928.592	145.341	TN
509	9107244.131	725933.410	145.565	CA
510	9107242.398	725934.154	145.671	CA
511	9107243.429	725933.735	145.290	CA
512	9107241.022	725925.560	145.262	CA
513	9107240.424	725925.573	144.928	CA
514	9107239.558	725926.292	145.268	CA
515	9107240.725	725913.993	144.916	CA
516	9107239.069	725913.848	144.860	CA
517	9107240.002	725913.828	144.543	CA
518	9107240.948	725901.853	144.336	AR
519	9107241.650	725897.761	144.426	AR
520	9107240.970	725889.608	143.906	CA
521	9107239.895	725889.563	144.193	CA
522	9107241.833	725889.314	144.410	CA
523	9107241.851	725875.000	144.086	CA
524	9107241.081	725874.736	143.576	CA
525	9107239.709	725874.978	143.872	CA

526	9107232.237	725864.666	143.422	CA
527	9107232.238	725864.664	143.421	PA
528	9107241.599	725859.827	143.444	PA
529	9107239.959	725859.966	143.477	PA
530	9107236.632	725865.252	143.637	PA
531	9107240.768	725859.967	143.127	CA
532	9107239.943	725859.961	143.482	CA
533	9107239.099	725855.422	142.983	CA
534	9107239.883	725854.825	143.385	CA
535	9107238.402	725856.065	143.368	CA
536	9107234.562	725851.418	142.878	CA
537	9107235.663	725850.680	143.354	CA
538	9107233.828	725851.985	143.091	CA
539	9107230.070	725846.520	143.044	CA
540	9107228.604	725847.760	142.984	CA
541	9107229.327	725847.318	142.709	CA
542	9107223.524	725841.555	142.960	CA
543	9107222.530	725841.951	142.564	CA
544	9107222.008	725842.306	142.916	CA
545	9107216.063	725835.748	142.873	CA
546	9107215.534	725836.794	142.600	CA
547	9107215.048	725837.695	142.818	CA
548	9107218.924	725833.851	143.289	MZ
549	9107224.957	725834.093	143.415	TN
550	9107232.467	725834.388	143.744	TN
551	9107226.201	725836.860	143.389	AR
552	9107229.805	725843.167	143.736	TN
553	9107220.679	725823.864	143.405	MZ
554	9107228.600	725825.367	143.568	TN
555	9107233.232	725826.648	143.668	TN
556	9107222.605	725806.613	143.226	L
557	9107234.804	725811.113	143.334	TN
558	9107229.104	725809.736	143.224	TN
559	9107224.435	725793.149	143.098	L
560	9107230.817	725796.280	143.193	TN
561	9107230.815	725796.331	143.194	TN
562	9107236.368	725798.671	143.424	TN
563	9107238.011	725789.443	143.057	TN
564	9107229.764	725786.922	142.991	TN
565	9107227.639	725768.959	142.702	L
566	9107234.729	725771.494	142.694	TN
567	9107241.008	725771.763	142.721	TN
568	9107229.175	725758.843	142.335	L
569	9107236.449	725760.441	142.416	TN
570	9107242.571	725760.089	142.479	TN

571	9107230.763	725748.571	142.260	L
572	9107243.688	725750.552	142.476	TN
573	9107237.674	725749.878	142.232	TN
574	9107234.090	725730.156	141.799	L
575	9107244.808	725733.744	142.174	TN
576	9107239.536	725731.823	141.845	TN
577	9107244.590	725725.351	141.499	TN
578	9107237.200	725713.481	141.180	L
579	9107238.679	725715.536	141.125	TN
580	9107251.404	725742.758	141.751	TN
581	9107248.993	725762.126	142.510	TN
582	9107249.157	725752.435	142.142	TN
583	9107249.030	725780.605	143.025	TN
584	9107236.173	725782.584	143.022	AR
585	9107235.383	725786.701	143.068	AR
586	9107255.049	725771.029	142.801	AR
587	9107234.678	725790.642	143.181	AR
588	9107233.887	725784.769	143.003	AR
589	9107233.322	725808.615	143.139	AR
590	9107234.108	725810.564	143.230	AR
591	9107226.684	725806.876	143.039	AR
592	9107231.883	725806.470	143.105	AR
593	9107228.376	725805.566	143.054	AR
594	9107232.654	725809.479	143.167	AR
595	9107227.770	725812.812	143.278	AR
596	9107231.561	725815.656	143.238	AR
597	9107112.693	725765.840	140.543	CA
598	9107114.740	725763.524	140.406	TN
599	9107117.250	725761.704	140.170	MZ
600	9107113.101	725764.849	140.672	PL

Anexo 4.8. Guía de observación 4, del estudio de mecánica de suelos

Anexo 6. Validez y confiabilidad de los instrumentos.

Anexo 6.1. Validez y confiabilidad de guía de observación 2.

Anexo 6.1.1. Matriz de evaluación de experto 1.

MATRIZ DE EVALUACION DE EXPERTOS					
Título de la tesis:	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022				
Línea de investigación:	Construcción sostenible - Diseño de infraestructura vial				
Nombres y Apellidos del experto:	Ing. Cesar Augusto Abad Vela				
CIP:	N° 180467				
El instrumento de medición pertenece a la variable:	Guía de observación 2, del estudio peatonal				

Mediante la matriz de evaluación de expertos, Ud. Tiene la facultad de evaluar cada una de las preguntas marcando con una "X" en las columnas de SÍ o NO, Asimismo, le incitamos e la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

ITEM	DDECUNTAS	APRECIA		OBSERVACIONES
I I EIVI	PREGUNTAS	SI NO		
1	¿El instrumento de medición presenta el diseño adecuado?	Х		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	Х		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	Х		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	Х		
6	¿Cada uno de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	Х		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	Х		
Sugerencias:				

9	y sencillo de manera que se pueda obtener los datos requeridos?	Х		
Sugerencias:				
Firma del experto:	Cesar Augusto Abad Vela INGONIERO CIVIL R. CIP. Nº 180467			

Anexo 6.1.2. Matriz de evaluación de experto 2.

	MATRIZ DE EVALUACION DE EXPERTOS				
Título de la tesis:	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022				
Línea de investigación: Nombres y Apellidos	Construcción sostenible - Diseño de infraestructura vial Ing. Josualdo Carlos Villar Quiroz				
del experto: CIP:					
El instrumento de medición pertenece a la variable:	Guía de observación 2, del estudio peatonal				

Mediante la matriz de evaluación de expertos, Ud. Tiene la facultad de evaluar cada una de las preguntas marcando con una "X" en las columnas de SÍ o NO, Asimismo, le incitamos e la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

ITEM	DDECUNTAR	APRECIA		OBSERVACIONES
ITEM	PREGUNTAS	SI	NO	
1	¿El instrumento de medición presenta el diseño adecuado?	Х		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	Х		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	X		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	Х		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	X		
6	¿Cada uno de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	X		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	Х		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	X		

Sugerencias:

Firma del experto:

Ing. Josualdo Carlos Villar Quiroz CIP: 106997

Anexo 6.1.3. Validez del instrumento de la guía de observación 2.

			.						
		INU T	VERSIDAD	CÉSAR VA	LLEJO				
PROYECTO:	Diseño de	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad ve hicular y peatonal del sector Alto Laredo, 2022							
TESISTAS:	_	Domínguez Delgado, Anabel Anai (ORCID: 0000-0001-7858-8762) Santillan Aranda, Elkin Solis (ORCID: 0000-0002-4594-0587)							
•		-	e observación :						
Dia				Ubicacion					
Cod Esta	ción			Sentido					
Estación				Fecha					
				1 55114					
HORAS DE	PEATON V	PEATON VULNERABLE		PEATON NO VULNERABLE		TAL	TOTAL		
CONTROL	ENTRADA	SALIDA	ENTRADA	SALIDA	ENTRADA	SALIDA	IOIAL		
05-06									
06-07									
07-08									
08-09									
09-10									
10-11									
11-12									
12-13									
13-14									
14-15									
15-16									
16-17									
17-18									
18-19									
19-20									
20-21									
21-22									
TOTAL									

VALIDACIÓN DEL INSTRUMENTO					
NOMBRES Y APELLIDOS	FIRMA/CIP				
Especialista 1: Cesar Augusto Abad Vela	Cesar Augusto Abad Vela INGENIERO CIVIL R. CIP. Nº 180467				
Especialista 2: Josualdo Carlos Villar Quiroz	Ing. Josualdo Carlos Villar Quiroz CIP: 106997				

Anexo 6.2. Validez y confiabilidad de guía de observación 3.

Anexo 6.2.1. Matriz de evaluación de experto 1.

	MATRIZ DE EVALUACION DE EXPERTOS				
Título de la tesis:	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022				
Línea de investigación:	Construcción sostenible - Diseño de infraestructura vial				
Nombres y Apellidos del experto:	Ing. Cesar Augusto Abad Vela				
CIP:	N° 180467				
El instrumento de medición pertenece a la variable:	Guía de observación 3, del levantamiento topográfico				

Mediante la matriz de evaluación de expertos, Ud. Tiene la facultad de evaluar cada una de las preguntas marcando con una "X" en las columnas de SÍ o NO, Asimismo, le incitamos e la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

ITEM	DDECUNTAG	APRECIA		OBSERVACIONES
ITEM			NO	
1	¿El instrumento de medición presenta el diseño adecuado?	Х		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	Х		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	Х		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	Х		
6	¿Cada uno de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	X		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	Х		
Sugerencias:				

7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	Х		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	Х		
Sugerencias:				
Firma del experto:	Cesar Augusto Abad Vela INGINIERO CIVIL R. CIP. Nº 180467			

Anexo 6.2.2. Matriz de evaluación de experto 2.

	MATRIZ DE EVALUACION DE EXPERTOS				
Título de la tesis: Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilida vehicular y peatonal del sector Alto Laredo, 2022					
Línea de investigación:	nstrucción sostenible - Diseño de infraestructura vial				
Nombres y Apellidos del experto:	ng. Josualdo Carlos Villar Quiroz				
CIP:	N° 180467				
El instrumento de medición pertenece a la variable:	de				

Mediante la matriz de evaluación de expertos, Ud. Tiene la facultad de evaluar cada una de las preguntas marcando con una "X" en las columnas de SÍ o NO, Asimismo, le incitamos e la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

ITEM	DDECUNTAR	APRECIA		OBSERVACIONES
ITEM	M PREGUNTAS			
1	¿El instrumento de medición presenta el diseño adecuado?	X		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?			
4	¿El instrumento de recolección de datos 4 facilitará el logro de los objetivos de la X investigación?			
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?			
6	¿Cada uno de los ítems del instrumento de medición se relaciona con cada uno de los X elementos de los indicadores?			
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	X		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	X		
¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los X datos requeridos?				

Sugerencias:

Firma del experto:

· Outer

Ing. Josualdo Carlos Villar Quiroz CIP: 106997

Anexo 6.2.3. Validez del instrumento de la guía de observación 3.

	UNIV	/ERSIDAD C	ésar V al	LEJO	
PROYECTO:	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022				
TESISTAS:		. Domínguez Delgado, Anabel Anai (ORCID: 0000-0001-7858-8762) .Santillan Aranda, Elkin Solis (ORCID: 0000-0002-4594-0587)			
	Guía de observacion	ón 3, para levanta	miento topo	gráfico	
PUNTO	NORTE	ESTE	COTA	DESCRIPCION	
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

VALIDACIÓN DEL INSTRUMENTO				
NOMBRES Y APELLIDOS	FIRMA/CIP			
Especialista 1: Cesar Augusto Abad Vela	Cesar Augusto Abad Vela INGENIERO CIVIL R. CIP. Nº 180467			
Especialista 2: Josualdo Carlos Villar Quiroz	Ing. Josualdo Carlos Villar Quiroz CIP: 106997			

Anexo 6.3. Validez y confiabilidad de guía de observación 4.

Anexo 6.3.1. Matriz de evaluación de experto 1.

	MATRIZ DE EVALUACION DE EXPERTOS				
Título de la tesis:	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022				
Línea de investigación:	nstrucción sostenible - Diseño de infraestructura vial				
Nombres y Apellidos del experto:	ng. Cesar Augusto Abad Vela				
CIP:	N° 180467				
El instrumento de medición pertenece a la variable:	Guía de observación 4, del estudio de suelos				

Mediante la matriz de evaluación de expertos, Ud. Tiene la facultad de evaluar cada una de las preguntas marcando con una "X" en las columnas de SÍ o NO, Asimismo, le incitamos e la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

ITEM	PREGUNTAS		ECIA	OBSERVACIONES
ITEM			NO	
1	¿El instrumento de medición presenta el diseño adecuado?	X		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	X		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	Х		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	X		
6	¿Cada uno de los ítems del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X		
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Χ		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	Х		
9 Sugarancias:	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	Х		

7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х	
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	Х	
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	X	
Sugerencias:			
Firma del experto:			
	Cesar Augusto Abad Vela INGENIERO CIVIL R. CIP. Nº 180467		

Anexo 6.3.2. Matriz de evaluación de experto 2.

	MATRIZ DE EVALUACION DE EXPERTOS				
Título de la tesis:	Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022				
Línea de investigación:	onstrucción sostenible - Diseño de infraestructura vial				
Nombres y Apellidos del experto:	Ing. Josualdo Carlos Villar Quiroz				
CIP:					
El instrumento de medición pertenece a la variable:	Guía de observación 4, del estudio de suelos				

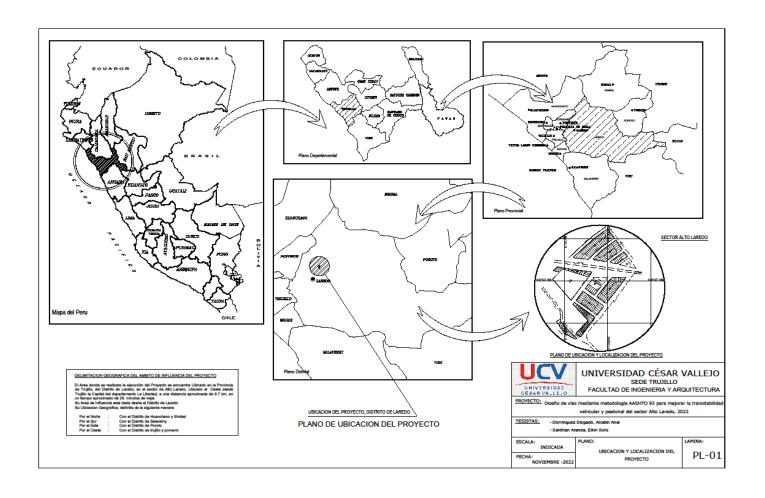
Mediante la matriz de evaluación de expertos, Ud. Tiene la facultad de evaluar cada una de las preguntas marcando con una "X" en las columnas de SÍ o NO, Asimismo, le incitamos e la corrección de los ítems, indicando sus observaciones y/o sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

ITEM	PREGUNTAS		ECIA	OBSERVACIONES
ITEM			NO	
1	¿El instrumento de medición presenta el diseño adecuado?	X		
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	X		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	Х		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	Х		
6	¿Cada uno de los ítems del instrumento de medición se relaciona con cada uno de los X elementos de los indicadores?			
7	¿El diseño del instrumento de medición facilitará el análisis y procesamiento de datos?	Х		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	Х		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	X		

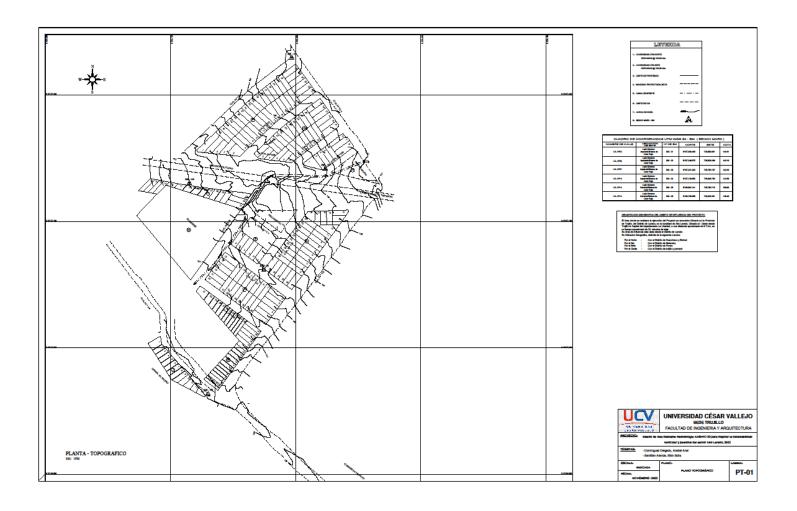
C.110	IOTOR	MAINO:
OUU	ICI	ıcias:

Firma del experto:

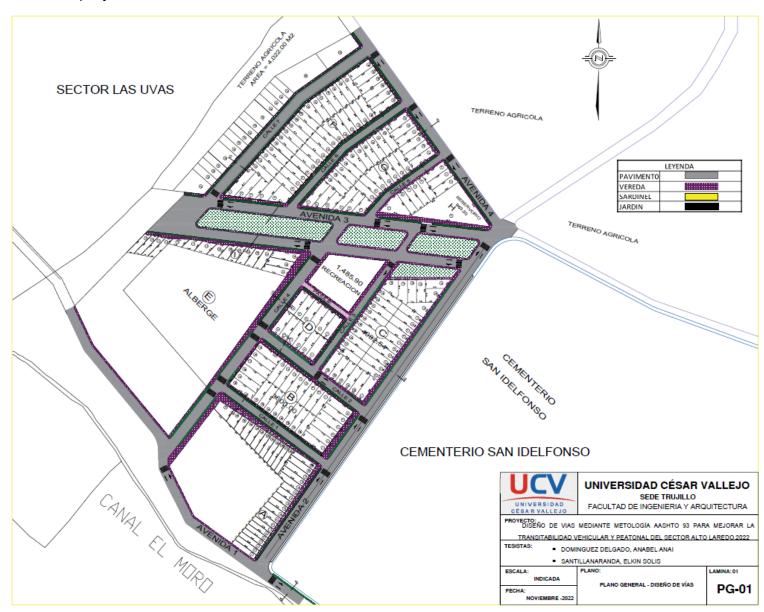
Ing. Josualdo Carlos Villar Quiroz CIP: 106997

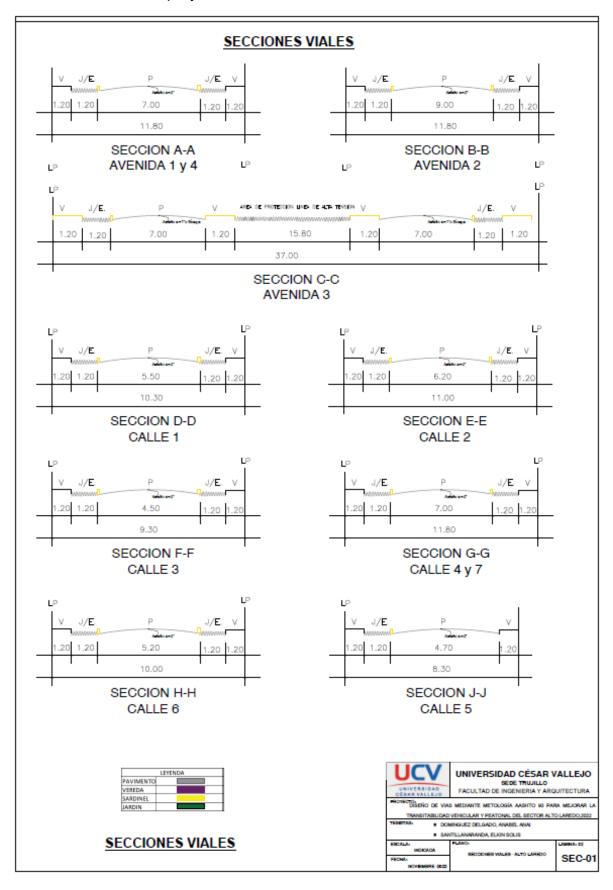

Anexo 6.3.3. Validez del instrumento de la guía de observación 4.

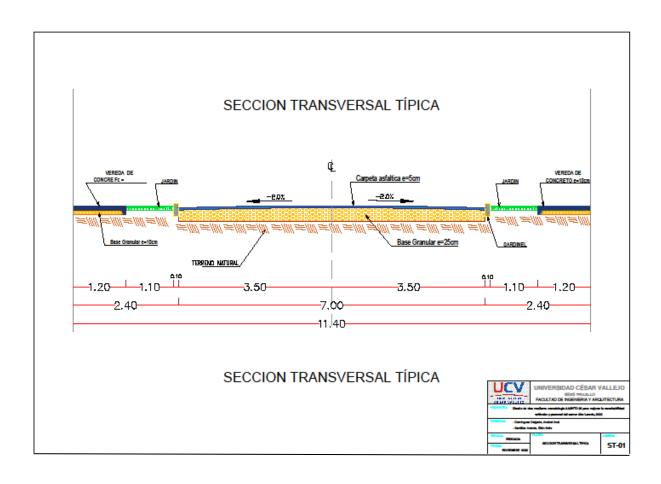
UNIVERSIDAD CÉSAR VALLEJO						
PROY	PROYECTO: Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022.					
		Guia de observa	cion 4. Estu	dio de suelos	3	
		Resumen de Ex	xploraciones	Realizadas.		
				COTA	COORDEN	ADAS (UTM)
SONDAJE	TIPO DE SONDAJE	PROF. (m)	MUESTRAS EXTRAÍDAS	RELATIVA (msnm)	WGS8	4 - 17S
					ESTE	NORTE
C-01/E-1						
	Análisis	granulométrico	/ clasificació			
SONDAJE/	MUESTRA	PROF.(m)	GRA	NULOMETRÍ	A (%)
CALICATA	MOLOTIKA	1 101 1	,	GRAVA	ARENA	FINOS
C-01	E-01					
	Análisis	granulométrico y	/ clasificació			
SONDAJE/		LÍMITES (%)		CONT.	CLASIF.	CLASIF.
CALICATA	L.L	L.P	I.P	HUMEDAD	SUCS	AASHTO
C-01						
Ensayos de Laboratorio C. Humedad, Próctor y CBR.						
Calicata	Estrato	Compensa	ción de	Humedad Natural	Clasifi	cación
Calicata	LSuato	partículas	s (%)	(%)	sucs	AASHTO
C-01	E-01					
-				-	-	
Ensayos de Laboratorio C. Humedad, Próctor y CBR.						
		Compensación	Compa	ctación	CBF	R 0.1"
Calicata	Estrato	de partículas	M.D.S	O.C.H (%)	95%	100% MDS
		(%)	(gr./cm ³)	U.U.П (%)	MDS	100% MIDS
C-01	E-01		,			

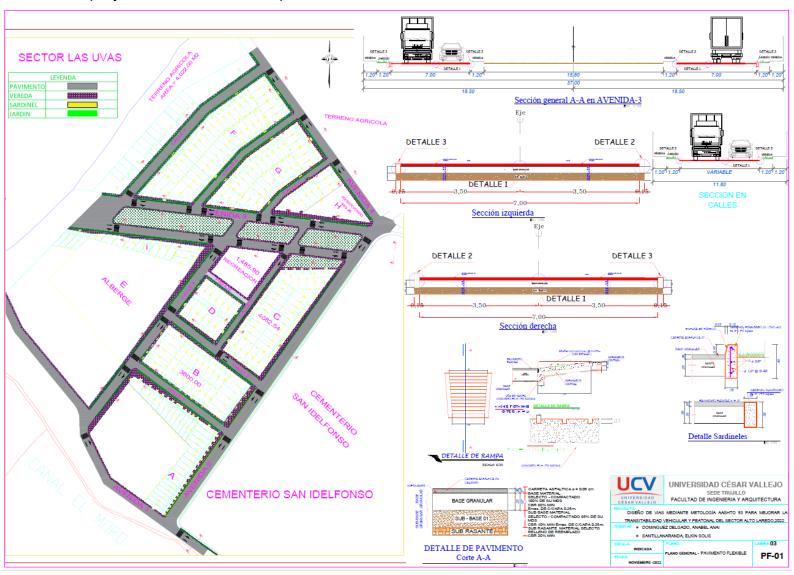

VALIDACIÓN DEL INSTRUMENTO			
NOMBRES Y APELLIDOS	FIRMA/CIP		
Especialista 1: Cesar Augusto Abad Vela	César Augusto Abad Vela INGENIERO CIVIL R. CIP. Nº 180467		
Especialista 2: Josualdo Carlos Villar Quiroz	Ing. Josualdo Carlos Villar Quiroz CIP: 106997		

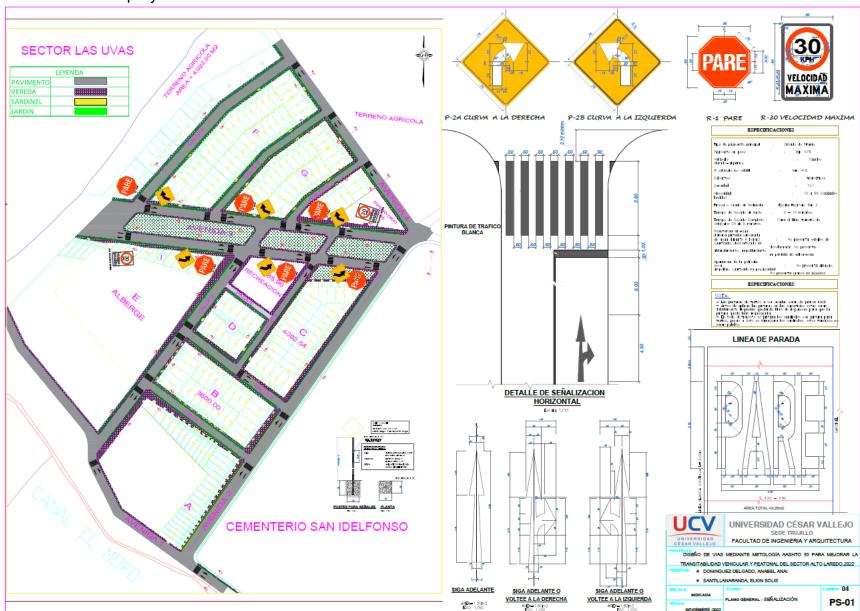
Anexo 7. Planos


Anexo 7.1. Plano de Ubicación y localización


Anexo 7.2. Plano Topográfico


Anexo 7.3. Plano proyectado del Diseño de Vías


Anexo 7.4. Plano proyectado del Diseño de secciones viales


Anexo 7.5. Sección transversal típica

Anexo 7.6. Plano proyectado del Diseño del pavimento flexible

Anexo 7.7. Plano proyectado de señalización

Anexo 8. Fotos y documentos

Anexo 8.1. Fotos en la zona de estudio.

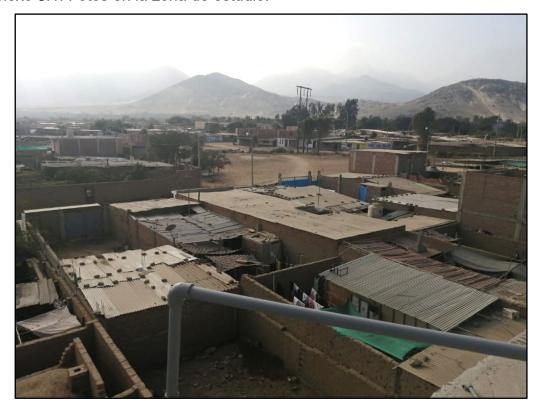


Figura 15. Sector alto Laredo, vista panorámica

Figura 16. Sector alto Laredo, campo deportivo

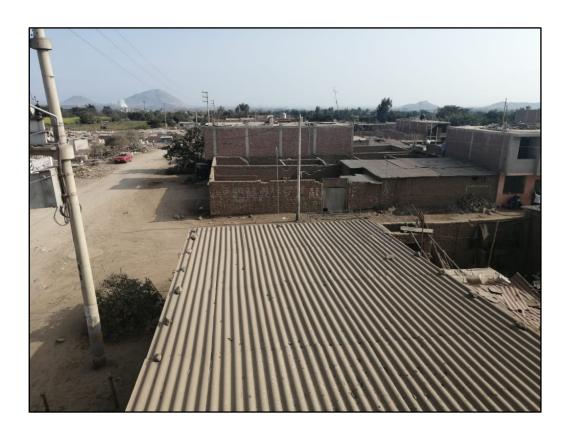


Figura 15. Sector alto Laredo, Av. Principal.

Figura 16. Campo de futbol

Figura 17. Vía en mal estado

Figura 18. Sector colindante con el cementerio

Figura 19. Local comunal, sector Alto Laredo

Figura 20. Calle 2, sector Alto Laredo

Figura 21. Excavación de para estudio de suelos

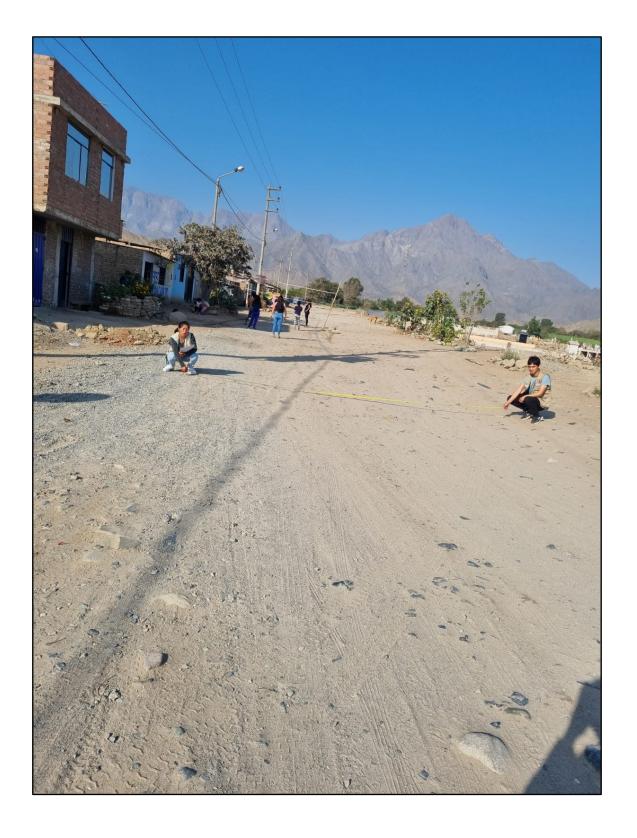


Figura 22. Medición de las calles y avenidas, sector Alto Laredo

Anexo 8.2. Documentos

Anexo 8.2.1. Informe técnico del estudio de suelos

Figura 23. Informe técnico del estudio de suelos

Figura 24. Generalidades del estudio de suelos para el diseño de vías

Figura 25. Localización de la zona de estudio y ubicación de calicatas

GRUPO "B&F"

RUC: 20606784334

Ingenieros Contratistas E.I.R.L.

IV. PERFIL ESTRATIGRÁFICOS Y ENSAYO DE CAMPO

De acuerdo con la exploración efectuada, la estratigrafía presenta las siguientes características:

E-01 / 0.60 - 1.50 m. Estrato compuesto por la mezda de Arenas pobremente gradadas con gravas de color beige claro y material que pasa el 3.40 % el tamiz N°200. Clasificado en el sistema "SUCS", como un suelo "SP" y de acuerdo con la clasificación "AASHTO", como un suelo "A-1-a (0)". Con una humedad natural de 1.79 %.

▲ CALICATA N°02

E-01 / 0.30 - 1.50 m. Estrato compuesto por la mezcla de arena limosa con gravas y material que pasa el 25.75 % el tamiz N°200, Clasificado en el sistema "SUCS", como un suelo "SM" y de acuerdo con la clasificación "AASHTO", como un suelo "A-2-4(0)". Con una humedad natural de 2.31%.

+ CALICATA N°03

E-01 / 0.25 – 1.50 m. Estrato compuesto por arenas limosas, mezcla de arena - limo y material que pasa el 23.77 % el tamiz Nº200. Clasificado en el sistema "SUCS", como un suelo "SM" y de acuerdo con la clasificación "AASHTO", como un suelo

CALICATA Nº04

E-01 / 0.15 - 1.50 m. Estrato compuesto por la mezcla de Arenas pobremente gradadas y limos, con material que pasa el 9.27 % el tamiz N°200. Clasificado en el sistema "SUCS", como un suelo "SP-SM" y de acuerdo con la clasificación "AASHTO", como un suelo "A-3 (0)". Con una humedad natural de 1.27%.

Tabla 4. Análisis granulométrico y clasificación de Suelos Calicatas.

SONDAJE/ CALICATA	MUESTRA	PROF.(m)		GRANULOMETRÍA (%)			LIMITES (%)			CONT. HUMEDAD	CLASIF.	CLASIF.
				GRAVA	ARENA	FINOS	LL	L.P	LP	(%)	SUCS	AASHIO
C-01	E-01	0.60	1.50	46.65	49.96	3.40	NP	NP	NP	1.79	SP	A-1-a (0)
C-02	E-01	0.30	1.50	34.52	39.73	25.75	NP	NP	NP	2.31	SM	A-2-4 (0)
C-03	E-01	0.25	1.50	21.99	54.24	23.77	NP	NP	NP	2.98	SM	A-2-4 (0)
C-04	E-01	0.15	1.50	23.83	66.90	9.27	NP	NP	NP	1.27	SP-SM	A-3 (0)

Fuente: Reporte de Laboratorio/Departamento de Ciencia de Materiales/Grupo B&F Ingenieros

Tabla 5. Ensayos de Laboratorio C. Humedad, Próctor y CBR.

		COMPENSACIÓN	HUMEDAD	CLASIFICACIÓN		COMPACTACIÓN		CBR 0.1"	
CALICATA	ESTRATO	DE PARTÍCULAS (%)	NATURAL (%)	sucs	AASHTO	M.D.S (gr./cm³)	O.C.H (%)	95% MDS	100% MDS
C-01	E-01	25.19	1.79	SP	A-1-a (0)	2.05	4.07	14.3	24.3
C-02	E-01	12.80	2.31	SM	A-2-4 (0)	1.83	7.43	13.2	20.2
C-03	E-01	5.68	2.98	SM	A-2-4 (0)	1.75	7.88	12.4	18.8
C-04	E-01	23.83	1.27	SP-SM	A-3 (0)	2.01	5.67	14.0	23.2

- GRUPO B&F Ingenieros Contratistas
- grupobyfingenieros
 grupobfingenieros@gmail.com

Figura 26. Perfil estratigráficos y ensayo de campo en 4 calicatas

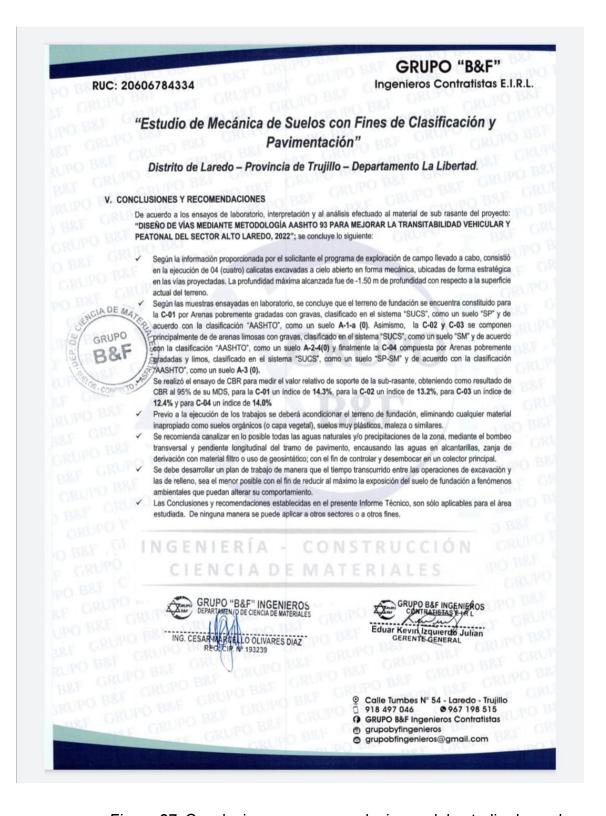


Figura 27. Conclusiones y recomendaciones del estudio de suelos.

Anexo 8.2.2. Resultados de ensayos de laboratorio del estudio de suelos

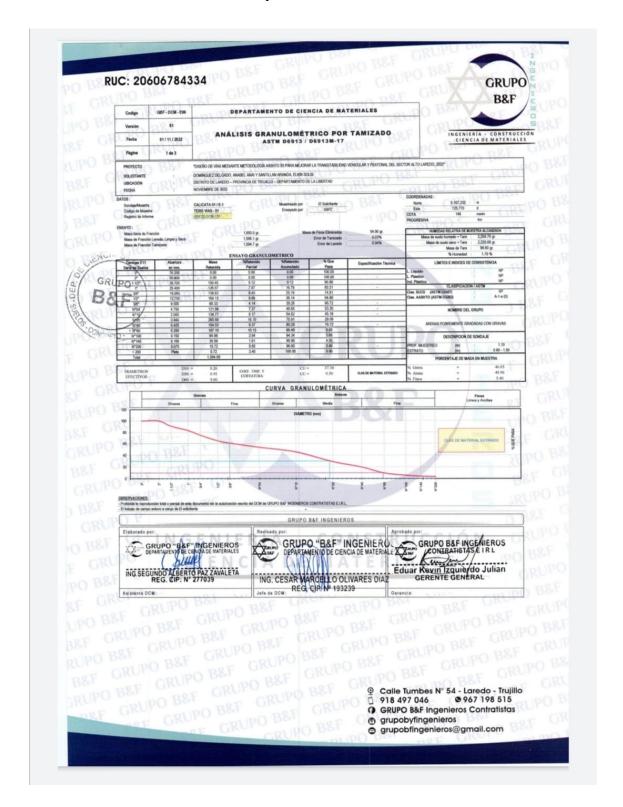


Figura 28. Análisis granulométrico por tamizado

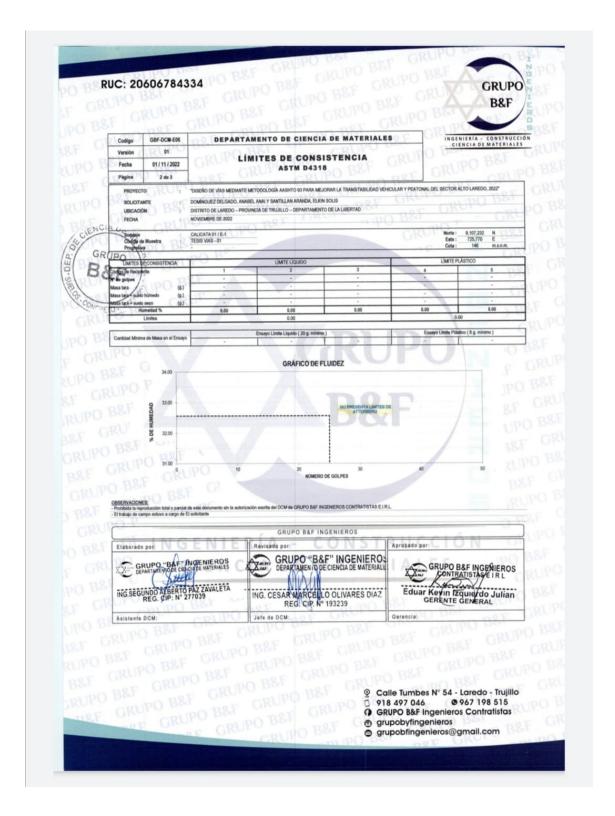


Figura 29. Límites de consistencia

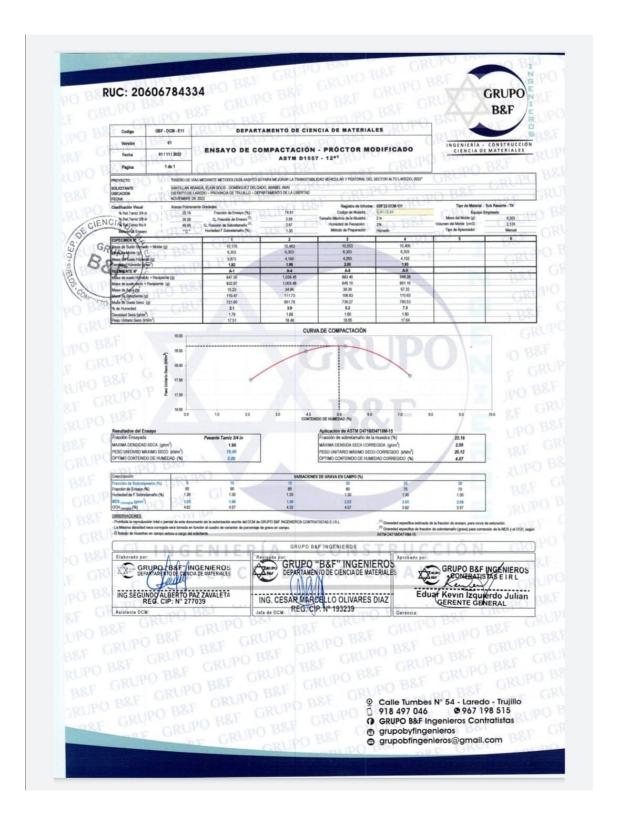


Figura 30. Ensayo de compactación

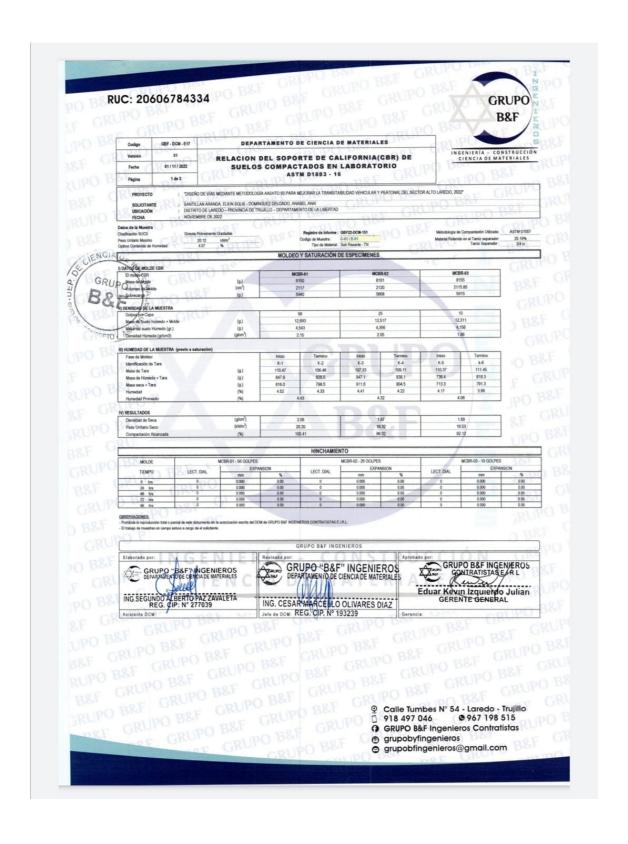


Figura 31. Relación del soporte de california (CBR)

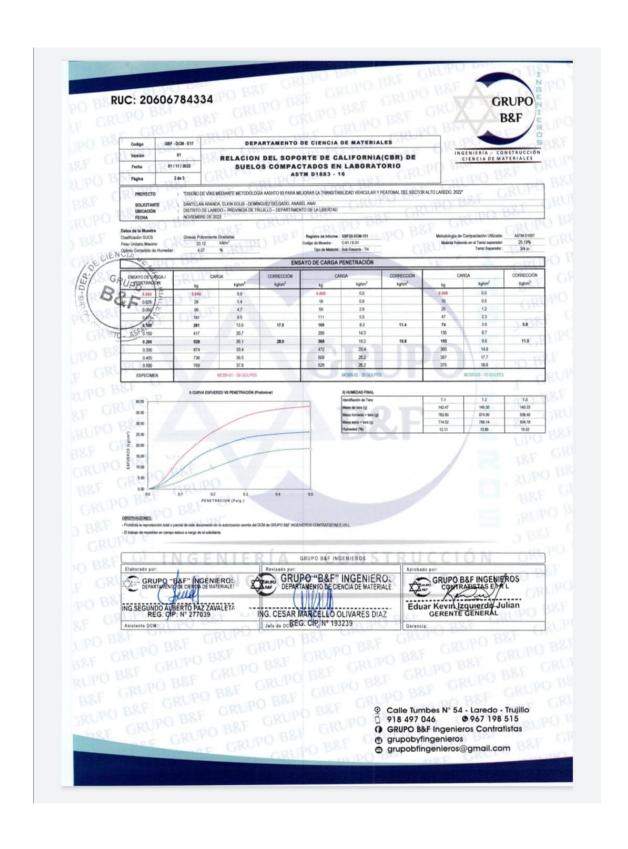


Figura 32. Relación del soporte de california (CBR) de suelos compactados

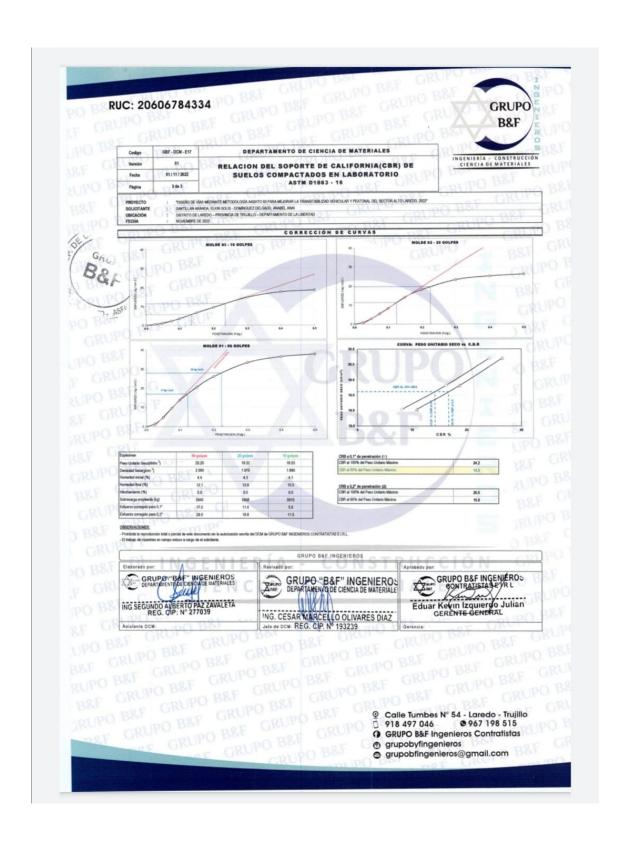


Figura 33. Relación del soporte de california (CBR) corrección de curvas

Anexo 8.2.3. Estudio topográfico

Estudio Topográfico MEJORAMIENTO DEL SERVICIO DE SANEAMIENTO BÁSICO EN EL SISTEMA DE DESAGÜE DEL SECTOR ALTO LAREDO, DEL DISTRITO DE LAREDO - PROVINCIA DE TRUJILLO - DEPARTAMENTO DE LA LIBERTAD Obra: N°2457045 C.U.L: 02/01/2020 **ESTUDIO TOPOGRÁFICO** 1.0 UBICACIÓN GEOGRAFICA El Proyecto se encuentra ubicado en el sector Alto Laredo, distrito de Laredo, provincia de Trujillo, Departamento de La Libertad. El proyecto tiene un área de influencia de superficie de 113,962.59 m², El proyecto se encuentra dentro de la zona urbana del distrito de Laredo. La topografia es casi plana, tipica de la costa. El proyecto limita con las siguientes sectores: Por el Norte: Limita con propiedad de tercero. Por el Sur: Limita con el canal el Moro. Por el Este: Limita con el cementerio San Carlos. Por el Oeste: Limita con la quebrada. 2.0 ALTITUD Esta localizado 89 m.s.n.m.aproximado. COORDENADAS UTM (WGS-84) - LAREDO NORTE 9'104,989.174 724,723,531 R. Sotano Arana ING. CIVIL - CONSULTOR C-7939 CIP. 62110

Figura 34. Informe del estudio topográfico.

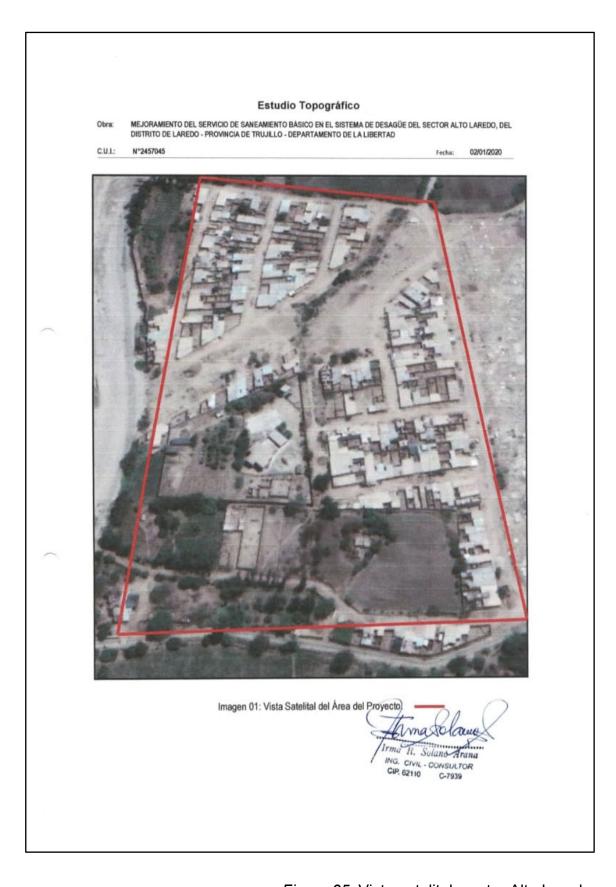


Figura 35. Vista satelital, sector Alto Laredo

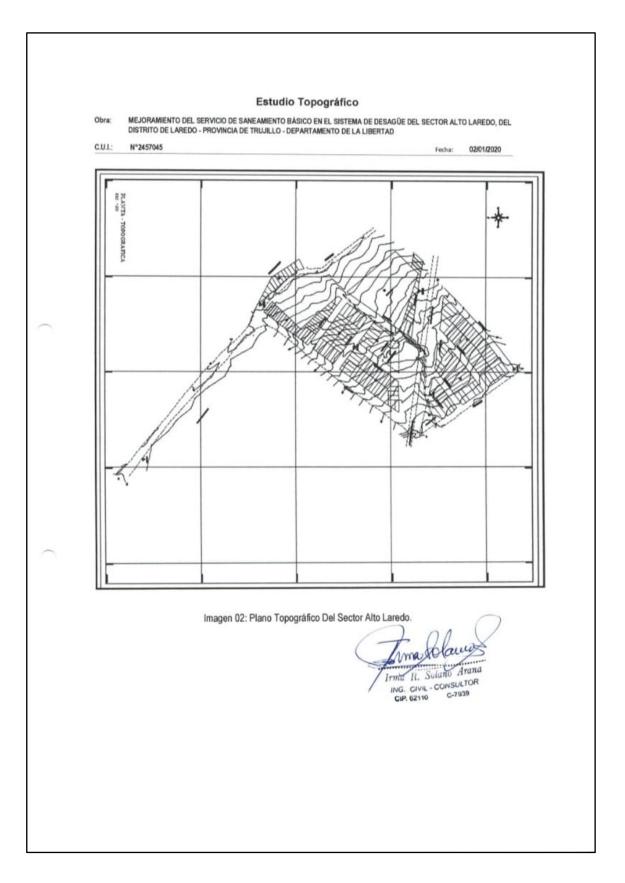


Figura 36. Plano topográfico, sector Alto Laredo

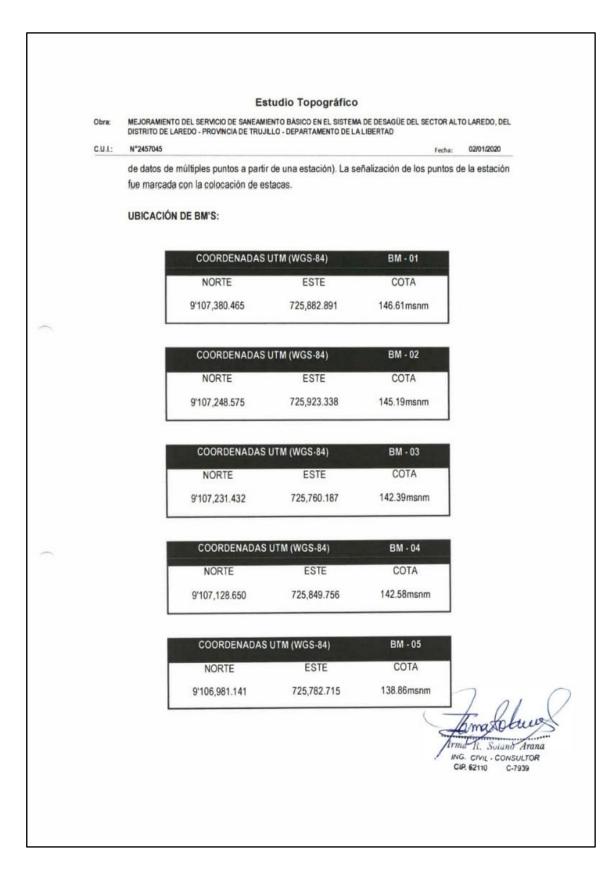


Figura 37. Ubicación de BM'S, sector Alto Laredo

Estudio Topográfico MEJORAMIENTO DEL SERVICIO DE SANEAMIENTO BÁSICO EN EL SISTEMA DE DESAGÜE DEL SECTOR ALTO LAREDO, DEL DISTRITO DE LAREDO - PROVINCIA DE TRUJILLO - DEPARTAMENTO DE LA LIBERTAD N°2457045 02/01/2020 La cantera donde se realiza los trabajos de Apilamiento y extracción de Material Granular de levantamiento topográfico son las siguientes: Estos trabajos se realizaron en coordinación con el Ingeniero de Suelos y el Área de Ingeniería de la Municipalidad Distrital de Laredo. 8. REGISTRO FOTOGRÁFICO FOTO Nº 01: Vista panorámica Punto Geodésico PG-1, ubicado en el borde de la vereda de la avenida Arce Larreta, donde se ubica la Nueva Plaza de Armas de Laredo - Trujillo.

Figura 38. Registro fotográfico del estudio topográfico.

ING. CIVIL - CONSULTOR CIP. 62116

C-7939

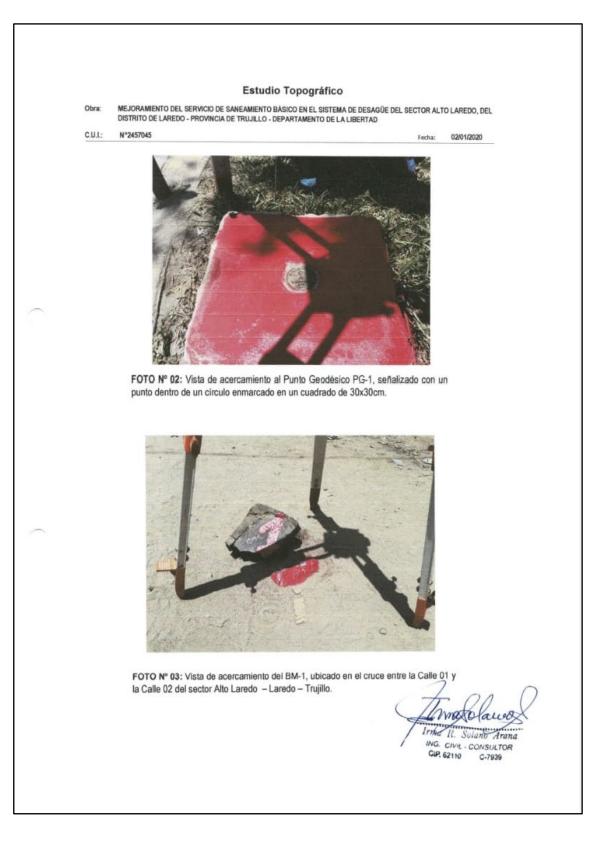
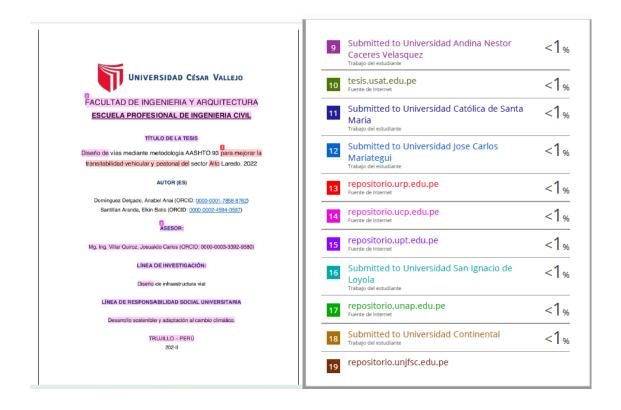



Figura 39. Registro fotográfico de BM-1 y punto geodésico.

Anexo 9. Análisis de similitud con el programa Turnitin

INFORM	E DE ORIGINALIDAD	
2	3% 22% 1% 10% TRABAJOS ESTUDIANTE	
FUENTE	S PRIMARIAS	
1	repositorio.ucv.edu.pe Fuente de Internet	12%
2	Submitted to Universidad Cesar Vallejo Trabajo del estudiante	4%
3	hdl.handle.net Fuente de Internet	2%
4	repositorio.uss.edu.pe	<1%
5	repositorio.upn.edu.pe	<1%
6	Submitted to Universidad Andina del Cusco Trabajo del estudiante	<1%
7	Submitted to Universidad Catolica De Cuenca Trabajo del estudiante	<1%
8	repositorio.unb.br	<1%

Anexo 10. Análisis de similitud con el programa Turnitin

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, VILLAR QUIROZ JOSUALDO CARLOS, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesor de Tesis titulada: "Diseño de vías mediante metodología AASHTO 93 para mejorar la transitabilidad vehicular y peatonal del sector Alto Laredo, 2022

", cuyos autores son DOMINGUEZ DELGADO ANABEL ANAI, SANTILLAN ARANDA ELKIN SOLIS, constato que la investigación tiene un índice de similitud de 21.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 21 de Noviembre del 2022

Apellidos y Nombres del Asesor:	Firma			
VILLAR QUIROZ JOSUALDO CARLOS	Firmado electrónicamente			
DNI: 40132759	por: JVILLARQ el 21-12-			
ORCID: 0000-0003-3392-9580	2022 18:01:47			

Código documento Trilce: TRI - 0449245

