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Abstract. In this paper we study the exponential decay of the energy of the externally

damped Kadomtsev-Petviashvili (KP-II) equation. Our main tool is the classical dissipation-

observability method. We use multiplier techniques to establish the main estimates, and

obtain exponential decay result.
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1. Introduction

Consider the initial value problem (IVP) associated with the Kadomtsev-Petviashvili (KP)

equation, (ut + uxxx + uux)x = αuyy, (x, y) ∈ (0, L)× (0, L), t ∈ R

u(x, y, 0) = u0(x, y),
(1.1)

where u = u(x, y, t) is a real valued function, L > 0 and α = ±1. This model was derived

by Kadomtsev and Petviashvili [8] to describe the propagation of weakly nonlinear long

waves on the surface of a fluid, when the wave motion is essentially one-directional with

weak transverse effects along y-axis. Equation (1.1) is known as KP-I or KP-II equation

depending whether α = 1 or α = −1. In this paper we consider the KP-II equation, that is

(1.1) with α = −1.

The KP-II equation is a two dimensional generalization of the Korteweg-de Vries (KdV)

equation

ut + uxxx + uux = 0, x, t ∈ R, (1.2)

which arises in modeling the evolution of one dimensional surface gravity waves with small

amplitude in a shallow channel of water. The KdV model is a widely studied model which

arises in various physical contexts and has a very rich mathematical structure.

It is customary to work with (1.1) for (x, y) ∈ R2, without any boundary conditions. In

this case the L2 norm, the energy,

E(u(t)) :=

∫
R2

|u|2dxdy

is a conserved quantity. However, since (x, y) ∈ (0, L)×(0, L), if we impose suitable boundary

conditions energy may be dissipated. These conditions will be discussed in Section 3. If in

addition to these boundary conditions a weak damping is imposed we obtain an exponential

decay of the energy. As a damping term, we take a non-negative function a(x, y) and consider
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the following damped KP-II equation:(ut + uxxx + uux + au)x = αuyy, (x, y) ∈ (0, L)× (0, L), t ∈ R

u(x, y, 0) = u0(x, y).
(1.3)

If a > 0 everywhere, an easy computation shows exponential decay. If, however, we allow

a to vanish the exponential decay requires additional work. In the case of the KdV equation

this problem was studied in [13]. In this paper we extend these results to the KP-II equation

by introducing suitable boundary conditions and using the unique continuation principle

proved in [12]. We note that our techniques do not rely on the Holmgren’s Uniqueness

Theorem but in a unique continuation principle. Therefore it works both for linear and

non-linear equations.

KP models are extensively investigated in the recent literature see for example [2], [4], [5],

[6] [7], [9], [11], [12], [14], [15], [16] and references therein, for issues such as local and global

well-posedness, gain of regularity and unique continuation principles. As we are interested

in the case when the initial data has sufficiently high Sobolev regularity, the question of

well-posedness follows, for instance, by the semi-group theory. So, we will omit the details

of this aspect.

The plan of the paper is as follows: firstly, in Section 2 we give a compact presentation

of the dissipation-observability method which is the basis for many decay results. Then in

Section 3 we establish, using multiplier techniques, the main technical estimates which allow

us to address the exponential dissipation of energy for the KP-II equation.

2. Dissipation - observability method

In this section we put forward a general method to prove energy decay that follows from

the energy dissipation law and an observability inequality.

Theorem 2.1. Let Ω ⊂ Rn be a domain. Let A be a linear operator, and B a non-linear

operator with domain dense in L2(Ω). Suppose that u is a solution to the evolution equation

in L2(Ω)

ut = Au+B(u), (2.1)
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under suitable boundary conditions. Suppose that the evolution associated to (2.1) satisfies

a semigroup property and that the energy E(u(t)) :=
∫

Ω
u2dx is dissipated according to

d

dt
E(u(t)) = −Q(u) ≤ 0, (2.2)

where
∫

Ω
u(Au + B(u)) = −Q(u). Assume that ∀ T > 0 there exists C > 0 such that the

following observability inequality

E(u(·, 0)) ≤ C

∫ T

0

Q(u(·, s))ds (2.3)

holds. Then the energy E decays exponentially, i.e, there exists α > 0 such that ∀ t ≥ 0,

E(u(t)) ≤ CE(u(0))e−αt. (2.4)

Proof. Integrating (2.2) in (0, T ) we get,

E(u(T )) = E(u(0))−
∫ T

0

Q(u(s)) ds. (2.5)

Now, multiplying (2.5) by C, adding to itself and using the observability inequality (2.3),

yields

(1 + C)E(u(T )) = E(u(0))− C
∫ T

0

Q(u(s)) ds+ CE(u(0))−
∫ T

0

Q(u(s)) ds

≤ CE(u(0))−
∫ T

0

Q(u(s)) ds

≤ CE(u(0)).

(2.6)

From (2.6) we obtain

E(u(T )) ≤ C

1 + C
E(u(0)). (2.7)

Therefore, for some 0 < α < 1 we have E(u(T )) ≤ αE(u(0)). Hence, the semigroup

property implies the conclusion of the Theorem. �

Lemma 2.2. Let u be as in Theorem 2.1. Then the following estimate holds

E(u0) ≤ 1

T

∫ T

0

E(u(t)) + 2

∫ T

0

Q(u). (2.8)
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Proof. Multiplying (2.1) by (T − t)u and integrating we obtain∫ T

0

∫
Ω

(T − t)uutdxdt =

∫ T

0

∫
Ω

(T − t)u(Au+B(u))dxdt. (2.9)

After integrating by parts in the t variable, (2.9) yields

1

2

∫
Ω

[(∫ T

0

u2

)
− Tu2

0

]
= −

∫ T

0

(T − t)Q(u),

i.e.,

−T
2
E(u0) +

1

2

∫ T

0

E(u)dt+

∫ T

0

(T − t)Q(u)dt = 0. (2.10)

Now the desired estimate (2.8) follows from (2.10). �

Corollary 2.3. Suppose that ∫ T

0

E(u(t)) ≤ C(T )

∫ T

0

Q(u). (2.11)

Then the observability inequality (2.3) holds.

3. Nonlinear KP-II - exponential energy dissipation

Let a(x, y) ≥ a0 > 0 almost everywhere in the complement of a compact non-empty proper

subset Θ of Ω := (0, L)× (0, L). We assume that for some δ > 0, Θ ⊂ (δ, L− δ)× (δ, L− δ),
so that we can apply the UCP, using an extension technique.

Consider the damped KP-II model

ut + uxxx + ∂−1
x uyy + uux + a(x, y)u = 0, (x, y) ∈ (0, L)× (0, L), t ∈ R,

u(L, y, t) = 0 = u(0, y, t), u(x, L, t) = 0 = u(x, 0, t),

ux(L, y, t) = 0,

u(x, y, 0) = u0(x, y),

(3.1)

where the operator ∂−1
x is defined as ∂−1

x f(x, y, t) = g(x, y, t) with g(L, y, t) = 0 and

gx(x, y, t) = f(x, y, t).

Define the energy as

E(u(t)) :=
1

2

∫ L

0

∫ L

0

u2(x, y, t) dxdy. (3.2)
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As we prove in the next proposition, the energy is a decreasing function of t. Our main ob-

jective is to show that the decay is exponential in time, by using the dissipation-observability

method.

Proposition 3.1. Suppose u solves (3.1), and let E be given by (3.2). Then

d

dt
E(u(t)) = −1

2

∫ L

0

[u2
x(0, y, t)+(∂−1

x uy)
2(0, y, t)] dy−

∫ L

0

∫ L

0

a(x, y)u2(x, y) dxdy ≤ 0. (3.3)

Proof. We have

d

dt
E(u(t)) =

1

2

d

dt

∫ L

0

∫ L

0

u2(x, y, t) dxdy

=

∫ L

0

∫ L

0

uut(x, y, t) dxdy

=

∫ L

0

∫ L

0

u(−uxxx − ∂−1
x uyy − uux − a(x, y)u) dxdy.

(3.4)

Now observe that

−
∫ L

0

∫ L

0

uuxxx dxdy =

∫ L

0

[ ∫ L

0

uxuxx dx− uuxx
∣∣∣L
x=0

]
dy

=

∫ L

0

[1

2

∫ L

0

(ux)
2
x dx

]
dy

=
1

2

∫ L

0

[
u2
x

∣∣∣L
x=0

]
dy

= −1

2

∫ L

0

u2
x(0, y, t) dy.

(3.5)
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Define v by uy = vx, then

−
∫ L

0

∫ L

0

u∂−1
x uyy dxdy = −

∫ L

0

∫ L

0

uvy dydx

=

∫ L

0

[ ∫ L

0

uyv dy − uv
∣∣∣L
x=0

]
dx

=

∫ L

0

∫ L

0

vxv dxdy

=
1

2

∫ L

0

∫ L

0

(v2)x dxdy

=
1

2

∫ L

0

[
v2(L, y, t)− v2(0, y, t)

]
dy

= −1

2

∫ L

0

v2(0, y, t)dy,

(3.6)

where we have used v = 0 at (L, y, t).

Also, integrating by parts yields

−
∫ L

0

∫ L

0

u2uxdxdy = 0. (3.7)

Now, using (3.5), (3.6) and (3.7) in (3.4) we obtain (3.3). �

Now we state and prove the main result of this work that deals with the exponential decay

of energy of the nonlinear KP-II equation.

Theorem 3.2. Given M > 0, let u be a solution of (3.1) with data u0 ∈ Hs(R2), s ≥ 3,

satisfying ‖u0‖L2(Ω) ≤M , and let E(u(t)) be the energy as defined in (3.2). Then the energy

E(u(t)) decays exponentially.

Proof. The proof of this Theorem follows from Theorem 2.1, using Corollary 2.3 with

Q(u) =
1

2

∫ L

0

[u2
x(0, y, t) + (∂−1

x uy)
2(0, y, t)] dy +

∫ L

0

∫ L

0

a(x, y)u2(x, y) dxdy

and the estimate∫ T

0

∫ L

0

∫ L

0

|u|2 ≤ C̃
{∫ T

0

∫ L

0

[
|ux(0, y, t)|2 + |∂−1

x uy(0, y, t)|2
]
dydt+ 2

∫ T

0

∫ L

0

∫ L

0

a(x, y)|u|2dxdydt
}
,

(3.8)
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which holds for some C̃ > 0 independent of solution u to (3.1) with initial data u0 satisfying

‖u0‖L2(Ω) ≤M for any given M > 0, as will be shown in Lemma 3.5 below. �

Now we prove the following result which will be used in the proof of (3.8).

Lemma 3.3. Let u be a solution of (3.1). Then the following estimate holds:

‖u‖2
L2(0,T ;H1(Ω)) ≤

2L

3
‖u0‖2

L2(Ω) +
4CT

81
‖u0‖3

L2(Ω). (3.9)

Proof. Multiply equation (3.1) by xu and integrate on (0, L)× (0, L)× (0, T ). The resulting

identity is composed of five terms, that we simplify next:∫ T

0

∫ L

0

∫ L

0

xuut dxdydt =
1

2

∫ T

0

∫ L

0

∫ L

0

x
d

dt
(u2) dtdxdy

=
1

2

∫ L

0

∫ L

0

xu2(x, y, T ) dxdy − 1

2

∫ L

0

∫ L

0

xu2
0(x, y) dxdy;

(3.10)

the next term is∫ T

0

∫ L

0

∫ L

0

xuuxxx =

∫ T

0

∫ L

0

[
−
∫ L

0

(xu)xuxx dx+ xuuxx

∣∣∣L
0

]
dydt

=

∫ T

0

∫ L

0

[
−
∫ L

0

uuxx dx−
∫ L

0

xuxuxx dx
]
dydt

=

∫ T

0

∫ L

0

[ ∫ L

0

u2
x dx− uux

∣∣∣L
0

+

∫ L

0

(xux)xux dx− xu2
x

∣∣∣L
0

]
dydt

=

∫ T

0

∫ L

0

[ ∫ L

0

u2
x dx+

∫ L

0

u2
x dx+

∫ L

0

xuxxux dx
]
dydt

=

∫ T

0

∫ L

0

[
2

∫ L

0

u2
x dx−

∫ L

0

(xuxx)xu dx+ xuxxu
∣∣∣L
0

]
dydt

=

∫ T

0

∫ L

0

[
2

∫ L

0

u2
x dx−

∫ L

0

uxxu dx−
∫ L

0

xuxxxu dx
]
dydt

=

∫ T

0

∫ L

0

[
2

∫ L

0

u2
x dx+

∫ L

0

u2
x dx− uxu

∣∣∣L
0
−
∫ L

0

xuxxxu dx
]
dydt,

(3.11)

which, from (3.11), yields∫ T

0

∫ L

0

∫ L

0

xuuxxx dxdydt =
3

2

∫ T

0

∫ L

0

∫ L

0

u2
x dxdydt; (3.12)
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for the next term, as earlier, we set uy = vx, and obtain∫ T

0

∫ L

0

∫ L

0

xu∂−1
x uyy dxdydt =

1

2

∫ T

0

∫ L

0

∫ L

0

v2 dxdydt. (3.13)

Also, integrating by parts we get,∫ T

0

∫ L

0

∫ L

0

xuuux dxdydt =
1

3

∫ T

0

∫ L

0

∫ L

0

x(u3)x dxdydt = −1

3

∫ T

0

∫ L

0

∫ L

0

u3 dxdydt. (3.14)

Finally, the last term is simply∫ T

0

∫ L

0

∫ L

0

xa(x, y)u2 dxdydt. (3.15)

Now, adding (3.10), (3.12),(3.13), (3.14) and (3.15) we get

1

2

∫ L

0

∫ L

0

xu2(x, y, T ) dxdy − 1

2

∫ L

0

∫ L

0

xu2
0(x, y) dxdy +

3

2

∫ T

0

∫ L

0

∫ L

0

u2
x dxdydt

+

∫ T

0

∫ L

0

∫ L

0

xa(x, y)u2 dxdydt+
1

2

∫ T

0

∫ L

0

∫ L

0

v2 dxdydt− 1

3

∫ T

0

∫ L

0

∫ L

0

u3 dxdydt = 0.

(3.16)

Or,

3

2

∫ T

0

‖u‖2
H1(Ω) dt =

1

2

∫ L

0

∫ L

0

xu2
0(x, y) dxdy − 1

2

∫ L

0

∫ L

0

xu2(x, y, T ) dxdy

−
∫ T

0

∫ L

0

∫ L

0

xa(x, y)u2 dxdydt− 1

2

∫ T

0

∫ L

0

∫ L

0

v2 dxdydt

+
1

3

∫ T

0

∫ L

0

∫ L

0

u3 dxdydt,

(3.17)

which yields,∫ T

0

‖u‖2
H1(Ω) dt =

1

3

∫ L

0

∫ L

0

xu2
0(x, y) dxdy − 1

3

∫ L

0

∫ L

0

xu2(x, y, T ) dxdy

− 2

3

∫ T

0

∫ L

0

∫ L

0

xa(x, y)u2 dxdydt− 1

3

∫ T

0

∫ L

0

∫ L

0

v2 dxdydt

+
2

9

∫ T

0

∫ L

0

∫ L

0

u3 dxdydt.

(3.18)
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Since a(x, y) ≥ 0, we obtain from (3.18) that∫ T

0

‖u‖2
H1(Ω) dt ≤

L

3
‖u0‖2

L2(Ω) +
2

9

∫ T

0

∫ L

0

∫ L

0

u3 dxdydt. (3.19)

We have the following Gagliardo-Nirenberg type inequality (see [3] or [10])

‖u‖L3(Ω) ≤ C‖u‖
1
3

Ḣ1(Ω)
‖u‖

2
3

L2(Ω) ≤ C‖u‖
1
3

H1(Ω)‖u‖
2
3

L2(Ω). (3.20)

Now using (3.20) and (3.3) the last term in (3.19) can be controlled by∫ T

0

∫ L

0

∫ L

0

u3 dxdydt ≤
∫ T

0

‖u‖H1(Ω)‖u‖2
L2(Ω)dt

≤ C‖u0‖2
L2(Ω)

∫ T

0

‖u‖H1(Ω)dt

≤ C‖u0‖2
L2(Ω)

√
T‖u‖L2(0,T ;H1(Ω)).

(3.21)

Substituting (3.21) in (3.19) yields

‖u‖2
L2(0,T ;H1(Ω)) ≤

L

3
‖u0‖2

L2(Ω) + C
2

9

√
T‖u0‖2

L2(Ω)‖u‖L2(0,T ;H1(Ω))

≤ L

3
‖u0‖2

L2(Ω) +

(
2
9
C
√
T‖u0‖2

L2(Ω)

)2

2
+

(
‖u‖L2(0,T ;H1(Ω))

)2

2

≤ L

3
‖u0‖2

L2(Ω) +
2CT

81
‖u0‖4

L2(Ω) +
1

2
‖u‖2

L2(0,T ;H1(Ω)).

(3.22)

Therefore, from (3.22) we get

‖u‖2
L2(0,T ;H1(Ω)) ≤

2L

3
‖u0‖2

L2(Ω) +
4CT

81
‖u0‖4

L2(Ω), (3.23)

which yields the required result. �

In addition to the Lemma 3.3, unique continuation principle (UCP) for the KP-II equation

(1.1) will also be used in the proof the estimate (3.8). The UCP for the KP-II equation (1.1)

was established in [12] whose precise statement is given in the following theorem.

Theorem 3.4 ([12]). Let u ∈ C(R;Hs(R2)) be a solution to the IVP associated with the KP-

II equation with s > 0 large enough. If there exists a non trivial time interval I = [−T, T ]

such that for some β > 0

suppu(t) ⊆ [−β, β]× [−β, β], ∀ t ∈ I,
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then u ≡ 0.

In the following lemma we prove the main estimate (3.8) used in the proof of Theorem

3.2.

Lemma 3.5. given M > 0, there exists a constant C̃ > 0 such that the following estimate

holds∫ T

0

∫ L

0

∫ L

0

|u|2 ≤ C̃
{∫ T

0

∫ L

0

[|ux(0, y, t)|2+|∂−1
x uy(0, y, t)|2]dydt+2

∫ T

0

∫ L

0

∫ L

0

a(x, y)|u|2 dxdydt
}
,

(3.24)

for all solutions u of (3.1) with initial data u0 satisfying ‖u0‖L2(Ω) ≤M .

Proof. We prove it by contradiction with use of the Lemma 3.3 and the unique continuation

principle stated in Theorem 3.4.

Suppose that (3.24) is false. Then there exists a sequence of solution un of (3.1) such that

lim
n→∞

‖un‖2
L2(0,T ;L2(Ω))∫ T

0

∫ L
0

[|∂xun(0, y, t)|2 + |∂−1
x ∂yun(0, y, t)|2]dydt+ 2

∫ T
0

∫ L
0

∫ L
0
a(x, y)|un|2 dxdydt

= +∞.

(3.25)

Let

λn = ‖un‖L2(0,T ;L2(Ω)) and vn(x, y, t) =
1

λn
un(x, y, t).

From Lemma 3.3, we have that λn is a bounded sequence for ‖un(0)‖L2(Ω) ≤M . Therefore,

extracting a subsequence if necessary, we can assume that λn → λ ≥ 0.

We notice that vn solves
(vn)t + (vn)xxx + ∂−1

x (vn)yy + λn(vn)(vn)x + a(x, y)(vn) = 0, (x, y) ∈ Ω, t ∈ R,

(vn)(L, y, t) = 0 = (vn)(0, y, t), (vn)(x, L, t) = 0 = (vn)(x, 0, t),

(vn)x(L, y, t) = 0,

(3.26)

with initial data 1
λn
un(x, y, 0). Moreover,

‖vn‖L2(0,T ;L2(Ω)) = 1 (3.27)
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and from (3.25)∫ T

0

∫ L

0

[|∂xvn(0, y, t)|2 + |∂−1
x ∂yun(0, y, t)|2]dydt+ 2

∫ T

0

∫ L

0

∫ L

0

a(x, y)|vn|2 dxdydt→ 0, (3.28)

as n→∞.

In view of Lemma 2.2, vn(x, y, 0) is bounded in L2(Ω). Thus, combining with an analogue

of (2.8), we have

‖vn(·, ·, t)‖L2(Ω) ≤M, ∀ 0 ≤ t ≤ T. (3.29)

Now, from Lemma 3.3,

‖vn‖2
L2(0,T ;H1(Ω)) ≤ C, (3.30)

for all n ∈ N.

Estimates (3.27) and (3.30) yield

(vn)t = −(vn)xxx − ∂−1
x (vn)yy − λnvn(vn)x − a(x, y)vn, (3.31)

is bounded in L2(0, T ;H−2(Ω)). Note that the non-linear term, is bounded in L2(0, T ;Lp(Ω))

for all 1 ≤ p < 2, which is bounded in L2(0, T ;H−2(Ω)).

Since the embedding H1(Ω) ↪→ L2(Ω) is compact, by Rellich’s theorem, it follows that

{vn} is relatively compact in L2(0, T ;L2(Ω)). By extracting a subsequence we may deduce

that

vnj ⇀ v, weakly in L2(0, T ;H1(Ω)) ∩H1(0, T ;H−2(Ω)) (3.32)

and

vnj → v, strongly in L2(0, T ;L2(Ω)). (3.33)

Since ‖vnj‖L2(0,T ;L2(Ω)) = 1, it follows that

‖v‖L2(0,T ;L2(Ω)) = 1. (3.34)
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By weak lower semicontinuity of convex functionals we have (see (3.28))

0 = lim inf
j→∞

{∫ T

0

∫ L

0

[|∂xvnj(0, y, t)|2 + |∂−1
x ∂yvnj(0, y, t)|2]dydt+ 2

∫ T

0

∫ L

0

∫ L

0

a(x, y)|vnj|2 dxdydt
}

≥
∫ T

0

∫ L

0

[|∂xv(0, y, t)|2 + |∂−1
x ∂yv(0, y, t)|2]dydt+ 2

∫ T

0

∫ L

0

∫ L

0

a(x, y)|v|2 dxdydt.

(3.35)

From this we conclude that a(x, y)v ≡ 0 in Ω × (0, T ). Since a(x, y) > 0 in Θc, so in

particular v ≡ 0 in Θc × (0, T ). We will show that v ≡ 0 in Ω× (0, T ).

Note that the limit v satisfies

vt + vxxx + ∂−1
x vyy + λvvx = 0, (3.36)

where λ ≥ 0 is the limit of λn as n→∞.

In any case, whether λ = 0 or λ > 0, we will use the UCP discussed earlier to conclude

that v ≡ 0 in Ω× (0, T ). To be able to apply the UCP, we must show that v is sufficiently

regular. Let Z := (δ, L− δ)× (δ, L− δ) and define a function,

w(x, y, t) =

v(x, y, t), (x, y, t) ∈ Z × (0, T ),

0, (x, y, t) ∈ {R2 − Z} × (0, T ).
(3.37)

Because Θ ⊂ (δ, L− δ)× (δ, L− δ), this extension is as smooth as v. Furthermore w satisfieswt + wxxx + ∂−1
x wyy + λwwx = 0, (x, y, t) ∈ R2 × (0, T )

w(x, y, 0) = φ(x, y),
(3.38)

where

φ(x, y) =

v(x, y, 0), (x, y) ∈ Z,

0, (x, y) ∈ R2 − Z.
(3.39)

Note that, φ is a compactly supported function in Hs(R2), s ≥ 3. So, by the regularization

property of the KP-II equation (see [9]), the IVP (3.38) has a smooth solution w. Therefore,

by the unique continuation property (Theorem 3.4), we conclude that w ≡ 0 in Ω × (0, T ).

Consequently we conclude that v ≡ 0 in Ω × (0, T ) which contradicts (3.34). Hence (3.24)

must be true. �
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