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Abstract

Introgression is the permanent incorporation of genes from one population

into another through hybridization and backcrossing. It is currently of

particular concern as a possible mechanism for the spread of modified crop

genes to wild populations. The hazard rate is the probability per time unit

that such an escape takes place, given that it has not happened before.

It is a quantitative measure of introgression risk that takes the stochastic

elements inherent in introgression processes into account. We present a

methodology to calculate the hazard rate for situations with time-varying

gene flow from a crop to a large recipient wild population. As an illustration,

several types of time-inhomogeneity are examined, including deterministic

periodicity as well as random variation. Furthermore, we examine the effects

of an extended fitness bottleneck of hybrids and backcrosses in combination

with time-varying gene flow. It is found that bottlenecks decrease the hazard

rate, but also slow down and delay its changes in reaction to changes in gene

flow. Furthermore, we find that random variation in gene flow generates a
1
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lower hazard rate than analogous deterministic variation. We discuss the

implications of our findings for crop management and introgression risk

assessment.

Keywords: Branching Process, Invasion, Transgene, Risk management,

Random environment

1. Introduction1

Through backcrossing and hybridization, genes from one population can2

become permanently incorporated into the genome of another population.3

This process is called introgression (Riesberg and Wendel, 1993; Ellstrand4

et al., 1999; Hails and Morley, 2005). Introgression of crop genes into wild5

relatives may have severe negative environmental effects, such as the spread6

of insecticide or herbicide resistance genes. In particular, there are strong7

concerns about transgene escape and its consequences, e.g. the production8

of superweeds (Maan, 1987; Snow et al., 1999; Thompson et al., 2003; Kelly9

et al., 2005).10

The likelihood of such scenarios, given environmental conditions, crop11

management, and characteristics of the species involved can be studied12

with mathematical models. Such models allow us to perform thought ex-13

periments, and identify factors that crucially determine introgression risk.14

Introgression usually involves many random components, such as hybridiza-15

tion and backcross events, and demographic stohasticity in hybrid popula-16

tions. In a previous paper (Ghosh and Haccou, 2010) we showed that it is17

important to take this stochasticity into account, since stochastic models18
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may give very different predictions from deterministic ones. We considered19

a situation where foreign genes invade repeatedly into a resident wild pop-20

ulation, and each invasion has a small probability of establishing a perma-21

nent lineage (see also Haygood et al., 2004). We showed that there can be22

an extensive period of failed invasions, and that the length of this period23

largely determines introgression risk. Furthermore, we derived a measure,24

the hazard rate, that quantifies the distribution of such periods. In the con-25

text of introgression, the hazard rate is defined as the probability per time26

unit that a permanent lineage is initiated, given that this has not happened27

before. It is derived from a multitype branching process model of hybrid28

population dynamics (Demon et al., 2007; Serra and Haccou, 2007).29

In our previous paper we assumed that the distribution of numbers of30

newly created hybrids is the same in each time period. We considered31

a model with an initial fitness bottleneck (i.e. F1 hybrids have a lower32

fitness than the wild type) and showed that in such a situation, the hazard33

rate increases monotonically from zero to a constant asymptotic value. As34

a consequence, the distribution of the initial period before establishment35

of a permanent lineage can be approximated by a time-lagged geometric36

distribution. In many applications, however, the hybridization probability37

will vary in time, due to, for example, crop rotation or termination, or38

random variation, such as weather-dependent pollinator activity. In the39

current paper we generalize the method to include such time-inhomogeneity.40

We calculate the hazard rate for general time-inhomogeneous hybridization41

schemes and examine the effects of crop management schemes such as (gra-42

dually) stopping or increasing crop cultivation, or rotating crops. We show43

that, in the latter case, periods in which the hazard rate increases alternate44
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with periods of decrease, and that, in the long run, it converges to a periodic45

function. We also examine how stochastic fluctuations in hybridization rates46

affect the hazard rate.47

As an example we consider a model for a monocarpic species (it dies48

after flowering), that is monoecious (flowers have both male and female49

functions), and non-selfing. We first consider a situation where F1 hybrids50

have a reduced fitness when compared to the wild-type, and all backcrosses51

have the same life history parameters, and superior fitness. Then the model52

is generalized to examine the effects of an extended fitness bottleneck, where53

several initial backcross generations have a reduced fitness.54

There are many other contexts in which repeated invasions with low ini-55

tial fitness occur, such as tumor spread and growth, where usually several56

mutations must occur before cells proliferate (as in Michor et al., 2006), or57

pathogen host switching, where adjustments to new hosts imply an initial58

fitness bottleneck (as in Reluga et al., 2007). Time-inhomogeneity of in-59

vasions may play a role in such contexts too. For instance, there may be60

time-varying risks of exposure to carcinogenic environments (e.g. Bos et al.,61

2004). Furthermore, many epidemics show time-varying infection patterns62

(as in Welliver, 2009). Our methods and results therefore have implications63

for research in such contexs too.64

2. The model65

We consider a plant species that dies after flowering once. For simplicity,66

we assume that there is no age-dependence. Furthermore, it is assumed that67

there is a large, stable wild population, and random numbers of hybrid seeds68

are produced by pollen flow from a nearby crop. We consider time periods69
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of one year. Seeds may germinate at the beginning of the year, and plants70

grow up to be adults and may flower later in the same year. We denote the71

probability that a seed germinates and that the seedling survives to become72

an adult plant by p0. In this paper we will consider p0 as a given parameter.73

Its value is determined by the population dynamics of the wild population,74

and is such that this population is stable (see Ghosh and Haccou, 2010, for75

an example of its calculation).76

Hybrid formation can be followed by repeated backcrossing with wild77

plants. F1 hybrids are assumed to be less fit than wild individuals, but78

backcrossed individuals have a positive probability of producing a perma-79

nent introgressed lineage. We assume that all backcross generations are80

equivalent with respect to their life history parameters, and therefore they81

do not need to be distinguished as seperate types (this assumption is re-82

laxed in section 6). As a consequence, there are two types of plants in the83

model: F1 hybrids (labelled type-1) and backcrossed individuals (labelled84

type-E).85

Since the population of wild plants is large and the numbers of individ-86

uals containing crop genes are initially small, it can be assumed that these87

individuals do not interact with each other, but only with wild plants. This88

has several implications. Firstly, since we consider a non-selfing species,89

reproduction can only occur through outcrossing with wild plants. Sec-90

ondly, competition occurs only with the wild population. This is quantified91

through the probability p0. For convenience, we assume that there are no92

other factors apart from this competition that affect germination proba-93

bility of hybrids and backcrosses. The model can be easily generalized to94

account for e.g. effects of spatial variation.95
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Type E

1

r1 (ξ1 ; p0 )

(ξ0,k ; p0 )

(1 − r1 )p1
(1 − r1 )(1 - p1)

Figure 1: Schematic representation of the model. (ξ0,k; p0) and (ξ1; p0) represent the

production of ξ0,k and ξ1 seeds respectively, where each seed has a germination probability

p0. Each type-E individual initiates a lineage which eventually becomes extinct with

probability q.

Because hybrid and backcrossed plants do not affect each other’s repro-96

duction and survival initially, their invasion dynamics can be modeled as97

a branching process. The production of hybrid seeds is modeled by means98

of an artificial type, which we will call type-0. There is one permanently99

present individual of this type, that produces a stochastic number of hy-100

brid seeds in each year. Fig. 1 shows a schematic summary of the invasion101

dynamics.102

The model thus involves three different types of individuals: type-0, type-103
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1 and type-E. Each year, a type-0 individual produces one individual of104

type-0 and a random number of F1 hybrid seeds. In our previous paper105

we assumed that the probability distribution of these random numbers was106

the same over time. In this paper, we let it vary over years. The number107

of hybrid seeds produced in year k is a random variable denoted by ξ0,k.108

Each one of these seeds germinates and produces a type-1 individual with109

probability p0. Type-1 individuals flower with probability r1, and produce a110

random number, ξ1, of backcrossed seeds, either by male or female functions.111

In the case that a type-1 individual does not flower (with a probability112

(1 − r1)), it may then survive to become a type-1 individual in the next113

year with probability p1, or it will die with a probability 1 − p1. Each114

backcrossed seed germinates and survives with probability p0, to produce115

a type-E individual. Type-E individuals produce only type-E offspring in116

their lineage. We denote the probability that a lineage started by one type-E117

individual goes extinct by q. This value can be calculated straightforwardly118

from the life history parameters of type-E individuals, by standard methods119

(see e.g. Haccou et al., 2005; Ghosh and Haccou, 2010). Here, we will treat120

it as a parameter in the model, taking values between zero and one.121

3. Derivation of the hazard rate122

Probability generating functions are important tools in deriving the haz-123

ard rate. Let X be a non-negative discrete random variable, then its prob-124

ability generating function (p.g.f.) is a function from [0, 1] to [0, 1] which125

is defined as E[sX ], where E[ . ] denotes expectation. The p.g.f. of ξ0,k is126

denoted by G0(k; s), and that of ξ1 by G1(s).127

Define the random variable Ii (k, n) (n, k ∈ N0, i = 0, 1) to be the total128
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number of type-E individuals with non type-E parents, appearing up to129

and including year n, in the line of descent of a single individual of type-i130

that was produced in year k. The expression line of descent refers to the131

population process stemming from the referred individual. For a general132

scenario where individuals can have offspring of any type, this definition133

leads to the following equalities:134

Ii (k, n) =


0 if k ≥ n

Z
(i)
E (k + 1) +

1∑
m=0

Z
(i)
m (k+1)∑
j=1

I
(j)
m (k + 1, n) if k < n

(1)

where Z
(i)
m (k + 1) represents the number of type-m individuals that the135

type-i individual (born in year k) produced in year k+ 1. The I
(j)
m (k+ 1, n)136

terms represent the total number of type-E individuals that have non type-137

E parents, appearing up to year n in the line of descent of the jth individual138

of type-m that was born in year k + 1 from the initial type-i individual.139

In the specific scenario described in Fig. 1, we find the following recursive

relationships in k for the different p.g.f.’s of the Ii(k, n)’s, where fIi(k,n)(s)

denotes the p.g.f. of Ii(k, n) (see Appendix Appendix A.1):

fI0(k,n)(s) = fI0(k+1,n)(s)G0

(
k; p0fI1(k+1,n)(s) + 1− p0

)
(2)

fI1(k,n)(s) = (1− r1)(1− p1) + (1− r1)p1fI1(k+1,n)(s) + r1G1(p0s+ 1− p0)

with the initial conditions fI1(n,n)(s) = fI0(n,n)(s) = 1. Note that, since the140

seed production of type-1 individuals is homogeneous,141

fI1(k,n)(s) = fI1(0,n−k)(s). (3)

The time of an introgression event, T , is defined as the time that the first142

type-E individual is produced whose lineage never becomes extinct. The143
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population starts with a single type-0 individual, therefore:144

P (T > n) = fI0(0,n)(q), (4)

since the probability that an introgression event occurs after a time n is the145

probability that all type-E individuals produced at or before year n have146

become extinct.147

The hazard rate of introgression is defined as the probability per time148

unit that an introgression event occurs given that it has not occurred before.149

With time units of one year, this gives:150

Hn(q) = P (T = n|T > n− 1)/year =

(
1−

fI0(0,n)(q)

fI0(0,n−1)(q)

)
year−1 (5)

with n ∈ N0.151

The second equation of (2) can be solved to yield (see Appendix Appendix152

A.2):153

fI1(0,n)(s) = 1− β1(s) + β1(s) b
n
1 , (6)

where, in order to simplify future expressions, we have introduced the quan-154

tities155

b1 = (1− r1) p1 and β1(s) =
r1 (1−G1(p0s+ 1− p0))

1− b1
(7)

Putting (2), (3), (4) and (5) together gives us the following expression for156

the hazard rate (see Appendix Appendix A.3):157

Hn(q) =



0 if n ∈ {0, 1}

1−

n−1∏
j=1

G0

(
j − 1; p0fI1(0,n−j)(q) + 1− p0

)
n−2∏
j=1

G0

(
j − 1; p0fI1(0,n−1−j)(q) + 1− p0

) if n ≥ 2

(8)
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which can be computed by using (6). This result provides us with a general158

method for calculating the hazard rate with time-inhomogeneous hybridiza-159

tion. In the next sections we examine several situations.160

4. Deterministically varying hybridization161

For mathematical convenience we assume that hybrids are generated ac-162

cording to a Poisson distribution with a time-dependent mean, i.e.:163

G0(k; s) = e−m0(k)(1−s), s ∈ [0, 1]. (9)

We also take ξ1 as Poisson-distributed with mean m1 in presented numerical164

work.165

Combining (6) to (9) gives:166

Hn(q) =


0 if n ∈ {0, 1}

1− e
−p0β1(q)(1−b1)bn−2

1

n−2∑
j=0

m0(j) b
−j
1

if n ≥ 2.

(10)

From (10) it follows that the long term behaviour of the hazard rate

depends on the limit behaviour, as k →∞, of:

bk1

k∑
j=0

m0(j)

bj1
.

For example, if m0(j) = mj
0, the hazard rate converges to zero when167

0 < m0 < 1 and it converges to one when m0 > 1. If there is constant168

hybridization, i.e m0(j) = m0, the hazard rate tends to a constant value169

between zero and one (as was also derived in Ghosh and Haccou, 2010). It170

can easily be shown that, for the current model, this value equals171

1− exp{−p0β1(q)m0}. (11)
10



In the next subsections we will examine the effects of specific frequently172

used crop-management schemes.173

4.1. Temporary crops174

Crop cultivation may be stopped for a variety of reasons. In the case of175

transgene crops, e.g., legislation may change, or termination of cultivation176

may be used as a management strategy to lower the chance of introgression.177

In this sub-section we examine the case where hybridization occurs at a178

constant rate, and is then stopped at a fixed time S, i.e.:179

m0(j) =

 m0 if 0 ≤ j < S

0 if j ≥ S,
(12)

with m0 > 0.180

Substituting this into (10) gives:181

Hn(q) =


0 if n ∈ {0, 1}

1− e−m0 p0 β1(q) (1−bn−1
1 ) if 2 ≤ n ≤ S + 1

1− e−m0 p0 β1(q) b
n−(S+1)
1 (1−bS1 ) if n ≥ S + 2

. (13)

Thus, the hazard rate increases monotonically to a maximum level of182

1− e−m0 p0 β1(q) (1−bS1 ) at time S + 1 and decays monotonically afterwards.183

The decay is only seen to start at time S + 2 because stopping hybridiza-184

tion at year S will only affect the population of type-1 individuals at time185

S + 1, and the population of type-E individuals at time S + 2. The rate186

of increase as well as that of decay is mainly governed by b1, which rep-187

resents the probability that individuals do not flower but do survive (see188

(7)). A larger value of b1 makes the hazard rate increase and decrease more189

slowly. When b1 tends to zero (i.e. when the probability of flowering in the190
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first year is high and/or the survival probability of non-flowering adults is191

low), the maximum level is reached quickly and, unless S is very small, it192

is therefore virtually independent of S. Furthermore, after stopping culti-193

vation, the hazard rate returns rapidly to zero. As b1 tends to zero or S194

tends to infinity, the maximum level approaches the asymptotic level of the195

hazard rate in the situation without stopping. The effect of the life history196

parameters on this asymptotic level can be inferred from (11).197

With temporary crops, there is a positive probability that introgression198

never occurs. From (4), (9), (12) and the derivation in Appendix Appendix199

A.3 it is apparent that this probability equals:200

lim
n→∞

P (T > n) = lim
n→∞

fI0(0,n)(q) = e−m0p0β1(q)S (14)

Thus, it decreases exponentially with the stopping time S, at a rate deter-201

mined by the hybridization rate and the life history parameters.202

A numerical example of the shape of the hazard rate for two different203

stopping times (10 and 20 years) is given in Fig. 2a. In this example,204

the hazard rate increases quickly, and, as a consequence, its maximum level205

does not noticeably differ for the two chosen stopping times. The probability206

distribution of T can be expressed in terms of the hazard rate as follows207

(see e.g. Kalbfleisch and Prentice, 2002):208

P (T = x) =
x−1∏
i=0

(1−Hi(q))Hx(q). (15)

For small values of Hn(q), the product term is close to one, and the proba-209

bility becomes nearly equal to the hazard rate. This is demonstrated in Fig.210

2b. As can be seen from the figure, the probabilities of introgression events211

happening quite early are relatively large, i.e. the probability distributions212
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are very skewed, similar to the situation with constant crop cultivation ex-213

amined before in Ghosh and Haccou (2010). For the numerical examples in214

Fig. 2b, the probabilities that no introgression occurs at all are respectively215

0.985 (S = 10) and 0.970 (S = 20).216

4.2. Crop rotation217

Crop rotation is often used to maintain soil quality and prevent the build218

up of pathogens. It may also be used as a management strategy to lower219

introgression risk. In this section we study the situation where periods220

with hybridization at a constant rate alternate with periods without hy-221

bridization. The duration of hybridization periods is denoted by S, and the222

durations of the hybridization pauses by R. Thus we have:223

m0(j) =

 m0 if v(R + S) ≤ j < v(R + S) + S

0 if v(R + S) + S ≤ j < (v + 1)(R + S)
(16)

with v ∈ N0.224

It can be shown (see Appendix Appendix A.4) that in the long run the225

hazard rate tends to a periodic function with period R+S, i.e. if we define226

the time:227

k = n− v(R + S)− 2 (17)

then, for n tends to infinity the hazard rate becomes:228

Hk(q) =


1− e

−m0p0β1(q)

(
1−bk+1

1

1−bR1

1−bR+S
1

)
if 0 ≤ k < S

1− e
−m0p0β1(q)b

k+1−S
1

(1−bS1 )
1−b

(R+S)
1 if S ≤ k < R + S

(18)

The time in (17) is the time after the vth crop rotation shifted by two229

time units. The shift of two units is for mathematical convenience, and230

corresponds for the first two years where the hazard rate is zero.231
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This result implies that periods in which instantaneous introgression risk232

is high alternate with periods in which it is low. Figure 2c illustrates that233

this asymptotic behavior can be reached very quickly. Figure 2d shows the234

corresponding probabilities of introgression events happening at time x. As235

noted previously, the probability distribution is nearly equal to the hazard236

rate initially, but (inevitably) decreases with x.237

There are different ways to quantify the effect of a given crop rotation238

scheme on the hazard rate. The asymptotic maximum hazard rate can be239

found by subsituting k = S − 1 in (18), leading to:240

1− e
−m0p0β1(q)

1−bS1

1−b
(R+S)
1 , (19)

and the minimum by subsituting k = R + S − 1, which gives:241

1− e
−m0p0β1(q)b1R

1−bS1

1−b
(R+S)
1 . (20)

For the numerical example in Figure 2c the asymptotic maximum hazard242

rate equals 0.00154, and the minimum is of the order 10−6. As can be seen243

from the figure, these values are reached quite soon.244

An alternative measure is the long-run average hazard rate. This is found245

by fitting the survivor function of a constant hazard rate to the survivor246

function of the hazard rate from (18). This approach leads to the following247

value for the long-run average hazard rate (see Appendix Appendix A.5 for248

details):249

λ ≈ 1− e−p0m0β1(q)
S

R+S . (21)

Thus, the long-run average hazard rate is the same as the asymptotic hazard250

rate with a continuous crop and a constant expected number of newly pro-251

duced hybrids equal to S/(R + S) times m0. In Fig. 2d we have indicated252
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the time-distributions corresponding to a continuous immigration with the253

maximum hazard rate (c.f. (19)) and the long-run average hazard rate.254

5. Randomly varying hybridization255

Until now we have considered deterministic variation in hybridization256

rates. In many cases, however, there will also be random variation. For257

instance, weather conditions will vary over different years, and this may258

affect pollen dispersal from the crop to local wild populations. Such random259

variations can be independent, or (positively or negatively) autocorrelated.260

In this section, we consider the effect of random variation according to261

different regimes.262

Random temporal variation of m0 can be included in the model by using263

different type-0 individuals. Thus, we consider γ different types, denoted264

by type-(0, i) (i = 1, ..., γ). A type-(0, i) individual produces a number of265

type-1 seeds according to a p.g.f. G0,i(s), and with probability κi,j also266

exactly one individual of type-(0, j) (j = 1, ..., γ), so
∑γ

j=1 κi,j = 1 for all i.267

As an illustration, consider the case where the environment alternates268

between two states according to a two-type Markov chain. In that case269

γ = 2. When the environment is state 1, a Poisson-distributed number of270

hybrids is formed, i.e. G0,1(s) = e−m0(1−s) and when the environment is in271

state 2, no hybrids are produced, i.e. G0,2(s) = 1. The transition probability272

from state 1 to state 2 equals κ1,2 and that from state 2 to state 1 equals273

κ2,1. An independently varying environment corresponds to the situation274

where κ1,2 + κ2,1 = 1. In the case of positive autocorrelation, this sum is275

smaller than one whereas it is larger than one for negatively autocorrelated276

environments.277
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As a special case, consider an independently varying environment, with278

κ1,1 = κ2,1 = S/(R+S) and κ1,2 = κ2,2 = R/(R+S). Note that the expected279

proportion of years with positive hybridization numbers is the same as in280

the crop rotation scenario considered in (16). We assume that the process281

is stationary. The hazard rate is then given by (see Appendix Appendix282

A.6)283

Hn(q) =
S

R + S

(
1− e−m0p0(1−fI1(0,n−1)(q))

)
. (22)

Using the solution of fI1(0,n)(q) from (6) and taking large n leads to the284

asymptotic value:285

H∞(q) =
S

R + S

[
1− e−m0 p0β1(q)

]
. (23)

To examine the effects of autocorrelation, let κ1,2 = κ2,1 = 1 − κ1,1 =286

1 − κ2,2 = α. The environment is negatively autocorrelated if α > 0.5,287

positively autocorrelated if α < 0.5, and independent if α = 0.5. The equa-288

tions given in Appendix Appendix A.6 can be used to calculate the hazard289

rate for these models numerically . Figure 3a shows the resulting asymp-290

totic hazard rate for different values of α. As can be seen, there is not291

much difference between negatively autocorrelated or independent environ-292

ments. The asymptotic hazard rate is much reduced, however, when there293

is a strong positive autocorrelation. With this choice of parameters, the294

probability of a year with hybridization is 1/2, and so the situation is com-295

parable to a crop rotation scenario with S = R, as in Fig. 2(c). Note that296

the situation where α = 1 corresponds to deterministic alternation between297

one-year periods with and without a positive hybridization probability. In298

this scenario, the hazard rate still approaches an asymptotic hazard rate299

because the process is initiated by the stationary-distribution of type-(0, 1)300
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and type-(0, 2) individuals, as depicted in Fig. 3b. In a specific realisation,301

the hazard rate then oscillates as previously observed, which is also shown302

in Fig. 3b, where the process is initiated by a single type-(0, 1) individual.303

6. Effects of bottlenecks304

Until now we have considered the situation where all backcrossed genera-305

tions are more fit than the wild type . However, often there is outbreeding306

depression, which implies that several backcrosses are needed before a fitness307

advantage is observed (e.g. Edmands, 2002). In this section we extend the308

model to account for such situations, and investigate effects of the length309

of the bottleneck on the hazard rate.310

The generalized model involves L + 2 (L ∈ N) different types: types311

0, 1, ..., L, and type-E. Type-0 individuals are defined as before. The flow-312

ering probability of type-i (i ∈ {1, 2, ..., L}) is denoted by ri, the p.g.f. of313

their seed production by Gi(s) and their seeds will produce type-(i + 1)314

adults. The survival probability of non-flowering type-i individuals is pi,315

and survivors remain of type i. The offspring of type-L individuals will be316

of type-E. Type-E individuals and q are defined as in previous sections.317

The scheme is represented in Fig. 4.318

The hazard rate in this scenario follows a similar method to the derivation319

in the previous case, but see Appendix Appendix A.7 for full details. Nu-320

merical solutions of the supremum of the hazard rate against L are shown321

in Fig. 5a for the crop-rotation situation described in (16).322

To further examine the effect of bottlenecks, we consider a Taylor ap-323

proximation of the hazard rate around the point q = 1, for the case that324

plants are annual (i.e. ri = 1 for i = 1, 2, ..., L). The resulting Taylor325
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approximation is (see Appendix A.8 for details):326

Hn(q) ≈

(
p0m0(n− L− 1)

L∏
i=1

p0mi

)
(1− q) (24)

where mi, i = 1, 2, . . . , L, represents the average number of seeds produced327

by a type-i individual.328

When the values of mi are similar, this expression decreases geometrically329

with L, which corresponds to the shape observed in Fig. 5a.330

Bottlenecks not only reduce the maximum hazard rate, but also induce331

a delay in the changes of the hazard rate in reaction to changes in crop332

cultivation. This is illustrated in Fig. 5b.333

7. Discussion334

In this paper we generalize our previous results on hazard rates of in-335

trogression (Ghosh and Haccou, 2010) to situations with time-varying hy-336

bridization. Whereas in our previous paper we considered a model with two337

age classes and a bottleneck of one generation, the present paper concerns338

situations without age dependence, and effects of extended bottlenecks. The339

general methodology that we present can be extended straightforwardly to340

other types of life histories. Furthermore, there are several general conclu-341

sions that are valid for a wide range of situations.342

First of all, the results shed light on the meaning of the hazard rate as a343

measure of stochastic introgression rate, and its practical implications. As344

illustrated in this paper, hazard rates may increase and decrease in time, in345

relation to changes in the magnitude of hybridization rates. When the hy-346

bridization rate is high, the instantaneous risk of introgression events is also347

high. During such periods, increased vigilance is advisable, to prevent the348
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successful establishment of crop genes in wild populations. When hybridiza-349

tion frequency drops, the hazard rate decreases, and accordingly, vigilance350

might be decreased. Our results show, however, that managers must take351

care not to let their guards down too soon, since increased fitness bottle-352

necks delay the changes in the hazard rate. This implies, for instance, that353

even after crop cultivation has been terminated for a considerable time, the354

risk of introgression events may still be quite high (see Fig. 5b), reaffirming355

a conclusion from Haygood et al. (2003).356

The risk that introgression occurs is determined by the interaction be-357

tween life history and fitness characteristics of hybrids, and crop manage-358

ment. As we illustrated, changes in gene flow induce changes in the level359

of the hazard rate. The speed at which such changes take place, as well360

as the magnitude of the hazard rate depends on life-history characteristics.361

For instance, increases in fitness bottlenecks not only cause a delay in ad-362

justment of the hazard rate, but also decelerate the adjustments, and lower363

the maximum level. Furthermore, in all scenarios, the maximum level of364

the hazard rate is affected by the factor β1(q), which is determined by the365

fitness of the backcrosses (see (7)).366

We examined the effect of several possible scenarios. With temporary367

crops, there is a positive probability that introgression does not occur, that368

depends on the duration of the crop cultivation. Furthermore, in this situ-369

ation, the hazard rate at a given time x is nearly equal to the probability370

of an introgression event at that time, and thus provides a good approxi-371

mation for the probability distribution (see e.g. Fig. 2b). This is a general372

result, that can be derived from the relation between the hazard rate and373

the time-distribution.374
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With crop rotation, the hazard rate becomes periodic, and fluctuations375

also occur in the time-distribution of introgression events (Fig. 2c and d).376

In such situations, a simpler measure of risk might sometimes be needed.377

One option is to use the hazard rate that in the long run would lead to378

the same introgression risk over a given period as the crop rotation scheme.379

This value is given in (21), and indicated in Fig. 2c. We refer to this380

value as the long-run average hazard rate. However, please note that it381

is not the same as the arithmetic time-average of the asymptotic hazard382

rate. From (21) it can be seen that the average risk level is determined383

by the proportion of years that crop cultivation occurs. Thus, the average384

hazard rate remains the same when S and R are multiplied by the same385

factor. For instance, alternating between one year ’on’ and ’off’ would in386

the long run give the same average hazard rate as alternating between, say,387

ten years ’on’ and ’off’. Larger values of S and R would, however, lead to388

a larger amplitude of the fluctuations in the hazard rate. The magnitude389

of this effect can be calculated by means of (19) and (20). In situations390

with large fluctuations the use of the average hazard rate as a risk indicator391

might be misleading, since the maximum hazard rate is much higher than392

the average. This is illustrated in Fig. 2c. In such a situation, the time-393

distribution of introgression events corresponding to the average hazard rate394

is also radically different from the real one (see Fig. 2d).395

Another possible way to quantify the risk is to use the long-run maximum396

hazard rate, which provides a conservative measure of risk. Figure 2d also397

shows the time-distribution of introgression events corresponding to the398

maximum hazard rate, illustrating that in an example with large amplitude399

of the hazard rate this might be a better risk measure.400
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We also derived methods to calculate the hazard rate in situations with401

randomly varying hybridization rates. As a specific example, we considered402

a situation where the environment alternates between two states, one with403

and one without hybridization, according to a Markov chain. In the absence404

of environmental autocorrelation, the hazard rate becomes constant in the405

long run, and an explicit expression can be derived. This value is given406

in (23), and corresponds to the arithmetic time-average of the asymptotic407

hazard rate in a deterministic crop rotation scheme with the same propor-408

tion of years of hybridization as the random environment. It can be shown409

that this value is lower than the long-run average hazard rate given in (21).410

Therefore, random variation in gene flow appears to reduce the probability411

that introgression occurs. This also appears to be true in autocorrelated412

environments, as illustrated in Fig.3. Positive autocorrelation reduces the413

hazard rate, whereas negative autocorrelation does not seem to have much414

effect. In any case, the long-run hazard rate is smaller than the long-run415

average for the deterministically alternating environment. Thus, we expect416

that hazard rates for deterministic scenarios provide conservative measures417

for introgression risk. This is a fortunate result, since in many situations418

there is likely to be random variation in gene flow, which is beyond control419

of management measures.420

We examined several specific gene flow scenarios, to illustrate the method-421

ology and its possibilities. For mathematical tractability, we used a rela-422

tively simple life-history and Poisson distributions for the numbers of hy-423

brids. Our methods can readily be adjusted to examine other types of gene424

flow variation, more complicated life histories, and hybrid number distri-425

butions. In such cases, however, no explicit expressions for (asymptotic)426
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hazard rates will be possible. Instead, numerical methods will have to be427

used, based on the adjusted equations. Such calculations generally do not428

take much time on a standard computer.429

Other generalizations, which are the subject of ongoing research, include430

the introduction of time-inhomogeneity in backcross fitness, multi-locus ge-431

netics, and meta-population dynamics. Another type of generalization con-432

cerns small populations. As long as wild receptor populations are assumed433

to be large enough to exclude direct interactions between initial invaders,434

the approach that we used up to now, based on branching processes, can be435

applied. For small populations however, different methods need to be de-436

veloped, based on density-dependent models (see (e.g Jagers and Klebaner,437

2000)). This is another line of ongoing research.438

The use of stochastic models in introgression studies is quite rare, al-439

though not completely absent (e.g. Haygood et al., 2004; Thompson et al.,440

2003). The general methodology for handling such models, and quantifying441

introgression timing events is, however, still in its infancy. The use of hazard442

rates is, in our opinion, an important step forward. Serra and Haccou (2007)443

introduced the concept of the hazard rate for studying branching processes444

with mutation, and Ghosh and Haccou (2010) were the first to use it in the445

context of introgression. The work presented here represents the next step446

of a research program that is aimed at developing a full-fledged toolbox for447

studying stochastic introgression processes. Such tools are indispensable448

in introgression risk management, since stochastic elements are inevitably449

present, and, furthermore, adding stochasticity changes the features of in-450

trogression processes considerably.451
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Appendix A. Appendix463

Appendix A.1. Derivation of (2)464

Using (1) and the definition of p.g.f.’s we find:

fIi(k,n)(s) = E
[
E
[
sIi(k,n)|Z(i)

0 (k + 1), Z
(i)
1 (k + 1), Z

(i)
E (k + 1)

]]
= E

[
E[sI0(k+1,n)]Z

(i)
0 (k+1) E[sI1(k+1,n)]Z

(i)
1 (k+1)E[s]Z

(i)
E (k+1)

]
= E

[
fI0(k+1,n)(s)

Z
(i)
0 (k+1)fI1(k+1,n)(s)

Z
(i)
1 (k+1)sZ

(i)
E (k+1)

]
(A.1)

We can manipulate (A.1) as above because the individual lineages are in-465

dependent of each other, and individuals of the same type have identical466

offspring distributions.467

Now we introduce the joint p.g.f of the reproduction distribution of a468

type-i individual belonging to a year k which, for i ∈ {0, 1} and k ≥ 0, is469
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defined as470

Fi (k; (s0, s1, sE)) = E

[
s
Z

(i)
0 (k+1)

0 s
Z

(i)
1 (k+1)

1 s
Z

(i)
E (k+1)

E

]
(A.2)

for (s0, s1, sE) ∈ [0, 1]3.471

Putting (A.1) and (A.2) together, we find that472

fIi(k,n)(s) = Fi(k; (fI0(k+1,n)(s), fI1(k+1,n)(s), s)) (A.3)

In our specific model, we have the following reproduction laws:473

F0(k; (s0, s1, sE)) = s0G0(k; p0s1 + (1− p0)) (A.4)
474

F1(k; (s0, s1, sE)) = (1−r1)(1−p1)+(1−r1)p1s1+r1G1(p0sE+1−p0). (A.5)

Substituting (A.5) and (A.4) into (A.3) gives (2).475

Appendix A.2. Derivation of (6)476

Since the population initiated by a type-1 individual is time-477

homogeneous, fI1(k,n)(s) = fI1(0,n−k)(s). Using this in the second equation478

of (2) results in:479

fI1(0,n−k)(s) = (1− r1)(1−p1) + (1− r1)p1fI1(0,n−k−1)(s) + r1G1(p0s+ 1−p0)

(A.6)

Introducing b1 = (1−r1)p1 and a1(s) = (1−r1)(1−p1)+r1G1(p0s+1−p0),

allowing k = 0, this can be rewritten as follows:

fI1(0,n)(s) = a1(s) + b1fI1(0,n−1)(s)

= a1(s) + b1
(
a1(s) + b1fI1(0,n−2)(s)

)
= ...

= bn1 + a1(s)
n−1∑
i=0

bi1. (A.7)
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Computing the geometric sum above, and taking the quantities defined in480

(6) gives the required result.481

Appendix A.3. Derivation of (8)482

Deriving (8) follows from repeating equation (2) in the following way:

fI0(0,n)(s) = fI0(1,n)(s)G0(0; p0fI1(1,n)(s) + 1− p0)

= fI0(2,n)(s)G0(1; p0fI1(2,n) + 1− p0)G0(0; p0fI1(1,n)(s) + 1− p0)
...

=
n−1∏
j=1

G0(j − 1; p0fI1(0,n−j)(s) + 1− p0) (A.8)

The expression in (8) follows from substituting (A.8) into (5).483

Appendix A.4. Derivation of (18)484

Substituting (16) into (10) gives the hazard rate. During the (v + 1)th485

period that hybridization is introduced, i.e. if v(R + S) + 2 ≤ n < v(R +486

S) + S + 2, the following holds:487

Hn(q) = 1− e
−m0p0β1(q)

(
1−bn−(1+v(S+R))

1 +b
n−(S+1)
1 (1−bS1 )

(
1−b

v(R+S)
1

b
(v−1)(R+S)
1 (1−bR+S

1 )

))

(A.9)

and for the (v+ 1)th period that hybridization is stopped, i.e. if v(R+S) +488

S + 2 ≤ n < (v + 1)(R + S) + 2,489

Hn(q) = 1− e
−m0p0β1(q)b

n−(S+1)
1 (1−bS1 )

(
1−b

(v+1)(R+S)
1

b
v(R+S)
1 (1−bR+S

1 )

)
(A.10)
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and, as in (10), the hazard rate equals zero for n ∈ {0, 1}. Substituting (17)490

into (A.9) leads to the following for 0 ≤ k < S :491

Hv(R+S)+2+k(q) = 1−e
−m0p0β1(q)

(
1−bk+1

1 +b
v(R+S)+k+1−S
1 (1−bS1 )

(
1−b

v(R+S)
1

b
(v−1)(R+S)
1 (1−b

(R+S)
1 )

))

(A.11)

and substituting (17) into (A.10) leads to, for S ≤ k < S +R:492

Hv(R+S)+2+k(q) = 1− e
−m0p0β1(q)b

v(R+S)+k+1−S
1 (1−bS1 )

(
1−b

(v+1)(R+S)
1

b
v(R+S)
1 (1−b

(R+S)
1 )

)
.

(A.12)

To reach the asymptotic behaviour described in (18), take v → ∞ in both493

(A.11) and (A.12).494

Appendix A.5. Derivation of (21)495

First, note that the survival function of T and the hazard rate are related496

as follows. For any t ∈ [0,+∞):497

P [T > t] =
∏

j∈N0 : j≤t

(1−Hj (q)) . (A.13)

Define the sequence {cn, n ∈ N0}:498

cn =
P [T > n+R + S]

P [T > n]
. (A.14)
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The use of (A.8) with (4) and (A.14), gives:499

cn =
fI0(0,n+R+S)(q)

fI0(0,n)(q)

=

n+R+S−1∏
i=1

G0(i− 1; p0 fI1(0,n+R+S−i)(q) + 1− p0)

n−1∏
i=1

G0(i− 1; p0 fI1(0,n−i)(q) + 1− p0)
(A.15)

=

R+S∏
i=1

e−p0m0(i−1)(1−fI1(0,n+R+S−i)(q))
n+R+S−1∏
i=R+S+1

e−p0m0(i−1)(1−fI1(0,n+R+S−i)(q))

n−1∏
i=1

e−p0m0(i−1)(1−fI1(0,n−i)(q))

= e
−p0m0

S∑
i=1

(1−fI1(0,n+R+S−i)(q))

Note how the second product in the numerator is identical to the denomi-500

nator. This is a result of the periodicity of the hybridization rate in (16).501

Also, note that for S + 1 ≤ i ≤ R + S, m(i) = 0, which is used to reduce502

the number of terms in the sum.503

When n→∞, cn converges to504

C = e−p0m0Sβ1(q). (A.16)

Thus, in the long run, a process with a constant hazard rate, λ, and such505

that limn→∞
P [T>n+R+S]

P [T>n]
= C, would have the same probability of an intro-506

gression event occurring within a period from n to n+R+S, with sufficiently507

large n. Using (A.13) and (A.16) we find that λ must satisfy508

lim
n→∞

n+R+S∏
i=n+1

(1− λ) = C, (A.17)

and the required result follows by combining (A.16) and (A.17) and solving509

for λ.510
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Appendix A.6. Derivation of (22)511

Take the definitions of fIi(k,n)(s), Ii(k, n) and Z
(i)
m as before, but extend512

it to include i = (0, 1) and (0, 2). As before, a joint p.g.f. of the offspring513

distribution of a single type-i (i = (0, 1), (0, 2), 1, E) is defined:514

Fi (k; (s0,1, s0,2, s1, sE)) = E

[
s
Z

(i)
0,1(k+1)

0,1 s
Z

(i)
0,2(k+1)

0,2 s
Z

(i)
1 (k+1)

1 s
Z

(i)
E (k+1)

E

]
(A.18)

Then, following the same methodology established in Appendix A.1, we get:515

fIi(k,n)(s) = Fi(k; (fI0,1(k+1,n)(s), fI0,2(k+1,n)(s), fI1(k+1,n)(s), s)) (A.19)

Following further the methodology in Appendix A.1, the following recursive

relationships hold:

fI0,1(0,n−k)(s) =G0,1

(
p0fI1(0,n−k−1)(s) + 1− p0

)
×(

κ1,1fI0,1(0,n−k−1)(s) + κ1,2fI0,2(0,n−k−1)(s)
)

(A.20)

fI0,2(0,n−k)(s) =G0,2

(
p0fI1(0,n−k−1)(s) + 1− p0

)
×(

κ2,1fI0,1(0,n−k−1)(s) + κ2,2fI0,2(0,n−k−1)(s)
)

(A.21)

where the simplifying expression fIi(k,n)(s) = fIi(0,n−k)(s) has been applied.

Using the forms of G0,1(s) and G0,2(s) as specified in section 5, and setting

k = 0, gives:

fI0,1(0,n)(s) = e−m0p0(1−fI1(0,n−1)(s))×(
κ1,1fI0,1(0,n−1)(s) + κ1,2fI0,2(0,n−1)(s)

)
fI0,2(0,n)(s) = κ2,1fI0,1(0,n−1)(s) + κ2,2fI0,2(0,n−1)(s) (A.22)

Since the environmental process is stationary:516

P (T > n) =
κ2,1

κ1,2 + κ2,1
fI0,1(0,n)(q) +

κ1,2
κ1,2 + κ2,1

fI0,2(0,n)(q), (A.23)
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and the hazard rate can be calculated from this. For the considered517

analog of the deterministic process without autocorrelation, fI0,1(0,n)(s) =518

e−m0p0(1−fI1(0,n−1)(s))fI0,2(0,n)(s) . Using (5) (A.23) and (A.22) then gives the519

required result.520

Appendix A.7. Derivation of the hazard rate in the bottleneck scenario521

We start by defining the random variable Ii(k, n) as before, except with522

i ∈ {0, 1, . . . , L}. Also, we define p.g.f.’s, fIi(k,n,)(s), of these random vari-523

ables in the same way as previously done.524

Since an individual belonging to a generation greater than n can produce525

no type-E individuals before n, write the following for any i ∈ {0, 1, . . . , L},526

Ii(k, n) = 0, if k ≥ n. (A.24)

Let us now turn to the case k < n. For a fixed i ∈ {0, . . . , L}, and527

a general scenario, where individuals can have offspring of any type, the528

following decomposition holds529

Ii(k, n) = Z
(i)
E (k + 1) +

L∑
m=0

Z
(i)
m (k+1)∑
j=1

I(j)m (k + 1, n) , (A.25)

where the random variables

Z
(i)
0 (k + 1), Z

(i)
1 (k + 1), . . . , Z

(i)
L (k + 1), Z

(i)
E (k + 1)

represent the number of offspring of types 0, 1, . . . , L, E, respectively, that

the initial type i produced. Also, as the notation suggests, the random

variables

I
(j)
0 (k + 1, n), j = 1, . . . , Z

(i)
0 (k + 1),
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represent the number of type-E individuals with non-type-E parents, ap-

pearing up to and including year n, in the line of descent of the jth type-0

offspring of the initial type-i individual. Notice that, since the initial type-i

individual belongs to year k, its offspring belongs to year k+1. The random

variables

I
(j)
1 (k + 1, n), j = 1, . . . , Z

(i)
1 (k + 1),

I
(j)
2 (k + 1, n), j = 1, . . . , Z

(i)
2 (k + 1),

...

I
(j)
L (k + 1, n) j = 1, . . . , Z

(i)
L (k + 1),

are defined in a analogous way, but now for the type-1, type-2, ..., type-L,530

respectively, offspring of the initial type-i individual.531

First manipulate the generating functions of (A.25) as follows:

fIi(k,n)(s) = E
[
E
[
sIi(k,n)|Z(i)

0 (k + 1), Z
(i)
1 (k + 1), . . . , Z

(i)
L (k + 1), Z

(i)
E (k + 1)

]]
= E

[
E[sI0(k+1,n)]Z

(i)
0 (k+1) E[sI1(k+1,n)]Z

(i)
1 (k+1) . . . E[sIL(k+1,n)]Z

(i)
L (k+1) E[s]Z

(i)
E (k+1)

]
= E

[
fI0(k+1,n)(s)

Z
(i)
0 (k+1)fI1(k+1,n)(s)

Z
(i)
1 (k+1) . . . fIL(k+1,n)(s)

Z
(i)
L (k+1)sZ

(i)
E (k+1)

]
(A.26)

We can manipulate (A.26) as above because the individual lineages are532

independent of each other, and individuals of the same type have identical533

offspring distributions.534

Introduce the joint p.g.f of the reproduction distribution of a type-i in-535

dividual belonging to a year k which, for i ∈ {0, 1, . . . , L} and k ≥ 0, is536

defined as537

Fi (k; (s0, s1, . . . , sL, sE)) = E[s
Z

(i)
0 (k+1)

0 s
Z

(i)
1 (k+1)

1 . . . s
Z

(i)
L (k+1)

L s
Z

(i)
E (k+1)

E ]

(A.27)

for (s0, s1, . . . , sL, sE) ∈ [0, 1]L+2.538
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Putting (A.26) and (A.27) together, we find that539

fIi(k,n)(s) = Fi(k; (fI0(k+1,n)(s), fI1(k+1,n)(s), . . . , fIL(k+1,n)(s), s)) (A.28)

In our specific model, we have the following assumptions regarding the540

reproduction:541

• the reproduction law of a type 0 individual depends on the year number542

and the corresponding p.g.f. is given by543

F0(k; (s0, s1, . . . , sL, sE)) = s0G0(k; p0s1 + (1− p0)) (A.29)

• for a type i individual, with i ∈ {1, . . . , L}, the reproduction law does544

not depend on the year number and the corresponding p.g.f. is given545

by546

Fi(k; (s0, s1, . . . , si, si+1, . . . , sL, sE)) = (1− ri)(1− pi) + (1− ri)pisi

+ riGi(p0si+1 + 1− p0) (A.30)

with sL+1 ≡ sE. The fact that the reproduction law of these individuals

is independent of time implies that

fIi(k,n)(s) = fIi(0,n−k)(s).

This relation will be used more or less explicitly in the following calcu-547

lations.548

The use of (A.30) and (A.28) with i = L, gives

fIL(0,n)(s) = (1− rL)(1−pL) + (1− rL) pL fIL(0,n−1)(s) + rLGL(p0s+ 1−p0).
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The use of initial condition fIL(0,0)(s) = 1 results in the following for any549

n ≥ 0, which is :550

fIL(0,n)(s) = 1− βL(s) + βL(s) bnL, (A.31)

with551

bL = (1− rL) pL and βL(s) =
rL (1−GL(p0s+ 1− p0))

1− bL
. (A.32)

The calculation of (A.31) above follows the same reasoning shown in Ap-552

pendix Appendix A.2.553

Now that we can calculate the p.g.f.’s of IL(0, n), we proceed by finding554

expressions for the p.g.f.’s of Ii(0, n) for i = 0, 1, . . . L− 1.555

Note that, in the line of descent of a single type-i individual belonging to

year 0, new type-E individuals can only appear after L − i + 1 years (this

is intuitively clear from Fig. 4). Hence, for i ∈ {1, . . . , L− 1},

fIi(0,1)(s) = fIi(0,2)(s) = . . . = fIi(0,L−i)(s) = 1.

Now, for n > L− i, the use of (A.30) and (A.28), gives

fIi(0,n)(s) = (1−ri)(1−pi)+riGi(p0fIi+1(0,n−1)(s)+1−p0)+(1−ri)pifIi(0,n−1)(s).

Repeating the procedure gives556

fIi(0,n)(s) = [(1− ri)pi]n−(L−i) + (1− pi)
n−(L−i)∑
j=1

(1− ri)j pj−1i

+

n−(L−i)∑
j=1

ri[(1− ri)pi]j−1Gi(p0 fIi+1(0,n−j)(s) + 1− p0).

Computing the sums above gives us the following p.g.f.’s:557

fIi(0,n)(s) = 1− αi + αi b
n−(L−i)
i + ri

n−1∑
k=L−i

bn−k−1i Gi(p0 fIi+1(0,k)(s) + 1− p0),

(A.33)
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where558

bi = (1− ri)pi and αi =
ri

1− bi
. (A.34)

We have fI0(0,n)(s) = 1 for n ≤ L, since a type-0 individual requires at559

least L generations to produce a type-E individual. For n > L we combine560

(A.29) and (A.28) to give:561

fI0(0,n)(s) =
n−L∏
j=1

G0(j − 1; p0fI1(0,n−j)(s) + 1− p0) (A.35)

which can be calculated using (A.33) and (A.31).562

The use of (A.35) and noting that, as before, P (T > n) = fI0(0,n)(q)563

yields the hazard rate:564

Hn(q) =



0 if 0 ≤ n ≤ L

1−

n−L∏
j=1

G0

(
j − 1; p0fI1(0,n−j)(q) + 1− p0

)
n−1−L∏
j=1

G0

(
j − 1; p0fI1(0,n−1−j)(q) + 1− p0

) if n ≥ L+ 1.

(A.36)

Appendix A.8. Derivation of (24)565

Taking r1 = 1 in (A.31) to (A.34) gives:

fIL(0,n)(s) = 1− βL(s) (A.37)

fIi(0,n)(s) = Gi

(
p0fIi+1(0,n−1)(s) + 1− p0

)
(A.38)

where i = 1, 2, ..., L− 1. Differentiating these expressions with respect to s

and evaluating the results at the point s = 1 gives:

f ′IL(0,n)(1) = p0mL

f ′Ii(0,n)(1) = p0mif
′
Ii+1(0,n−1)(1) (A.39)
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where we have used the fact that the derivative of a p.g.f. evaluated at one566

is the mean of the random variable.567

Taking logarithms in (A.35) and differentiating at s = 1 yields the fol-

lowing expression:

f ′I0(0,n)(1) =
n−L∑
j=1

p0m0(j − 1)f ′I1(0,n−j)(1)

=
n−L∑
j=1

p0m0(j − 1)pL0

L∏
i=1

mi (A.40)

where the last equality uses the expressions in (A.39).568

Consider the representation of the hazard rate in (5). It is apparent that569

the constant-term in the Taylor approximation will be zero, due to the fact570

that p.g.f.’s evaluated at one are one. Taking the derivative of (5) around571

one yields:572

H ′n(1) = f ′I0(0,n−1)(1)− f ′I0(0,n)(1). (A.41)

Using the above with (A.40) gives the required result.573
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Figure 2: (a) Hazard rates when crops are terminated after a period of S = 10 (blue),

or S = 20 (red). Parameter values: m0 = 50, p0 = 0.001, p1 = r1 = 0.5, m1 = 950,

q = 0.95, (b)The distributions of time until an introgression event, corresponding to the

situations in (a). (c) The hazard rate with crop rotation (see (A.9) and (A.10)) (solid

line) for R = S = 5 and all other relevant parameters the same as in (a). The average

hazard rate (see (21)) (dotted line). (d) Distribution of times until an introgression

event for the crop rotation scenario of (c) (blue line), for a constant average hazard rate

(dotted black line), and for a constant maximum hazard rate (see (19), solid black line).

In (a) and (c), circles indicate periods when hybridization occurs, but not the amount of

immigration.
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Figure 3: (a)The effect of autocorrelation on the asymptotic hazard rate when k1,2 =

k2,1 = α = 1 − k2,2 = 1 − k1,1, m0,1 = 50, m0,2 = 0, and other parameter values

as in Fig.2. The environment is positively autocorrelated when lnα < ln 2(≈ −0.69)

and negatively autocorrelated when lnα > ln 2. Periods with and without positive

hybridization probabilities alternate deterministically when lnα = 0. (b) Tthe hazard

rate at α = 1 when the process is started with a stationary distribution of type-(0, 1) and

type-(0, 2) individuals (blue), and when the process is started with a single type-(0, 1)

individual (red).
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Figure 4: Schematic representation of the bottleneck model. (ξi; p0) represents the pro-

duction of ξi seeds i ∈ (0, k)∪{1, 2, ..., L}, where each seed has a germination probability

p0. Each type-E individual initiates a lineage which eventually becomes extinct with

probability q.
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Figure 5: (a) The maximum hazard rate as a function of the length of the bottleneck L for

a crop rotation scenario with R = S = 5, m0 = 50, p0 = 0.001, pi = ri = 0.5, mi = 950

for i = 1, 2, ..., L and q = 0.95. (b) The hazard rate against time with hybridization as

described in (12) with S = 10 and all other parameters as in (a). The behaviour for

L = 1 (blue) L = 3 (red) and L = 5 (green) is shown.
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