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11 Abstract Stress and high levels of glucocorticoids during
12 pre- and early postnatal life seem to alter developmental
13 programs that assure dopaminergic transmission in the
14 mesolimbic, mesocortical, and nigrostriatal systems. The
15 induced changes are likely to be determined by the
16 ontogenetic state of development of these brain regions at
17 the time of stress exposure and their stability is associated
18 with increased lifetime susceptibility to psychiatric disor-
19 ders, including drug addiction. This article is intended to
20 serve as a starting point for future studies aimed at the
21 attenuation or reversal of the effects of adverse early life
22 events on dopamine-regulated behaviors.
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50Introduction

51The catecholaminergic neurotransmitter dopamine (DA; 4-
52[2-aminoethyl]benzene-1,2-diol) is prominently involved in
53a number of brain functions such as cognition, emotion,
54reward, and motor control (Nieoullon and Coquerel 2003;
55Wise 2008), as well as neuropsychiatric disorders such as
56schizophrenia, drug addiction, attention deficit hyperactiv-
57ity disorder (ADHD), and Parkinson’s disease (Genro et al.
582010; Howes and Kapur 2009; Melis et al. 2005; Oades et
59al. 2005; Piazza and Le Moal 1996; Weiner 2002). DA is
60also implicated in the regulation of depression, social
61behavior and pain processing (Kapur and Mann 1992;
62Wood 2008). DAergic activity changes in a graded fashion
63over the lifespan, resulting in the manifestation of age-related
64behavioral profiles and neurological conditions. In rodents,
65DA-producing neurons begin to form during early mid-
66gestation (E10.5); at E12.5, these neurons start to express
67tyrosine hydroxylase, the rate-limiting enzyme in the conver-
68sion of L-tyrosine into L-DOPA (3,4-dihydroxyphenylalanine)
69and, subsequently, into DA. Thereafter, the generation of
70DAergic cells gradually declines, and importantly, DAergic
71neurons increasingly undergo two peaks of apoptosis:
72immediately after birth and again, during the second week
73of postnatal life (Burke 2004; Oo and Burke 1997). It is
74estimated that adult human and rat brains contain some
75600,000 and 45,000 DAergic cells, respectively (German and
76Manaye 1993)—a relatively small proportion of the total
77population of neurons in the brain.

A.-J. Rodrigues : P. Leão :M. Carvalho :N. Sousa (*)
Life and Health Sciences Research Institute (ICVS),
School of Health Sciences, University of Minho,
4710-057, Braga, Portugal
e-mail: njcsousa@ecsaude.uminho.pt

O. F. X. Almeida
Max Planck Institute of Psychiatry,
Kraepelinstrasse 2-10,
80804, Munich, Germany

Psychopharmacology
DOI 10.1007/s00213-010-2085-3

JrnlID 213_ArtID 2085_Proof# 1 - 10/11/2010
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55617732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AUTHOR'S PROOF!

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

78 Knowledge of the various transcription factors that
79 contribute to the ontogeny of DAergic neurons has grown
80 considerably in the last decade (Prakash and Wurst 2006).
81 On the other hand, besides knowing that increased levels of
82 reactive oxygen species derived from neurotoxins and that,
83 perhaps, some therapeutic agents can compromise the
84 viability of DA neurons, our understanding of other
85 environmental and physiological factors that are responsi-
86 ble for the survival and demise of these neurons is
87 surprisingly limited. In light of the narrow window within
88 which DAergic cells are born, and the fact that the fate of
89 the developing nervous system is particularly sensitive to
90 environmental influences (Bjorklund and Dunnett 2007),
91 studying how early life events may sculpt DAergic circuits,
92 and therefore predispose individuals, or indeed contribute
93 to their resilience to DA-related disorders later in life, is
94 particularly important.
95 This article focuses on how early life stress, implicated
96 in a number of behavioral disorders associated with
97 DAergic dysfunction, may exert its effects. Notably, a
98 number of studies, mainly carried out in norepinephrine
99 neurons of adult animals, have shown that glucocorticoids
100 (GC), the primary humoral effectors of the physiological
101 response to stress, can upregulate tyrosine hydroxylase
102 (TH) synthesis and therefore; as DA production is also
103 under regulation of TH, it is admissible that GCs might also
104 regulate DA production (Makino et al. 2002; Markey et al.
105 1982; Ortiz et al. 1996). While these effects are likely to
106 reflect direct GC actions on TH neurons following their
107 activation of glucocorticoid receptors (which have tran-
108 scriptional properties), indirect regulation of TH synthesis
109 through intersecting pathways cannot be excluded (Otten
110 and Thoenen 1975). Administration of GCs significantly
111 change DA and its metabolites levels in the striatum and
112 prefrontal cortex (PFC), importantly, adrenalectomy seems
113 to have an antagonist effect (Lindley et al. 1999; Lindley et
114 al. 2002), although contradictory findings have also been
115 published (Dunn 1988). Nevertheless, it has been shown
116 that dopaminergic transmission in the nucleus accumbens
117 (NAcc) seems to be GC-dependent, both in basal conditions
118 and after stimulus (Barrot et al. 2000).

119 Programming of behavior by early life stress

120 Adversity during early life, including physical and emotional
121 neglect and traumatic experiences, can induce persistent
122 effects on physical and mental health (Heim and Nemeroff
123 2002; Teicher et al. 2003). Specifically, there is now well-
124 documented evidence that adversity in childhood increases
125 the risk for development of conduct disorders, personality
126 disorders, ADHD, major depression, posttraumatic stress
127 disorder, schizophrenia, anxiety, and addictive disorders

128(Agid et al. 1999; Bernet and Stein 1999; Chapman et al.
1292004; Dube et al. 2003; Heim and Nemeroff 2001; Kendler
130et al. 2004; Weiss et al. 1999; Young et al. 1997). The
131clinical importance of these findings can be better appreci-
132ated when one considers that some 80% of adults who
133experienced abuse or neglect in early life are predicted to
134suffer at least one episode of a psychiatric disorder such as
135depression and anxiety or a behavioral disorder such as
136addiction (Edwards et al. 2003; Espejo et al. 2007; Gutman
137and Nemeroff 2003; Heim and Nemeroff 2001; McFarlane et
138al. 2005). In contrast, the predicted incidence of such
139disturbances is much lower in women abused as adults
140(Brown and Moran 1994; McCauley et al. 1997), a finding
141that points to the existence of critical time windows during
142which the organism is particularly sensitive to stress-induced
143pathology later in life.
144Most of the above clinical conditions are linked to
145impaired DAergic transmission and are likely to be
146underpinned by structural alterations in the nervous tissue
147which, in turn, translate into a resetting of homeostatic
148mechanisms that promote either adaptation or pathology.
149Much attention has been recently focused on the ability of
150early life stress (ELS) to program the hypothalamic–
151pituitary–adrenocortical (HPA) axis (Heim et al. 2008;
152Tarullo and Gunnar 2006). Information about the physical
153and psychological environments converges on this axis,
154which, through its secretion of glucocorticoids (GCs),
155determines the organism’s physiological and behavioral
156response. In a simplistic way, physical or physiological
157stress activates the production of corticotrophin-releasing
158factor in the hypothalamus, which in turns binds to
159specific receptors in pituitary cells stimulating the produc-
160tion of adrenocorticotropic hormone (ACTH). ACTH is
161then transported to adrenal glands, culminating with the
162secretion of GCs (cortisol in humans and corticosterone in
163rodents). GCs have a series of metabolic effects for
164improving stress response and act through negative
165feedback to both the hypothalamus and the anterior
166pituitary, once the state of stress subsides. Yet, it should
167be noted that stress response involves far more than the
168elevation of GCs and, as a consequence, the stress effects
169cannot be confined to elevations of GCs. Indeed, it has
170been shown that severe forms of stress can also result in
171decreased levels of GCs release; as an example, insuffi-
172cient GC signaling may lie beneath the pathophysiology of
173some stress-related disorders such as posttraumatic stress
174disorder (Raison and Miller 2003).
175Importantly, in utero exposure to GC/stress has also
176been found to be associated with long-lasting deficits in
177cognitive, mood and affective, as well as addictive and
178affiliative behaviors in humans (French et al. 1999; Heim
179and Nemeroff 2001; MacArthur et al. 1982; Malaspina et
180al. 2008; Sinha 2001) and in animal models (Caldji et al.

Psychopharmacology

JrnlID 213_ArtID 2085_Proof# 1 - 10/11/2010

ajrodrigues
Cross-Out

ajrodrigues
Replacement Text
GCs

ajrodrigues
Inserted Text
 1995,

ajrodrigues
Inserted Text
,

ajrodrigues
Cross-Out

ajrodrigues
Replacement Text
,

ajrodrigues
Cross-Out

ajrodrigues
Replacement Text
GCs



AUTHOR'S PROOF!

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

181 1998; Liu et al. 1997; Oliveira et al. 2006; Rayburn et al.
182 1997). It is of interest to note that GC administration or
183 separation of rodents from their mothers during the first
184 week of postnatal life shifts the timing of a number of
185 neurodevelopmental milestones. Such treatments delay the
186 acquisition of neurological reflexes (e.g. righting and
187 postural reflexes, negative geotaxis) that depend on
188 vestibular and cerebellar function (Ellenbroek et al.
189 2005; Mesquita et al. 2007), while advancing eye and
190 ear opening. On the other hand, prenatal stress advances
191 the time of ear-flap and eye opening (Secoli and Teixeira
192 1998). While these neurodevelopmental changes may
193 reflect delayed myelination (Ferguson and Holson 1999;
194 Murphy et al. 2001; Valkama et al. 2000), there is strong
195 evidence for a role of altered catecholaminergic transmis-
196 sion in the vestibular region, the ventral tegmental area
197 (VTA) and raphe nuclei (Mesquita et al. 2007). Since these
198 brainstem structures project to corticolimbic structures, it
199 is plausible that their altered activity impacts on neuroen-
200 docrine (HPA axis activity) and behavioral functions.
201 In the majority of cases, the behavioral consequences of
202 ELS are attributable to transient or persistent dysregulation
203 of GC secretion which, in turn, is causally related to
204 increased susceptibility to depression and anxiety disorders
205 (Carroll et al. 1976; Heim et al. 2001; Heim et al. 2000;
206 Holsboer 2001; Yehuda et al. 1991), impaired social
207 behaviors (Rinne et al. 2002), ADHD (Sullivan and Brake
208 2003; Swanson et al. 2007), and drug abuse (Huizink et al.
209 2006; Prendergast and Little 2007), all of which appear to
210 involve an altered DAergic tone. Yet, whereas severe stress
211 is usually associated with HPA-mediated pathology, mild
212 stressful experiences may be linked to “positive” effects
213 and/or resilience in rodents (Catalani et al. 1993; Levine
214 1957; Macri et al. 2009).
215 Pioneering work by Meaney and colleagues showed
216 that the HPA axis can be epigenetically programmed
217 (McGowan et al. 2009; Weaver et al. 2004) and further,
218 that epigenetic (methylation) marks may be transmitted
219 across generations. Other studies have shown that ELS-
220 induced alterations in the epigenetic control of the activity
221 of the HPA axis are associated with enduring expression of
222 impaired cognitive- and depressive-like behavior in
223 rodents (Murgatroyd et al. 2009). It remains to be
224 demonstrated whether drugs with the potential to reverse
225 DNA methylation (e.g. 5-aza-2′-deoxycytidine, already
226 approved for use in cancer chemotherapy), can reverse the
227 central effects of ELS. It should be noted that stress also
228 leads to transient epigenetic alterations by deacetylation of
229 histones with concomitant changes in behavior; such
230 changes are drug-reversible with inhibitors of histone
231 decaetyltransferase which have also proved effective in
232 reversing age-dependent cognitive decline in experimental
233 animals (Peleg et al. 2010).

234Linking ELS to DAergic activity

235The developing postnatal and adolescent brain is charac-
236terized by high levels of neuroplasticity and reorganization.
237Given the evidence that prenatal, perinatal, and early
238postnatal life represent windows of susceptibility to the
239long-lasting effects of stress on brain pathologies related to
240DAergic dysfunction, it is reasonable to assume that
241DAergic circuits are direct or indirect targets of stress and
242stress hormones (GC). The clinical studies about ELS,
243DAergic transmission and psychiatric conditions are sparse.
244Nevertheless, it has been shown that low parental care is
245associated with higher cortisol and, consequently, ventral
246striatum dopamine levels in response to a psychosocial
247stress task (Pruessner et al. 2004). Moreover, it has been
248shown that a polymorphism in the DA enzyme COMT and
249childhood trauma may interact together to contribute to the
250risk of developing psychopathological personality traits
251(Savitz et al. 2010). COMT polymorphisms also seem
252relevant for the manifestation of depressive symptoms in
253children exposed to severe social deprivation (Drury et al.
2542010) and for the modulation of emotionality in sexually
255abused children (Perroud et al. 2010). A functional
256polymorphism that leads to higher expression of the
257enzyme monoamine oxidase A (degrades DA), was found
258to be correlated with reduced propensity for anti-social
259behaviors in maltreated children (Caspi et al. 2002; Kim-
260Cohen et al. 2006). Altogether, these findings reveal that
261variations in DA metabolism may modulate the impact of
262early life adversity on behavior and suggest a close link
263between DA, stress and mental illness. Stress may influence
264DAergic (1) cell fate; (2) neuron metabolism (DA produc-
265tion and turnover); (3) neuron morphology; and/or (4)
266receptor expression and synaptic transmission. Its effects,
267whether transient or permanent, can thus be expected to
268have long-term consequences on the shaping and expres-
269sion of DA-regulated behaviors. Notably, the consequences
270of ELS appear to be different upon the different DAergic
271circuits. Perinatal stress seems to decrease steady state
272levels of DA in the PFC and to increase it in both the NAcc
273and striatum (Boksa and El-Khodor 2003). While perinatal
274anoxia enhances stress-induced DA release in the NAcc, it
275seems to blunt it in the PFC (Brake et al. 1997; 2000),
276which strongly suggests different vulnerabilities of the
277mesocortical, mesolimbic, and nigrostriatal pathways to the
278deleterious effects of stress. A different timing of develop-
279ment and maturation of neurons of each circuit or different
280intrinsic sensibilities may explain these differences, although
281this needs to be further explored.
282DAergic neurons show marked anatomical and functional
283heterogeneity. They are principally located in the diencepha-
284lon, mesencephalon, and olfactory bulb (Bjorklund and
285Dunnett 2007); the largest number (∼90%) is found in the
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286 ventral part of the mesencephalon. These mesencephalic
287 neurons are the origin of the so-called mesocortical,
288 mesolimbic, and nigrostriatal DAergic systems (Fig. 1); a
289 fourth set of DAergic neurons, less relevant to this article,
290 follow the tuberoinfundibular pathway to terminate in the
291 hypothalamo–pituitary unit. Both the mesolimbic and
292 mesocortical systems arise from the VTA. While the
293 mesocortical pathway terminates in the cortex, where it
294 is thought to control cognition and executive functioning,
295 the mesolimbic projections innervate limbic areas such as
296 the nucleus accumbens (NAcc), amygdala and hippocam-
297 pus and serve in the regulation of memory, motivation,
298 reward and addiction. Due to their common origins in the
299 VTA, these two pathways are jointly referred to as the
300 mesocorticolimbic system, although the activity of each is
301 subject to regulation by distinct feedback loops. DAergic
302 neurons that project from the substantia nigra to the
303 striatum comprise the nigrostrial system; this pathway is

304mainly implicated in the initiation and maintenance of
305motor behavior. As already mentioned, these midbrain
306DAergic neurons are formed during early development,
307according to a rostrolateral to caudomedial gradient (Bayer
308et al. 1995) and their fibers project to terminal fields in the
309mesocortical and nigrostrial areas (Kawano et al. 1995).
310All these DAergic systems are thought to be fully mature
311and functional by the first few weeks of postnatal life in
312both rats (Voorn et al. 1988) and humans (Prakash and
313Wurst 2006), although some others have suggested that
314this maturation can occur until early adulthood in the PFC
315for example (Benes et al. 2000).
316Indicating that the developing and maturing DAergic
317systems are highly sensitive to perturbations, including
318stress and high levels of GC, experiments from our
319laboratory found that GC administration during late
320gestation (E18–19) significantly increases the ratio of
321apoptotic to proliferative cells in the VTA, resulting in a

VTA

sn

pit
amy

NAcc

nigrostriatal
mesolimbic

tuberoinfundibular
mesocortical

st

high DA
Schizophrenia 

(positive symptoms)
Schizophrenia 
(negative symptoms)

ADHD

VTA
PFC

PFC

high DA
Addiction

High motivational drive
Hyper-emotionality

Altered response to
stress & drugs of abuse

Schizophrenia 
(positive symptoms)

Anhedonia
Addicted brain
Depression
ADHD

VTA

NAcc

high DA
Drug-seeking behavior

Habit formation
Parkinson´s disease

sn
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Fig. 1 DAergic pathways of the brain. The mesolimbic and
mesocortical pathways arise from the VTA, which lies close to the
substantia nigra (sn). The mesolimbic pathway projects especially to
the nucleus accumbens (NAcc), but also to the amygdala (amy). The
mesocortical pathway projects to the prefrontal cortex (PFC). The

tuberoinfundibular tract terminates in the hypothalamo–pituitary (pit)
unit. The nigrostriatal pathway projects from sn to striatum (st).
Altered dopaminergic tone in each of these circuits (either hypo- or
hyperactivity) is associated with a particular pathological condition.
ADHD attention deficit hyperactivity disorder

Psychopharmacology

JrnlID 213_ArtID 2085_Proof# 1 - 10/11/2010

ajrodrigues
Inserted Text
.



AUTHOR'S PROOF!

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

322 sustained decrease in DAergic inputs to the NAcc (Leao et
323 al. 2007). The same treatment altered a number of DA-
324 regulated behaviors, including anxiety (Oliveira et al.
325 2006), prepulse inhibition and drug preference (Leão,
326 Rodrigues et al., unpublished observations). Some of these
327 behavioral changes might be additionally explained by
328 prenatal stress-induced variations in DA turnover in the
329 PFC (Fride and Weinstock 1988) and NAcc (Alonso et al.
330 1994), reflected in altered sensitivity to certain drugs of
331 abuse. Remarkably, ELS also adjusts DAergic tone in
332 response to certain drugs of abuse and to stress. For
333 example, progeny from stressed dams display higher NAcc
334 DA output under basal conditions and in response to
335 amphetamine or cocaine exposure (Kippin et al. 2008;
336 Silvagni et al. 2008). Similarly, maternal separation (MS)
337 enhances DA release in the NAcc following amphetamine
338 administration (Hall et al. 1999; Moffett et al. 2006).
339 Variations in MS and handling cause changes in ethanol
340 and cocaine self-administration with concomitant changes
341 in DA receptors in the NAcc (Moffett et al. 2007). A short-
342 term insult such as perinatal anoxia results in long-term
343 alterations in the NAcc DAergic response to tail-pinch
344 (Brake et al. 1997). ELS also affects DA transporter (DAT)
345 and DA receptor expression, function and sensitivity. The
346 role of DAT1 which regulates DAergic tone by clearing DA
347 in the synaptic cleft may be significant in this respect; this
348 is exemplified by the fact that drugs such as cocaine induce
349 pleasurable feelings by inhibiting DAT1 activity. In this
350 vein, it is interesting to note that MS decreases DAT levels
351 in the NAcc (Brake et al. 2004; Meaney et al. 2002).
352 Besides their well-described ability to determine neuro-
353 nal cell fate (Yu et al. 2010) and neuronal morphology in
354 the hippocampus (Fujioka et al. 2006; Seidel et al. 2008;
355 Sousa et al. 2000) and PFC (Bock et al. 2005; Cerqueira et
356 al. 2007a; Cerqueira et al. 2007b; Michelsen et al. 2007;
357 Murmu et al. 2006), stress (early or in adulthood) and GCs
358 have been found to influence the morphology of neurons in
359 the mesocorticolimbic circuitry. In the above-mentioned
360 study by Leao et al. (2007), we observed that GC during
361 late gestation results in a significant reduction in the
362 volume of the NAcc with significant changes in spine
363 density and morphology (Leão, Rodrigues et al., unpub-
364 lished observations). These findings were extended by
365 recent work from Martinez-Tellez et al. (2009) who
366 demonstrated decreased spine densities in the NAcc and
367 hippocampus of the progeny of rat dams subjected to
368 restraint stress from mid-late gestation. Since spine density
369 and morphology correlates with synaptic transmission and
370 plasticity (Blanpied and Ehlers 2004; Luscher et al. 2000;
371 Murthy et al. 2001), these findings indicate that ELS
372 interferes with transmission at neuronal networks. Interest-
373 ingly, however, prenatal stress has been shown to alter the
374 relative number of mushroom spines in the PFC (Michelsen

375et al. 2007); as compared to other spine types, mushroom
376spines are relatively stable, i.e., do not show spontaneous
377appearance and disappearance, suggesting a mechanism
378through which early life manipulations of the GC milieu
379might leave a permanent trace within mesocorticolimbic
380pathways.
381As mentioned earlier, there is a convincing correlation
382between adverse experience during early life and depression
383(Edwards et al. 2003; Felitti et al. 1998; McCauley et al.
3841997). Given that the therapeutic efficacy of the antidepres-
385sant tricyclic drugs was based on their ability to inhibit
386norepinephrine (NE) and serotonin (5-HT) transporters, the
387role of dopamine in depression was less explored over the
388years. Yet, ELS has long-term effects not only on noradren-
389ergic and serotonergic but also on DAergic circuits
390(Schneider et al. 1998; Takahashi et al. 1992). Research,
391based on measurements of DA metabolites, suggests that a
392hypo-DAergic state may be causally related to the depressed
393state; for example, depressed patients display reduced
394cerebrospinal fluid levels of homovanillic acid (Mendels et
395al. 1972) and levels of dihydroxyphenylacetic acid (DOPAC)
396are reduced in the caudate, putamen, and NAcc of depressed
397suicide victims (Bowden et al. 1997). Hypofunction of the
398mesocorticolimbic DA system is thought to underlie
399anhedonia, a cardinal symptom in depression, as well as
400the loss of motivation experienced by subjects suffering from
401cognitive and mood disturbances. Interestingly, boosting DA
402levels through administration of L-DOPA to Parkinsonian
403patients improves their depressive symptoms (Maricle et al.
4041995), and antidepressant drugs that increase DAergic
405transmission (inhibitors of monoamine oxidase inhibitors,
406catechol-O-methyltransferase, DA reuptake, and DA recep-
407tor agonists) have mood-improving effects (Papakostas
4082006). It should be noted, however, that other authors failed
409to observe any antidepressant actions of L-DOPA (Cools
4102006; Shaw et al. 1980). Again, it is important to highlight
411that disruption of other monoamines transmission such as
412NE may underlie depression basic symptoms. In fact, drugs
413that act selectively to enhance either DA or NE transmission
414can produce a clear antidepressant action; moreover, DA is
415able to modulate noradrenergic transmission and vice-versa
416(El Mansari et al. 2010). Importantly, some strategies acting
417on both systems have been shown to be more effective, not
418only in drug naive patients, but also in treatment-resistant
419depression (El Mansari et al. 2010).
420Schizophrenia, a neurodevelopmental disorder in which
421symptoms are first seen in teenagers and young adults, is
422clearly associated with disturbed DAergic tone. Childhood
423malnutrition and viral infection, as well as obstetric compli-
424cations or genetic defects are thought to be triggers of the
425disease (Bayer et al. 1999; Cannon et al. 2003; Murray and
426Fearon 1999), although in the more recent “two-hit”
427hypothesis on the origins of schizophrenia, stress during
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428 young adulthood has been added to the list of aforemen-
429 tioned neurodevelopmental factors in disease causation
430 (Bayer et al. 1999; Malaspina et al. 2008; Pantelis et al.
431 2003). Indeed, the role of stress in schizophrenia has recently
432 received support from studies in humans (Weber et al. 2008)
433 and animals (Choi et al. 2009). Currently, the leading
434 hypothesis is that a deficit in DA activity at D1 receptors
435 in the PFC is responsible for the cognitive impairment and
436 negative symptoms of schizophrenia, while hyperstimulation
437 of D2 receptors by subcortical (mesolimbic) DA is respon-
438 sible for core (“positive”) disease symptoms (hallucinations,
439 delusions) (Toda and Abi-Dargham 2007).
440 Early life adversity such as lead exposure, drug abuse
441 (smoking, alcohol, cannabis), low birth weight or premature
442 birth can increase the risk for developing ADHD, although
443 genetic factors also play a substantial role on its etiology
444 (Sullivan and Brake 2003; Swanson et al. 2007). A
445 dysfunction of DAergic mesocortical (but also mesolimbic
446 (Russell et al. 1995)) transmission is thought to underlie
447 ADHD, though the involvement of other neurotransmitters
448 such as noradrenaline has to be considered (Oades et al.
449 2005). Briefly, hypofunctioning (especially) of the DAergic
450 transmission in the right PFC seems to occur in ADHD, and
451 this is particularly interesting since ELS can induce
452 lateralized changes on PFC DAergic function (Fride and
453 Weinstock 1988). Other findings support the involvement
454 of DA in ADHD: (1) changes in DAT expression were
455 found in ADHD patients compared to controls (Dougherty
456 et al. 1999); (2) genetic analysis identified an association
457 between specific alleles of D4 receptor (Faraone et al. 2001;
458 Rowe et al. 1998) and of DAT (Waldman et al. 1998) with
459 ADHD, and (3) the use of methylphenidate which blocks
460 DA reuptake into the cell by the DAT as the most common
461 treatment for ADHD.
462 Besides its role in specific types of behavior, the
463 DAergic mesocortical pathway seems to be particularly
464 important in buffering HPA-response to stress. This circuit
465 frequently shows functional hemispheric asymmetry that
466 can be modulated by early life adversity. For example, DA
467 metabolism is significantly higher in the right infralimbic
468 cortex of handled pups (positive stress) than non-handled,
469 and this has been suggested to underlie, in part, to their
470 superior capacity to adapt to stress and restraint HPA
471 activity (Sullivan and Dufresne 2006).
472 It emerges from the above brief overview that ELS may
473 result in either hyper- or hypoactivity of DAergic systems.
474 Thus, increased DA transmission in the mesolimbic system
475 may result in schizophrenia and increased fear, respectively,
476 whereas reduced DA activity in mesocorticolimbic circuits
477 may lead to memory (hippocampus and frontal cortex) and
478 mood (frontal cortex/ventral striatum) deficits (Fig. 1).
479 Notably, hypoactivity in the hippocampus will likely result
480 in increased GC secretion which, in turn will exacerbate

481neuronal dysfunction and behavioral anomalies. On the
482other hand, stress-induced hypoactivity in the mesocortico-
483limbic DAergic system is likely to enhance novelty-seeking
484and addictive behaviors, a subject that will be dealt with in
485greater detail in the following section.

486ELS targets mesocorticolimbic DAergic circuits: impact
487on additive behavior

488Despite their diverse chemical structures, cellular mecha-
489nisms of action and physiological and behavioral manifes-
490tations, all drugs of abuse share a common property: they
491all act as positive reinforcers and, as a consequence, induce
492addiction. Increased DA release in the NAcc characterizes
493drug reinforcement, but also other consumatory behaviors
494such as sex and food; thus the VTA-NAcc pathway is
495appropriately also known as the “reward pathway” (Piazza
496and Le Moal 1996). Subjective feelings of “pleasure” or
497hedonia after consummation are experienced as a result of
498parallel activation of mesocortical DAergic circuits. Though
499traditionally DA is seen as responsible for the “liking” part
500of a reward, more recently it has been suggested that DA is
501not essential/sufficient to mediate changes in hedonic
502behavior. In fact, DA seems to contribute substantially for
503incentive salience, i.e., the “wanting” part of the process
504rather than the “liking” part (Berridge 2007). Nevertheless,
505one way or another, DAergic transmission is certainly
506playing a vital role in the rewarding process. Perusal of the
507literature indicates that an apparently intricately-regulated
508balance between hypo- and hyper-DAergic states underlies
509an individual’s cycles of drug-seeking behavior and abuse.
510Thus, hyper-DAergic states seem to enhance the motiva-
511tional or rewarding properties of drugs of abuse and hypo-
512DAergic states appear to enhance drug-seeking behavior in
513parallel with reductions in the perceived motivational
514impact of “natural” rewards such as food and sex (Diana
515et al. 1998; Diana et al. 1993; Melis et al. 2005; Parsons et
516al. 1991).
517In the context of this review, it is interesting to note that
518stress or GC in adulthood enhance DA release in the NAcc
519(Kalivas and Duffy 1995; Rouge-Pont et al. 1998;
520Takahashi et al. 1998; Thierry et al. 1976) and increase
521the strength of excitatory synapses on mesencephalic DA
522neurons (Saal et al. 2003), while inducing similar patterns
523of dendritic organization in the NAcc (Liston et al. 2006;
524Robinson et al. 2001; Robinson and Kolb 1999). Drugs of
525abuse and stress display other common biobehavioral
526features: while repeated exposure to the same (Kalivas
527and Stewart 1991) or novel stressors (Dallman et al. 1994)
528leads to “facilitation” or “sensitization” of behavioral
529responses, stress as well as drugs of abuse (Robinson and
530Becker 1986; Sorg and Kalivas 1991; Stewart and Badiani
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531 1993) are accompanied by augmented DA release in the
532 NAcc (Doherty and Gratton 1992; Kalivas and Stewart
533 1991). Several other lines of evidence derived from animal
534 studies suggest that stress and GC may act, like drugs of
535 abuse, to induce positive reinforcement: (1) GC facilitate
536 the psychomotor stimulant effects of cocaine, amphetamine
537 and morphine (Cools 1991; Marinelli et al. 1994); (2)
538 depletion of GC by adrenalectomy reduces drug and
539 alcohol consumption (Fahlke et al. 1994; Marinelli and
540 Piazza 2002; Marinelli et al. 1997a; 1997b); (3) GC levels
541 before drug self-administration are positively correlated
542 with the extent of low-dose self-administration of cocaine
543 (Goeders and Guerin 1994; Piazza et al. 1991); and (4)
544 naive rats self-administer GC in a dose-related manner
545 (Piazza et al. 1993).
546 Addiction is determined by a number of factors other
547 than the intrinsic properties of a given drug. In an
548 interesting series of studies aimed at understanding indi-
549 vidual differences in predisposition to drug abuse, Piazza
550 and colleagues found that the liability of rats to self-
551 administer drugs can be predicted by the response of
552 mesolimbic DAergic neurons to stress; specifically, animals
553 that were more sensitive to the DA-releasing actions of
554 stress were more likely to display addictive behavior
555 (Piazza and Le Moal 1996; Piazza et al. 1991). Poly-
556 morphisms in the human DA receptor 2 (Blum et al. 1990;
557 Noble 2000) and DA receptor 1 (Batel et al. 2008; Huang et
558 al. 2008) have been associated with increased propensity to
559 alcohol and other substances of abuse, gambling, and
560 compulsive shopping; however, there is no information
561 available with respect to the physiological responses of the
562 affected individuals to stressful stimuli. Val158Met poly-
563 morphism in catechol-O-methyltransferase gene, which is
564 involved in DA degradation, has been associated with
565 schizophrenia, bipolar disorder, and also with substance
566 abuse, although some other studies have failed to prove so
567 (Hosak 2007). Exposure to both, drugs with abuse potential
568 and stress trigger neuroadaptative changes in DAergic
569 circuits that ultimately determine neurochemical and be-
570 havioral responses. This indicates that the activities of
571 addiction-related DAergic pathways are subject to program-
572 ming by lifetime experiences, with the final neurochemical
573 and behavioral phenotype reflecting both genetics and
574 experiential history.
575 Early life adversity, i.e., during the ontogeny of meso-
576 corticolimbic DAergic systems, has been repeatedly shown to
577 induce addiction to a variety of drugs of abuse in adult
578 animals; a few examples from the literature follow: (1)
579 exposure of dams to restraint stress leads to persistent
580 behavioral and neurobiological alterations that are associated
581 with increased consumption of psychostimulants in the adult
582 offspring (Kippin et al. 2008); (2) animals stressed during
583 prenatal life display earlier sensitization to the behavioral

584effects of amphetamine, although their motor responses to
585the drug do not differ from those of non-stressed animals
586(Henry et al. 1995); (3) separation of pups from their
587mothers and/or littermates during the early postnatal period,
588a procedure that leads to hypersecretion of GC (Ladd et al.
5892000; Liu et al. 1997; Mesquita et al. 2007), advances the
590time of acquisition of cocaine self-administration (Moffett et
591al. 2006) and enhances cocaine-induced locomotor activity
592as well as behavioral sensitization (Brake et al. 2004;
593Kikusui et al. 2005; Li et al. 2003); and (4) MS stress also
594increases alcohol and drug consumption during adulthood
595although handling or brief MS—a manipulation that results in
596reduced GC secretion and responses to stress (de Kloet et al.
5971996; Levine 1967)—decreases voluntary ethanol intake
598(Huot et al. 2001; Ploj et al. 2003). Though human studies
599are sparse, it has been shown that childhood adversity is
600associated with blunted subjective responses to reward-
601predicting cues as well as dysfunction in left basal ganglia
602regions implicated in reward-related learning and motivation
603(Dillon et al. 2009), suggesting that in humans ELS can also
604change the impact of a reward.
605The above examples illustrate the impact that ELS can
606have on the development of addictive behavior and
607reinforce the view that the neuronal circuits involved in
608the regulation of such behavior are particularly vulnera-
609ble to programming by stress and GC during the
610prenatal, perinatal, and early postnatal periods. Part of
611these effects are, as already mentioned, mediated by
612stress and GC participating in the regulation of the birth
613and maturation and DAergic cells in the mesolimbic
614system (Kawamura et al. 2006; Leao et al. 2007). We also
615noted that the adult progeny of dams stressed during
616gestation have significantly fewer TH-positive (DAergic)
617fibers of the NAcc (Leao et al. 2007). Interestingly, these
618presumably hypo-DAergic animals were recently found to
619have a greater propensity for developing drug-seeking
620behaviors (Leão, Rodrigues et al., unpublished observations).
621The above findings may be explained, at least partly, in
622terms of hypersensitivity to the DA-releasing effects of drugs
623of abuse, evidenced by the increased release of DA in
624response to amphetamine or cocaine in rats that have either
625experienced prenatal stress (Kippin et al. 2008; Silvagni et al.
6262008) or maternal deprivation stress in the first postnatal
627days (Hall et al. 1999).
628Finally, alterations in the thresholds required for activa-
629tion of DA type-1 (D1) and type-2 (D2) receptors by DA
630(Volkow et al. 2004) could represent a potential mechanism
631through which ELS causes drug-seeking behavior and
632ultimately, addiction. One hypothetical model predicts that
633the ratio of D1 to D2 receptors in the NAcc determines the
634sensitivity to “natural rewards” vs. the proclivity to “seek
635for pleasure” through drug abuse (Volkow et al. 2004).
636Earlier studies in rats described late gestational stress-
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637 induced increases in the expression and ligand-binding
638 capacity of D2 receptors in the frontal cortex, hippocampus,
639 and core of the NAcc (Berger et al. 2002), with concom-
640 itant decreases in the number of D1 receptors in the NAcc.
641 More recently, we observed that the offspring of mothers
642 exposed to exogenous GC in the last trimester of gestation,
643 display diminished DA levels in the NAcc and other
644 mesolimbic structures, an altered D1/D2 ratio and, interest-
645 ingly, proneness to addictive behaviors (Leão, Rodrigues et
646 al., unpublished observations).
647 Together, the results summarized above demonstrate that
648 ELS has sustained effects on the morphology and activity
649 of mesolimbic and mesocortical DAergic circuits, accom-
650 panied by altered sensitivity and vulnerability to drugs of
651 abuse. In the next section, we will consider the role of the
652 nigrostriatal DAergic pathway which has received relatively
653 little attention in the context of drug abuse. Considering the
654 long-lasting changes in DA receptors expression in several
655 models of early life stress, we may raise the hypothesis that
656 these genes may be transcriptional targets of GCs/stress or
657 that they may undergo epigenetic regulation in response to
658 early life adversity.

659 A new player in addiction: the nigrostriatal DAergic
660 pathway?

661 As recently reviewed by Wise (2009), the nigrostriatal
662 DAergic system, best known for its role in motor control
663 and Parkinson’s disease pathology, also seems to play an
664 important role in addictive disorders. First hints were
665 provided by the observations that electrical stimulation of
666 nigrostriatal DAergic cells and terminal fields produced
667 rewarding effects (Crow 1972; Prado-Alcala and Wise
668 1984; Wise 1981) and that selective lesions of the
669 nigrostriatal pathway attenuated drug self-administration
670 (Glick et al. 1975; Linseman 1976). Those early studies
671 have been backed up by the results of further experimen-
672 tation (Suto et al. 2004), including the demonstration that
673 intra-nigral infusions of D1 receptor antagonists reduce
674 drug self-administration (Quinlan et al. 2004).
675 Current views suggest that the contributions of the
676 mesolimbic and nigrostriatal DAergic systems to the devel-
677 opment of addiction are distinctly separated in time. Thus,
678 whereas the mesolimbic pathway (especially the NAcc core)
679 is responsible for the rewarding effects of drugs during the
680 initial phases of addiction, the nigrostriatal system assumes an
681 increasingly important role at later stages as drug consump-
682 tion increases (Everitt et al. 2008; Everitt and Robbins 2005;
683 Wise 2009). The NAcc core is important not only for the
684 rewarding effect of drugs of abuse (Wise 2004) but also
685 mediates the motivational drive or “wanting of a reward”
686 that underlies drug-craving (Berridge 2007), and assures

687efficiency of response-outcome associative learning (Pavlov-
688ian conditioning; Yin and Knowlton 2006). However,
689second-order protocols of drug reinforcement and pharma-
690cological experiments revealed that the dorsal striatum,
691rather than the NAcc, is essential for drug-seeking behavior
692after repetitive drug exposure (Ito et al. 2000). This
693interpretation is consistent with earlier work which showed
694that, while dorso-striatal lesions do not affect acquisition of
695Pavlovian responses (Taylor and Robbins 1986), infusion of
696DAergic antagonists into the dorsal striatum decreases drug-
697seeking under second-order drug reinforcement protocols
698(Vanderschuren et al. 2005). These findings have led to the
699concept that repetitive exposure to drugs of abuse evolve
700from being goal-directed behaviors into habit-based actions
701(Everitt et al. 2008; Everitt and Robbins 2005; Wise 2009).
702Self-administration protocols in monkeys have confirmed the
703progressive shift from goal-directed (Pavlovian) behaviors
704(facilitated by the NAcc in cooperation with associative
705cortico-basal ganglia networks) to habit-based (instrumental)
706actions that depend on the dorsal striatum (in particular, the
707dorso-lateral striatum, an integral component of the sensori-
708motor cortico-basal ganglia pathway (Porrino et al. 2004)).
709The new knowledge concerning the contribution of the
710nigrostriatal DAergic pathway in drug addiction has been
711now extended to provide further new insights into how
712stress increases vulnerability to drug abuse behavior.
713Functional imaging studies in cocaine addicts have revealed
714a positive correlation between activation of the dorsal
715striatum by stress and the degree of cocaine craving (Sinha
716et al. 2005), and our own studies have demonstrated that
717stress promotes habit-based decisions in rats by increasing
718activation of the sensorimotor cortico-basal ganglia path-
719way (Dias-Ferreira et al. 2009); the latter results are
720reminiscent of the effects of repetitive drug administration.
721Albeit several studies have shown that ELS can affect
722the mesolimbic circuit, the consequences in the nigrostriatal
723circuit remain poorly studied and understood. Prenatal DEX
724exposure increases TH+cell numbers in the substantia
725nigra, demonstrating that this region can be profoundly
726affected in terms of DAergic transmission (McArthur et al.
7272005). Furthermore, it was shown that ELS can make
728dopamine neurons from the nigrostriatal pathway to
729become more susceptible to subsequent insults later in life
730(Pienaar et al. 2008). Nonetheless, due to the paucity of
731studies, the direct effect(s) of ELS in the development/
732maturation of this circuit and its relevance for addiction for
733example, remains to be determined.

734Future perspectives

735The available literature, in a rather fragmented way, suggests
736an association between ELS, DA transmission, and mental
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737 illness. Yet, it remains to be answer if the DAergic dysfunction
738 is causal, or merely a consequence, of ELS and in several of
739 the psychiatric conditions linked to ELS. Part of the problem
740 relies on “snapshot approach” that is commonly used in the
741 available studies that precludes the understanding of the
742 dynamics of the insult-response-adaptation process. Thus, we
743 believe that one of the priorities in the field should be to
744 perform longitudinal studies that establish a direct link
745 between altered DAergic transmission and specific endophe-
746 notypes for each of the pathological conditions in which ELS
747 is implicated. In parallel, a longitudinal multimodal charac-
748 terization of ELS exposure in the mesolimbic, mesocortical, or
749 nigrostriatal DAergic pathways is needed. If this is achieved,
750 ultimately, we could determine what the windows of
751 vulnerability of each of these DAergic pathways are and
752 which is more affected in each type of ELS. Furthermore, it
753 could help us understand the long-term impact, and the
754 adaptations, of the distinct DA pathways in neuropsychiatric
755 conditions in which ELS is implicated. As an example, for
756 addiction studies, this integrated approach would allow for a
757 better insight on the role of different DA pathways throughout
758 the different phases of addictive behavior. Moreover, this
759 would give insights on how neurons in each of these pathways
760 respond to drugs of abuse and/or stress in both animal models
761 of ELS and human subjects and how these can be therapeu-
762 tically modulated. Importantly, this approach is useful and
763 applicable to many neuropsychiatric conditions.

764 Conclusions

765 Evidence for the persistent morphological, neurochemical and
766 behavioral impact of elevated GC levels (pharmacologically
767 or stress-induced) during development illustrates the impor-
768 tance of gene X environment (epigenetic) interactions in the
769 etiology of psychiatric conditions. In light of the ontogenetic
770 development of the mesocorticolimbic and nigrostriatal
771 DAergic systems, reports that prenatal stress or manipulations
772 of the maternal GC milieu and postnatal stress (ELS) may be
773 causal to behavioral disorders ascribed to dysfunctional
774 DAergic transmission (e.g., schizophrenia, drug addiction
775 and possibly, depression) are not surprising. Having identi-
776 fied some of the neurobiological substrates that underpin the
777 behavioral anomalies, the immediate challenge is to decipher
778 the molecular and cellular mechanisms that underwrite these
779 changes. Such studies will provide the conceptual basis for
780 devising pharmacological interventions to ameliorate the
781 undesired behavioral outcomes of mal-programmed DAergic
782 circuits. Meanwhile, the existing literature suggests that
783 serious psychiatric conditions in later life are preventable
784 through the judicious use of GC in obstetrics and neonatal
785 medicine, by avoiding stress during pregnancy and by placing
786 emphasis on early parental care.787
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