
Computers & Graphics (2022)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

SHREC 2022 Track on Online Detection of Heterogeneous Gestures

Ariel Caputoa, Marco Emporioa, Andrea Giachettia, Marco Cristania, Guido Borghib, Andrea D’Eusanioc, Minh-Quan Led,
Hai-Dang, Nguyend, Minh-Triet Trand, Felix Ambellane, Martin Hanike, Esfandiar Nava-Yazdanif, Christoph von Tycowicze

aUniversity of Verona, Department of Computer Science
bUniversità di Bologna, Dipartimento di Informatica, Scienza e Ingegneria
cUniversità di Modena e Reggio Emilia, Dipartimento di Ingegneria ”Enzo Ferrari”
dUniversity of Science, Ho Chi Minh City, Vietnam
eFreie Universit at Berlin, Berlin, Germany
fZuse Institute Berlin, Berlin

A R T I C L E I N F O

Article history:
Received July 25, 2022

Keywords: Computers and Graphics,
Formatting, Guidelines

A B S T R A C T

This paper presents the outcomes of a contest organized to evaluate methods for the
online recognition of heterogeneous gestures from sequences of 3D hand poses. The
task is the detection of gestures belonging to a dictionary of 16 classes characterized
by different pose and motion features. The dataset features continuous sequences of
hand tracking data where the gestures are interleaved with non-significant motions. The
data have been captured using the Hololens 2 finger tracking system in a realistic use-
case of mixed reality interaction. The evaluation is based not only on the detection
performances but also on the latency and the false positives, making it possible to un-
derstand the feasibility of practical interaction tools based on the algorithms proposed.
The outcomes of the contest’s evaluation demonstrate the necessity of further research
to reduce recognition errors, while the computational cost of the algorithms proposed
is sufficiently low.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The online recognition of gestures from 3D fingers’ track-

ing data streams is an extremely interesting and hot problem

both from an algorithmic and an application point of view.

Algorithms used should combine a geometrical and temporal

encoding of the hand movements as well a classification ap-

proaches able to avoid false positives. This means that they

should be able to discriminate the gesture classes from a non-

gesture class, the latter characterized by spurious movements

with large variance. There are many applications of online ges-

ture recognition with a potentially huge impact. One of these

is certainly that relating to the development of interactive in-

terfaces for virtual and augmented reality applications. These

interfaces should allow different types of interaction with ob-

jects and widgets without the need for handheld devices. To

build such interfaces it is necessary to implement effective rec-

ognizers able to cope with a sufficiently large dictionary of ges-

tures of different types (hand motions, hand articulations, static

poses).

To evaluate the potential effectiveness of these algorithms, it

is not only necessary to test the ability of the methods to classify

segmented gestures, but also to test how well they avoid false

Preprint submitted to Computers & Graphics July 25, 2022

ar
X

iv
:2

20
7.

06
70

6v
2

 [
cs

.C
V

]
 2

2
Ju

l 2
02

2

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review / Computers & Graphics (2022)

detections and which is their detection latency.

As we will discuss in Section 2, the existing benchmarks are

not optimally suited for this, so we created a novel one and or-

ganized a related contest. The main contributions of the dataset,

task, and evaluation method described here are:

• The benchmark is specifically designed for generic mixed

reality interaction development and directly captured with

the hand tracking system of the Hololens 2 headset, there-

fore featuring the same viewpoint, field-of-view, and tem-

poral resolution. The methods tested on this benchmark

could directly be applied in an interactive application de-

veloped on the same platform, locally or via a client-server

architecture, depending on the computational complexity.

• The benchmark features heterogeneous gestures, includ-

ing static ones (fixed hand pose for at least 0.5s), dynamic

coarse (characterized by whole hand trajectory), dynamic

fine (where the semantic depends also on finger articula-

tions), and periodic (with repeated movements) gestures.

With respect to the only previous benchmark for online

gesture recognition (SHREC 2021 [1]), the dictionary has

been changed removing ambiguous classes, avoiding an-

notation issues affecting that dataset (see Section 2) and

introducing the class of periodic gestures.

• The evaluation measures online performances, not only

considering non-gestures and false positives but also eval-

uating the recognition latency, which is an important factor

to assess their usability in an interactive application.

2. Related work

A consistent body of research has been dedicated to the prob-

lem of hand gesture recognition, and several benchmarks are

available. Most of these benchmarks are not, however, measur-

ing online recognition performances. A popular benchmark of

this kind is the SHREC’17 Track: 3D Hand Gesture Recogni-

tion Using a Depth and Skeletal Dataset [2], featuring dynamic

gestures involving global motions and fingers’ articulation that

can be used to build interactive applications. Many methods

Fig. 1: Gesture acquisition: the subject hears vocal commands suggesting pre-
defined sequences of non-significant movements and gestures.

for offline classification of segmented gestures have been eval-

uated on this benchmark or the similar Dynamic Hand Gesture

dataset (DHG) 14/28 [3]. However, the accuracy measured on

the offline classification task does not tell too much about the

usability for practical gesture detection in a realistic scenario of

use.

Garcia-Hernando et al. [4] proposed a benchmark of hand

actions captured with both RGB, depth, and magnetic sensors

and inverse kinematics and the dataset. The actions recorded,

however, are not gestures used in an interaction scenario, and

skeletons are not directly provided. The task proposed in the

SHREC 2019 track on online gesture detection [5]) is to find

gestures in hand skeleton sequences, thus addressing the prob-

lem of avoiding false positives, but the dictionary was limited to

simple dynamic gestures characterized by the mere hand trajec-

tory. The task proposed in the SHREC 2021 track on Skeleton-

based Hand Gesture Recognition in the Wild was better suited

to test the potential use for XR interaction of complex gestures,

as it featured static, dynamic-coarse, and dynamic-fine gestures

and used an evaluation method based on detection rate, false-

positive score. However, the dataset has some weaknesses: first,

some gestures are ambiguous, as we found that, at the end of

the execution of some dynamic gestures, there are static poses

of the hand similar to the ”pointing” gesture included in the

dictionary, but not annotated. Furthermore, the annotation of

many dynamic gestures was limited to a very short segment of

the whole hand movement. Finally, the evaluation did not con-

sider the recognition latency.

Preprint Submitted for review / Computers & Graphics (2022) 3

Fig. 2: The 16 gestures in SHREC’22 vocabulary: static (top row), dynamic
coarse (middle row), dynamic fine (bottom left) and periodic (bottom right).

3. Novel dataset, task and evaluation

For the reasons we mentioned, we created another dataset

trying to overcome the issues of the previous ones and using

directly the data captured by the head-mounted display.

The dataset is composed of 288 sequences including a vari-

able number of gestures (i.e. 3 to 5), divided into two subsets of

the same size: a training set, with annotations provided to par-

ticipants (start and end frame of the gestures with related label),

and a test set where the gestures have to be found according to

the task requirements.

Fingers data were captured with a Hololens 2 device simu-

lating mixed reality interactions. The gestures in each sequence

are interleaved with other hand movements. In the acquisition

session, the Hololens 2 app was programmed to ask the subjects

(with a vocal command) to start specific gestures at randomized

time frames (Figure 2). These time frames were also recorded

and, for the training set, they were given as additional data to

the participants.

During the remaining time, the subjects were instructed to

keep their hands in the field of view of the tracking system and

to freely move the hands avoiding movements in conflict with

the actual gestures from the dictionary.

The sequences have been designed so that both the training

and the test set include the same number of instances of each

gesture class (36).

Time sequences were saved as text files where each row rep-

resents the data of a specific time frame with the coordinates

of 26 joints. Each joint is therefore characterized by 3 floats

(x,y,z position). The frame rate of the acquisition is relatively

low and not perfectly stable (approximately 20 fps), making the

recognition scenario even more realistic considering an unsta-

ble frame rate is a common condition for real applications run-

ning on stand-alone devices with limited performances. Frame

data include, however, also the time stamp of the recordings,

making it possible to resample the joint positions at a constant

rate.

The gesture dictionary is similar to the one proposed in

SHREC 2021, but with a few, important changes. Some gesture

classes have been removed (POINTING, TAP, EXPAND). Ana-

lyzing the gestures and the annotations in the dataset, we found

that several dynamic coarse gestures featuring hand trajectories

ended with a static pointing pose lasting several frames and that

ideally could have been annotated as a pointing. Similarly, the

short tap and expand annotated sequences were quite similar

to parts of other gestures. It is true that the gesture recognition

procedure could in principle be able to disambiguate the classes

using context we considered better to focus in this contest on the

recognition of less ambiguous pattern, leaving a more challeng-

ing context-based disambiguation for future work.

We also found that the annotation of the dynamic-fine ges-

tures (PINCH, GRAB) in SHREC 2021 did not include the ini-

tial global hand movements. In the novel dataset, we annotated

those frames as belonging to the gesture as we consider them as

characteristic of the gesture classes.

As shown in Figure 1, we included 16 gestures divided in 4

categories: static characterized by a pose kept fixed (for at least

0.5 sec), dynamic coarse, characterized by a single trajectory of

the hand, dynamic fine, characterized by fingers’ articulation,

periodic, where the same fingers’ motion pattern is repeated

more times.

For each of these categories the features actually determining

the related semantics are different, and, in principle, it would be

possible to develop specialized approaches for their classifica-

tion. None of the participants, however, considered this option.

Table 1 shows the minimum, maximum and average length of

4 Preprint Submitted for review / Computers & Graphics (2022)

ONE TWO THREE FOUR OK MENU LEFT RIGHT CIRCLE V CROSS GRAB PINCH DENY WAVE KNOB
Min length 21 24 15 23 22 20 11 11 25 17 24 19 22 31 27 37
Max length 72 59 71 69 52 59 37 32 64 37 50 70 61 81 73 79
Avg. length 34.1 37.4 38.6 37.3 34.0 33.0 19.6 18.6 45.4 27.2 37.5 39.9 36.2 47.8 45.4 54.7

Table 1: Minimum, maximum and average lengths of the gestures (background colors indicate gestures’ types.

each gesture in the training set. It is possible to see that the static

gestures are kept for variable times. Their semantics, however,

do not depend on the full length. We expect, therefore, that they

can be recognized just after the start frames. The algorithms

should however take care of avoiding multiple detection within

the annotated interval.

Dynamic gestures have a variable time length, and their se-

mantics is, in principle dependent on the full duration with the

exception of periodic ones that may be fully characterized by

the first occurrence of the repeated sequence.

3.1. Task and evaluation

Participants were asked to create an online classification

method based on training sequences and to process the test se-

quences not only annotating the predicted start and end of ges-

tures but also indicating the last frame of the sequence used

to perform the prediction, giving the indication of the mini-

mal classification delay (not including the algorithm’s execu-

tion time).

The evaluation was automatically performed with a script

counting the number of correct gestures detected, the false pos-

itive score, and the minimal detection delay.

A detected gesture is considered correctly detected if has the

same label as the ground truth annotation, and its time window

has an intersection with the annotated one larger than half the

ground truth length. We call detection rate the ratio between

the number of correctly detected gestures of the class and the

corresponding ground truth number.

The false positives’ score is the ratio between the number of

gesture predictions not corresponding to real ones (e.g. with no

intersection with annotated ground truth gestures) and the total

number of gestures of the same class included in the test set.

The script also evaluates the Jaccard Index (JI), e.g. the aver-

age relative overlap between the ground truth and the predicted

annotations of frames belonging to each gesture class in the se-

quences. This metric had been employed in other online action

and gesture recognition contests [6, 7].

An important novelty of our benchmark is the evaluation of

the detection delay, estimated as the difference between the ac-

tual gesture start and the reported timestamp of the last frame

used for the prediction and is related to the algorithmic detec-

tion strategy. Given this estimate, it is possible to evaluate the

average delay of the gestures’ detection with respect to the ac-

tual (ground truth) starts as well as the time differences with

respect to the gestures’ ends. The analysis of these values gives

interesting hints about the usability of the proposed methods for

practical applications. To complete the temporal data analysis,

we also collected from the participants the computational time

for a single classification step (i.e. how much time each method

takes to elaborate data for a single classification attempt).

4. Participants and proposed methods

Three groups were registered for the contest and submitted

up to three results’ files obtained with different classification

strategies as well as the required additional information on the

algorithms’ runs. We compared their results using the previ-

ously described methods against a baseline method, a modified

version of STRONGER [8], an online recognizer based on 1D

convolutional neural networks.

4.1. Group 1: Two-stage ST-GCN (2ST-GCN)

Method Description To address the task proposed for this

task effectively, Group 1 constructed their method by adapting a

two-stage object detection model: the R-CNN family. Figure 3

illustrates the workflow of the two-stage hand gesture detection

architecture.

First, the method leverages the idea of a sliding window with

a small window size striding along the sequences to propose

gesture candidates. Those candidates serve as inputs to a tiny

Preprint Submitted for review / Computers & Graphics (2022) 5

Matching

Finetuning

Sequences

Gesture Proposal

Energy-based
Proposal

Tiny
ST-GCN

Localization & Classification

ST-GCN
backbone

Regression head

Classification head

Tiny prediction

Large prediction

[center_pos,
gesture_len]

[first_fr, last_fr]

IoU > 0

Output

Fig. 3: The workflow of our two-stage hand gesture detection architecture.

classification model which results in categories of each short

sequence. Next, it extends these sequences to a larger size and

feed them to a large model with both classification and localiza-

tion branches. Finally, a fine-tuning and matching the outputs

of tiny and large models is performed to return the final results.

Gesture Proposal Module Group 1 proposes the Gesture

Proposal Module which comprises the energy-based sliding

window and a tiny classification. They borrow the idea of the

energy-based function from [1] to leverage the shift of every

joint of human hand over sequences of consecutive frames and

calculate the amount of energy accumulated in a window with

a size of l

E(w) =

N∑
j=1

l∑
t=1

‖w j,t − w j,t−1‖

‖w j,t−1‖

w j,t = [x j,t; y j,t; z j,t]T

‖w j,t‖ =

√
x2

j,t + y2
j,t + z2

j,t

where w j,t is 3D coordinates of finger-joint j at time step t and

N is the number of joints in human-hand.

Next, they utilize a sliding window with a small size l = 10

to stride over the entire sequences with step size = 1 and

calculate movement energy at each step. A potential segment

wi is chosen if its energy is higher than average energy from w0

to wi−1.

Temporal

Fig. 4: Spatial-temporal graph neural networks for hand gesture recognition.

In the following step, those 10-frame long sequences are

fed into a tiny classification model for early prediction of the

gestures category. Based on the structure of the dataset, which

includes 3D trajectories of finger-joints, the authors consider

reasonable to follow the natural structure of human hands and

represent them as graphs containing both spatial and temporal

information. Therefore, Group 1 applies Spatial-Temporal

Graph Convolutional Networks (ST-GCN) [9] with the purpose

of learning patterns embedded in the spatial configuration by

exploring locality of graph convolution as well as temporal

dynamics. Spatio-temporal links are represented in Figure 4.

The ST-GCN module outputs categories along with confidence

scores of each short segment. The training of this network

module is based on 10-frames sequence randomly extracted in

the range [first frame − 5, last frame + 5] around the labeled

6 Preprint Submitted for review / Computers & Graphics (2022)

gestures annotated in the training set and following the protocol

described in [9]. A non-gesture class is also added to the

training procedure to make the predictions more accurate.

Localization and Classification Module At runtime, when

the tiny ST-GCN in the proposal module classifies a small win-

dow [first frame, last frame] (last frame − first frame = 10) as

a specific gesture, another ST-GCN module is activated, pro-

cessing a window of larger size (L = 80), placed in the interval

[last frame − 80, last frame].

In this part, ST-GCN is used as a backbone feature extractor

to exploit the spatial relationships between finger-joints as well

as temporal information. Furthermore, the regression head for

localization and the classification head with a softmax layer are

appended to the graph convolution backbone. The regression

head will output two values including [center pos, gesture len]

which denote the center position and the number of frames of

each gesture respectively (Figure 5).

Fig. 5: The modified architecture of ST-GCN with both regression and classifi-
cation heads

The module is trained as follows: From each annotated

gesture in the training sequences, including the values of

[CLASS, begin frame, end frame], training examples of length

L = 80 between [end frame − L, start frame + L] are extracted.

Each sample is associated with the corresponding ground-truth

of center positions and length of gestures for localization branch

training purposes:

mid frame =
start frame + end frame

2

GTcenter pos =
mid frame − selected start frame

L

GTgesture len =
end frame − start frame

L

As in the training of the tiny module, examples of 80-frames

non-gestures sequences labeled as a further class, are added

into the pipeline to improve the model’s discriminating ability.

L2 loss and Cross-Entropy loss are used for training regression

head and classification head respectively.

Moreover, due to the limitation on training data, a stratified 5-

fold based on class-distribution is also applied to avoid under

and over fitting.

Fine-tuning and Matching Module The output of tiny mod-

els from the proposal module and the output of large mod-

els from the localization and classification module are fine-

tuned and go through matching condition checking to decide

the last results. More concretely, the final outcomes must sat-

isfy two matching conditions: the predicted category from the

tiny model is the same as that of the large model and the over-

lap ratio of short segments from proposal module and predicted

segments from regression head is larger than zero.

cls pred tiny = cls pred large

IoU([first frame, last frame], [pred start, pred end]) > 0

The final outputs consist of 4 components:

[cls pred tiny, pred start, pred end, last frame]

System Configuration Group 1 submitted the results of two

experiments, one based on a single model (RUN1) and the other

on the stratified 5-fold model (RUN2). The average time for

the classification step was 2.1 ms in both the cases, running

on a single GPU NVIDIA QUADRO RTX 5000. The group

actually planned to perform a further run adding an additional

feature, the Orientation Histogram [10] to discriminate gestures

characterized by 2D trajectories but the test was finally left for

future work.

4.2. Group 2: Causal TCN

Method Description The proposed method by Group 2 is

based on a temporal convolutional network (TCN) architecture

that employs causal filters preventing any ’leakage’ of future

information to the past. In recent years, TCNs have been found

to convincingly outperform canonical recurrent neural architec-

tures across a broad range of sequence modeling tasks [11] by

Preprint Submitted for review / Computers & Graphics (2022) 7

Fig. 6: Segments joining given anatomical landmarks. Angles between all pairs
as well as with the fixed global axis (arrow right) serve as input features for
gesture detection.

demonstrating longer effective memory and improved stability

(mitigating the vanishing/exploding gradient problem). While

there are various TCN-based action recognition approaches in

the literature (see e.g. [12] and the references therein), Group 2

proposes a notably lightweight network structure that features a

very low model size (only 125k parameters) and, hence, lends

itself for efficient inference even on devices with limited com-

puting power.

Feature Description Since the given per-frame landmarks

are strongly coupled, this inherent structure should be exploited

when designing expressive features. This coupling is further-

more naturally invariant under the Euclidean motion (e.g. due to

change of camera position and orientation) and hence, they de-

cided to utilize angles between all anatomically definable seg-

ments as features. This representation for a skeleton configura-

tion is not only location-viewpoint invariant but is also agnostic

to its laterality. However, some of the gesture classes can only

be distinguished reliably if their global context is additionally

taken into account (e.g. MENU and WAVE). Therefore, another

artificial segment along a fixed axis in space was added. As the

26 anatomical landmarks form 25 segments (see Fig. 6), there

are a total of 26 different joints/vectors yielding 351 angles for

each input frame.

Network Architecture As main building blocks in the pro-

posed model Group 2 employs causal or unidirectional convolu-

tional filters. Commonly dilated convolutions are used in order

to build networks with very long effective memory. However, as

the contest aims at randomized temporal sequences of gestures

each of which being a short-timed activity, they opted for non-

dilated convolutions. To reduce the complexity of the learning

task they follow a windowing approach, i.e. conditioning the

model to detect gestures for short-time windows containing n

consecutive frames. In particular, each window is fed through

two convolutional layers (feature dimension 64 and 32) each

with a kernel size of 5 and followed by a Leaky ReLU acti-

vation. Subsequently, a fully connected, linear layer maps the

output of all frames within the window onto a 17-dim output

representing a one-hot encoding of the probabilities of the 16

gesture classes and a background one. The common cross en-

tropy together with a L2 regularization term is employed as loss

function.

Training As within the training data every gesture appears

36 times, Group 2 decided to perform a stratified six-fold ap-

proach on the occurrences to split into training and validation

set. They trained six different models, in order to take all avail-

able information from the six trained models into the predic-

tion phase. They sample the input windows of length n = 20

for every gesture s.t. window and gesture are at least featuring

50% overlap in order to not provide the network with practi-

cally meaningless gesture chunks. Additionally, they sample

background windows following the same rule. However, since

the amount of background windows outnumbers the amount of

gesture windows by an order of magnitude only 10% of back-

ground ones is considered for training, drawn randomly. Train-

ing is performed with a batch size of 15 for 100 epochs. In every

step exponential moving average is applied to the model param-

eters to track averaged parameters for prediction. Every 1000

batches these averaged parameters are employed to determine

the validation accuracy. Finally, the parameter set featuring the

highest validation accuracy over all evaluations is chosen as fi-

nal parameters.

Online Detection For every frame, voting contributions from

every window it belongs to is collected, i.e. a frame gets up to

n single votes for a label within its temporal context. This indi-

cates that there is a constant delay of n−1 regarding the gesture

start prediction. Each window label prediction is ensembled

from the output logits across k nets. To this end logit vectors are

8 Preprint Submitted for review / Computers & Graphics (2022)

normalized (L2), summed and finally evaluated with argmax to

assign a class label.

In order to deal with fuzzy gesture endings Group 2 applies

a simple post-processing strategy. If two consecutive frames

f0, f1 belong to different continuous (non-background) label-

chunks and (a) the chunk of f0 is larger than the one of f1

and the length of the f0-chunk is less than n then the f1-chunk

is set to background or (b) the length of the f0-chunk is less

than n, then the f0-chunk is set to background. Finally, con-

tinuous chunks of length less then 9, that are surrounded by

background, are also merged into background. These strate-

gies technically use more than n − 1 future frames. However,

the thusly discarded gesture detections are not captured by the

evaluation protocol.

The average per-frame detection takes ≈ 2.8 × 10−2s mainly

consumed by the temporal voting and the k-ensembling.

System Configuration Training and detection were car-

ried out on a (Debian 11) workstation featuring an Intel(R)

Core(TM) i9-10920X CPU @ 3.50GHz processor, 128GB

RAM and a NVidia GeForce RTX 3090 (24GB). The imple-

mentation was realized with python utilizing jax/jaxlib (0.3.1),

dm-haiku (0.0.6) and optax (0.1.1).

4.3. Group 3: Transformer Network + Finite State Machine
(TN-FSM)

Method Description The proposed approach is mainly di-

vided into three main logical blocks: the first one enriches the

features coming from the input data represented by 3D hand

joint positions grouped in consecutive frames. Specifically,

each frame contains a set of hand joints acquired at the same

time. The second block classifies the computed features, i.e.

outputs a gesture or a non-gesture label for each input frame.

Finally, the third block receives as input a set of consecutive

frames, here referred to as window, in which each frame is cou-

pled with its gesture label. As output, it provides the boundaries

of each gestures, i.e. the beginning and the end of each gesture

(and therefore implicitly the presence of non-gestures).

With Group 3 approach, the final performance of the pro-

posed method relies on the performance of every single mod-

ule, in particular on the ability to accurately classify frames as

gestures (even if with a wrong label for some frames) or non-

gestures.

Feature Description As mentioned above, input data con-

sist of the 3D positions of the hand joints grouped in frames.

Formally, at a given time t, it is available a sequence of joints

Jt = { jti | j
t
i = (xt

i, y
t
i, z

t
i), 1 ≤ i ≤ N}, where N is the total number

of the hand joints (in this case N = 26 different joints acquired

through a Hololens 2 device simulating a mixed-reality interac-

tion). This block enriches this input vector with other 4 types

of features computed starting from 3D joint positions. The first

two are represented by the speed (s) and the acceleration (a) of

each hand joint, computed with the following equation:

st
i =
[
xt

i − x(t−1)
i , yt

i − y(t−1)
i , zt

i − z(t−1)
i

]
at

i =
[
xt

i − 2x(t−1)
i + x(t−2)

i , yt
i − 2y(t−1)

i + y(t−2)
i ,

zt
i − 2z(t−1)

i + z(t−2)
i

]
Then, joint-to-joint distance (JD) features are added, expressed

as a matrix D = 3 × N × N, containing information about the

3D distances. Each element d ∈ D is a set of three coordinates

and is obtained following this equation:

di,k =

√
(jt

i − jt
k)2, k, j ∈ N

Finally, the input feature vector is further enriched by com-

puting the spherical coordinates (r, θ, ϕ) of the joints’ positions

starting from the 3D Cartesian coordinates (x, y, z):

r =

√
x2 + y2 + z2

θ = arctan

√
x2 + y2

z

ϕ = arctan
x
y

It can be observed that the value of the inverse tangent in ϕ

can have different values depending on the correct quadrant of

(x, y).

To summarize, the final input vector is a concatenation of 4

different feature vectors that represent different aspects of ges-

tures: hand position, joint movements (in terms of speed and

acceleration) and hand shape (distances can represent the state

of the hand opening or closing). Therefore, the feature vector

length with all types exploited is 26× (3 + 3 + 3 + 26 + 3) = 988.

Preprint Submitted for review / Computers & Graphics (2022) 9

Each joint position is then normalized to obtain a zero mean

and unit variance for each 3D axis.

Frame classification In this block, each frame is classified

using the features computed as detailed in the previous step.

Group 3 adopts a classifier architecture divided into two main

parts: the first one is a transformer-based model [13], while the

second one is a fully connected layer used to output the frame

classification with the correct shape. In this way, each frame is

classified as non-gesture or with a gesture label.

From a formal point of view, the model is defined as:

Y(x) = F(Encoders(x + PE))

As mentioned, there are two main parts. The first is F(·), which

corresponds to the fully connected layer with a softmax layer

needed for the classification task. This block is applied on each

time step x ∈ x. The second part if a set of Encoders(·), consist-

ing in a sequence of 6 transformer encoders E and the Positional

Encoding (PE) [13].

An encoder is described by:

E(x) = Norm(x + FC(mhAtt(x)))

where FC(·) are two fully connected layers with 2048 units, fol-

lowed by a ReLU activation function and Norm(·) is a normal-

ization layer. The Positional Encoding appears to be essential

in order to encode in the adopted model the temporal informa-

tion of the sequence defining a vector that contains a probability

distribution over n gesture classes for each time step included

in x. Finally, mhAtt is the multi-head attention block:

mhAtt(x) = (Att1(x) ⊕ . . . ⊕ Att8(x)) WO

where

Atti(x) = softmax
Qi Ki
√

dk

 Vi

Here, Ki = xWK
i , Qi = xWQ

i , Vi = xWV
i are independent linear

projections of x into a 64-d feature space, dk = 64 is a scaling

factor corresponding to the feature size of Ki, WO is a linear

projection from and to a 512-d feature space and ⊕ is the con-

catenation operator.

The training of the classifier is based only on the provided

datasets. This is a non-trivial procedure since gestures tend

to be short and then the majority of data are labeled as non-

gestures. Therefore, Group 3 adopts the Focal Loss [14] in or-

der to contrast the unbalanced training dataset, instead of the

most common Categorical Cross Entropy loss for multi-classes

classification scenarios. As optimizer, Group 3 use the the

AdamW [15] algorithm, that in our experiments shows better

performance w.r.t. Adam, with a initial learning rate of 10−4,

0.5 of internal dropout and weight decay of 10−4. The model is

trained creating sequences with 10 consecutive frames. All the

model parameters rely on a k-fold (k = 9) cross-validation.

Gesture Detection A Finite State Machine (FSM) is used to

define the boundaries of each gesture, relying on the gesture

labels provided by the classifier. The FSM is based on four

different states and the input is represented by a sliding win-

dow (i.e. a buffer) of 10 frames. The FSM runs only when the

buffer is full. It is important to note that the final gesture class

is predicted only once detected the beginning and the end of

a gesture. Specifically, the final class corresponds to the most

predicted class into the input window.

The first state of the FSM is used to detect the beginning of

a gesture and it is maintained as the current internal state until

the window contains only frames classified as non-gesture by

the transformer-based classifier.

When at least one frame is classified as a gesture, the inter-

nal state of the FSM is increased. In this second state, a check

about the beginning of the gesture is conducted: this control is

motivated by the possible presence of frames wrongly classi-

fied. Indeed, the beginning of a gesture is confirmed only if at

least wi different frames in 10 consecutive windows are clas-

sified as gestures and then the FSM passes to the third state.

In order to handle gestures with a very limited length, the FSM

can pass directly in the fourth state if a non-gesture, i.e. a whole

window with all frames classified as non-gesture, is found.

In the third state, the end of the gesture is detected. In this

state, the end of a gesture corresponds to a window that contains

only non-gesture classifications and when detected, the FSM

internal state is increased.

In the fourth state, a check at the end of a gesture is per-

10 Preprint Submitted for review / Computers & Graphics (2022)

formed, since, as aforementioned, some frames can be wrongly

classified. Only if we consecutive frames are classified as non-

gesture, the FSM detects the end of the gesture. In case of a sin-

gle frame is classified as gesture, the FSM returns in the third

state.

Run tests Group 3 tested three different versions of the pro-

posed pipeline, focusing in particular on different feature types

combinations used as input. It has been empirically observed

that the classification performance of the transformer-based

model achieves a good accuracy with the detailed setting while

for the Finite State Machine best results are obtained setting

wi = 5 and we = 10. In the first solution (TN-FSM), it has been

trained with feature vector containing only the position, the

speed and the acceleration. In the second case, features of the

joint distances have been also added (TN-FSM+JD) while in

the third one spherical coordinates were added (TN-FSM+SC).

System Configuration The proposed system ran on a computer

equipped with an Intel Core i7-7700K and the dedicated GPU

NVidia GeForce GTX 1080 Ti. The observed inference time on

GPU is about 4.65 ± 0.39 ms and 4.72 ± 1.13 ms with only

CPU (averaged on 100 different runs), denoting that the imple-

mentation of the transformer-based model is not optimized for

high-level parallelism.

4.4. Our baseline: Stronger

The baseline we added in the comparison is a variation of

the recognizer used in [8]. The method is based on modified

version of the DDNet architecture [12], customized by adding

novel features and related branches and trained for online detec-

tion using a sliding window approach for the continuous clas-

sification. The classifier is trained to process and automatically

label segmented hand pose sequences, that are resampled to a

standard number of time steps and pre-processed to extract a set

of features passed to the network.

The network architecture is shown in Figure 7. Five input

vectors are processed in parallel with 1D convolutions to ob-

tain latent vectors that are then concatenated and passed through

3 more convolutional layers, a Global Average Pooling (GAP)

and a Fully Connected layer (FC) providing the class probabil-

JCD

Concatenate

M Fast M SlowJPD PO Energy

2 x CNN

CNN/2 CNN

2 x CNN2 x CNN

CNN/2

2 x CNN

CNN/2

2 x CNN

CNN/2

2 x CNN

CNN/2

3D Cartesian Coordinates

2xCNN(6, 2*filters)/2

2xCNN(3, 4*filters)/2

2xCNN(3, 2*filters)/2

2xCNN(3, 8*filters)/2

GAP

FC(128)

Prediction

Fig. 7: STRONGER uses a modified DDNet architecture to perform the gesture
classification. Six input features are processed in different branches: joint col-
lection distances (JCD), joints pair differences (JPD), joints’ motion estimated
at two different scales (Mslow and Mfast), Palm Orientation and Energy.

ities.

The input vectors are joints’ velocities computed at two dif-

ferent scales (Mslow and Mfast), the linearized matrix with the

joint distances (JCD), the palm orientation and a set of unit vec-

tors directed as the segment joining selected couple of joints

(JPD).

In the implementation used on the SHREC’22 benchmark a

sixth input feature was also tested, namely the re-sampled se-

quence of kinetic energies.

For the online classification, a specific training and online

processing has been designed. The network is trained with ex-

amples of 17 classes, 16 representing the gestures in the dic-

tionary and the other representing the non-gestures. Segmented

gestures are obtained from the training sequences and the an-

notated initial and final frames. Non-gesture sequences are ran-

domly extracted as variable length sequences not included in

the annotated gesture intervals. Independently of the original

length, all the feature vectors in the segmented training samples

are uniformly re-sampled to a fixed number of samples (30) be-

fore sending them to the network.

After the network training, we defined specific thresholds for

Preprint Submitted for review / Computers & Graphics (2022) 11

the acceptance of the classification results as follows: for each

gesture class we estimated the class probabilities of the cor-

rectly estimated gestures (almost 100%) and the corresponding

second highest probability among the other classes. The aver-

age of these probabilities has been taken as a threshold to dis-

card gesture detection for that class with lower probability. This

trick is able to drastically reduce the amount of false positives.

As the gesture duration is variable the test classification is

performed over sliding windows of variable sizes (ranging from

5 frames to 60 frames). Feature vectors estimated in the various

windows are resampled to 30 elements and sent to the trained

classifier.

If a gesture is detected in a window and the related class prob-

ability is higher than the related threshold, the corresponding

frames are assigned to the class.

4.5. System Configuration

The recognizer, developed using PyTorch and CUDA, has

been trained and tested on a Lenovo Legion 5 PC with a RAM

of 16 Gb, a Nvidia RTX 2060 (6Gb) graphics card and AMD

Ryzen 7 4800H(8 Cores) processor and the classification of a

single frame takes about 100ms.

5. Results

Table 2 summarizes the results for the different methods and

runs. The performances are rather similar on average. The ta-

ble shows that, overall, Group 2 with the Casual TCN method

achieved the highest detection rate (0.80). However, Group 3

managed to reach the lowest amount of false positives with the

2ST-GCN 5F method with a ratio of 0.23. Looking at the Jac-

card Index, Casual TCN is again the one with the best perfor-

mance.

Major differences between the proposed methods appear

when we look at the per-class performance metrics. In Fig-

ure 8 the bar charts show detection rates, Jaccard Indexes and

false positives’ scores for the single gesture classes. It can be

noticed how no method is performing consistently across the

entire gesture dictionary.

The inconsistency is quite noticeable in the false positives’

scores (Figure 8c). In fact, methods like Casual TCN that have

overall the highest Jaccard Index and overall FP rate in the av-

erage of the groups, when looking at the FP by-class, present

near-to-zero FP for a large amount of gestures and an high FP

spike for specific gestures such as CROSS and KNOB. The

same behavior can be observed for the Stronger methods.

The analysis of the results grouped by gesture types can also

be important to understand how the methods handle heteroge-

neous gestures where the semantics depends on completely dif-

ferent features. Figure 9 shows huge variability in the effec-

tiveness of the methods for the different classes. For example

Casual TCN and Stronger present good performances on static

gestures, and have relevant false positive issues on coarse dy-

namic and periodic gestures. TN-FSM the most consistent de-

tection rates across the categories, being, however, the worst

for static gestures and presenting relevant false positives issues

for fine-dynamic gestures, with a surprising exception for the

TN-FSM+JD run.

The fact that in the contest’s rules the detection of gestures

is considered correct if the intersection with the annotated time

frame is higher than half the length of the ground truth gesture

duration should be considered with care. The threshold is, in

fact, arbitrary, and some of the detected gestures are discarded

by not meeting its requirement and are, therefore, not classified

neither as correct nor as a false positive. We analyzed the ef-

fect on the detection rate when changing this threshold. Figure

10 shows the detection rate of the different methods as a func-

tion of it. As expected, a lower threshold would improve the

scores of most methods, however, some methods benefit from

a larger improvement compared to others (up to 15% for 2ST-

GCN and Stronger+EN). With small thresholds, 2ST-FCN-5F

is the method providing the best results and could be the best

choice for an application task that doesn’t require the accu-

rate localization of the complete gesture frame. On the other

hand, Causal TCN is the method less influenced by the thresh-

old, meaning that it provides most of the detection with a large

overlap with the ground truth frame.

12 Preprint Submitted for review / Computers & Graphics (2022)

(a) Detection rate

(b) Jaccard Index

(c) False Positives’ score

Fig. 8: Performance metrics per class, averaged on all the test sequences.

The evaluation of the actual delay of the recognition with

respect to the ground truth annotations of gestures’ starts and

end is summarized in Table 3 and represented in Figure 11 as a

function of gesture types. Here the bars represent on the right

(positive values) the average recognition delay with respect to

the ground truth gesture start, measured in frames. In the neg-

ative part (left) they represent the advance with which they are

recognized, with respect to the actual gesture end. Here we see

consistent and very low delays for the Causal TCN and the first

TN-FSM run, while 2ST-GCN is incredibly fast in detecting

static gestures, but not on the other categories. We will discuss

in detail these results in the next section.

6. Discussion

The outcomes of the SHREC ’22 evaluation provide interest-

ing insights on the feasibility of effective online recognition of

heterogeneous gestures based on Hololens 2 streams or similar

hand pose trackers data.

The proposed techniques employ some of the most popu-

lar network architectures: transformer networks, temporal con-

volutional networks (TCN), and graph convolutional networks

(GCN). The methods are efficient, but the classification perfor-

mances are still far from those required by usable, practical ap-

plications.

Detection rates are not exceeding 80%, meaning that a rele-

vant percentage of the gestures is missed. This happens for all

the methods and all the gestures types.

Preprint Submitted for review / Computers & Graphics (2022) 13

Group Method DR FP JI Delay(fr.) time(ms)
B.Line Stronger+EN 0.70 0.35 0.56 16.40 100

Stronger 0.72 0.34 0.59 14.79 100
G1 2ST-GCN 1F 0.68 0.33 0.52 12.55 2.1

2ST-GCN 5F 0.74 0.23 0.61 13.28 2.1
G2 Causal TCN 0.80 0.29 0.68 19.00 28
G3 TN-FSM 0.73 0.34 0.56 10.00 4.65

TN-FSM+JD 0.77 0.23 0.63 10.00 4.65
TN-FSM+JD+SC 0.74 0.36 0.56 10.00 4.65

Table 2: The table shows the summary of the results for each group method and all the variants proposed averaged on all the gestures. The metrics displayed are the
detection rate, the false positives’ scores, the Jaccard Index and the delay (in frames) between the start of a gesture marked by the method and the last frame reached
at the moment of the marking.

(a) Detection rate

(b) False positives

Fig. 9: Scores by gesture type

The number of false positives is definitely too high for all the

proposed methods to support reliable interfaces. The accuracy

in the detection is also not optimal. As the false positives score

is the number of false positives divided by the number of real

gestures, even the lowest value obtained, 0.1 is rather high. In

our dataset, we have sequences of about 30 seconds with 4 ges-

tures on average, which means that the best method proposed

would detect 4 non-existing gestures in 5 minutes of continu-

ous hand movements. The others methods 8 or more. These

figures should be reduced.

It seems that the network architecture has little impact on the

classification performances and differences seem to be mostly

caused by the training and online testing procedures. Methods

based on 1D convolutions (Causal TCN and STRONGER) per-

form best on static gestures Causal TCN performs well also on

Fig. 10: The Detection Rate of each method as a function of the minimum
overlap ratio between the gestures’ windows, for the detected gesture to be
marked as correct detection.

Group Method from start from end
B.Line Stronger+EN 10.72 -22.32

Stronger 10.27 -22.13
G1 2ST-GCN 1F 7.85 -26.65

2ST-GCN 5F 7.64 -22.90
G2 Causal TCN 4.36 -28.79
G3 TN-FSM 4.52 -28.63

TN-FSM+JD 18.30 -14.73
TN-FSM+JD+SC 10.54 -22.24

Table 3: Average delays in frames from ground truth start and end of annotated
gestures derived by algorithm design (excluding computation time).

Dynamic fine and periodic gestures and has only lower scores

on dynamic ones. This fact, however, does not seem to be re-

lated to the network architecture, but rather to the fact that the

network is trained to recognize sequences of 20 frames, while

dynamic gestures are longer. The use of more complex net-

works does not seem to help as transformers and graph net-

works are not providing much better results. However, the

method based on GCN seems the only one to use raw data

14 Preprint Submitted for review / Computers & Graphics (2022)

Fig. 11: The delay in frames of the last frame used by each method from the
start and end marks of Ground Truth gestures, shown by gesture type. Chart
bars are centered on the last frame used.

(coordinates as input), while the other networks process hand-

crafted features. Some groups tested the same methods with

different feature sets, but additional features do not always help,

as in the case of energy for Stronger and the spherical coordi-

nates for TN-FSM.

Gesture prediction times are, instead, negligible and defi-

nitely not an issue. The classification times of the methods pro-

posed by Group 1 and Group 3 are almost negligible (2.1 ms

and 4.65 ms) and the only method with a non-negligible com-

putation time, albeit compatible with an online application is

Stronger (100 ms). These values are small with respect to the

intrinsic time delay depending on the algorithms’ design and

shown in Figure 11.

The analysis of these delays is indeed quite interesting. Some

predictions are surprisingly fast and are provided after very few

frames from the annotated starts. In some cases gesture predic-

tion does anticipate the actual start of the gesture itself. Causal

TCN and the first run of TN-FSM provide results with delays

of less than 5 frames (250ms) consistently for all the gesture

types. 2ST-GCN is the fastest method on static gestures even if

not so efficient for the other classes. Dynamic-coarse and fine

gestures are all recognized far before their completion, even if

the semantics of the gesture depends on the whole palm and fin-

gers trajectories. This shows that the methods learn to predict

the complete gestures from the first frames only.

This early detection is allowed by the fact that classifiers like

2ST-GCN or Casual TCN are trained to recognize not entire

gestures, but also smaller time frames including the first part of

the gestures.

While this provides amazing response times, it could be, on

the other hand, one of the reasons for the high number of false

positives. For practical applications, more complex recognition

strategies increasing the time delay but increasing detection ac-

curacy and reducing false positives would be more effective.

7. Conclusion

In this paper we presented the benchmark proposed in the

SHREC 2022 track on Online Recognition of Heterogeneous

Gestures, and we reported and analyzed the results of the eval-

uation of the participants’ submissions. The outcomes of our

analysis are quite interesting, showing that the results are still

far from being usable in a practical setting, but also indicating

possible way to tackle the weaknesses of the methods. For this

reason we believe that it is necessary to continue this evaluation

on novel methods and improved recognition strategies. We will

create a website where the data and the evaluation code will

be available and it will be possible to submit novel methods.

We will continuously update a leaderbord with the evaluation

results.

8. Acknowledgments

Empty section for anonymous submission.

Preprint Submitted for review / Computers & Graphics (2022) 15

References

[1] Caputo, A, Giachetti, A, Soso, S, Pintani, D, D’Eusanio, A, Pini, S,
et al. Shrec 2021: Skeleton-based hand gesture recognition in the wild.
Computers & Graphics 2021;99:201–211.

[2] De Smedt, Q, Wannous, H, Vandeborre, JP, Guerry, J, Le Saux, B,
Filliat, D. Shrec’17 track: 3d hand gesture recognition using a depth and
skeletal dataset. In: 3DOR-10th Eurographics Workshop on 3D Object
Retrieval. 2017, p. 1–6.

[3] de Smedt, Q, Wannous, H, Vandeborre, JP. Skeleton-based dynamic
hand gesture recognition. In: Computer Vision and Pattern Recognition
Workshops (CVPRW), 2016 IEEE Conference on. 2016, p. 1206–1214.

[4] Garcia-Hernando, G, Yuan, S, Baek, S, Kim, TK. First-person hand
action benchmark with rgb-d videos and 3d hand pose annotations. In:
Proceedings of Computer Vision and Pattern Recognition (CVPR). 2018,.

[5] Caputo, FM, Burato, S, Pavan, G, Voillemin, T, Wannous, H, Van-
deborre, JP, et al. Shrec 2019 track: online gesture recognition. In:
Eurographics Workshop on 3D Object Retrieval. The Eurographics Asso-
ciation; 2019,.

[6] Wan, J, Zhao, Y, Zhou, S, Guyon, I, Escalera, S, Li, SZ. Chalearn
looking at people rgb-d isolated and continuous datasets for gesture recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 2016, p. 56–64.

[7] Zhang, Y, Cao, C, Cheng, J, Lu, H. Egogesture: A new dataset and
benchmark for egocentric hand gesture recognition. IEEE Transactions
on Multimedia 2018;20(5):1038–1050.

[8] Emporio, M, Caputo, A, Giachetti, A. STRONGER: Simple
TRajectory-based ONline GEsture Recognizer. In: Frosini, P, Giorgi,
D, Melzi, S, Rodolà, E, editors. Smart Tools and Apps for Graphics -
Eurographics Italian Chapter Conference. The Eurographics Association.
ISBN 978-3-03868-165-6; 2021,doi:10.2312/stag.20211481.

[9] Yan, S, Xiong, Y, Lin, D. Spatial temporal graph convolutional networks
for skeleton-based action recognition. CoRR 2018;abs/1801.07455. URL:
http://arxiv.org/abs/1801.07455. arXiv:1801.07455.

[10] Thompson, EM, Biasotti, S, Giachetti, A, Tortorici, C, Werghi,
N, Obeid, AS, et al. SHREC’20 track: Retrieval of digital surfaces
with similar geometric reliefs. Computers and Graphics 2020;91:199–
218. URL: https://hal.archives-ouvertes.fr/hal-02916788.
doi:10.1016/j.cag.2020.07.011.

[11] Bai, S, Kolter, JZ, Koltun, V. An empirical evaluation of generic con-
volutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:180301271 2018;.

[12] Yang, F, Wu, Y, Sakti, S, Nakamura, S. Make skeleton-based action
recognition model smaller, faster and better. In: Proceedings of the ACM
multimedia asia. 2019, p. 1–6.

[13] Vaswani, A, Shazeer, N, Parmar, N, Uszkoreit, J, Jones, L, Gomez,
AN, et al. Attention is all you need. In: Advances in neural information
processing systems (NIPS). 2017, p. 5998–6008.

[14] Lin, TY, Goyal, P, Girshick, R, He, K, Dollár, P. Focal loss for dense
object detection. In: Proceedings of the IEEE international conference on
computer vision. 2017, p. 2980–2988.

[15] Loshchilov, I, Hutter, F. Decoupled weight decay regularization. arXiv
preprint arXiv:171105101 2017;.

http://dx.doi.org/10.2312/stag.20211481
http://arxiv.org/abs/1801.07455
http://arxiv.org/abs/1801.07455
https://hal.archives-ouvertes.fr/hal-02916788
http://dx.doi.org/10.1016/j.cag.2020.07.011

	1 Introduction
	2 Related work
	3 Novel dataset, task and evaluation
	3.1 Task and evaluation

	4 Participants and proposed methods
	4.1 Group 1: Two-stage ST-GCN (2ST-GCN)
	4.2 Group 2: Causal TCN
	4.3 Group 3: Transformer Network + Finite State Machine (TN-FSM)
	4.4 Our baseline: Stronger
	4.5 System Configuration

	5 Results
	6 Discussion
	7 Conclusion
	8 Acknowledgments

