
  

  

Abstract— Traditional endoscopic methods do not reach the 
entire Gastrointestinal (GI) tract. Wireless Capsule Endoscopy 
(CE) is a diagnostic procedure that allows the visualization of 
the whole GI tract, acquiring video frames, at a rate of two 
frames per second, while travels through the GI tract, resulting 
in huge amounts of data per exam. These frames possess rich 
information about the condition of the stomach and intestine 
mucosa, encoded as color and texture patterns. It is known for 
a long time that human perception of texture is based in a 
multi-scale analysis of patterns, which can be modeled by 
multi-resolution approaches. Therefore, in the present paper it 
is proposed a frame classification scheme, based in different 
combinations of texture descriptors taken at different detail 
levels of the Discrete Wavelet Transform and Discrete Curvelet 
Transform domains, in order to compare the classification 
performance of these multi-resolution representations of the 
information within the CE frames. The classification step is 
performed by a multilayer perceptron neural network.  The 
proposed method has been applied in real data taken from 
several capsule endoscopic exams and reaches 91.7% of 
sensitivity and 89.4% specificity for features extracted from the 
DWT domain and 94.1% of sensitivity and 92.4% specificity 
for features extracted from the DCT domain. These promising 
results support the feasibility of the proposed method. 

I. INTRODUCTION 
ONVENTIONAL endoscopic exams do not allow the 
entire visualization of the gastrointestinal (GI) tract. 

The conventional upper GI endoscopy only reaches 
duodenum, while lower GI endoscopy is limited at the 
terminal ileum, which means that the vast majority of the 
small bowel is not visible with these conventional 
techniques. Furthermore, these medical procedures present 
other important drawbacks, since they are very 
uncomfortable to the patients, the navigation of the flexible 
endoscope is very dependent on the operating physician 
technical skills, who must be highly trained in order to 
correctly maneuver the endoscope, and there is always the 
risk of injuring the GI walls with the tip of the endoscope.  

The capsule endoscopic exam is simple and non-invasive 
procedure that is well accepted by the patient and can be 
performed on an outpatient basis. Therefore, and given the 
technical and medical improvements introduced on the 
assessment of the GI, Capsule Endoscopy (CE) is 
considered as the first major technological innovation in GI 
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diagnostic medicine since the flexible endoscope [1]. The 
endoscopic capsule is a pill-like device, with only 11mm×26 
mm, and includes a miniaturized camera, a light source and 
circuits for the acquisition and wireless transmission of 
signals [2]. As the capsule moves through GI tract, propelled 
exclusively by peristalsis, it acquires images at a rate of two 
per second and sends them to a hard disk receiver that is 
worn in the belt of the patient, in a wireless communication 
scheme. The acquisition of images is limited by the battery 
life of the device, usually around eight hours, which imply 
that in a single CE exam more than 50000 images are 
acquired. If no complications arise, the capsule should be in 
the patient’s stool, usually within 24–48 h, and not reused 
[3]. The analysis of this huge amount of data is done in a 
workstation, with proprietary software that allows the 
visualization of the video, by an expert physician and takes, 
in average, 40-60 min [3]. Beyond being a boring task, it is 
prone to errors, as any distraction of the physician may lead 
to misevaluation of exams. Furthermore, having an expert 
physician analyzing the exam for a long time is an important 
parcel in the total cost of the exam, so there is an important 
economic opportunity to develop a computer assisted 
diagnosis tool to this task. 

After the introduction of CE, it was discovered that the 
prevalence and malignancy rates for small bowel tumors are 
much higher than previously reported and that the early use 
of CE can lead to earlier diagnoses, reduced costs and, 
hopefully, prevent cancer [1].  

The identification of abnormalities in the GI mucosa with 
texture analysis has been previously reported and from 
authors’ previous work [4,5], the application of texture 
analysis techniques to classify capsule endoscopic frames is 
feasible and presents promising results. The proposed 
method explores the extraction of relevant feature sets at 
different detail levels of the Discrete Wavelet Transform and 
the Discrete Curvelet Transform of CE video frames and has 
been tested in clinical data acquired at the Hospital dos 
Capuchos.  

The classification scheme described in this paper uses a 
standard MLP network trained through the well known 
back-propagation learning process. The choice of a simple 
classification scheme was done to make the results more 
representative of the choice of the features 
(wavelet/curvelet, detail level, descriptors, etc).  
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II. DISCRETE WAVELET TRANSFORM 
 
The Discrete Wavelet Transform (DWT) is a 

mathematical tool that allows a spatial/frequency 
representation by decomposing the image in different scales 
with different frequency content, therefore being a multi-
resolution representation of the information within the 
image. It is known for a long time that human perception of 
texture is based in a multi-scale analysis of patterns [6], 
which can be modeled by multi-resolution approaches. In 
fact, the multi-resolution ability of the DWT has been vastly 
explored in several fields of image processing such as 
compression, denoising and classification [7]. Furthermore, 
the spatial/frequency representation of the image content 
through the DWT, which preserves both global and local 
information, seems to be an adequate approach for texture 
characterization. In practice, the 2D DWT can be easily 
computed applying a separable filter bank to the image: 
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where b ∈  R2, * denotes the convolution operator,  ↓2,1 

(↓1,2) sub-sampling along the rows (columns) and L0 = I(b) 
is the original image. H and G are low and band pass filters, 
respectively. Ln is obtained by low pass filtering, so it is 
called low resolution image at scale n. The Dni are obtained 
by band pass filtering in a specific direction. Thus these 
parameters contain directional detail information at scale n. 
An example of a two level DWT decomposition can be 
observed in figure 1.  Note that this decomposition allows 
the separation of image’s content in sub-bands of different 
frequency detail and directional content. However, these 
three linear directions might not be enough to capture all the 
complex texture patterns within an image. 

 
 
 
 
 
 
 

 
Fig. 1.  Two level DWT decomposition of a CE frame 
 
 
 

III. DISCRETE CURVELET TRANSFORM 
 
Originally introduced in 2000 by Candes and Donoho, the 

Continuous Curvelet Transform (CCT) is based in an 
anisotropic notion of scale and high directional sensitivity in 
multiple directions [8]. In signal processing, for example, 
one has to deal with the fact that interesting phenomena 
occur along curves or sheets, e.g., edges in a two-
dimensional (2D) image. While wavelets are certainly 
suitable for dealing with objects where the interesting 
phenomena, e.g., singularities, are associated with 
exceptional points, they are ill-suited for detecting, 
organizing, or providing a compact representation of 
intermediate dimensional structures. Given the significance 
of such intermediate dimensional phenomena, there has been 
a vigorous research effort to provide better adapted 
alternatives by combining ideas from geometry with ideas 
from traditional multi-scale analysis [9]. Therefore, this 
mathematical tool can be used as a multi-resolution and 
multi-directional representation of the information within an 
image. 

 
 
Fig. 2. CCT tiling of the frequency domain (a) and basic tiling of the 

digital coronization process (b) 
 
The CCT is based in the tilling of the 2D Fourier space in 

different concentric coronae, one of each divided in a given 
number of angles, accordingly with a fixed relation. Now, to 
each of this polar “wedges” will be associated a frequency 
window Uj (figure 2-a) that will correspond to the Fourier 
transform of a curvelet φj(x) function, which can be thought 
of as a “mother” curvelet, since all the curvelets at scale 2-j 
may be obtained by rotations and translations of φj(x). So the 
CCT can be defined by a pair of windows W(r), a radial 
window, and V(t), an angular window. These are both 
smooth, nonnegative, and real-valued, with W taking 
positive real arguments and supported on r  (1/2, 2) and V 
taking real arguments and supported on t  [−1, 1]. These 
windows will always obey the admissibility conditions: 
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Now, for each j ≥ j0, it is introduced the frequency 
window Uj defined in the Fourier domain by: 
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where |j/2| is the integer part of j/2 and Uj corresponds to 

a polar “wedge” as seen in figure 2-a. The frequency 
window Uj will correspond to the Fourier transform of a 
curvelet φj(x) function. Consider an equispaced sequence of 
rotation angles θl=2π.2|-2/j|.l, with l=0,1,.. such that 0 ≤ θl ≤ 
2π, whose spacing is scale dependent,  and the sequence of 
translation parameters k = (k1, k2)  Z2. With these 
notations, curvelets are defined (as function of  x=(x1, x2)) at 
scale 2-j, orientation θl and position xk

(j,l)=R-1
θl (k1.2-j, k2.2-j) 

by:  
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where Rθ is the rotation by θ radians and Rθ

 -1 its inverse 
(and also its transpose). A curvelet coefficient c(j,l,k) is then 
simply the inner product between an element f  L2 (R2) and 
a curvelet φj,l,k : 
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Reference [9] proposes two different schemes for the 

discretization of the CCT, namely the USFFT algorithm and 
the wrapping algorithm. Both rely in the transformation of 
the frequency coronae of the CCT of figure 2 in a “Cartesian 
coronae”, which are based on concentric squares (instead of 
circles) and shears, in a process designated by digital 
coronization. The motivation for this digital coronization is 
the fact that coronae and rotations are not especially adapted 
to Cartesian arrays, which difficult their computation.  Since 
it is stated that the wrapping algorithm may be simpler to 
understand and implement, this approach was chosen to 
calculate the Discrete Curvelet Transform (DCT) in the 
present work. Further details about the CCT and its 
discretization can be found in [9]. 

Therefore, the DCT coefficients are, as in the DWT, 
accurate representations of the original image with different 
detail, given by the different frequency content in each 
scale, but also with different detail in multiple directions, 
overcoming the directional limitations of the DWT. This 
might be well suited for the analysis of complex spatio-
frequency patterns as texture. 

In the proposed approach, the CE frames were processed 
with the wrapping algorithm for three scales, with one, eight 
and sixteen angles respectively.  

 
 

IV. STATISTICAL TEXTURE DESCRIPTORS 
 

There are several statistical features that can be extracted 
from the wavelet/curvelet domain as texture descriptors, 
being the most common the mean, the standard deviation, 
the energy and the entropy of each sub-band [10].  In the 
present work, it was decided to start the comparison between 
the different DWT and DCT detail levels only with the mean 
and variance as statistical descriptors, in order to better 
compare the two different multi-resolution domains, being 
the remaining features added to the feature set, in order to 
verify if they positively contribute to the classification 
performance. 

Note that capsule endoscopic video frames are usually 
square images of 256x256 but the information is restricted 
to a circular area in the middle of the image, as it is 
observable in figure 3. Therefore, it is vital to only consider 
the pixels inside this area, since the information regarding to 
the CE exam is contained in this part.  

Since the low frequency components of the images do not 
contain major texture information, the most important bands 
in the wavelet/curvelet transform are those in which are 
present medium and high frequency, texture encoding, 
information [5]. Therefore, no texture descriptors were 
computed for the scales whose coefficients correspond to 
low frequency content (coarsest scale coefficients). 
Furthermore, the coarsest scale coefficients of the DCT and 
DWT are not directional, and consequently do not possess 
directional sensitivity.  

 

V. IMPLEMENTATION AND RESULTS 
 

The experimental dataset was constructed with frames 
from capsule endoscopic video segments of different 
patients’ exams, taken at the Hospital dos Capuchos in 
Lisbon by Doctor Jaime Ramos. The final dataset consisted 
in 400 normal frames, which were equally divided in two 
sets, for the MLP network training and testing, and 200 
abnormal frames, which were also equally divided in two 
sets. Examples of the dataset frames can be observed in the 
figure 3. 
 

   a)          b) 
 

Fig. 3. Example of a normal (a) and an intestinal tumor (b) CE frames 
 
A 2.4 GHz Pentium Core Duo processor-based, with 3 

GB of RAM, was used with MATLAB to run the proposed 
algorithm and the average processing time depends heavily 
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on the selected transform and the number of features (from 
0.3s per frame for one feature extracted from the DWT 
domain to 2s per frame for all the considered features 
extracted from the DCT domain). Note however that these 
times can still be greatly improved. The DCT calculation 
was done with the routines implemented in the tool 
CurveLab (available for research purposes at 
www.curvelet.org). A two level DWT and a three scales 
(including the coarsest) DCT were computed for each color 
channel of the CE video frames, leading to coarsest, medium 
and finest detail coefficients for each domain. The selected 
color space was the HSV, since is more similar to the 
physiological perception of human eye [12], and therefore 
more adequated than the standard RGB colorspace.  

Instead of measuring the rate of successful recognized 
patterns, more reliable measures for the evaluation of the 
classification performance can be achieved by using the 
sensitivity (true positive rate) and the specificity (100-false 
positive rate) measures. These two measures can be 
calculated as: 
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where a are the true negative patterns, b are the false 

positive patterns, c are the false negative patterns and d are 
the true positive patterns. 

Table 1 show that the most relevant information for 
classification purposes is encoded as high frequency content 
in the DWT and DCT finest detail coefficients. These results 
correspond to a feature set of mean and variance (feature set 
A). Note that M and F stands for medium and finest detail 
scales. It was tested also the classification performance of a 
feature set containing the medium and finest detail, but there 
was no significant improvement. 

 

 
 
Since it is clear that the finest detail coefficients of both 

DWT and DCT contain the most relevant information, the 
inclusion of the entropy and energy descriptors in the feature 
set was evaluated only at those scales. The feature set B 
corresponds to the extraction of the mean, variance, entropy 
and energy from the finest detail scales. The results of this 
comparison are presented in table 2, where is evident that 
the increase in classification performance with the addition 
of entropy and energy to the feature set is not significant. 

 
 

VI. CONCLUSION AND FUTURE WORK 
 

The more significant information content for 
classification purposes is encoded as high frequency 
information, at the DWT/DCT scales that correspond to the 
finest detail coefficients. The results clearly show that the 
descriptors from the DCT domain present a higher 
discriminative power when compared with DWT 
descriptors, being the feature set with better classification 
performance composed by the mean and variance extracted 
from each sub-band of the considered domains.   

Future work will include further investigation of different 
features extraction schemes from the DCT domain, taking 
advantage of the high directional sensitivity and multi-
resolution information encoding of this mathematical tool.   
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TABLE II 
                     CLASSIFICATION  PERFORMANCE OF DWT VS DCT  

Transform 
Feature Set 

DWT 
A 

DWT 
B 

DCT 
A 

DCT 
B 

Specificity (μ±σ%) 89.4±2.1 89.2±1.9 92.4±1.2 91.9±1.5 

Sensibility (μ±σ%)) 91.7±0.5 92.1±1.1 94.1±0.6 94.3±0.7 

TABLE I 
                     CLASSIFICATION  PERFORMANCE OF DWT VS DCT  

Transform 
Detail Level 

DWT 
M 

DWT 
F 

DCT 
M 

DCT 
F 

Specificity (μ±σ%) 84±3.1 89.4±2.1 85.0±1.1 92.4±1.2 

Sensibility (μ±σ%)) 77.1±4.1 91.7±0.5 80.4±2.2 94.1±0.6 


