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Abstract— This paper presents a system to support medical
diagnosis and detection of abnormal lesions by processing
capsule endoscopic images. Endoscopic images possess rich
information expressed by texture. Texture information can be
efficiently extracted from medium scales of the wavelet
transform. The set of features proposed in this paper to code
textural information is named color wavelet covariance (CWC).
CWC coefficients are based on the covariances of second order
textural measures, an optimum subset of them is proposed.
Third and forth order moments are added to cope with
distributions that tend to become non-Gaussian, especially in
some pathological cases.  The proposed approach is supported
by a classifier based on radial basis functions procedure for the
characterization of the image regions along the video frames.
The whole methodology has been applied on real data
containing 6 full endoscopic exams and reached 95% specificity
and 93% sensitivity.

I. INTRODUCTION

NDOSCOPIC capsule, which allows minimally invasive
imaging procedures, is ingested by the patient and films
the whole gastrointestinal tract, reaching places where

the conventional Endoscopy does not, such as the small
bowel. Images are captured by a short-focal-length lens as
the capsule is propelled by peristalsis through the
gastrointestinal tract. Two frames per second are acquired
for about 8 hours, resulting in more than 50.000 video
frames per exam. Average small bowel transit time is about
90 minutes [1], then capsule reaches the cecum and visibility
is severely decreased, giving a total average of 15.000 useful
images. Usually the physician is required to view 60.000
images and to select the ones that he considers important.
This task is boring, time consuming and prone to subjective
errors, since most of the frames are normal, so it claims for
computational assistance. Note that having an expert
physician analyzing, for a long period, a capsule endoscopic
exam is also very costly, and, therefore, exists an important
economic opportunity to develop a computer assisted
diagnosis tool to this task.

Textural alterations of the small bowel mucosa surface
can be used for the automatic detection of lesions. In the
proposed approach, the video frame sequences are
transformed in scale by using the wavelet transform, since it
has been observed that the textural information is localized
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in the middle frequencies and lower scales of the original
signal [2]. Statistical color wavelet features have been
encountered in texture analysis schemes for the
discrimination of normal and abnormal (i. e. tumor) regions.
The construction of the texture feature space follows the
multiresolution approach on the wavelets extracted from the
color domain. In this study involving color texture analysis,
features were obtained based on cooccurrence matrices,
obtained from the wavelet transform of different color
spaces. Then second-order-statistics are computed between
color channels for the same wavelet band. Third and forth
centered moments were added to deal with non-Gaussianity
that tends to appear especially in some pathological cases.

Radial basis functions are the neural networks perhaps the
most appropriated for statistical applications. The basic
approach is viewing the design of a neural network as a
curve-fitting approximation problem in a high dimensional
space. Therefore learning is equivalent to finding a surface
in a multidimensional space that provides a best fit to the
training data. The idea behind the use of RBF’s is to take
advantage of the local approximations using exponentially
decaying localized nonlinearities achieved by the Gaussian
function, which increases the clustering power relatively to
MLP’s. This neural model can be advantageous over the
global approximations to nonlinear input-output mappings
provided by Multilayer Perceptrons (MLP’s), especially
when non-stationary processes need to be accurately
modelled [3].

II. FEATURES EXTRACTION

The proposed approach is based on the extraction of color
textural features of the capsule endoscopic frames, in order
to classify them. These features are estimated over the
second order statistical representation of the wavelet
transform of the color image. The cooccurrence matrices
approach has been considered in this work for the
description of a statistical model of the texture encoded
within the decomposed subimages. It captures second order
color level information, which is mostly related to the human
perception and discrimination of textures. For coarse
textures these matrices tend to have higher values near the
main diagonal, whereas for a fine texture the values are
scattered. The cooccurrence matrices encoder the wavelet
level (for each color) spatial dependence based on the
estimation  of the second order joint-conditional probability
density function f(i,j,d,θ), which is computed by counting all
pairs of pixels at distance d having wavelet coefficients of
color levels i and j, at a given direction θ. The angular
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displacement used is the set {0, π/4, π/2, 3π/4}. Four
statistical measures among the fourteen originally proposed
by Haralick [4] were considered, to extract the texture
information within the coocurrence matrix. They are angular
second moment, which gives a measure of homogeneity,
correlation, which is a measure of directional linearity,
inverse difference moment and entropy defined respectively
as:
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where p(i,j) is the ijth entry of normalized cooccurrence
matrix, N the number of levels of the wavelet and μx, μy, σx,
σy are the means and standard deviations of the marginal
probability px(i) obtained by summing up the rows of the
matrix p(i,j).

Color transformations of the original image I result in
three decomposed color channels

.3,2,1, iI i (7)

where i stands for color channel.

A three level discrete wavelet frame transformation is
applied to each color channel (Ii). This transformation results
in a new representation of the original image by a low
resolution image and the detail images.

Therefore the new representation is defined as:
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where n is the decomposition level. Since the textural
information is better presented in the middle wavelet
detailed channels, then second level detailed coefficients
were considered. Thus, the image representation consists of
the detail images produced from (8) for the values l=4, 5, 6
as shown in figure 1. This results in a set of 9 subimages:
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l (9)

Fig. 1. Three level wavelet decomposition scheme of the original image
for color channel i.

For the extraction of the second order statistical textural
information cooccurrence matrices were used calculated
over the nine different subimages. These matrices capture
spatial interrelations among the intensities within the
wavelet decomposition level. The cooccurrence matrices are
estimated in four different directions resulting to 36 matrices
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where α stands for coocurrence direction.

Four statistical measures given by equations (1), (2), (5)
and (6) are estimated for each matrix resulting in 144
wavelet features:
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where m stands for the four texture features of the
coocurrence matrix.
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Since each feature represents a different property of the
examined region, the covariance among different statistical
values between the color channels of the examined region,
contain certainly valuable information. It is then expected
that similar textures will have close statistical distributions
and consequently they should have similar features. This
similarity between features can be described by measuring
the variance in pairs of them. Additionally the covariance
between two features measures their tendency to vary
together. The texture covariance has been proposed in the
literature [5] as a measure used directly on image intensities
or among the color intensities of the examined region.

Finally the covariance of the same statistical measure
between different color channels is computed and used as a
textural measure
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The color wavelet covariance is defined as
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which results in a set of 72 components per frame.

Higher order statistics, namely third and forth centered
moments are then calculated for each texture feature, in
order to model deviations to the Gaussian distribution. These
deviations are accentuated in pathological cases for almost
all features. Note that this shift to the normal Gaussian
distribution does not affect preferentially any feature also.
These are calculated as:
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where N is given by the total combinations arisen from i,
which stands for color channel, and l, which stands for the
wavelet band. In this particular case, N=9.

Summing up the 8 higher order moments, each frame is
characterized by a set of 80 components in the observation
vector. These components constitute the input of the radial
basis function.

III. RADIAL BASIS FUNCTIONS

The classification scheme described in this paper used a
standard radial basis function, which basic scheme is shown
in figure 2, with 80 input units, 17 RBF units and 5 output
neurons. One of the motivations to use radial basis functions
is its ability to construct local approximations to non-linear
I/O mapping, which is achieved by the Gaussian functions,
and can model more accurately groups of features that have
tendency to vary together.

The training algorithm was the well known hybrid
learning process, where the centers were computed by
clustering, the spreads of the Gaussians chosen by
normalization and the Least Mean Square algorithm for
computing the network weights. The 5 output neurons were
used to classify the data into 5 classes namely bleeding,
ulcer, polyps, normal and a type of defect not classifiable
without an exhaustive analysis by the physician. The most
part of the frames were later classified by the physician as a
polyp with some medical particularities.

Fig. 2. Scheme of a radial basis function with three input and two output
neurons.

IV. EXPERIMENTAL RESULTS

The experimental set consisted of 6 full capsule
endoscopic exams taken at the Capucho’s Hospital in
Lisbon by Doctor Jaime Ramos. The system was trained in
data that does not belong to the examined patients. The
training set was composed by more than 2.000 normal
images, some of them taken from exams with pathological
cases, 23 bleeding images, 54 polyp images, 123 Tumor
images and 58 a priori undefined images, which includes
Crohn and Jejunal lymphoma diseases. The total amount of
images involved in the test set is about 85.000. Figure 3
shows some frames belonging to the training set. Note that,
obviously, none of the images used in the training dataset
were included in the test dataset and vice-versa.

RBF units
Non-linear

Input units

Output units
Linear



a) b) c)

d) e) f)

Fig. 3. Images of the small Bowel: a) Bleeding b) Polipoid mass
c) normal d) Tumor e) Crohn’s Disease f) Jejunal lymphoma

Instead of measuring the rate of successful recognized
patterns, more reliable measures for the evaluation of the
classification performance can be achieved by using the
sensitivity (true positive rate) and the specificity (100-false
positive rate) measures [6].  These two measures can be
calculated as:
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where a is the number of true negative patterns, b is the
number of false positive patterns, c is the number of false
negative patterns and d is the number of true positive
patterns.

The classification performance is high when both
Sensitivity and Specificity are high, in a way that their
trade-off favors true positive or false positive rate depending
on the application.

A 3.2 GHz Pentium Dual Core processor-based with 256
MB of RAM was used with Matlab to run the developed
algorithm. The average time processing per frame is about
2:15 minutes but drops considerably without loss of
performance if the size of the cooccurrence matrices is set to
64 X 64 instead of using almost 256 X 256 (full range). In
this case the average time processing per frame is about 15
seconds. A mask was applied to the wavelet subimages in
order to avoid computing cooccurrences in the image
corners where no image information exists. The algorithm
for computing cooccurrence matrices is implemented in a
way that with only one passage for the matrix computes
cooccurrences in all the 4 required directions.

The used color space was the RGB color space and the
obtained pair (Sensitivity, Specificity) was for the described
data set (93 ±0.4%, 95±0.1%). Table 1 resumes the most
relevant results. The results are given in statistical terms,
and each experiment was repeated four times for four
different test set.

V. DISCUSSION AND FUTURE WORK

The results of this paper shows that color textural
information can be adequate to classify images from
endoscopic capsule. This color textural information can be
obtained from the covariances of the second-order statistical
measures calculated over the wavelet frame transformation
of different color bands. Higher order statistics can be added,
which help to model non-Gaussianity, which tends to appear
especially for pathological cases. Radial basis functions can
also be adequate for classification purposes using this kind
of features. However the system needs improvements,
especially concerning the amount of training data for
pathological cases as well as the amount of testing data
balanced with a greater number of pathological cases. In the
near future, dimensionality studies will be made to reduce
the number of features per frame. Different classifications
approaches will also be subject of future investigation.
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TABLE I
CLASSIFICATION PERFORMANCE OF THE PROPOSED

RBF CLASSIFICATION SCHEME

RBF Units Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

20 88 ±0.7 93±0.25 91±0.5
25 92±0.4 92±0.15 92±0.3
30 94±0.32 97±0.1 96±0.2
35 96±0.24 96±0.05 96±0.2
40 95±0.15 96±0.15 96±0.2

Overall 93±0.4 95±0.1 94±0.25


