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Abstract—This paper is concerned to the cardiac 

arrhythmia classification by using Hidden Markov Models 
and Maximum Mutual Information Estimation (MMIE) 
theory. The types of beat being selected are normal (N), 
premature ventricular contraction (V), and the most 
common class of supra-ventricular arrhythmia (S), named 
atrial fibrillation (AF). The approach followed in this paper 
is based on the supposition that atrial fibrillation and 
normal beats are morphologically similar except that the 
former does not exhibit the P wave.  In fact there are more 
differences as the irregularity of the RR interval, but 
ventricular conduction in AF is normal in morphology. 
Regarding to the Hidden Markov Models (HMM) 
modelling this can mean that these two classes can be 
modelled by HMM’s of similar topology and sharing some 
parameters excepting the part of the HMM structure that 
models the P wave. This paper shows, under that 
underlying assumption, how this information can be 
compacted in only one HMM, increasing the classification 
accuracy by using MMIE training, and saving 
computational resources at run-time decoding. The 
algorithm performance was tested by using the MIT-BIH 
database. Better performance was obtained comparatively 
to the case where Maximum Likelihood Estimation training 
is used alone.  

 
1. INTRODUCTION 

 
Electrical instability of the heart, which can be identifiable in 

the ECG, leads to an abnormal synchronized contraction 
sequence reducing pumping efficiency.  This phenomenon 
named arrhythmia can be classified as frequent or infrequent 
(sporadic). Infrequent arrhythmias can be evaluated by long-
term ambulatory ECG monitoring (Holter), which produces a 
quantity of beats greater than 105.  The physician has now the 
very hard task of visual examination of this huge amount of 
data to find possible abnormal beats that in some cases are 
morphologically similar (but not equal) to normal beats. In 
spite of time consuming and boring work the task of repetidely 
analyzing data that in the most cases are normal beats increases 
the human error by subjective reasons. This subjective error 
increases significantly when ectopic pulses are very similar 
with the most frequent normal pulses, which occurs for atrial 
fibrillation. Usually ventricular arrhythmias are more visible 

given the QRS complex is the most dominant part of the ECG. 
Hence, an automatic method for beat classification of a Holter 
register eventually separating some beats hard to classify, for 
posterior visual inspection, would be very useful.  

Hidden Markov models have been successfully applied to 
pattern recognition problems in applications spanning 
automatic speech recognition [1], image segmentation [2], 
ECG modeling [3] and cardiac arrhythmia analysis [4]. 

The approach followed in this paper tries to take advantage 
of the similarities between normal and atrial fibrillation beats to 
improve the classifier performance by using MMIE training, in 
a single model/double class framework, which is similar of 
having two different models sharing the most parameters. This 
approach saves computational resources at run-time decoding 
and improves the classification accuracy of very similar classes 
by using MMIE training. The idea is that if two classes have 
some state sequence similarities and the main morphological 
differences occur only in a short time slice, then setting 
appropriately internal state model transitions can model the 
differences between classes. These differences can be more 
efficiently emphasized by taking advantage of the well known 
property of MMIE training of HMM’s, which typically makes 
more effective use of a small number of available parameters 
[7]. By this reasoning the selected decoding class can be 
chosen on the basis of the most likely state sequence, which 
characterizes the most likely class. Classes morphologically not 
too similar are modeled by different HMM’s by using MLE 
training alone since one property of MMIE training is that 
training data for which the probability of being generated by 
one existing model is much greater than the probability of 
being generated by anyone of the others, have negligible 
contribution to the reestimated values.  

 
II. ECG FEATURES EXTRACTION 

 
ECG observations were obtained from the segmentation of 

the original signal with straight line segments which goal is to 
decrease the amount of linear redundancy, as described in [3]. 
In [3] it is suggested for features a bi-dimensional vector where 
the components are respectively the amplitude of the starting 
point and the duration of the line segment. However, as 
reported in [5], these features are very sensitive to baseline 
wander, DC drift and heart rate variation. DC drift can be 
cancelled by using differential amplitude between the starting 
and ending points, and heart rate variability can be attenuated 
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by normalizing the line segment duration by the R-R interval, 
as reported in [5]. Therefore we adopted the features suggested 
in [5]. The R-R interval is computed by using the well known 
Gritzali algorithm [6], which is also used jointly with a valley 
detector for beat synchronization. As the used HMM´s are 
connected in a left to right order, synchronization of the cardiac 
cycle according to the initial state probability is required 
especially for training purposes.  For decoding this 
synchronization is only necessary for the first cardiac cycle 
since HMM’s are provided with a feedback transition from the 
last to the first state.  

 
III. HIDDEN MARKOV MODELS 

 
A.  Model Structure 
In the pattern recognition paradigm each class of beat is 

represented by a separate model and after decoding, the class 
for the which the probability (likelihood) of occurrence is 
greater is selected. Since the ECG is characterized by time 
sequence waves occurring almost always in the same order 
which reflects the sequential activity of the cardiac conduction 
system an HMM structure where the states are connected in a 
left-to-right order was adopted. In [3] it is shown that a full 
connected HMM is eventually more appropriate for HMM 
modeling since the beat sequence reproduced by this kind of 
HMM is almost perfect. However, it is well known that 
classification in the pattern recognition paradigm does not need 
necessarily of modeling all the class features, so though a left-
to-right model may not be the more adequate, it is structurally 
appropriated from an heuristic point of view and can capture 
the most relevant features concerned to classification purposes. 
Figure 1 shows the model structure for the atrial fibrillation and 
normal beats, where ai,j stands for transition probability from 
state i to state j. Our reasoning is based on the assumption that 
an AF beat is similar to a normal beat without the P wave 
which can be modeled by a transition probability that not pass 
through the state which models the P wave. At the end of the 
decoding stage the recognized class can be selected by 
searching (backtracking) the most likely state sequence. This 
structure can be seen as two separate HMM’s sharing the most 
parameters. This parameter sharing procedure is justified by the 
fact that ventricular conduction is normal in morphology for 
AF beats, and we intend to use a limited amount of parameters, 
just the pdf associated with the transitions from state 5 to states 
6 and 7, state 6 to itself and to state 7 to reinforce the 
discriminative power among classes. The separation between 
these two classes can be increased by using an efficient 
discriminative training as MMIE obtained on the basis of the 
parameters associated with the intra-class differences, just 
those above mentioned. It is very important to note that this 
approach reinforces the HMM distance among different model 
structures while the distance of HMM’s in the same structure 
(those that share parameters) are obviously decreased. 
However, it is believed that an appropriate discriminative 
training can efficiently separate the classes modeled by the 
same HMM. Although a recognition system fully trained by 
using the MMIE approach can be more effective it surely needs 
a much degree of computational requirements in both training 
and run time decoding.    

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
States from 1 to 7 are concerned to the ECG events R, S, S-T, 
T, T-P, P, P-R.  

The model structure adopted for PVC beats is similar to the 
shown in figure 1 but without state 6, since the P-wave is not 
present. AF and PVC beats have the similarity of do not exhibit 
the P wave, however they are morphologically very different, 
therefore it is not plausible that they can share a significant 
amount of model parameters.  

 
B.  Probabilistic model of observations  

The output probability density function, which defines the 
conditional likelihood of observing a set of features when a 
transition trough the model takes place, is usually a 
multivariate Gaussian mixture, so the probabilistic model 
assigned to observation vectors is a bi-variate Gaussian 
probability density function since the observation vectors have 
only 2 components. The components of observation vectors are 
assumed to be independents and identically distributed (iid) 
hence the joint likelihood occurrence is given by the product of 
two Gaussian functions. These probability density functions are 
associated with transitions which configures a Continuous 
Density Hidden Markov Model (CDHMM) Mealy machine 
and are given by 

),,()/(
1

,,,∑
=

Σ=
C

i
iuiutiut ttt

yGbuyf µ  (1) 

 
where G(…) stands for bi-variate normal distribution with 
mean vector  and covariance matrix for the ith mixture 
component and transition ut given respectively by iut ,µ  and  

iut ,Σ . As the components of observation vector are assumed 
iid G(…) function in equation (1) is simply the product of two 
Gaussian functions. The mixture coefficients iut

b ,  satisfy, for 
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so that, equation (1) is a probability density function. 
In our experiments the observations were modelled by three 

components in the Gaussian mixture (C=3) in order to best fit 
the data with multimodal distributions.  

 

Figure 1. HMM topology adopted for modelling 
normal (N) and atrial fibrillation (AF) beats. 

a7,7 

7

a5,7 

a6,7 
a1,2 

a1,1 

1 a2,3 

a2,2 

2 a3,4 

a3,3

3 a4,5 

a4,4 

4

a6,6 

6a5,6 

a5,5 

5 

3837



 
 

 

C.  Training Procedure 
The Estimation of HMM parameters from a set of 

representative training data can be done by using the Baum-
Welch algorithm which is based on the decoding of all the 
possible state sequence, or alternatively by using the Viterbi 
algorithm which is based on the most likely state sequence [1]. 
Since the HMM structure shown in figure 1 can model 2 
different classes on the basis of the most likely state sequence, 
the Viterbi algorithm seems to be more appropriate for this 
kind of decoding strategy, once that after decoding, the most 
likely state sequence can be known by an appropriate 
backtracking procedure.  

The frame state allocation concerned to the ECG events 
described in the first paragraph after figure 1 can be forced by 
setting (to one) the initial probability of the first state in the 
initial state probability vector and resetting all the other initial 
state probabilities, and also synchronizing the ECG feature 
extraction to begin in the R wave. This kind of synchronization 
is needed for this HMM topology where the initial state must 
be synchronized with the R wave, otherwise the assumption 
that state 6 models P-wave can not be true. We observed this 
evidence in our experiments. However if a back transition from 
the last to the initial state is added this synchronization is 
necessary only for the first ECG pulse decoding. The 
synchronization between ECG beats and the HMM model is 
facilitated by the intrinsic difference between the last and first 
state, since the last state models an isoelectric segment (weak 
signal) while the first state models the R wave which is a much 
strong signal. In other words if the HMM is in state 7 modeling 
an isoelectric segment the happening of a strong R wave tends 
to force a transition to state one which helps in model/beat 
synchronization. 

The model for premature ventricular contraction beats is 
trained by using the conventional MLE procedure in the 
Viterbi framework, which goal is to maximize iteratively the 
following probability density function 

 
( ) ( ) )/(,// λλλ SPSYfYf =   (3) 

 
where Y is the observation sequence, S the most likely state 
sequence and λ the set of HMM parameters. The model 
reestimation formulas can be found in [1]. This usual parameter 
estimation technique attempts to make the models fit the 
training data as well as possible. 

Another reasonable training objective would be to maximize 
the mutual information between the training sequence and the 
corresponding observation sequence given the set of existing 
models. This training criterion leads to the maximization of the 
following probability density function 
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The most important thing that can be immediately observed 
from this objective function is that maximizing it is equivalent 
to enforcing discrimination against all competing models. The 
main difficulty associated with the use of MMIE estimation in 
HMM’s is the non-existence of closed-form reestimation 

formulas similar to those available for MLE. So, a common 
solution is to resort to some form of gradient descent or 
alternatively relying on efficient reestimation techniques which 
main virtue is not as much their proofs of guaranteed 
convergence as their effectiveness in practice given that 
convergence is reached in a few (typically less than 10 and 
often 2 or 3) iterations.  One such technique was proposed in 
[8] for discrete distributions and adapted in [7] for continuous 
distributions and was selected to be used in the ambit of this 
paper.  

As different state sequences model different classes in the 
same HMM a suited training procedure can be used, taking into 
consideration that this model structure is similar to a structure 
with two HMM’s sharing a significant amount of parameters. 
The approach followed in this paper was to compact this 
representation in only one HMM. The adopted training strategy 
must accommodate both the MMIE training and parameter 
sharing, or in other words an MMIE training procedure in only 
one HMM platform with capabilities to model two classes must 
be required. This compromise was obtained by estimating the 
shared parameters in the MLE sense. This procedure 
emphasizes that the shared parameters can be estimated on the 
basis in which the data fits best the model.  For this propose a 
set of 20 normal beats was presented to the HMM structure 
shown in figure 1 with a5,7  set to zero which means that the pdf 
parameters associated with this transition were not trained. The 
Viterbi algorithm was used for training and testing purposes 
[1]. Then 10 AF beats and 10 N beats were presented for 
training, in the MMIE sense, the parameters not shared by the 
two classes, just the ones associated with the transitions a5,7  
a5,6  a6,6  a6,7.  All the other parameters are shared between the 
two classes and are not updated at this phase. Associated to 
each transition are 15 coefficients, three mixture coefficients; 
three mean vectors and three diagonal covariance matrices for 
two iid vector components.  In this way this HMM can model 
efficiently “on average” beats morphologically similar to 
normal beats and additionally was specialized in distinguishing 
normal from AF beats. Our results seem to confirm this 
reasoning. 

Probability state transitions a5,7  and a5,6 are concerned to the 
a priori beat probability since they serves as a switch between 
both classes modeled by this HMM. Hence for a non-biased 
model they must be numerically equal, which means that given 
an unknown beat the a priori probability of being an N beat is 
the same that of  being an AF beat. Therefore these two model 
parameters must be set as   

2
1 5,5

7,56,5

a
aa

−
==    (5) 

in order to set the transition probability from state 5 unitary, as 
required for all states, and where a5,5 was trained for normal 
beats and was not updated for AF beats since it is a shared 
parameter. 

The PVC model was trained with 20 premature ventricular 
beats in the standard way, by using the Viterbi algorithm [1].  

Good initial parameter estimates are very important in 
reaching the globally optimum parameter estimates. This was 
accomplished by manual segmentation of two examples of 
each beat type. The output mean values were initialised as the 
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sample means of the associated segments computed for each 
mixture component by the K-means algorithm. 

 
 

IV. EXPERIMENTAL RESULTS 
 

Experimental results were evaluated by using the MIT-BIH 
database. In order to show the effectiveness of the proposed 
algorithm we compared the performance of the algorithm 
relatively to the most common case where each class has its 
own HMM. Normal beats were modelled by the HMM 
topology shown in figure 1 where the transition from state 5 to 
state 7 was removed. The HMM training procedure used in this 
framework was the MLE with the Viterbi algorithm.  

The testing set contains the 106, 119 and 123 records of the 
MIT-BIH arrhythmia database and the 04043 record of the 
MIT-BIH atrial fibrillation database. The training data of N, V 
and AF beats was taken respectively from the 100, 116 and 
04126 records, which means that data for training and testing 
purposes was obtained from different patients, which is 
normally known as patient-independent analysis. An 
experimented cardiologist selected 10 good examples of AF 
cardiac cycles from the first two AF episodes of the 04126 
record. AF testing data was selected by the same cardiologist, 
as good examples from the 1st and 12nd AF episodes of the 
04043 record where 516 AF cardiac cycles were selected for 
this purpose. The signals were previously denoised using 
wavelet based filter and the baseline signal removal has been 
eliminated. Additionally corrective training was performed for 
both MMIE and MLE trainning. Tables 1 and 2 show the 
results in a confusion matrix form for the cases of MMIE and 
MLE alone training.  

Table 1 – The confusion matrix associated to MMIE training 
 V N AF FP Total Pr+
V 963 1 3 23 990 0.98
N 2 4563 0 17 4582 1 
AF 4 0 512 51 567 0.91
NR 5 1 7    
Total 974 4565 522 91 6139  
Sensitivity 0.99 1 0.98    

 

Table 2 – The confusion matrix associated to MLE training 
 V N AF FP Total Pr+
V 964 3 0 34 1001 0.97
N 1 4531 33 12 4577 1 
AF 7 29 480 67 583 0.88
NR 4 13 11    
Total 976 4576 524 113 6161  
Sensitivity 0.99 0.99 0.92    

 
The results confirm that confusion among classes of beats 

morphologically similar can be strongly reduced by using 

MMIE training, as shown by the confusability decreasing 
between N and AF beats from table 2 to table 1. Additionally 
no other significant differences appear, at least in this limited 
experimental set.  

 
V. DISCUSSION AND FUTURE WORK 

 
This paper suggests that robustness concerned automatic 

cardiac diagnosis can be increased by using MMIE training of 
HMM’s, which model beat types of similar morphology. The 
idea is that it can be more effective specialising the HMM’s in 
learning the differences between beats of similar morphology 
than learning the probability distributions that fit best the 
training data. Although the experimental results need to be 
extended specially in the number of classes to be recognized, 
which certainly increases the confusability among beat classes, 
they support the approach, as shown by the confusability 
decreasing between N and AF beats from table 2 to table 1.  
This approach can also be extended to the case of Atrial Flutter 
(AFL), where the P-wave repetitions along the cardiac cycle 
can also be viewed as a preferred (most likely) state sequence 
along the HMM, while the QRS is normal.  
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