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ROLE OF WNT SIGNALING IN HEART DISEASE 

 

Heart failure has a major social-economic impact in our society. Despite major 

advances in the understanding of this pathology, the mechanisms of its development, as 

well as its pathophysiology, remain unclear. Therefore, it is our priority to clarify how 

extra- and intracellular factors are able to modulate heart function. Several pathways 

and/or factors had already been associated with different phases of heart failure 

development namely TGF-β, IGF, calcineurin, several GPCRs, MAPK, Akt and GSK-3. More 

recently, several studies started shedding some light on a putative role of Wnt signaling in 

heart failure development. 

 Wnt signaling is a major regulator of cell-fate specification during development, 

proliferation, survival, migration and adhesion. Several diseases including cancer, 

diabetes, osteoporosis and psychiatric disorders are the result of deregulation of canonical 

Wnt signaling, due to either genetic alterations or changes in the levels of its effectors. 

 The role of canonical Wnt signaling in heart development is well established and it 

has been shown to be biphasic, in the sense that its activation is initially required for the 

commitment of cells to a cardiac lineage and in its inhibition, cardiogenesis is triggered. In 

heart failure development, a possible role for Wnt signaling has only recently been 

reported, yet, its results are contradictory. Nonetheless, it was not addressed a possible 

role exerted by extracellular modulators and receptors of the Wnt pathway. Because of its 

role in the development of other diseases, and since its extracellular and membrane 

effectors are regarded as potential targets of pharmacological intervention in the 

treatment of such pathologies, it became imperative the understanding of Wnt signaling 

regulation in heart disease and how these interventions would affect heart function. 

Taking these facts into account, our first goal was to perform a detailed gene expression 

analysis of different Wnt ligands, receptors and co-receptors, during heart disease 

development in a type 1 diabetes mellitus rat model. Since in other contexts, Wnt 

signaling interacts with other pathways known to present a role in the development of 

diabetic heart disease, such as PPARs and FOXO proteins, we also checked their 

expression levels. With this approach we aimed starting to unveil a possible role for Wnt 

signaling in heart disease development as well as possible interactions with other 

pathways, known to be important of this pathology. 
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FUNÇÃO DA VIA DAS WNTs NA DOENÇA CARDÍACA 

 

A insuficiência cardíaca apresenta um impacto socioeconómico grande na nossa 

sociedade. Apesar de grandes avanços na compreensão desta patologia, os mecanismos 

do seu desenvolvimento, assim como a sua fisiopatologia, permanecem obscuros. De tal 

forma, é nossa prioridade o esclarecimento de como factores extra- e intracelulares são 

capazes de modular a função cardíaca. Diversas vias e/ou factores já foram associados a 

diferentes fases do desenvolvimento de insuficiência cardíaca, nomeadamente TGF-β, IGF, 

calcineurina, várias GPCRs, MAPK, Akt e GSK-3. Mais recentemente, vários estudos 

sugerem/apontam um potencial papel da via dos Wnts, no desenvolvimento de 

insuficiência cardíaca. 

 A via das Wnts é um importante regulador do desenvolvimento, proliferação, 

sobrevivência e adesão celulares. Várias doenças como cancro, diabetes, osteoporose e 

disfunções psiquiátricas, são o resultado da desregulação da via canónica das Wnts, 

devido a alterações genéticas ou alterações a nível celular dos seus factores.  

A sua função no desenvolvimento cardíaco é bem conhecida e revelou-se bifásica, 

já que, inicialmente, a sua activação é necessária para diferenciação numa linhagem 

cardíaca e posteriormente, a sua inibição activa a cardiogénese. Vários estudos sugerem 

um potencial envolvimento da via das Wnts na insuficiência cardíaca, no entanto, os seus 

resultados são contraditórios. Assim, não foi possível identificar o papel desempenhado 

por moduladores extracelulares e receptores desta via. Devido ao seu papel no evoluir de 

outras doenças, e porque os seus receptores são potenciais alvos de intervenções 

farmacológicas no tratamento de tais patologias, tornou-se indispensável o conhecimento 

da via das Wnts na doença cardíaca e como essas intervenções poderão afectar o coração. 

Assim, o nosso primeiro objectivo passou por realizar uma análise à expressão genética 

dos vários ligandos, receptores e co-receptores, durante o desenvolvimento da doença 

cardíaca num modelo de rato com diabetes tipo 1. Dado que em outros contextos a via 

das Wnts interagir com outras vias conhecidas por deterem um papel no desenvolvimento 

da cardiomiopatia diabética, tais como PPARs e FOXOs, também analisamos os seus níveis 

de expressão. Com esta abordagem, pretendemos revelar o potencial papel da via das 

Wnts na fisiopatologia da doença cardíaca, assim como, possíveis interacções com outras 

vias relevantes e associadas a esta patologia. 



- viii - 



- ix - 

INDEX OF CONTENTS 

 

1 | WNT SIGNALING ........................................................................................................................ 19 

1.1 Wnt/β-catenin signaling (Canonical Wnt pathway) .......................................................... 19 

1.2 Wnt/β-catenin independent pathway (Non-canonical Wnt signaling) ............................. 21 

2 | CANONICAL WNT SIGNALING: EXTRACELLULAR AND MEMBRANE PLAYERS .......................................... 22 

2.1 Wnt ligands ........................................................................................................................ 22 

2.2 Wnt receptors ................................................................................................................... 22 

2.2.1 Fzd receptors ............................................................................................................. 22 

2.2.2 LRP5/6 receptors ....................................................................................................... 23 

2.3 Unusual Wnt receptors: Drl/Ryk and Ror2 ........................................................................ 24 

3 | OTHER EXTRACELLULAR PLAYERS: ANTAGONISTS AND AGONISTS ...................................................... 24 

3.1 The antagonists ................................................................................................................. 24 

3.2 The agonists ....................................................................................................................... 25 

4 | INTRACELLULAR PLAYERS ............................................................................................................ 25 

4.1 Dishevelled ........................................................................................................................ 25 

4.2 β-catenin structure ............................................................................................................ 26 

4.3 The ‘scaffold’ destruction complex of β-catenin: GSK-3, CK1, Axin and APC .................... 27 

5 | CANONICAL WNT SIGNALING ACTIVATION ..................................................................................... 29 

6 | NUCLEAR EVENTS ...................................................................................................................... 32 

7 | THE ROLE OF WNT SIGNALING: EMBRYONIC AND ADULT HEART ........................................................ 33 

7.1 Embryonic heart ................................................................................................................ 33 

7.2 Adult heart ........................................................................................................................ 33 

8 | DIABETES MELLITUS AND HEART DISEASE ....................................................................................... 35 

9 | THE ROUTE FROM DIABETES MELLITUS TO OXIDATIVE STRESS AND VICE-VERSA/BACK ........................... 36 

9.1 ‘Forkhead box, subclass O’ (FOXO) ................................................................................... 37 

9.1.1 FOXO members regulation: Post-translational modifications (PTMs) ...................... 38 

9.1.2 FOXOs nuclear exclusion/negative regulation .......................................................... 38 

9.1.3 FOXOs nuclear import/positive regulation ............................................................... 39 

9.2 FOXO and canonical Wnt signaling: β-catenin, the Libra .................................................. 40 

10 | LIPID HOMEOSTASIS ................................................................................................................... 41 

10.1 Peroxisome Proliferator-Activated Receptors (PPARs) ................................................. 42 

10.2 PPARs in the heart ......................................................................................................... 43 

10.3 PPARs convergence with canonical Wnt signaling and FOXOs ..................................... 44 

11 | AIM ......................................................................................................................................... 46 



- x - 

12 | MATERIAL AND METHODS .......................................................................................................... 49 

12.1 Streptozotocin (STZ)-induced diabetes ......................................................................... 49 

12.2 Echocardiography assessment ...................................................................................... 50 

12.3 Myocardial function ...................................................................................................... 50 

12.4 Molecular Studies .......................................................................................................... 51 

12.5 Statistical analysis .......................................................................................................... 53 

13 | RESULTS ................................................................................................................................... 57 

13.1 Echocardiographic evaluation ....................................................................................... 57 

13.2 General features ............................................................................................................ 58 

13.3 Myocardial function ...................................................................................................... 59 

13.4 Gene expression ............................................................................................................ 61 

14 | DISCUSSION .............................................................................................................................. 81 

14.1 Effects of diabetes mellitus: myocardial structure ....................................................... 81 

14.2 Gene expression ............................................................................................................ 82 

15 | CONCLUSIONS ........................................................................................................................... 93 

16 | SUPPLEMENTS ........................................................................................................................... 97 

17 | BIBLIOGRAPHY ........................................................................................................................ 103 



- xi - 

LIST OF ABBREVIATIONS 

 

APC Adenomatus Polyposis Coli LV Left Ventricle 
AU Arbitrary units MAK Metastasis-associated kinase 
BCL9 B-cell lymphoma 9 MAPK Mitogen-activated protein kinase 
BNP Type-B natriuretic peptide MMTV Mouse mammary tumors virus 
BSA Body surface area MSC Mesenchymal Stem Cell 
CAMKII Ca2+/calmodulin-dependent protein 

kinase II 
MST1 Ste20-like kinases 

CBP CREB binding protein n Number of experimental units 
CDK2 Cyclin-dependent kinase 2 NCoR Nuclear receptor corepressor 
CK Casein kinase NFAT Nuclear factor of activated T Cells 
CPCs Cardiac Progenitor Cells NHR Nuclear hormone receptor 
CREB cAMP response element-binding NPC Nuclear pore complex 
CRM1 Chromosomal region maintenance 1 PAR-1 Protease-activated receptor 1 
CSCs Cardiac Stem Cells PCP Planar cell polarity 
CtBP C-terminal binding protein PtdIns Phosphatidylinositol 
CTRL Control PI3K PtdIns-3-kinase 
DKK1 Dickkopf 1 PI4KIIa PtdIns-4-kinase type II 
DM Diabetes mellitus PIP5KI PtdIns-4-phosphate 5-kinase type I 
Drl Derailed PIP2 PtdIns(4,5)-biphosphate 
Dvl Dishevelled PKA cAMP-dependent protein kinase 
DYRK1 Dual-specificity tyrosine-

phosphorylated and regulated kinase 1 

PKB/Akt Protein kinase B 

ECs Endothelial Cells PKC Protein kinase C 
EF Ejection Fraction PLC Phospholipase C 
ERK Extracellular-signal-regulated kinase PPARs Peroxisome proliferator-activated 

receptors 
ET-1 Endothelin-1 PRMTs Protein arginine methyltransferases 
FOXO Forkhead box, subclass O PTMs Post-translational modifications 
FS Fractional shortening Pygo Pygopus 
FZD Frizzled p300 CREB binding protein-associated 

factor 
GAPDH Glyceraldehyde-3-phosphate 

dehydrogenase 
RGS Regulators of G proteins signaling 

GLUT4 Glucose transporter 4 ROS Reactive Oxygen Species 
GPCRs G protein-coupled receptors Rspo R-spondin 
GRK G protein-coupled receptor kinases RXR Retinoid X receptor 
Gro Groucho SCs Stem Cells 
GSK-3 Glycogen synthase 3 SCR-1 Steroid receptor co-activator-1 
HR Heart Rate sFRPs Secreted frizzled-related proteins 
IGF Insulin growth factor SGK Serum- and glucocorticoid-inducible 

kinase 
IL-1 Interleukin-1 SMCs Smooth muscle cells 
IKK IkappaB kinase SMRT Silencing mediator of retinoid, 

thyroid hormone receptors 
IP Intraperitoneal SCF

β-TrCP Skp1/Cul1/F-boxβ-TrCP 
JNK C-jun kinase SEM Standard error of the mean 
LDL Low-density lipoprotein Stbm Strabismus 
LEF Lymphoid enhancer-binding factor STZ Streptozotocin 
LRP LDL-receptor related protein TCF T Cell factor 



- xii - 

TNF-α Tumor necrosis factor α wg wingless 
T1DM Type 1 diabetes mellitus β-TrCP β-transducin repeat-containing 

protein 
Xpo1 Exportin 1   



- xiii - 

LIST OF IMAGES 

 

IMAGE 1 | OVERVIEW OF CANONICAL WNT SIGNALING. ................................................................................ 20 

IMAGE 2 | DVL STRUCTURE...................................................................................................................... 26 

IMAGE 3 | β-CATENIN DOMAINS STRUCTURE. ............................................................................................. 26 

IMAGE 4 | AXIN STRUCTURE. ................................................................................................................... 28 

IMAGE 5 |APC DOMAINS STRUCTURE......................................................................................................... 28 

IMAGE 6 | MODEL OF WNT RECEPTOR ACTIVATION: INITIATION AND AMPLIFICATION. ....................................... 30 

IMAGE 7 | MODEL OF WNT RECEPTOR ACTIVATION: SIGNALSOME. ................................................................. 31 

IMAGE 8 | MODEL OF WNT RECEPTOR ACTIVATION: RECEPTOR ENDOCYTOSIS. ................................................. 31 

IMAGE 9 | FOXOs STRUCTURE. ................................................................................................................. 37 

IMAGE 10 | β-CATENIN, THE LIBRA. .......................................................................................................... 40 

IMAGE 11 | PPARs STRUCTURE. ................................................................................................................ 43 



- xiv - 

LIST OF TABLES 

 

TABLE 1 | SPECIFIC PCR PRIMER PAIRS USED IN THE WORK. ........................................................................... 51 

TABLE 2 | SPECIFIC PCR PRIMER PAIRS USED IN THE WORK. ........................................................................... 53 

TABLE 3 | DOPPLER ECHOCARDIOGRAPHIC MEASUREMENTS.......................................................................... 57 

TABLE 4 | GENERAL FEATURES OF CTRL AND DM ANIMALS. ........................................................................... 58 

TABLE 5 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR BNP AND ET-1 GENES. ......... 62 

TABLE 6 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION OF THE HIGHEST EXPRESSED WNT 

GENES. ........................................................................................................................................ 63 

TABLE 7 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR FZD GENES. ....................... 63 

TABLE 8 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR FZD AND LRP GENES. ........... 65 

TABLE 9 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR WNT AND UNRELATED WNT 

GENES.. ....................................................................................................................................... 66 

TABLE 10 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR FZD, LRP6 AND UNUSUAL 

RECEPTOR GENES.. ......................................................................................................................... 67 

TABLE 11 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR GATA4, AXIN2 AND CYCLIND1 

GENES. ........................................................................................................................................ 67 

TABLE 12 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR KINASES AND LRP6 GENES. . 70 

TABLE 13 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR PPAR GENES. ................... 70 

TABLE 14 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR Foxo GENES.. ................... 73 

TABLE 15 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR GSK-3β, ET-1, GATA4 AND BNP 

GENES AT FOUR- AND SIX-WEEKS OF TREATMENT.. .............................................................................. 73 

TABLE 16 | COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR FZD3, FZD5, WNT2B, WNT11 

AND LRP6 GENES AT FOUR- AND SIX-WEEKS OF TREATMENT. ................................................................. 76 

TABLE 17| COMPARISON BETWEEN GROUPS OF THE MEAN RELATIVE EXPRESSION FOR PPARγ, Foxo3 AND Foxo4 

GENES AT FOUR- AND SIX-WEEKS OF TREATMENT. ............................................................................... 77 

 



- xv - 

LIST OF FIGURES 

 

FIGURE 1 | BASELINE HEMODYNAMIC ASSESSMENT OF LEFT VENTRICLE FUNCTION.. .......................................... 59 

FIGURE 2 | BASELINE HEMODYNAMIC ASSESSMENT OF LEFT VENTRICLE FUNCTION. ........................................... 60 

FIGURE 3 | EXPRESSION OF BNP AND ET-1 GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-WEEK ANIMALS, 

COLLECTED AFTER TREATMENT. ........................................................................................................ 61 

FIGURE 4 | EXPRESSION OF WNT GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-WEEK ANIMALS, COLLECTED 

AFTER TREATMENT......................................................................................................................... 62 

FIGURE 5 | EXPRESSION OF FZD GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-WEEK ANIMALS, COLLECTED 

AFTER TREATMENT......................................................................................................................... 64 

FIGURE 6 | EXPRESSION OF RELEVANT FZD AND LRP GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-WEEK 

ANIMALS, COLLECTED AFTER TREATMENT........................................................................................... 64 

FIGURE 7 | EXPRESSION OF RELEVANT WNT AND UNRELATED WNT GENES, IN LEFT VENTRICLE HEART SAMPLES OF 

FOUR-WEEK ANIMALS, COLLECTED AFTER TREATMENT. ........................................................................ 65 

FIGURE 8 | EXPRESSION OF FZD, LRP6 AND UNUSUAL RECEPTOR GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-

WEEK ANIMALS, COLLECTED AFTER TREATMENT. ................................................................................. 66 

FIGURE 9 | EXPRESSION OF GATA4, AXIN2 AND CYCLIND1 GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-WEEK 

ANIMALS, COLLECTED AFTER TREATMENT........................................................................................... 68 

FIGURE 10 | EXPRESSION OF RELEVANT KINASES AND LRP6 GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-WEEK 

ANIMALS, COLLECTED AFTER TREATMENT........................................................................................... 69 

FIGURE 11 | EXPRESSION OF PPAR GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-WEEK ANIMALS, COLLECTED 

AFTER TREATMENT......................................................................................................................... 71 

FIGURE 12 | EXPRESSION OF Foxo GENES, IN LEFT VENTRICLE HEART SAMPLES OF FOUR-WEEK ANIMALS, COLLECTED 

AFTER TREATMENT......................................................................................................................... 72 

FIGURE 13 | EXPRESSION OF GSK-3β, ET-1, GATA4 AND BNP GENES, IN LEFT VENTRICLE HEART SAMPLES OF SIX-WEEK 

ANIMALS, COLLECTED AFTER TREATMENT........................................................................................... 74 

FIGURE 14 | EXPRESSION OF FZD3, FZD5, WNT2B, WNT11 AND LRP6 GENES, IN LEFT VENTRICLE HEART SAMPLES OF 

SIX-WEEK ANIMALS, COLLECTED AFTER TREATMENT.. ........................................................................... 75 

FIGURE 15| EXPRESSION OF PPARγ, Foxo3 AND Foxo4 GENES, IN LEFT VENTRICLE HEART SAMPLES OF SIX-WEEK 

ANIMALS, COLLECTED AFTER TREATMENT........................................................................................... 76 



- xvi - 



 

- 17 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

"Learning never exhausts the mind.” 
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INTRODUCTION 

1 | WNT SIGNALING 

Wnt signaling is known to play a critical role in a vast array of biological processes, 

by which regulate cell proliferation, polarity establishment, migration, cell fate 

differentiation and stem cell self-renewal [1-2]. As a consequence of their participation in a 

multitude of cellular events, mutations in the Wnt signaling pathway are usually involved 

in diseases, such as cancer, premature osteoporosis, diabetes and cardiovascular diseases 

[1-2]. 

The Wnt pathway is categorically divided in three branches, taking mostly into 

account, whether they require or not the transcription factor β-catenin: the canonical or 

Wnt/β-catenin signaling [3], the Planar Cell Polarity (PCP) [4] and the Wnt/Ca2+ pathways [5]. 

Of the three, canonical Wnt signaling is the best understood and acts by regulating the 

amount of the transcriptional regulator β-catenin, whereas the other two act independent 

of β-catenin and are termed non-canonical or β-catenin-independent pathways [2-5]. 

1.1 Wnt/β-catenin signaling (Canonical Wnt pathway) 

β-catenin, a homolog of the fly Armadillo, is a key component of the cadherin cell 

adhesion system and the canonical Wnt signaling [6-7]. In the absence of a Wnt ligand, 

cytoplasmic β-catenin levels are continuously being kept low, because free β-catenin is 

being targeted to a proteasome-mediated degradation and only membrane β-catenin 

complexed with the cadherin cell adhesion system is protected from degradation. β-

catenin degradation is achieved through the formation of a rigorous complex, composed 

of the scaffolding protein Axin, the glycogen synthase kinase 3 (GSK-3), the tumor 

suppressor Adenomatus Polyposis Coli gene product (APC) and Casein Kinase 1 (CK1) [1, 3, 

8]. This protein complex promotes β-catenin sequential phosphorylation exerted by CK1 

and GSK-3, with subsequent recognition and binding to SCFβ-TrCP, an E3 ubiquitin-protein 

ligase, leading to its ubiquitylation and further proteasomal degradation by the 26S 

proteasome [9-10]. Removal of cytoplasmic β-catenin prevents it from entering the nucleus 

and binding to the T cell factor (TCF) and lymphoid enhancer-binding factor (LEF) proteins, 

which is being repressed by the Groucho (Gro) family of transcription repressors [2]. 

Thereby, inhibiting the role of β-catenin as a transcriptional co-activator of target genes.  
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Conversely, upon reception of Wnt ligands, β-catenin levels increase. This is mostly 

due to stabilization against proteolysis of uncomplexed β-catenin in the cell and is 

independent of the cadherin cell adhesion system. Wnt ligands are known to interact with 

cell surface receptors, such as Frizzled (Fzd) receptors and its co-receptor [low-density 

lipoprotein (LDL)-receptor-related protein] (LRP), leading to the formation of a ternary 

Fzd-Wnt-LRP complex [1, 3]. Consequently, this complex by the action of the Fzd receptor, 

activates and recruits the Dishevelled (Dvl) cytoplasmic phosphoproteins, resulting in LRP 

phosphorylation and activation, with following Axin recruitment to the plasma membrane 

[2-3]. This results in the disruption of the degradation complex, thence blocking cytoplasmic 

β-catenin degradation. Stabilized cytoplasmic β-catenin translocates into the nucleus, 

where displaces Groucho from the co-activators TCF/LEF, activating Wnt target genes [2-3].  

Taken together these observations, is noteworthy that instead the traditional 

cascade of phosphorylation/dephosphorylation events or the production of intracellular 

second messenger proteins, cells constantly synthesize and degrade β-catenin, unless 

canonical Wnt pathway is initiated [10]. 

 

 

Image 1 | Overview of canonical Wnt signaling. 
a) In the absence of Wnt ligands, cytoplasmic β-catenin forms a complex with Axin, APC, GSK-3 and CK1, 
leading to its phosphorylation, further recognition by the E3 ubiquitin ligase β-TrCP and targeting to 
proteasomal degradation. Wnt target genes are repressed by TCF/LEF-Groucho association. 
b) In the presence of Wnt ligands, a trimeric complex consisted by Fzd-Wnt-LRP is formed. Heteromeric G-
proteins and Dvl proteins are activated, leading to the recruitment of Axin to LRPs. This disrupts the 
degradation complex, subsequent β-catenin stabilization and nuclear translocation, where displaces 
Groucho from TCF/LEF, activating Wnt target genes. 

a b 
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1.2 Wnt/β-catenin independent pathway (Non-canonical Wnt signaling) 

The existence of alternative Wnt signaling pathways, termed non-canonical Wnt 

pathways, is being supported by accumulating evidences over the last decade. 

Nonetheless, the precise molecular details are still to be unraveled. Several proteins have 

been reported to be involved in non-canonical Wnt signal transduction pathways namely 

Fzd receptors, the transmembrane protein strabismus (Stbm), phospholipase C (PLC), 

protein kinase C (PKC), Ca2+/calmodulin-dependent protein kinase II (CAMKII), c-jun kinase 

(JNK), Rho family GTPases and Dvl proteins [4-5, 11-12]. 

 Various reports suggested that non-canonical Wnt signaling might be separated 

into two distinct pathways, including the Planar Cell Polarity (PCP) and the Wnt/Ca2+ 

pathways, which may aid to explain the different downstream gene profile observed. In 

the presence of Wnt ligands, PCP signaling is initiated through Fzd and Stbm (activate Dvl 

proteins) that in turn activate Rho family of GTPases, Rac and RhoaA, stimulating JNK 

activity with subsequent JNK-mediated transcriptional regulation [13-14]. 

 On the other hand, Wnt/Ca2+ pathways promote intracellular calcium increase due 

to PLC activation, after G proteins induction (activated by Fzd receptors). Ca2+-sensitive 

proteins, such as CAMKII and PKC, detect the increased intracellular Ca2+, causing nuclear 

translocation of nuclear factor of activated T cells (NFAT), a Ca2+-regulated transcription 

factor [12, 15]. 

 Yet, other models proposed the incorporation of both these pathways into a single 

non-canonical Wnt pathway or Wnt regulatory network. Of note, is that effectors of the 

Wnt pathway, such as Fzd and Dvl, appear to function in both canonical and non-canonical 

pathways, turning the understanding of Wnt signaling an even more complex task, 

because it is possible that the two could be simultaneously activated and functionally 

interacting. In addition, another interesting feature about these signaling pathways is the 

antagonistic regulation observed, where activation of one might even repress activation of 

the other [16]. 
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2 | CANONICAL WNT SIGNALING: EXTRACELLULAR AND MEMBRANE PLAYERS 

2.1 Wnt ligands 

In 1973, Sharma et al. [17] isolated a Drosophila melanogaster mutant gene termed 

‘wingless’ (wg; a fly with no wings), which was subsequent related to cause abnormal wing 

and mesothorax developments [18]. A decade later, Nusse et al. [19] reported a new gene 

that was responsible for mammary tumors development (mouse mammary tumors virus; 

MMTV) in mice, called ‘INT-1’ and just three years later, Rijsewijk et al. [20] identified INT-1 

as the mammalian homologue of Drosophila gene wingless. The name ‘WNT’ (wingless-

type MMTV integration site family) thus alludes to the original genes wingless and INT-1. 

Till date, at least, 19 Wnt ligand members had been reported in mammals, 

conferring a high degree of complexity and Wnt signaling specificity [21]. Wnts are cysteine-

rich secreted proteins (presenting up to 23 or 24 highly conserved cysteine residues) of 

approximately 350-400 amino acids and highly conserved throughout evolution 

(conserved in all metazoan animals) [19-20]. These proteins are monomeric and share a Wnt 

signature motif (C-K-C-H-G-[LIVMT]-S-GS-C) [22]. Active Wnts can also be found expressed 

combinatorially [23], which appears to activate signaling in a distinct manner. 

2.2 Wnt receptors 

Two distinct receptor families are critical for the activation of canonical Wnt 

signaling [1]. The first, belongs to the Fzd class of proteins that are essential for both 

canonical and non-canonical Wnt signaling, and constitute high affinity Wnt receptors. The 

second, comprise members of a single transmembrane-spanning protein family 

recognized as the gene arrow in Drosophila [24] and as LRP5/6 in vertebrates [25], which 

function specifically as Fzd co-receptors in canonical Wnt signaling. 

2.2.1 Fzd receptors 

In the mammalian genome, 10 Fzd protein members had been identified to play a 

central role in Wnt signaling [26]. Interestingly, because Fzds present seven 

transmembrane-spanning (7TM) domains that evocates of classical G protein-coupled 

receptors (GPCRs), they comprise a separate class of GPCRs, the “Class Frizzled” [27]. 
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Fzd proteins expose their large N-terminal domain, that contains a cysteine-rich 

domain, on the extracellular side and to which, it binds Wnt ligands [28]. Besides one N-

terminal region, structural analyses of Fzd receptors predicts, three extra- and three 

intracellular loops, and an intracellular C-terminal domain [29]. The C-terminal domain 

contains a PDZ (Postsynaptic density 95, Discs large, Zonula occludens-1)-binding domain, 

by which cytoplasmic proteins interact with the receptor [29-30]. Amino acid sequence 

analyses showed that the Fzd sequence is highly rich in putative consensus sites for 

various serine/threonine and  tyrosine kinases [29]. 

2.2.2 LRP5/6 receptors 

The low-density lipoprotein (LDL) receptor (LDLR) family consists of cell surface 

proteins that are involved in receptor-mediated endocytosis of cognate ligands [31-32]. Two 

of these members, LRP5 and LRP6 comprise a subfamily of the LDLR family, which mediate 

diverse steps in metabolism and development. 

LRP5 and LRP6 are highly homologous proteins that present high co-expression 

during embryogenesis and adult tissues remodeling [33-34]. It is likely that LRP6 plays a 

more dominant role during embryogenesis [25], while LRP5 is critical in adult tissue 

homeostasis [35]. Most of the LRP amino acid sequence is localized extracellular and 

consists of YWTD (tyrosine, tryptophan, threonine and aspartic acid) domains, EGF 

(epidermal growth factor)-like domain and LDL repeats [36-37]. Intriguingly, although being a 

co-receptor for canonical Wnt signaling, LRPs extracellular domain has a poor affinity to 

Wnt ligands compared to Fzds, yet, bind with high affinity to its antagonists Dickkopf1 

(Dkk1) and Sclerostin [38-39]. The YWTD domain is important for LRPs endoplasmic 

reticulum maturation and membrane trafficking, which requires a specific chaperone 

molecule called Boca in Drosophila [40] and Mesd in mice [41]. 

The intracellular domain has proline-, serine- and threonine-rich residues and 

contains five PPPSP*x+S (‘x’ denotes any amino acid) repetitive motifs [42]. The 

phosphorylation of these motifs is a requirement for Axin recruitment and subsequent β-

catenin stabilization. Upstream of the PPPSP[x]S repeats exist an S/T cluster that is also a 

target for phosphorylation [43]. 

Till date, five classes of protein kinases had been identified to phosphorylate LRPs, 

being divided in two groups. The first, comprises proline-directed kinases which 
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phosphorylate PPPSP motifs, such as GSK-3 [44], cAMP-dependent protein kinase (PKA) [45], 

Pftk members [46] and G protein-coupled receptor kinases 5/6 (GRK5/6) [47]. The second 

contains non-proline-direct kinases like CK1 family members [48] that phosphorylate [x]S 

sites, the S/T cluster and additional N-terminal regions. 

2.3 Unusual Wnt receptors: Drl/Ryk and Ror2 

Derailed (Drl), a transmembrane tyrosine kinase receptor from the RYK subfamily, 

has been shown to be an unusual, yet, essential component of Wnt signaling [49]. 

Drosophila Wnt5 (Dwnt5), is a regulator of axon guidance in the central nervous system, 

and embryos lacking Dwnt5, share a similar phenotype to those that lack Drl, that is, they 

display aberrant neuronal projections across the midline. Drl binds to Dwnt5, through its 

extracellular Wnt inhibitory factor (WIF) domain, indicating that it is a Dwnt5 receptor in 

the central nervous system [50]. However, how Drl downstream signals are transduced, 

remain unclear. Unlike Drl in Drosophila, the mammalian Ryk homolog functions as a co-

receptor along with Fzd [51]. 

Another tyrosine kinase receptor is known to exist, Ror2, which contains a 

cysteine-rich domain similar to that of Fzd [52]. Upon Wnt5a binding to Ror2, an inhibitory 

action over canonical Wnt signaling takes place, although paradoxically, Wnt5a can also 

induce activation of the canonical pathway by directly engaging Fzd4 [53] or Fzd5 [54]. 

 

3 | OTHER EXTRACELLULAR PLAYERS: ANTAGONISTS AND AGONISTS 

3.1 The antagonists 

Wnt antagonists can be categorically divided according to their model of action 

and to their ability to inhibit canonical Wnt signaling. Some proteins like Dickkopf (Dkk) 

[55], Wise [56] and Sclerostin [38], which are capable of inhibiting canonical Wnt signaling by 

binding to the LRP5/6 receptor, are grouped and classified together. On the other hand, 

those like secreted frizzled-related proteins (sFRPs) [57], Wnt inhibitory factor 1 (WIF1) [58] 

and Xenopus Cerberus [59], directly bind to and inhibit Wnts and thence, are classified as 

the sFRP class. In addition, sFRPs are also capable of binding and blocking the access of 

Wnts to Fzd receptors,  thereby, presenting dual inhibitory functions of Wnt signaling [60]. 
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Thus, theoretically, components of the sFRP class will inhibit both canonical and non-

canonical pathways, while those binding to LRPs, will specifically inhibit the canonical 

pathway [61]. 

3.2 The agonists 

Norrin and R-spondin (Rspo) are at least two types of proteins that are unrelated to 

Wnt ligands and activate the Fzd/LRP receptors [62-63]. Norrin is a secreted protein that is 

mutated in Norrie disease, which is a developmental disorder defined by vascular 

abnormalities in the eye. Norrin acts by binding with high affinity to Fzd4 and therefore, 

activates the canonical Wnt signaling in an LRP5/6-dependent manner [62]. The Rspo 

proteins constitute a novel class of ligands that induce canonical Wnt signaling, by 

exhibiting synergy with Wnts, Fzds, and LRP6 [63]. Rspo2 genes are often co-expressed in a 

variety of tissues with Wnts, raising the possibility that Rspo2 proteins display a positive 

feedback role, in order to reinforce canonical Wnt signaling [63]. In line with this notion, it 

had already been demonstrated that Rspo proteins are capable of physically interacting 

with the extracellular domains of LRP6 and Fzd8, therefore activating Wnt target genes 

[64]. 

 

4 | INTRACELLULAR PLAYERS 

4.1 Dishevelled 

Dishevelled (Drosophila: dsh; Mammalian: Dvl) is a ubiquitously expressed 

cytoplasmic scaffolding protein that is known to interact with activated Fzd receptors. Dsh 

contains 750 amino acids, displaying high homology with three Dvl homologue genes 

(DVL1, DVL2 and DVL3) that had been identified in mice and humans [65]. All Dvl family 

members possess three conserved regions: an N-terminal DIX (Dishevelled/Axin) domain 

(also found in the C-terminus of Axin proteins), a central PDZ domain (also found in the C-

terminal domain of Fzds) and a C-terminal DEP domain, implicated in membrane targeting 

[66]. Additionally, other two conserved regions had been implicated to mediate protein 

interactions and/or phosphorylation, the basic and the proline-rich regions [67]. 
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Image 2 

Image 2 | Dvl structure. 

 

 It is interesting to mention that, like Wnts and Fzd receptors, also Dvl is a common 

player between both canonical and non-canonical Wnt pathways and, like β-catenin, it can 

shuttle between the cytoplasm and the nucleus, yet, it is unclear how the nuclear 

localization of Dvl is governed. 

4.2 β-catenin structure 

β-catenin, a protein of 781 amino acids, is arranged in three distinct regions that 

share a 71% identical amino acid sequence to the fly Armadillo gene product [68]. It 

possesses a large central region (residues 141-664) composed of 12 repeats, known as the 

Armadillo (Arm) repeats, being each arm disposed in a three α-helix configuration. The 

arm repeats are structurally very similar, however, presenting some irregularities among 

the whole arm repeats structure [69]. 

 

 
Image 3 | β-catenin domains structure. 
 

Interestingly, the 12 arm repeat structure forms a stiff scaffold for the binding of 

many factors, such as TCF, Axin and APC [70]. Contrasting, the N- and C-terminal domains 

are much smaller and much more flexible [10, 68]. Some authors suggested that these two 

domains would interact with the central arm domain by a fold-back mechanism, 

regulating the ability of this region to bind to different co-factors [71-72]. Plus, because 

these two domains are negatively charged, contrasting to the highly positively charged 

arm domain, is deductible that the three domains interact in a highly and non-specific, 

dynamic fashion. 
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4.3 The ‘scaffold’ destruction complex of β-catenin: GSK-3, CK1, Axin and APC 

As already stated, cytoplasmic β-catenin downregulation is carried out by the 

formation of a multiprotein destruction complex that targets β-catenin to proteasomal 

degradation. 

GSK-3 is a ubiquitously expressed constitutively active serine/threonine kinase 

(GSK-3 active form is dephosphorylated), responsible for cellular substrates 

phosphorylation and is one of the kinases responsible for β-catenin phosphorylation to 

subsequent proteasome recognition. This kinase specifically recognizes and 

phosphorylates critical residues in the N-terminal region of β-catenin (Ser33, Ser37 and 

Thr41), however, by itself, GSK-3 does not efficiently phosphorylate β-catenin [10]. In fact, 

Liu et al. [73] demonstrated that β-catenin phosphorylation by GSK-3, is preceded by a 

“priming” phosphorylation step governed through a member of the CK1 family of kinases, 

CK1α, also in the N-terminal region of β-catenin (Ser45). 

At least, three CK1s have been implicated in the canonical Wnt signaling namely 

CK1α, CK1ε and CK1γ, being the role of the first isoform the best characterized of this 

family [10]. The potential role of this kinase is well illustrated in CK1α deletion experiments, 

where high concentration levels of β-catenin are observed, through inhibition of β-catenin 

phosphorylation and further cytoplasmic accumulation [73]. 

At the ‘heart’ of the multiprotein destruction complex lays the scaffolding protein 

Axin, which plays a critical role in bringing GSK-3, CK1α, and β-catenin together to 

efficiently promote the phosphorylation reaction [10]. Surprisingly, Axin concentration is 

extremely low when compared to other components, in frog embryos experiments, 

suggesting that Axin is a rate limiting factor to the assembly of the destruction complex 

[74]. Moreover, the importance of Axin in β-catenin degradation is highlighted by the 

increased levels of β-catenin in several human cancers due to mutations in the human 

AXIN1 gene [75]. In order to potentiate and exert a more dynamic role in the formation of 

the β-catenin destruction complex, Axin uses separate domains to interact with GSK-3, β-

catenin and CK1α. 

A hydrophobic groove in the C-terminal region of GSK-3 binds a central region 

within the Axin protein, leaving the GSK-3 active site free to phosphorylate β-catenin [76]. 

C-terminal to the GSK-3 binding site, a short conserved region in Axin, called the β-
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catenin-binding domain (CBD), is responsible and sufficient for specific β-catenin-Axin 

interaction [8, 77]. This interaction occurs in a parallel orientation, where β-catenin through 

its arm repeats 3 and 4, specifically binds to the Axin-CBD [78]. Thence, the resulting 

configuration theoretically allows a close proximity between the N-terminal domain of β-

catenin with GSK-3, and so, facilitate β-catenin N-terminal phosphorylation [78]. On the 

other hand, the exact binding site for CK1α on Axin is still not known, yet, deletion analysis 

demonstrated that it binds C-terminal to the β-catenin-binding site [79].  

Axin contains two other conserved domains that are suggested to play a role in 

signal transduction. The RGS (Regulators of G proteins Signaling) domain near its N-

terminal region and a C-terminal DIX domain [80-81]. Through its RGS domain, Axin contacts 

to another component of the multiprotein destruction complex, the APC protein. 

 

Image 4 | Axin structure. 
 

APC mutations are found in over 80% of colon cancers, making it the most 

common event for β-catenin stabilization, during oncogenic development [10]. The central 

region of APC contains two separated domains, both capable of interacting and binding to 

β-catenin [10, 82]. The first domain comprises three motifs of 15-amino acid repeats (A, B, 

C), while the second domain contains seven motifs of 20-amino acid repeats [10]. Three 

serine-alanine-methionine-proline (SAMP) repeats, intercalated among the 20-amino acid 

APC repeats, are present in the second domain [82]. These SAMP repeats are responsible 

for mediating APC-Axin binding, through interaction with the Axin-RGS domain [83]. 

 

Image 5 | APC domains structure. 
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5 | CANONICAL WNT SIGNALING ACTIVATION 

Binding of a specific Wnt ligand to a Fzd receptor and its co-receptor LRP5/6, 

rapidly leads to the reconfiguration and subsequent formation of a ternary complex, 

composed of Fzd-Wnt-LRP. The ternary complex acts as a platform to ensure LRPs proper 

cytoplasmic domains phosphorylation, which is a key step in receptor activation [37, 84]. 

Phosphorylation of the LRPs occurs at five PPPSP[x]S repetitive motifs in the cytoplasmic 

domain, which creates perfect docking sites for the recruitment of the Axin protein. 

Because Axin is thought to exist at very low concentrations in cells, its sequestration by 

LRPs would directly compete with its function in the β-catenin destruction complex. 

A dual kinase mechanism responsible for the PPPSP[x]S motifs phosphorylation has 

been predominantly attributed to GSK-3 and CK1 [42-43]. GSK-3 accounts for the most 

PPPSP phosphorylation and thus, reveal a positive role for GSK-3 in canonical Wnt 

signaling, which has been in the shadow of the strong negative role it occupies in the 

destruction complex [2, 42]. At the same time, CK1 has been identified as the responsible for 

the [x]S phosphorylation motifs observed in LRPs [42]. Intriguingly, these regulatory steps 

are similar to the β-catenin phosphorylation events, where cytoplasmic Axin brings into 

close proximity both kinases to functionally co-operate in LRPs phosphorylation [43-44]. 

In response to Wnt ligands, Dvl is highly phosphorylated through a Fzd-mediated 

mechanism and further recruited via Fzds-PDZ domain [85]. Various kinases had been 

reported to phosphorylate Dvl namely CK1 [86], CK2 [87], protease-activated receptor (PAR-

1) [88], PKC [67], and metastasis-associated kinase (MAK) [89]. 

Dvl phosphoproteins assembly serves to create a platform for Axin-GSK-3-CK1 co-

localization and thence, is critical for LRP phosphorylation with subsequent Axin 

recruitment [44, 48]. However, because it is still unclear how the precise steps of receptors 

activation occur several models had been proposed. 

One model stipulates that because activated Dvl interacts with Axin, its 

recruitment to the plasma membrane triggers LRP6 phosphorylation by GSK-3 [44, 90]. 

Interestingly, because Axin is required for LRP6 phosphorylation and that in turn, 

phosphorylated LRP6 recruits Axin, suggests a positive feedforward loop, where it strongly 

amplifies phosphorylation of all five PPPSP[x]S motifs. Indeed, Baig-Lewis et al. [91] 

proposed a two step activation in which, a signal initiation that is coordinated by Wnt-Fzd-
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LRP complexes, leads to the translocation of cytoplasmic Axin to the surface membrane, in 

a Dishevelled-dependent manner. This event would result in a partial inhibition of the 

destruction complex that would be sufficient to trigger an initial Wnt signal response. 

However, in order to generate a stronger signaling cascade, active Dvl might promote LRPs 

phosphorylation, which ultimately leads to cytoplasmic Axin recruitment, with subsequent 

signaling amplification [91]. Supporting this model, Mao et al. [92] showed that Axin-LRP5 

interactions only occur, after Wnt signaling initiation at the surface membrane. 

 

 
Image 6 | Model of Wnt receptor activation: Initiation and Amplification. 
After formation of a ternary complex consisted by Fzd-Wnt-LRP, Dvl recruits Axin that in turn is associated 
with both GSK-3 and CK1, resulting in the phosphorylation of one or more PPPSP motifs in LRP - Initiation. 
Presumably, partially phosphorylated LRP might recruit and more efficiently associates with Axin-GSK-3-CK1, 
promoting more PPPSP motifs phosphorylation – Amplification. Note: Although also associated with Axin-
GSK-3, one CK1 is omitted in the picture at the right to the ease of understanding the picture.  
 

Another model proposes the formation of LRPs signalsomes, upon Wnt ligand 

binding [48]. Signalsomes consist in groups of proteins that cluster together to carry out a 

specific signaling task. Presumably, these multiprotein complexes comprise some sort of 

endocytic vesicles that have no common vesicular traffic markers, except for occasional 

co-localization with caveolin [48, 93]. 

The role of Wnt ligands is therefore highlighted by their capacity to create a 

bridging point between LRPs and Fzd, which co-polymerize on a Dvl platform. Bilic et al. [48] 

suggested that Dvl proteins cluster together with LRP6 and other components of Wnt 

signaling namely Fzd, Axin and GSK-3β, in a LRP6-signalsome manner. Consequently, this 

clustering of LRP6 provides an increase amount of local receptors concentration, with 

their further phosphorylation triggered by CK1γ and subsequent Axin recruitment [48]. 

Indeed, CK1γ phosphorylation occurs upstream of the PPPSP[x]S repeats in a S/T cluster 

region [43]. This region after being phosphorylated, creates a perfect docking site for GSK-3, 

which presumably aids in the LRP6-GSK-3 interactions [94]. Taken together, this supports a 
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sequential priming model, where it initiates from the S/T cluster and follows C-terminal 

[93]. 

 

 

Image 7 | Model of Wnt receptor activation: Signalsome. 

Signalsome formation through Dvl polymerization with receptors clustering. Dvl oligomerization induces the 
aggregation of Fzd-Wnt-LRP complexes, resulting in Axin recruitment and further LRP phosphorylation by 
GSK-3 and CK1. CK1γ potentiates phosphorylation. 
 

Of note, Dvl itself generates cytoplasmic polymers, which can be found as 

microscopic punctae and that can be recruited to the plasma membrane, upon Wnt 

signaling activation [95]. This dynamic polymerization facilitates the aggregation of large 

Dvl-Axin complexes, which is exerted by both Dvl and Axin DIX domains [93, 95]. However 

contrasting to the general view, other regions of both proteins may also be involved in this 

interaction. The ability of Dvl polymerization is thus an important feature to signalosome 

formation, but at the same time, also requires phospholipids and lipid kinases [93]. 

 

 
Image 8 | Model of Wnt receptor activation: Receptor endocytosis. 
PIP2-mediated formation, promoted by PPI4KIIα and PIP5KI kinases. PIP5KI binds directly to Dvl and induces 
PIP2 formation, with subsequent receptor clustering/phosphorylation. 
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Under Wnt3a stimulation, Dvl induces the formation of phosphatidylinositol 4,5-

biphosphate (PtdIns(4,5)P2; PIP2) by sequential regulatory steps of PtdIns-4-kinase type II 

(PI4KIIa) and PtdIns-4-phosphate 5-kinase type I (PIP5KI). In fact, PI4KIIa was observed to 

be regulated by both PDZ and DEP domains of Dvl, while the DIX domain was identified to 

bind and activate PIP5KI [96]. This results in the formation of a ternary complex composed 

of Dvl-PI4KIIa-PIP5KI, leading to PIP2 formation [96-97], which is required for Wnt3a-induced 

clustering and phosphorylation of LRP6 [67]. Because PIP2 is well known to induce general 

receptors endocytosis, it is normal to speculate that LRPs internalization might in fact be a 

key step in Wnt signaling. 

 

6 | NUCLEAR EVENTS 

Upon cytoplasmic stabilization, β-catenin enters the nucleus to further induce a 

Wnt genetic program, however, shuttles through an unclear mechanism.  

Over the years, an emergent body of evidence has shown that the transcriptional 

activity of β-catenin is modulated by a variety of interacting partners. Despite presenting 

potent transcriptional activator domains at the N- and C-terminus, β-catenin-DNA 

interactions are very weak, thus it must depend on interactions with DNA-binding factors 

to regulate gene expression [98]. 

 TCF/LEF members consist in a subfamily of the HMG-box-containing superfamily of 

transcription factors that are involved in β-catenin nuclear translocation, with further DNA 

association [99]. Via their HMG domain, TCF/LEFs ensure the binding to a conserved 

sequence on DNA, the Wnt-response element (WRE: C/T-C-T-T-T-G-[A/T]-[A/T]), leading to 

β-catenin-mediated gene transcription [100]. 

The binding of β-catenin to an N-terminal region on TCF/LEFs assists the assembly 

of multimeric complexes, consisting in transcriptional activators like CBP/p300 [cAMP 

response element-binding (CREB) binding protein/CREB binding protein-associated factor] 

[101] and B-cell lymphoma 9 (BCL9) and its nuclear associator Pygopus (Pygo) [102], which are 

capable of activating target genes. 

In the absence of Wnt signaling, TCF represses gene expression through interacting 

with Groucho (Gro; TLE in human), which is capable of promoting histone deacetylation 

and chromatin condensation [103]. Thus, TCF/LEFs not only function as transcriptional 
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activators, but also as transcriptional repressors, because in the absence of β-catenin they 

assemble complexes with transcriptional co-repressors, such as C-terminal Binding Protein 

(CtBP) [104] and Gro, forming multimeric transcriptional repressor complexes. 

Under Wnt signaling activation, β-catenin physically interacts and displaces Gro 

from TCF/LEFs, with subsequent recruitment of others transcriptional co-activators [105]. 

 

7 | THE ROLE OF WNT SIGNALING: EMBRYONIC AND ADULT HEART 

7.1 Embryonic heart 

Despite its many roles in many cell types, including the development of the 

embryonic heart, the role of canonical Wnt signaling in the adult and/or disease heart 

remains still elusive [106-107]. 

The actual paradigm of embryonic cardiac development ensures that canonical 

Wnt signaling is initially required for the commitment of a cell to a cardiac lineage [106-108] 

and that in its inhibition cardiogenesis is triggered [109-110]. Apparently, canonical Wnt 

signaling acts early during development to enhance cardiac specification, through 

primarily induction of a special group of cells called, cardiac progenitor cells (CPCs). 

Nonetheless, in later stages, silencing of canonical Wnt effectors by specific antagonists, 

promotes specification of cardiac precursors, leading to the formation of the heart cellular 

content, such as cardiomyocytes, smooth muscle cells (SMCs) and endothelial cells (ECs). 

As a matter of fact, it has been demonstrated that later activation of canonical Wnt 

signaling, during cardiac stem cell differentiation, blocks cardiac induction and 

differentiation [111]. By contrast, non-canonical Wnt signaling activation, as observed by 

Wnt11, is required for the induction of cardiac tissues [112]. 

7.2 Adult heart 

On the other hand, the role of Wnt signaling in the adult heart and/or disease 

heart is still undergoing its first steps. It was widely accepted that the heart consisted of a 

post-mitotic organ with a fixed number of terminal differentiated myocytes, which could 

not reenter cell cycle [113]. This way, in the absence of cardiac diseases, myocytes would 

maintain throughout life till the death of the organism. Fortunately, in the last decade 
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some reports challenged this notion and supported evidences in favor of the regeneration 

of the young, adult and aged myocardium [114-115]. These results highlighted a novel route 

of understanding about the growth and aging heart that is attributed to a resident niche of 

stem cells (SCs) located in the apex, the atria and ventricular myocardium, called cardiac 

stem cells (CSCs) [116-117]. Thus, CSCs would presumably be responsible for the biology of 

the heart namely formation of myocytes, SMCs and ECs [118]. This view of the heart as a 

self-renewing organ, whereby myocytes regenerate throughout the lifespan of the 

organism, contrasts to the general/old view of the terminal differentiated heart. 

Anversa et al. [119] suggested a classification of cardiac immature cells, in the adult 

heart, into 4 types: 1) CSCs, which give rise to 2) cardiac progenitor cells (CPCs); 

thereafter, CPCs would differentiate into 3) precursors cells; lately, these precursors cells 

may originate 4) amplifying cells, resulting in SMCs, ECs and myocytes; expressing the first 

3 cell types the molecular markers, c-kit, MDR1 and Sca-1; the second, the third and the 

fourth express also GATA4, while the last no longer express these markers. 

The adult heart can react to distinct stimuli, such as exercise (physiological) or 

pressure overload (pathological), through cardiac enlargement. Cardiac enlargement is 

defined by an enlargement of cells, hypertrophy, which in pathological conditions results 

in irreversible life-threatening heart failure [120]. Several reports identified a role for GSK-

3β [121-122] and β-catenin [123-124] in the development of hypertrophic responses. It has been 

shown that GSK-3β inhibits cardiac hypertrophy [121-122], whereas β-catenin stabilization 

results indirectly in hypertrophic responses increase [124]. Nonetheless, these authors 

reported that β-catenin stabilization occurred by a Wnt-independent mechanism 

(involving Akt/protein kinase B (PKB)) and CyclinD1, a Wnt/β-catenin target gene, did not 

express. However, contrary to this result, Masuelli et al. [123] reported in hypertrophic 

cardiomyopathic hearts an accumulation of β-catenin regulated by an increased Wnt 

expression, with subsequent GSK-3β decrease. In accordance, canonical Wnt signaling had 

also been reported to be associated to skeletal muscle hypertrophy, reinforcing a possible 

parallel role in the adult and disease heart [125]. Of interest, it was demonstrated that 

stabilized β-catenin in isolated cardiomyoctes or in vivo, results in increased myocytes 

growth, with or even without a hypertrophic stimulus [124, 126]. Nonetheless, this 

stabilization is thought to occur through Akt activation, rather than a Wnt dependent 

mechanism. 
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Although these studies demonstrate that activation of GSK-3β/β-catenin is of great 

importance for normal myocytes growth, they however do not directly implicate, per se, 

Wnt signaling activation. At the same time, there is still scarce or no information on the 

function of several Wnt effectors (ligands, receptors, co-receptors) in heart disease and to 

that extent the elucidation of such factors has to be defined. 

 

8 | DIABETES MELLITUS AND HEART DISEASE 

 Cardiovascular diseases are the leading cause of morbidity and mortality in 

patients suffering from diabetes mellitus [127]. Diabetes, which represents a deficiency or a 

resistance to insulin, promotes great alterations at cardiac levels, such as cell hypertrophy, 

metabolic abnormalities, extracellular matrix alterations, oxidative stress and apoptosis, 

that may impair myocardial function, thereby contributing to diabetic cardiomyopathy 

development [128-129]. Diabetic cardiomyopathy has been characterized as a ventricular 

dysfunction that occurs in diabetic patients, independent of coronary artery diseases or 

hypertension [130]. 

 It is commonly accepted that diabetic patients present an oxygen toxicity 

enhancement due to an increase generation of reactive oxygen species (ROS). The 

excessive release of ROS induces oxidative stress that subsequent leads to abnormal gene 

expression, impaired signal transduction and cardiomyocytes apoptosis [131-133]. Taking 

these evidences, it was hypothesized that oxidative damage could alter the structure and 

function of CPCs that are thought to be recruited during heart disease development, 

resulting in defects of myocyte formation. 

In response to cardiac damage, it has been reported that CPCs are activated by 

growth factors, leading to enhanced cell division and repair [208-209]. It is now believed that 

in the first stages of cardiac disease, CSCs and CPCs are recruited and induced to 

differentiate in order to renew the cardiac tissue content. 

Rota et al. [134] reported an altered CPCs function in diabetic animals, which present 

high levels of ROS. At the same time, because ROS are a considerable threat to cellular 

constituents/organelles, such as injury to lipids and membranes, proteins and nucleic 

acids, these authors measured the telomeric length in CPCs and mycotes. They observed a 

reduced length on both cells suggesting that diabetes simulates myocardial aging and 
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cellular senescence. In addition, these authors also evaluated the expression of the tumor 

suppressor proteins, p53 and p16INK4a, and determined an increased expression of both 

proteins, with subsequent observation of apoptosis and necrosis activation [134]. 

In addition, Gonzalez et al. [135] observed that chronological aging contributes to 

the shortening of telomeres in CPCs, which generates progeny that rapidly acquires the 

senescent phenotype and thence, ventricular dysfunction. However, they have also found 

that the senescence heart presents fully functional CPCs (containing long telomeres), 

which right after activation, migrate to the damaged regions, generating a young 

population of cardiomyocytes, partially reverting the aging myopathy. This could suggest 

that the aging heart like other organs is the result of stem cells dysfunction. Thence, since 

the senescent heart contains functional competent CPCs there is at least, a potential to 

correct cardiac dysfunction and extend myocardium lifespan. Of note, functional CPCs are 

found after myocardial infarction, yet, these CPCs do not repair the damage [136]. A 

possible explanation could be the fact that CPCs may not sense the presence of damage 

around or that their activation, growth and migration could be defective. 

Hence, because CPCs seem to be highly affected in cardiac aging and disease, a 

clear understanding of the CPCs role in both cardiac pathophysiology and physiological 

aging may expand frontiers and rise new strategies to improve and prolong life. 

 

9 | THE ROUTE FROM DIABETES MELLITUS TO OXIDATIVE STRESS AND VICE-VERSA/BACK 

As already mention, diabetic cardiomyopathy interferes in CPCs regulation, 

presumably due to ROS toxicity enhancement, which is well associated to the aging heart. 

This way, diabetic cardiomyopathic patients turned out as useful systems for the study of 

Wnt signaling pathways and therefore, comprehension of all molecular mechanisms 

therein involved. 

In order to defend itself from stress conditions, such as diabetes, the heart detains 

a cardioprotective system, which is responsible for the activation of mechanisms that 

evolve into an initial adaptive hypertrophic response [120]. Nevertheless, despite starting as 

a natural cellular response to counteract the harmful injuries, the accompanying 

remodeling of the heart tissue through fibrosis and dilation might progressively result in 
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irreversible life-threatening heart failure [120]. Hence, the heart detains several 

cardioprotective systems that aid protecting against its metabolic malfunctioning and 

impaired molecular mechanisms. 

One of such mechanisms of defense consists in the activation of specific 

transcription factors, of which the subclass of transcription factors family members 

Forkhead box O (FOXO) proteins, play a central role. FOXOs are able to confer oxidative 

stress resistance, by trans-activation of antioxidant enzymes (i.e. MnSOD and catalase) [137-

138] and also regulation of cell cycle arrest [139], apoptosis [140], DNA damage repair events 

[141] and even cell metabolism [142]. 

9.1 ‘Forkhead box, subclass O’ (FOXO) 

The Forkhead family of transcription factors comprise a family of near 100 different 

members, which share a highly conserved “winged-helix” structural motif that comprises 

the DNA-binding domain, known as the Forkhead box/Fox box (Fox) [143]. In mammals, the 

subclass O (‘other’) contains four ‘Forkhead box, subclass O’ (FOXO) family members that 

are known as FOXO1 (FKHR), FOXO3 (FKHRL1), FOXO4 (AFX/Mllt7) and FOXO6, being all 

related to the Caenorhabditis elegans ortholog Daf16 and the Drosophila ortholog dFoxo 

[143-144]. FOXOs are traditional transcription factors because they contain a DNA-binding 

domain located N-terminal and a trans-activation domain in the C-terminal end.  

 

 
Image 9 | FOXOs structure. 
 

Of the four FOXO members, FOXO6 appears to be more elusive in the developing 

brain due to a specific temporal and spatial expression [145]. This apparently contrasts with 

the other three members that possess a ubiquitously expression. 

FOXO1, FOXO3 and FOXO4 exhibit a high versatility gene regulation, where post-

translational modifications, such as phosphorylation, acetylation, methylation, O-linked 

glycosylation and ubiquitylation, change FOXOs intracellular localization, turnover and 

trans-activation properties [146]. This way, FOXO members are capable of regulating a wide 

range of genes, through association with other transcription activators/factors, such as β-
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catenin [147-148], PPAR-α [149], PPAR-γ [150], Androgen receptor (AR) [151], Progesterone 

receptor (PR) [152], Smad3 and Smad4 [153], among others.  

Mutational analysis of FOXO genes have been implicated in embryonic heart 

development, since mutant forms of its members’ exhibit deficient vascular and cardiac 

growth [154-155]. Moreover, because FOXOs negatively regulate cell cycle progression, 

overexpression of its members results in impaired cardiomyocyte proliferation, decreased 

myocardium thickness and heart size, with subsequent heart failure [156]. Thus, because 

FOXOs are transcription factors that govern the steady state of cells, it is of great 

significance the understanding of their transcriptional activity regulation. 

9.1.1 FOXO members regulation: Post-translational modifications (PTMs) 

FOXOs transcriptional regulatory functions require their translocation into the 

nucleus, where they activate several gene expression programs. Stimulation of cell growth 

by insulin or growth factors determines FOXOs nuclear-exclusion and inhibition of FOXO-

dependent transcriptional regulation [157-158]. It is interesting to mention that specific PTMs 

govern the nuclear-cytoplasmic shuttling of FOXO proteins and that the outcome of this 

two-way dynamic process controls the homeostasis of the cells. 

9.1.2 FOXOs nuclear exclusion/negative regulation 

Nuclear exclusion occurs upon FOXOs-phosphorylation by a particular set of 

kinases that phosphorylate specific sites on FOXOs. Some of these kinases include the 

Akt/PKB [158-159], a close-related Akt-family member called, serum- and glucocorticoid-

inducible kinase (SGK) [160], CK1 [161], a member of the dual-specificity tyrosine-

phosphorylated and regulated kinase group (DYRK1) [162],  the inhibitor of nuclear factor kB 

kinase (IkappaB kinase; IKK) [163] and, cyclin-dependent kinase 2 (CDK2) or the Mitogen-

activated protein kinase/Extracellular-signal-regulated kinase (MAPK/ERK) that 

phosphorylate FOXO1 [164] and FOXO3 [165], respectively. 

Survival factors, such as insulin and insulin-like growth factors (IGFs), bind to their 

cell surface receptors and further trigger the activation of the phosphatidylinositol-3-

kinase (PI3K) pathway [166]. In turn, this leads to phosphorylation/activation of a 

serine/threonine kinase called Akt/PKB that it is known to play a major role in cell survival 

[167]. FOXOs dependent-Akt/SGK phosphorylation promotes their nuclear exclusion, 
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probably by alterations in its conformational status through permanently exposure of the 

NES (nuclear export signal) over the NLS (nuclear localization signal), which also aids to 

further block nuclear import [159, 161]. Consequently, these phosphorylated sites also 

disrupt the DNA-binding activity of FOXOs, by affecting the interaction of their DNA-

binding domain with the transcriptional co-activators p300/CBP and facilitate their binding 

to the 14-3-3 adaptor protein [168-169]. This leads to inhibition of FOXOs’ trans-activation 

functions, subsequent cytoplasmic translocation and accumulation, resulting in 

proteasome degradation. 

CK1, is also able to phosphorylate two residues on FOXO proteins, however, 

requires to be first primed for phosphorylation by Akt [161]. On the other hand, DYRK1 

phosphorylates a single residue on FOXOs and contrasting to CK1, is independent of both 

Akt or CK1 activity, and being simultaneously independent of growth signals [162]. 

Apparently, all of these specific phosphorylations promote FOXOs association within a 

complex, comprising of nuclear-export molecules, such as Ran and the exportin CRM1, 

along with the adaptor 14-3-3 protein that lead to FOXOs nuclear exclusion [161]. 

9.1.3 FOXOs nuclear import/positive regulation 

Conversely, FOXOs inactivation can be balanced by several signaling pathways that 

positively regulate FOXOs nuclear stabilization. While FOXOs nuclear exclusion follows a 

response to growth signals, nuclear import is defined by a response to stress signals [170]. 

Recent studies demonstrate that oxidative stress triggers the induction of protein 

arginine methyltransferases (PRMTs). These proteins were reported to cause the 

methylation of two arginine residues in FOXO1 and thereby, directly inhibiting Akt-

mediated phosphorylation with subsequent nuclear localization increase and apoptosis 

triggering [171]. Oxidative stress can also induce phosphorylation of FOXO3 through the 

Ste20-like kinases (MST1) on the cytoplasm that impairs interactions with the 14-3-3 

adaptor protein, and further contributes to FOXO3 nuclear translocation [172]. Moreover, 

alternative phosphorylation can even balance against FOXOs nuclear exclusion, as FOXOs-

mediated phosphorylation by c-Jun N-terminal kinase (JNK) promotes FOXOs’ nuclear 

import, in opposition to Akt-mediated nuclear exclusion of FOXO4 [170, 173]. In agreement, it 

was recently shown that JNK signaling increases stress resistance and lifespan in both 

Caenorhabditis elegans and Drosophila [173-174]. These authors observed that Daf16/dFoxo 
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is the downstream target of JNK signaling, reinforcing the notion that ROS-JNK-FOXO 

pathway governs stress resistance and extends lifespan. 

9.2 FOXO and canonical Wnt signaling: β-catenin, the Libra 

It was recently discovered an evolutionary conserved interaction between β-

catenin and FOXO members in both Caenorhabditis elegans and mammals, where FOXOs 

compete with TCF transcription factors for a free β-catenin limited pool [147-148, 175]. 

Presumably, β-catenin plays a dual role in the regulation of cell cycle progression, since 

acts as a positive control via TCF and on the other side, as a negative regulator when 

associated to FOXOs. 

 

 
Image 10 | β-catenin, the Libra. 
Increased stress conditions antagonize the effects of canonical Wnt signaling. Activation of Fzd-LRP receptor 
complex by Wnt ligands results in GSK-3 recruitment to the plasma membrane, consequent β-catenin 
stabilization and accumulation in the cytoplasm. JNK-mediated activation of FOXO proteins, upon stress 
signals, diverts the majority of β-catenin pool to FOXO-mediated gene transcription over TCF/LEF 
transcription factors. Thick arrow represents high amount of β-catenin, whereas thin arrow, low amount. 
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It appears that β-catenin only shifts from one “branch” to the other, under certain 

conditions of oxidative stress [147, 175]. In addition, it has been suggested a 

pathophysiological role for β-catenin-FOXOs interaction in bone diseases, where a 

reduced β-catenin-TCF-mediated gene expression was observed [148]. 

Canonical Wnt signaling is known to play an important role in bone 

morphogenesis, since it increases bone mass formation through osteoblasts-mediated 

production [176]. Conversely, oxidative stress may lead to a decrease in the osteoblast 

number and bone mass formation rate, because β-catenin is required for stimulation of 

FOXOs target genes and thence, shifting it away from the canonical Wnt pathway [148]. 

It has become apparent that β-catenin is an important cell cycle controller, by 

rapidly changing the cells spatial and temporal gene expression demands, “giving” the 

highest chances of survival upon diverse signals. Of note, cells avoid simultaneous and 

competing signals, such as cell cycle progression and cell cycle arrest, by temporally 

inhibiting a signaling pathway over other. 

 

10 | LIPID HOMEOSTASIS 

 Lipids are major important to organisms, as they regulate energy homeostasis and 

organ physiology, and are simultaneous emerging as vital mechanisms to the triggering of 

cell signaling cascades [177-178]. The homeostasis of energy and lipid compounds is tightly 

regulated by a lipoprotein transport system that delivers some of its subcomponents, such 

as cholesterol and fatty acids to the different types of tissues [179]. 

The normal/healthy heart consumes more energy per gram of tissue than any 

other organ, which is mainly due to fatty acid catabolism for ATP generation [180]. 

Nevertheless, under some specific physiological and pathological situations the heart has 

the ability to switch its substrates requirements towards glucose utilization. This way, 

members of the nuclear hormone receptor (NHR) superfamily called, Peroxisome 

proliferator-activated receptors (PPARs) [181], had been implicated in the regulation of 

several of these metabolic demands, including fatty acid transport across the plasma 

membrane and uptake by cells [182], intracellular fatty acid binding [183] and activation [184] 

and also, β- [185] and ω-oxidation [186] or even storage [187]. 
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However, growing evidences support a new role for PPARs in the heart, beyond the 

well-characterized mediation of metabolic processes.  

10.1 Peroxisome Proliferator-Activated Receptors (PPARs) 

PPARs are classified as nuclear ligand-activated transcription factors that function 

as sensors for fatty acids and their derivates and thereby, govern important metabolic 

signaling pathways involved in lipid metabolism. As ligand-dependent receptors, PPARs 

form heterodimers with the Retinoid X Receptor (RXR) to promote the formation of an 

active complex [183, 188]. In the absence of a PPAR ligand, PPARs/RXR heterodimers can still 

form, yet, recruiting a corepressor protein complex, such as the silencing mediator of 

retinoid, thyroid hormone receptors (SMRT) and nuclear receptor corepressor (NCoR), 

inhibiting downstream gene transcription [189-190]. The binding of agonists promotes 

dissociation of the corepressor complex from the PPARs/RXR heterodimer and leads to 

the recruitment of a coactivator protein, such as the steroid receptor co-activator-1 (SRC-

1) or CBP to create a complex that binds to PPAR response elements (PPRE) in target 

genes [189-192]. 

Three isoforms of PPARs had been identified in vertebrates, PPARα (NR1C1), 

PPARβ/δ (NR1C2) and PPARγ (NR1C3) that present distinct tissue distributions and 

physiological roles [181]. 

 PPARs share common structural characteristics and functional organization with 

other members of the NHR superfamily namely five distinguishable domains [193] termed 

‘A/B’, ‘C’, ‘D’, ‘E’ and ‘F’ domains. The N-terminal ‘A/B’ is an hypervariable domain that 

presents an activation function-1 (AF-1) for the regulation of PPAR activity, which is ligand-

independent and has low levels of basal transcriptional activity [194]. Additionally, the N-

terminal domain also contains multiple Ser/Thr phosphorylation sites, under various 

protein kinases regulation [195]. These phosphorylation sites are presumably involved in 

mediating crosstalk signaling mechanisms and in modulating AF-1 activity and coactivators 

interaction [195-196]. Following the A/B domain is the DNA-binding domain (DBD) of the ‘C’ 

domain, a region that contains two very highly conserved zinc finger motifs, responsible 

for targeting the receptor to the PPRE after dimerization with the RXR [183, 187]. Next to the 

‘C’ domain, is a flexible hinge domain ‘D’ capable of connecting the DBD and the ligand-

binding domain (LBD) of the ‘E’ domain [187, 193]. This hinge region promotes protein 
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flexibility, because it allows for simultaneous receptor dimerization and DNA-binding [197], 

and it also contains a corepressor binding site [190]. The LBD is ligand-dependent and 

harbors a hormone-dependent activation function-2 (AF-2) that it is necessary for the 

interaction and heterodimerization with the RXR [187, 198]. Upon ligand-binding, a 

conformational shift in the AF-2 domain occurs, allowing PPARs/RXR heterodimers to 

successfully bind and recruit transcriptional coactivators to responsive promoters [182, 198]. 

Concerning the F-domain, no function has been discovered to date. 

 

 
Image 11 | PPARs structure. 
 

10.2 PPARs in the heart 

 The lipid and energy homeostasis in the cardiovascular system relies on the 

coordinated regulation of a lipid transport system. Hence, perturbation of this system 

plays a major role in the pathogenesis of cardiac disease. 

It has long been accepted the importance of PPAR family of nuclear receptors in 

the regulation of the cardiovascular function and metabolism, as they are key 

transcriptional determinants of myocardial energy and lipid metabolism. In addition to 

their metabolic roles, PPARs are also responsible for various extra-metabolic roles, such as 

cardiac inflammation [199-200], cardiac remodeling [201-202], oxidative stress [200, 203] and 

cardiac hypertrophy regulation [201-202, 204]. Of the three isoforms, PPARα is the only form 

that has been characterized to occur in all of these extra-metabolic processes, presumably 

because it is the isoform mostly studied in the heart.  

It was recently suggested that PPARα synthetic agonists might detain a role to 

counteract the cardiovascular inflammatory response. Surprisingly, activation of PPARα 

decreases inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-1 

(IL-1) [199]. At the same time, because these inflammatory cytokines are induced by 

macrophages in response to low-density lipoprotein (LDL) levels, PPARα also directly 

regulates the inflammatory response by lipid-induced catabolism [199]. Moreover, it was 

demonstrated that PPARα regulates cardiac remodeling during cardiac hypertrophy 
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development [201-202]. Through mutational analysis, Smeets et al. [201] demonstrated a 

decrease in mice cardiac hypertrophy, which is due to PPARα and PPARβ/δ regulation. 

Furthermore, the role of PPARα in cardiac hypertrophy inhibition has already been well 

documented in cell cultured cardiomyocytes. Endothelin-1 (ET-1) is a potent 

vasoconstrictor peptide that functions as cardiac hypertrophic stimuli. It has been 

reported that when neonatal rat cardiomyoctes are treated with ET-1, co-administration 

of a PPARα agonist decreases cardiac hypertrophy [204].  

Additionally, it was also demonstrated the involvement of PPARα in oxidative 

stress resistance [200, 203]. Mutant animals null for PPARα, were observed to present an 

oxygen toxicity enhancement, which was correlated with a decreased expression of the 

MnSOD antioxidant enzyme. 

The role of the other PPARs in the heart is still elusive, yet, we cannot rule out their 

roles in cardiac disease. PPARγ has been extensively reported to be highly expressed and 

remarkably important to adipocyte development, opposing to the low concentrations 

found in the heart [205]. However, despite its low levels in cardiac muscle, PPARγ agonists 

had been demonstrated to have a cardioprotective role against ischemic insults [206] and to 

inhibit cardiac hypertrophy [207]. Recently it was even shown that cardiomyoctes 

overexpressing PPARγ were resistant to oxidative stress-induced apoptosis and at the 

same time, mitochondrial function was preserved [208]. Conversely to PPARγ, PPARβ/δ 

expression levels appear extremely high in the heart, yet, almost nothing it is known about 

its activity and function [209]. Nevertheless, PPARβ/δ high expression levels should at least 

suggest a possible role in the regulation of cardiac genes. 

10.3 PPARs convergence with canonical Wnt signaling and FOXOs  

Interaction of PPARs and Wnt signaling has been demonstrated in different 

mechanisms. A crosstalk between canonical Wnt and PPARγ signaling was reported in 

osteoblastogenesis [210], adipogenesis [211], and cancer [212]. 

Because osteoblasts and adipocytes originate from a common pluripotent 

precursor, the mesenchymal stem cell (MSC), it was hypothesized that inhibition of a 

lineage could stimulate the differentiation over the other. As a matter of fact, several 

studies demonstrated an inverse co-relationship between adipogenesis and 

osteoblastogenesis, reinforcing the believed concept [213-214].  
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Wnt5a, a Wnt ligand more associated to non-canonical Wnt signaling cascades, 

was demonstrated to suppress PPARγ-mediated adipogenesis, through directly 

counteracting PPARγ and inducing a osteoblastogenic program [215]. Additionally, the 

specific canonical Wnt signaling receptor LRP5 was suggested to stimulate 

osteoblastogenesis in humans [210] and, in vitro assays demonstrated that canonical Wnt 

signaling disruption causes myoblasts trans-differentiation into adipocytes and ultimately 

PPARγ activation [216]. 

Other studies using colon cancer cells, demonstrated PPARγ-β-catenin interactions, 

where PPARγ is apparently stabilized in epithelial cells [212]. These authors observed that 

PPARγ is able to form complexes with β-catenin and TCF-4 and, overexpression of 

stabilized β-catenin results in enhanced transcriptional activity of PPARγ. Saez et al. [217] 

found that in mammary gland tumor developments PPARγ activation leads to a similar 

phenotype, resulting from overactivation of canonical Wnt signaling as well as to an 

upregulation of endogenous Wnt target genes. These authors observed a downregulation 

of Wnt5a in result of induced PPARγ activation, suggesting a possible PPARγ-Wnt signaling 

interaction. These observations thus demonstrate an interaction between the Wnt and 

PPAR pathways, in different contexts. 

Similarly, an interaction between PPARs and FOXOs had already been made [150]. 

Due to the fact that both PPARγ and FOXO1 are the most abundant isoforms expressed in 

insulin-responsive tissues, such as hepatic, adipose and pancreatic cells, it was plausible to 

assume these two transcription factors would functionally interact [218-219]. PPARγ agonists 

have a key role in the regulation of lipid catabolism and glucose homeostasis. Glucose is 

uptaken by cells through the insulin-responsive glucose transporter 4 (GLUT4), which in 

turn is negatively regulated by PPARγ [220]. In an unliganded state (absence of ligand), 

PPARγ binds certain regions on the GLUT4 promoter, keeping it in a repressed stage. Once 

synthetic ligands, such as Rosiglitazone and Pioglitazone, two hypoglycemic drugs from 

the thiazolidinedione (TZD) family are present, they bind to PPARγ, causing detachment of 

corepressors and subsequent association of coactivators, which result in PPARγ 

detachament from the GLUT4 gene promoter. Ultimately, this leads to alleviation of the 

repression, increased GLUT4 transcription and subsequent, insulin-responsiveness [220]. 

Yet, this mechanism has only been proved in adypocyte tissues and thence it remains to 

be resolved in the muscle. 
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Moreover, it was described in a two-hybrid screen functional interaction of FOXO1 

with PPARγ. Dowell et al. [150] reported that FOXO1-PPARγ interactions antagonize each 

other functions, in a reciprocal manner. These authors discovered that FOXO1 disrupts the 

DNA-binding activity of PPARγ/RXRα heterodimers and thus, suppress PPARγ activity. As a 

matter of fact and in accordance, it has been recently reported that FOXO1 upregulates 

GLUT4 gene expression at both the transcriptional and post-transcriptional levels and in 

simultaneous, by both directly binding to the GLUT4 promoter and indirectly, via 

repressing PPARγ transcription [221]. Nonetheless, it was also demonstrated a negative role 

for FOXO1 in GLUT4 transcription for other tissues, where it was demonstrated to repress 

GLUT4 expression [222]. Yet, it is not known the reason for such duality in the regulation of 

glucose metabolism.  

Thus, as with Wnt signaling, a cross-talk between PPAR and FOXO pathways can be 

traced. Of interest, an interaction between pathways is mostly observed in common 

mechanisms/cells namely adipogenesis, adipocyte cells and oxidative stress. 

 

11 | AIM 

Contrasting to the well documented role of Wnt signaling in heart development, its 

role in the adult heart and/or heart failure state remains to be fully elucidated as well as 

to its possible interactions with the PPAR and FOXO pathways. 

In order to its understanding, we started by analyzing the expression of the various 

effectors of the Wnt pathway in heart disease, more concretely in type 1 induced diabetic 

cardiomyopathy, as well as PPAR and FOXO genes. We used this model because it is easily 

obtained, and since this pathology mostly evolves due to an increase in oxidative stress, in 

which the three pathways are known to play a determinant role. 
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12 | MATERIAL AND METHODS 

All animal experiments were conducted in conformity with the Guide for the Care 

and Use of Laboratory Animals published by the US National Institutes of Health (NIH 

Publication No. 85-23, revised 1996) and the Portuguese law on animal welfare.  

Adult male Wistar Han rats (Charles River Laboratories, Spain) were housed in 

groups of 5 per cage in a controlled environment under a 12:12h light/dark cycle at a 

room temperature (RT) of 22ºC.  

12.1 Streptozotocin (STZ)-induced diabetes 

Streptozotocin (STZ) is an antibiotic that causes pancreatic β-cell destruction, thus 

it is used as an agent capable of inducing insulin-dependent diabetes mellitus (IDDM), also 

known as type 1 diabetes mellitus (T1DM) [223]. 

STZ (no. S0130; 65 mg/Kg; Sigma, USA) was dissolved in a 50 mM sodium citrate 

buffer (pH = 4.5) to a final concentration of 10 mg/mL. Upon 6 hours of fasting, rats 

weighing 250-300 g received a onetime intraperitoneally (IP) injection of 0.1 mL of 

STZ/100 g, within 15 min after STZ solution preparation. Control animals received an equal 

volume of vehicle (no. NC9521441; citrate buffer, pH = 4.5; Fisher). On the first day after 

injection, 10% sucrose was administered to the animals, to overcome the initial 

hyperinsulinemia induced by the STZ. Animals had free supply of food and water. Blood 

glucose levels were assessed one week later (> 300 mg/dL), using a ‘One Touch Basic’ 

blood glucose monitoring system to confirm STZ injection-induced hyperglycemia.  

This procedure resulted in two temporal separated experimental groups, defined 

by STZ-exposure time: four-week control animals (Ctrl, n = 7) and four-week diabetic 

animals (DM, n = 10); six-week control animals (Ctrl, n = 18) and six-week diabetic animals 

(DM, n = 19). Hemodynamic studies, collection of samples for morphometric analysis and 

left ventricle (LV) samples for molecular studies was carried out, only for Ctrl and DM six-

week animals, after six weeks of protocol initiation. For four-week animals, only LV 

samples were collected. 
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12.2 Echocardiography assessment 

 Ecochardiographic evaluation was performed before hemodynamic assessment 

(only for six-week animals), using a 7.5 MHz transducer. Animals were anaesthetized with 

ketamine (75 mg/kg; IP) and xylazine (5 mg/kg; IP) and allowed to stabilize for 15 min. 

From the left parasternal short-axis view, two-dimensional guided M-mode (MM) tracings 

were made just below the mitral valve at the level of the papillary muscles for 

measurements of the interventricular septum thickness (IVS, mm), LV internal diameter 

(LVD, mm), posterior wall thickness (LVPW, mm), fractional shortening (FS, %), ejection 

fraction (EF, %) and heart rate (HR, bpm), using Vivid 7 system (VingMed Ultrasound, GE) 

equipped with a 10S ecocariographic probe (GE-Medical Systems). FS was calculated from 

measurements for the LVD in systole and diastole: FS (%) = [(LVDd-LVDs/LVDd] x 100. LV 

EF was determined by M-mode echocardiography applying the formula [(LV-end-diastolic3 

– LV-end-systolic3)/LV-end-diastolic3] x 100 (%). IVS, LVD and LVPW were normalized for 

body surface area. All the measurements and images were obtained with regular sinus 

rhythm and stored in the system for off-line analysis (EchoPAC work station version 3.2 

system, VingMed Ultrasound, GE). 

12.3 Myocardial function 

 Hemodynamic studies: Animals from the Ctrl and DM (six-week diabetic animals) 

groups were anesthetized by inhalation of a mixture of sevoflurane (4%) and oxygen, 

intubated for mechanical ventilation (respiratory frequency 100/min and weight-adjusted 

tidal-volume; Harvard Small Animal Ventilator - Model 683) and placed over a heating pad 

(37ºC). The right jugular vein was cannulated for fluid administration (prewarmed 0.9% 

NaCl solution) to compensate for perioperative fluid losses. The heart was exposed 

through a median sternotomy, the pericardium widely opened, and a 2F-high-fidelity tip 

pressure micromanometer (SPR-1035; Millar Instruments, USA) was inserted through an 

apical puncture into the LV cavity. After 15 min of stabilization, hemodynamic recordings 

were made with respiration suspended at end expiration. Parameters were converted 

online to digital data with a sampling frequency of 1000 Hz. LV pressures were measured 
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at end-diastole (EDP) and end-systole (Pmax). Peak rates of LV pressure rise (dP/dtmax) and 

decline (dP/dtmin) were also measured. 

 At the end of the hemodynamic study, animals were euthanized by exsanguination, 

the LV cavity was carefully dissected and LV free-wall samples were collected for 

molecular studies, immediately immersed in liquid nitrogen and stored at -80 ºC.  

12.4 Molecular Studies 

Real-Time RT-PCR analysis: Total mRNA was extracted from the LV samples of 

both temporal separated groups (Ctrl and DM, at four- and six-week treatment), using 

TriPure (no. 11667165001, Roche, USA) isolation reagent according to the manufacturer’s 

instructions. Concentration and purity were assayed by spectrophotometry 

(BioPhotometer, Eppendorf; Germany). All mRNA samples were normalized to a final 

concentration of 15 ng/µL and subsequently reverse transcribed to complementary 

Deoxyribonucleic acid (cDNA), through a Reverse Transcription-Polymerase Chain Reaction 

(RT-PCR) step. To obtain an inside negative control (RT-) a sample mix of all extracted 

samples was used to perform a LV RT- control. Reverse transcription (30 µL of final 

volume; 10 min at 22 ºC; 50 min at 50 ºC; 10 min at 95 ºC) was performed in a standard 

Thermocycler Machine (Whatman Biometra, Germany), using SuperScript® II Reverse 

Transcriptase (no. 18064-014; Invitrogen, USA) 200 U/µL, 5x First Strand Buffer (no. 

1130449; Invitrogen, USA), RNAse inhibitor 40 U/µL (no. 27838811; Promega, Madison, 

USA), DTT 0.1 mM (no. 1350135; Invitrogen, USA), random primers 30 ng/mL (no. 767205; 

Invitrogen, USA) and dNTPs 5 mM (no. 7901; Fermentas, USA). The newly transcribed 

cDNA quantities were relative quantified by Real Time-Polymerase Chain Reaction (Real 

Time-PCR; LightCycler II, Roche, Swiss) using SYBR green (no. 204143; Qiagen, Germany) as 

a marker and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an 

internal control. Results were normalized for GAPDH and presented in arbitrary units (AU).  

 
Table 1 | Specific PCR primer pairs used in the work. 

Primer Sequence Forward (Fwd) 5’    3’ Sequence Reverse (Rev) 5’    3’ 

LRP5 CTCTCAGTTCCCCTGTGCTC GCTCATCAGATCCATCAGCA 

LRP6 TGGCTTAGCCCTGGATTATG CCTCCCAGTGCCATCAGTAT 

Fzd1 CCTGCGGACTGTAGAGGAAG CTGAAGGAATTGACCCTGGA 
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Fzd2 ACATCGCCTACAACCAGACC CGGGTAGAATTGATGCACCT 

Fzd3 GAAGCAAAGCAGGGAGTGTC GAGTGATCTGTCAGCCGTGA 

Fzd4 AACCTCGGCTACAACGTGAC TGGCACATAAACCGAACAAA 

Fzd5 GCGACCTTCCTCATTGACAT TCCCAGTGACACACACAGGT 

Fzd6 GAAAAGCAGCGTATCGGAAG CGAACAAGCAGAGATGTGGA 

Fzd7 ACACCGGAGCTCAACCATAC TAGGCAATATCCGTGCACAA 

Wnt2 CAACAGAGCTGGAAGGAAGG AGCCAGCATGTCCTCAGAGT 

Wnt2b/13 ACTGGGGTGGCTGTAGTGAC GGGCATCCTTAAGCCTCTTC 

Wnt3 CAGGAGTGCATTCGCATCTA TCCAGCCGTACAATCTACCC 

Wnt4 CTGGAGAAGTGTGGCTGTGA GGACTGTGAGAAGGCTACGC 

Wnt5a GCAGCACAGTGGACAACACT GGCTCATGGCATTTACCACT 

Wnt5b TGACTACTGCCTGCGAAATG CTCTTGAAGCGGTCATAGCC 

Wnt6 CGTGGAGATATCCGTGCTTT AAAGCCCATGGCACTTACAC 

Wnt7a CCCGAACCCTCATGAACTTA GCCTAGCTCTCGGAATTGTG 

Wnt7b CAGGCAGAAAGGTTCTGGAG GCACAGCTGCGTTGTACTTC 

Wnt9a/14 GAGACACTGGTGGAGGCTGT AGATGGCGTAGAGGAAAGCA 

Wnt10a CCTGGAGACTCGGAACAAAG AACCGCAAGCCTTCAGTTTA 

Wnt11 CAGTGCAACAAGACCTCCAA ACCACTCTGTCCGTGTAGGG 

CyclinD1 AGGGGATTCAGGACGACTCT GGGCAACCTTCCCAATAAAT 

Foxo1 AACCAGTCCAACTCGACCAC TGCTCATAAAGTCGGTGCTG 

Foxo3 GGGGAACTTCACTGGTGCTA GAGAGCAGATTTGGCAAAGG 

Foxo4 CAGTGACCTCATGGATGGTG CTCTGAAGCAGGGGACAAAG 

Axin2 AGTCAGCAGAGGGACAGGAA CTTGGAGTGCGTGGACACTA 

PPARα TTCCAGCCCCTCCTCAGTCAG AGCCCTTGCAGCCTTCACAT 

PPAR-γ GCGAGGGCGATCTTGACAG ATGCGGATGGCCACCTCTTT 

PPAR-β/δ AGGCCCGGGAAGAGGAGAAA GCAGGGAGGAAGGGGAGGAA 

Rspo2 GCTGCTTTGATGAATGTCCA TGCGGTTGTTTCTGCTACAC 

Norrin TGCATGAGGCACCATTATGT GACAGTGCTGAAGGACACCA 

Ryk ACATCGACCCCTTTGAGATG GAAACTTAGGCCGCTCCTCT 

Ror2 ATGTGGACTCCCTCCAGATG AGGAAAGACGAAGTGGCAGA 

GRK5 TGGCACTCAATGAAAAGCAG ACAAGGCTCGTTCTTCCTCA 

GRK6 GCCAGTGACCAAAAACACCT CCCCTTCCGCTTCTTTATTC 

GSK-3α ATTTGCTTGTGGACCCTGAC CTGACCACACATCGATGGAC 

GSK-3β TCCGATTGCGGTATTTCTTC TCACAGGGAGTGTCTGCTTG 
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GAPDH TGCCACTCAGAAGACTGTGG GGATGCAGGGATGATGTTCT 

GATA4 CCCTCTGTGTGGGAACAACT GTGCTCCACCTGGAAAGGTA 

 

Two additional primer pairs, commonly used for heart hypertrophy were used for 

the evaluation of disease: type-B natriuretic factor (BNP) and endothelin-1 (ET-1). 

 

Table 2 | Specific PCR primer pairs used in the work. 

Gene Primer Forward (Fwd) 5’    3’ Primer Reverse (Rev) 5’    3’ 

BNP CAGAGCTGGGGAAAGAAGAG GGACCAAGGCCCTACAAAAGA 

ET-1 CGGGGCTCTGTAGTCAATGTG CCATGCAGAAAGGCGTAAAAC 

 

12.5 Statistical analysis 

 Values are presented as means ± standard error of mean (SEM) and ‘n’ represents 

the number of experiments. Differences between groups were analyzed using Student’s t-

test. 
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13 | NOTE:  

Due to health problems in our animal facility, some animals died before we were 

able to perform echocardiographic and hemodynamic evaluation. This included mostly 

animals with four-weeks STZ-treatment. We thus established a collaboration with another 

department and were able to collect samples at this time point which we used for 

expression analyzes experiments. However we were not able to perform the above 

mentioned evaluations in the animals from our collaborators due to the protocols they 

were going to perform subsequently.  

Echocardiographic and hemodynamic evaluation was only able to be performed in 

six-weeks STZ-treated animals (before the animal facility problem) and, taking the results 

obtained in these animals, we inferred possible results at four-weeks of treatment. 

13.1 Echocardiographic evaluation 

The use of this technique allowed us to non-invasively monitor the progression of 

cardiac dysfunction, in order to estimate ventricular morphofunctional alterations during 

heart failure development and evaluate differences among experimental groups. All 

echocardiographic parameters of six-week animals are presented in Table 3. 

 

Table 3 | Doppler echocardiographic measurements. 

Parameter Ctrl DM 

IVSId (mm/cm2) 35.2 ± 1.9 52.5 ± 2.2 *** 

IVSIs (mm/cm2) 63.6 ± 2.5 82.4 ± 5.8 ** 

LVDId (mm/cm2) 175 ± 6 216 ± 7 *** 

LVDIs (mm/cm2) 94.8 ± 5.8 109 ± 6 

LVPWId (mm/cm2) 34.5 ± 1.7 48.5 ± 3 *** 

LVPWIs (mm/cm2) 55.6 ± 2.2 70.6 ± 3.9 ** 

EF (%) 82.2 ± 1.8 85.0 ± 1.7 

FS (%) 46.3 ± 1.8 49.8 ± 1.8 

HR (bpm) 271 ± 8 232 ± 8 ** 

Ctrl, control; DM, diabetic; IVSId and IVSIs, interventricular septum thickness index in diastole and systole; 
LVDId and LVDIs, left ventricle internal diameter index in diastole and in systole; LVPWId and LVPWIs, left 
ventricle posterior wall thickness index in diastole and systole; EF, ejection fraction; FS, fractional 
shortening; HR, heart rate. (**p < 0.01 versus Ctrl; ***p < 0.001 versus Ctrl; Data are mean ± SEM). 
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 Our echocardiographic data supports the progression of the disease state in our 

DM model (Table 3). IVSId/s and LVPWId/s parameters were significantly increased in 

diabetic animals, indicating left ventricle (LV) hypertrophy both during diastole (relaxation 

+ filling) and systole (contraction + ejection). Moreover, the presence of diabetes 

promoted a significant dilatation of the LV (diastolic LVDI increased) and decreased HR. 

EF is defined as the fraction of end diastolic volume that is ejected out of the 

ventricle during each contraction, whilst, FS is defined as the changes in the diameter of 

LV, between the contracted and relaxed state of the heart. Both parameters were similar 

between groups. 

13.2 General features 

 Somatic and cardiac growth of six-week animals of both groups is represented in 

Table 4. At the end of the hemodynamic protocol, several morphometric parameters were 

measured, including body weight, body surface area (BSA), gastrocnemius-muscle-to-

tibial-length and plasma glucose levels. 

 

Table 4 | General features of Ctrl and DM animals. 

Parameter Ctrl DM 

Body weight (g) 390 ± 19.5 280.5 ± 8.37 *** 

BSA (cm2) 0.040 ± 0.001 0.030 ± 0.001 *** 

GW/TL (mg/mm) 56.63 ± 1.94 36.39 ± 2.1 *** 

Plasma glucose (mg/dL) 238.75 ± 9.4 443 ± 7 *** 

LV + septum (g) 0.69 ± 0.028 0.54 ± 0.021 ** 

LV/BSA (g/cm2) 17.24 ± 0.437 16.59 ± 0.616 

Heart/BSA (g/cm2) 24.88 ± 0.876 26.93 ± 0.842 

Ctrl, control; DM, Diabetic; BSA, body surface area; GW/TL, gastrocnemius-muscle-weight-to-tibial-length 
(**p < 0.01 versus Ctrl; ***p < 0.001 versus Ctrl; Data are mean ± SEM). 

 

 Body weight and surface area were significantly smaller in diabetics when 

compared to controls. Tibial length was similar among the two, whereas the ratio of 

gastrocnemius-muscle-to-tibial-length was significantly lower in the DM group, a 

suggestive finding of cachexia (syndrome defined by loss of weight and muscle atrophy). 

Plasma glucose levels were significantly higher in the DM group, a confirmation of the 
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diabetic state of our models. In accordance to hypertrophy development observed in the 

echocardiographic analysis, LV + septum mass was increased when compared to the 

control group and we observe a tendency to both LV/BSA heart/BSA increase. 

13.3 Myocardial function 

 For six-week animals, hemodynamic analysis allowed to evaluate several 

parameters. 

 Figure 1 represents the LV peak rate of pressure rise (a) and decline (b), while 

Figure 2 describes the maximal pressure that can be developed by the ventricle at any 

given LV volume (a), in opposition to the passive filling properties of the myocardium (b). 

 

  

Figure 1 | Baseline hemodynamic assessment of left ventricle function. (a) peak rates of pressure rise 
(dP/dtmax’ mm Hg/s) and (b) decline (dP/dtmin’ mm Hg/s). 
 

  dP/dtmax and dP/dtmin (respectively, Figure 1 | a and Figure 1 | b) are used 

as indexes of ventricular performance. From our data we did not detect significant 

alterations between diabetics and controls, suggesting that heart’s contractility and 

relaxation functions remained unaltered. 

Regarding the maximal pressure, Pmax (Figure 2 | a), we did not detect any 

alterations for diabetics, suggesting that LV hypertrophy previously described, was able to 

normalize the increased overload. Despite no significant differences were found in end-

diastolic pressure (EDP) (Figure 2 | b), we observe a tendency to its increase, which might 

a b 
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be due to LV compliance (wall elastic properties) decrease, such as a result to ventricular 

hypertrophy and other extracellular matrix changes previously described in this model. 

 

  

Figure 2 | Baseline hemodynamic assessment of left ventricle function. (a) end-systolic (Pmax’ mm Hg) and 
(b) end-diastolic (EDP mm Hg) pressures. 

 

 We conclude from these results that by six-weeks of diabetic state in this rat 

model, although not presenting alterations in its performance, it does already present 

some alterations in its morphology (hypertrophy and dilation), indicative of an adaptation 

to a stress condition. 

 At the same time, we inferred that by four-weeks upon treatment, DM animals will 

show only mild, if any, morphological and heart performance alterations, and thence we 

assume that this stage represents a very early stage of diabetic cardiomyopathy 

development. 

 

a b 
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13.4 Gene expression 

 Type-B natriuretic peptide (BNP) is a marker of cardiac dysfunction that correlates 

with the severity of chronic pressure overload and left ventricular hypertrophy [224]. 

Similarly, the expression of endothelin-1 (ET-1) is directly correlated to disease severity 

and prognosis of heart failure [225]. For this reason we determined the expression of these 

two markers to confirm if their expression was correlated with progression of heart 

disease. We analyzed their gene expression at four-weeks upon diabetes induction (Figure 

3 and Table 5). 

 

 

Figure 3 | Expression of BNP and ET-1 genes, in left ventricle heart samples of four-week animals, 
collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (***p < 
0.001 versus Ctrl; Data are mean ± SEM; Ψ: ET-1 graph in supplements). 
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Table 5 | Comparison between groups of the mean relative expression for BNP and ET-1 genes. Results are 
normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups) 

 BNP ET-1 

DM/Ctrl 1.46 2.56 

 

At this stage, no statistical differences for BNP expression were still observed, 

although there seems to be a tendency for an increased of its expression, whilst, ET-1 

shows a clear upregulation. It is thus clear that at this time point there is already some 

neurohumoral regulation, indicative of installment and progression of heart disease. 

In order to clarify the role of Wnt signaling in the heart, a wide gene expression of 

approximately all known Wnt ligands, Fzds, LRPs, intervening kinases and downstream 

targets, was performed, using Real Time-PCR. 

 

WNTs, THE LIGANDs 

In the mammalian genome, 19 Wnt ligands have already been reported. After 

database search, we found rat homologues for 12 Wnt ligands and analyzed their gene 

expression in control and DM animals at four-weeks of treatment (Figure 4). 

 

 

Figure 4 | Expression of Wnt genes, in left ventricle heart samples of four-week animals, collected after 
treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (**p < 0.01 versus Ctrl; 
Data are mean ± SEM; Ψ: Wnt4 graph in supplements). 
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Wnt3, Wnt7a, Wnt7b and Wnt10a expressions were not detected in both control 

and DM animals. 

Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt9a and Wnt11 expression was 

detected in both control and DM groups. Of these, Wnt2b and Wnt11 showed a statistical 

relevant increase in expression (1.89 and 1.43 fold increase, respectively) (Table 6) at four-

weeks upon treatment. 

We conclude from these results that of all Wnt genes, by us analyzed, only Wnt2, 

Wnt2b, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt9a and Wnt11 seem to be expressed in normal 

and diabetic hearts, and that only the expression of Wnt2b and Wnt11 is significantly 

upregulated in the heart of diabetic animals at early stages of disease. 

 

Table 6 | Comparison between groups of the mean relative expression of the highest expressed Wnt 
genes. Results are normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups). 

 Wnt2b Wnt5a Wnt11 

DM/Ctrl 1.89 1.23 1.43 

 

THE RECEPTORs: 

Because 10 Fzd and 2 LRP receptors are found in mammals, we analyzed their 

expression levels (Figure 5 and Table 7, and Figure 6, and Table 8, respectively). Again 

after database search, we found rat homologues for 7 Fzds (Fzd1 to -7) and the 2 LRPs 

(LRP5 and LRP6).  

 

FZDs 

Expression analyses of control and DM animals at four-weeks upon STZ-treatment 

revealed that although expression of all Fzds can be seen in both groups, only Fzd3 and 

Fzd5 showed a significant upregulation in DM animals when  compared to control animals 

(1.89 and 1.42 fold increase, respectively). 

 

Table 7 | Comparison between groups of the mean relative expression for Fzd genes. Results are 
normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups). 

 Fzd1 Fzd2 Fzd3 Fzd4 Fzd5 Fzd6 Fzd7 

DM/Ctrl 1.41 1.10 1.89 1.21 1.42 0.975 1.06 
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Figure 5 | Expression of Fzd genes, in left ventricle heart samples of four-week animals, collected after 
treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (*p < 0.05 versus Ctrl; 
Data are mean ± SEM; Ψ: Fzd3 graph in supplements). 
 

LRPs 

 

 

Figure 6 | Expression of relevant Fzd and LRP genes, in left ventricle heart samples of four-week animals, 
collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (*p < 
0.05 versus Ctrl; ***p < 0.001 versus Ctrl; Data are mean ± SEM; Ψ: Fzd3 graph in supplements). 
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Table 8 | Comparison between groups of the mean relative expression for Fzd and LRP genes. Results are 
normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups). 

 Fzd1 Fzd3 Fzd5 LRP5 LRP6 

DM/Ctrl 1.41 1.89 1.42 1.28 2.13 

 

Expression analyzes for Fzd co-receptors, LRP5 and LRP6 revealed that, like Fzds, 

both are expressed in four-week control and DM animals, yet, only LRP6 presents 

significant alterations, a suggestive finding of canonical Wnt signaling upregulation. 

 

CANONICAL WNT AGONISTs AND UNUSUAL RECEPTORs 

 Although not usually regarded as fundamental players in canonical Wnt pathway, 

we also looked at the expression of two of its agonists’, Rspo and Norrin, and two of its 

unusual receptors, Ryk and Ror2. Results are depicted in Figures 7 and 8, and in Tables 9 

and 10. 

 

 

Figure 7 | Expression of relevant Wnt and unrelated Wnt genes, in left ventricle heart samples of four-
week animals, collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units 
(AU). (**p < 0.01 versus Ctrl; Data are mean ± SEM; Ψ: Rspo and Norrin graphs in supplements). 
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Rspo expression was practically unchanged in diabetic animals at four-weeks of 

treatment and although off statistical relevance, we detected a tendency for Norrin 

increased (Figure 7 and Table 9). The expression of the Ryk and Ror2 did not change 

(Figure 8 and Table 10). 

 

Table 9 | Comparison between groups of the mean relative expression for Wnt and unrelated Wnt genes. 
Results are normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups). 

 Wnt2b Wnt5a Wnt11  Rspo Norrin 

DM/Ctrl 1.89 1.23 1.43 1.10 1.70 

 

 

Figure 8 | Expression of Fzd, LRP6 and unusual receptor genes, in left ventricle heart samples of four-week 
animals, collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). 
(*p < 0.05 versus Ctrl; ***p < 0.001 versus Ctrl; Data are mean ± SEM; Ψ: Fzd3 and Ror2 graphs in 
supplements) 
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These results showed that the expression of Wnt signaling “unusual” players is not 

changed in the early stages of diabetic cardiomyopathy.  

 

Table 10 | Comparison between groups of the mean relative expression for Fzd, LRP6 and unusual 
receptor genes. Results are normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups). 

 Fzd1 Fzd3 Fzd5 LRP6 Ryk Ror2 

DM/Ctrl 1.41 1.89 1.42 2.13 1.21 0.96 

 

WNT SIGNALING: DOWNSTREAM TARGETs 

 The observation that canonical Wnt ligand, Wnt2b, as well as the co-receptor LRP6 

are of great significance in DM animals, led us to assume that this pathway is upregulated 

in diabetics hearts. For this reason, we assessed the expression of two downstream 

targets of canonical Wnt signaling, Axin2 (an axin-related protein that presumably plays 

the same role as Axin in the destruction complex) and CyclinD1. At four-weeks of 

treatment, none of these genes showed changes with statistical relevance, nonetheless, 

we observe a tendency for Axin2 increase (1.49 fold increase), contrasting to the mild 

increase of CyclinD1 (1.29 fold increase) (Figure 9 and Table 11). 

Wnt11, a ligand more associated to non-canonical Wnt signaling and one of the 

Wnts upregulated in our model, has been shown to be crucial for embryonic 

cardiogenesis, and GATA4 a member of the family of GATA transcription factors, seems to 

be required for the expression of Wnt11 during this process. In addition, GATA4 has been 

reported to be upregulated in hypertrophied hearts [226]. For this reason, we looked at the 

expression of GATA4 to observe if any increase is also detected in DM. At four-weeks upon 

treatment, GATA4 showed already an increase (1.41 fold increase), even if off statistical 

relevance, in DM animals compared to controls at this early stage of the disease (Figure 9 

and Table 11).  

 

Table 11 | Comparison between groups of the mean relative expression for GATA4, Axin2 and CyclinD1 
genes. Results are normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups). 

 GATA4 Axin2 CyclinD1 

DM/Ctrl 1.41 1.49 1.27 
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Figure 9 | Expression of GATA4, Axin2 and CyclinD1 genes, in left ventricle heart samples of four-week 
animals, collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). 
(Data are mean ± SEM; Ψ: Axin2 graph in supplements). 

 

 Overall, these results supported that in early stages of diabetic cardiomyopathy, 

there is upregulation of canonical and non-canonical Wnt ligands, as well as Fzd and LRP6 

receptors. This led us to hypothesize a possible role for both branches in this pathology, 

which is rather interesting, since the canonical branch, through Wnt2b, is associated to 

anti-cardiogenic pathways in the developing embryo, while, non-canonical signaling by 

Wnt11 has the opposite function. Thence is of major importance to unroll the specific 

function of each branch in cardiac disease. 
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INTRACELLULAR WNT SIGNALING REGULATORS: THE KINASES 

 Several intracellular factors present a very important role in the regulation of Wnt 

signaling. One major event in the transduction of extracellular events is the 

phosphorylation of LRP6 and to that purpose, several kinases namely GSK-3, GRK5 and 

GRK6, are responsible for this key regulatory step. For this reason, we decided to check 

the expression levels of these genes to determine how their expression varied in four-

week DM animals, when compared to controls. Results are presented in Figure 10 and 

Table 12. 

As in human, rat GSK-3 exists in two isoforms, GSK-3α and GSK-3β and although 

both isoforms had been described to have expression in the heart [227], virtually all studies 

conducted so far, only examined the role of the GSK-3β isoform. 

 

 

Figure 10 | Expression of relevant kinases and LRP6 genes, in left ventricle heart samples of four-week 
animals, collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). 
(**p < 0.01 versus Ctrl; ***p < 0.001 versus Ctrl; Data are mean ± SEM). 

 

In our model, a marked upregulation on both GSK-3 isoforms was observed at four-

weeks. Despite the fact that the baseline expression of GSK-3α is higher than GSK-3β, the 
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α isoform showed a lower increase in DM animals (1.43 fold increase), which is still of 

statistical significance, when compared to the β isoform (1.64 fold increase). 

Similarly, analyzes of the G Protein-coupled receptor kinases GRK-5 and -6 

expression levels revealed an increased expression of these two genes, being GRK6 

significantly upregulated (1.62 fold increase), when compared to GRK5 (1.36 fold 

increase).  

These results showed that the expression of several kinases, involved in LRP6 

phosphorylation and activation, are upregulated in the heart of DM animals in the early 

stages of diabetic cardiomyopathy. 

 

Table 12 | Comparison between groups of the mean relative expression for kinases and LRP6 genes. 
Results are normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups). 

 GSK-3α GSK-3β GRK5 GRK6 LRP6 

DM/Ctrl 1.43 1.64 1.36 1.62 2.13 

 

ENERGY METABOLISM AND OXIDATIVE STRESS:  

 

PPARs 

 The heart obtains most of its energy requirements to function properly from fatty 

acids and glucose oxidation. In T1DM, as cells are unable to use glucose as a source of 

energy, they turn exclusively to fatty acids oxidation. PPARs, the natural sensors of lipids, 

play a preponderant role in this process, as their activation induces the expression of 

genes that encode for proteins involved in fatty acids oxidation. At the same time, as 

PPARγ agonists had been found to have a cardioprotective role against ischemic insults, 

inhibit cardiac hypertrophy and aptoptosis we looked at the expression of the different 

PPAR isoforms in both groups at the early stages (four-weeks) of the disease. Results are 

presented in Figure 11 and Table 13. 

 

Table 13 | Comparison between groups of the mean relative expression for PPAR genes. Results are 
normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups). 

 PPARα PPARβ/δ PPARγ 

DM/Ctrl 1.00 1.00 1.66 
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Figure 11 | Expression of PPAR genes, in left ventricle heart samples of four-week animals, collected after 
treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (*p < 0.05 versus Ctrl; 
Data are mean ± SEM). 

 

 Of the three PPAR genes (α, β/δ and γ) expressed in the heart, PPARβ/δ has the 

highest expression levels in control animals (Figure 11). At four-weeks upon STZ treatment 

only the expression of PPARγ is upregulated (1.66 fold increase) in DM animals (Figure 11 

and Table 13). 
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FOXOs 

  Increased fatty acids oxidation, as well as hyperglycemia, observed in the diabetic 

state, results in increased ROS production, leading to enhance oxidative stress in the cells. 

To that purpose, we analyzed the levels of expression of FOXO transcription factors, as 

they regulate, amongst other processes, oxidative stress resistance, through governing the 

transcription of antioxidant enzymes. Results are presented in Figure 12 and Table 14. 

 

 

Figure 12 | Expression of Foxo genes, in left ventricle heart samples of four-week animals, collected after 
treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (**p < 0.01 versus Ctrl; 
Data are mean ± SEM). 

 

Expression analysis at four-weeks of treatment showed a significant increased 

expression of Foxo3 and -4 (1.71 and 1.66 fold increase, respectively) but no changes were 

observed in Foxo1 levels. 

We conclude from these results that in early stages of diabetic cardiomyopathy 

there is already a significant increase in the expression of genes involved in fatty acid 
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oxidation, which is accompanied by an increase in the expression of genes involved in 

regulation of oxidative stress. 

 

Table 14 | Comparison between groups of the mean relative expression for Foxo genes. Results are 
normalized for GAPDH (left ventricle heart samples of Ctrl and DM groups).  

 Foxo1 Foxo3 Foxo4 

DM/Ctrl 0.932 1.71 1.66 

 

GENE REGULATION IN ADAPTIVE HYPERTROPHY, IN DIABETIC CARDIOMYOPATHY 

Since the aim of this project was to study regulation of gene expression, with 

special emphasis on Wnt signaling effectors, we went on to analyze the expression of 

some of the genes, which showed altered expression at four-weeks upon diabetes 

induction. 

By six-weeks upon diabetes induction the ecocardiographic and hemodynamic 

results show that there is already some hypertrophy of the LV, without many alterations in 

heart function. This indicates that, by this stage, the heart already started to “respond” to 

the stress signals and an adaptative response ensues. 

As in the previous analyzes we started at analyzing the expression of the bona fide 

heart failure markers: ET-1 and BNP and since GATA4 and GSK-3β, analyzed in the mean 

time, point out as regulators of the Wnt pathway that are also considered by others as 

“hypertrophy markers”, we also analyzed the expression of these two genes, together 

with ET-1 and BNP, at four- and six-weeks of a diabetic state (Figure 13 and Table 15). 

 

Table 15 | Comparison between groups of the mean relative expression for GSK-3β, ET-1, GATA4 and BNP 
genes at four- and six-weeks of treatment. Results are normalized for GAPDH (left ventricle heart samples 
of Ctrl and DM groups). 

 GSK-3β ET-1 GATA4 BNP 

DM/Ctrl (4-weeks) 1.64 2.56 1.41 1.46 

DM/Ctrl (6-weeks) 1.50 1.68 1.49 1.63 
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Figure 13 | Expression of GSK-3β, ET-1, GATA4 and BNP genes, in left ventricle heart samples of six-week 
animals, collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). 
(*p < 0.05 versus Ctrl; **p < 0.01 versus Ctrl; Data are mean ± SEM; Ω: GSK-3β, ET-1 and GATA4 graphs in 
supplements). 

 

As expected, by this stage we also observed an increased expression of all the 

markers analyzed in the diabetic group. However, when compared to the earliest time 

point analyzed, GSK-3β and ET-1 showed a reduction of their expression levels in the 

diabetic group, having ET-1 a marked downregulation. On the other hand, both BNP and 

GATA4 expressions showed a slightly increase. 

We conclude that, as expected, hypertrophy markers are upregulated in diabetic 

animals during an adaptative response, but slight differences seem already to be observed 

in the expression of these markers in relation to an earliest time point of the disease. 
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WNT SIGNALING IN ADAPTIVE HYPERTROPHY 

From the many Wnt effectors analyzed at four-weeks diabetic state, only a few 

showed a marked upregulation in diabetic animals, namely, Wnt2b, Wnt11, Fzd3 and Fzd5 

and the co-receptor LRP6. 

 We thus decided to look at the expression of these genes at six-weeks upon STZ-

treatment. 

 By six-weeks upon diabetes induction one can still observe increased expression of 

LRP6, but, surprisingly, the fold increase in the expression levels in DM animals compared 

to control animals is much lower (1.49 fold increase) than the ones observed at four-

weeks (2.13 fold increase). The other genes, at this time point, are all downregulated and 

off statistical significance between groups (Figure 14 and Table 16). 

 

 

Figure 14 | Expression of Fzd3, Fzd5, Wnt2b, Wnt11 and LRP6 genes, in left ventricle heart samples of six-
week animals, collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units 
(AU). (*p < 0.05 versus Ctrl; Data are mean ± SEM; Ω: Fzd3 graph in supplements). 
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Table 16 | Comparison between groups of the mean relative expression for Fzd3, Fzd5, Wnt2b, Wnt11 and 
LRP6 genes at four- and six-weeks of treatment. Results are normalized for GAPDH (left ventricle heart 
samples of Ctrl and DM groups). 

 Fzd3 Fzd5 Wnt2b Wnt11 LRP6 

DM/Ctrl (4-weeks) 1.89 1.42 1.89 1.43 2.13 

DM/Ctrl (6-weeks) 1.45 1.24 1.40 1.30 1.49 

 

METABOLISM AND OXIDATIVE STRESS IN ADAPTIVE HYPERTROPHY 

By six-weeks upon STZ-treatment and as expected, one still observes a high 

upregulation in PPAR and Foxos (Figure 15 and Table 17). 

Interestingly, the expression of PPARγ and Foxo3 increase in comparison to the 

levels observed in diabetic animals at four-weeks of treatment (Table 17), with PPARγ 

showing a very marked increase.  

 

Figure 15| Expression of PPARγ, Foxo3 and Foxo4 genes, in left ventricle heart samples of six-week 
animals, collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). 
(*p < 0.05 versus Ctrl; **p < 0.01 versus Ctrl; Data are mean ± SEM). 
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Table 17| Comparison between groups of the mean relative expression for PPARγ, Foxo3 and Foxo4 genes 
at four- and six-weeks of treatment. Results are normalized for GAPDH (left ventricle heart samples of Ctrl 
and DM groups) 

 PPARγ Foxo3 Foxo4 

DM/Ctrl (four-weeks) 1.66 1.71 1.66 

DM/Ctrl (six-weeks) 2.75 1.94 1.50 

 

Our results demonstrate that in an adaptive stage of diabetic cardiomyopathy 

genes related to metabolic and oxidative stress are markedly increased, a result somehow 

expected due the metabolic needs and stress that diabetic hearts support. The importance 

of this result is discussed below. 
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14 | DISCUSSION 

14.1 Effects of diabetes mellitus: myocardial structure  

We adopted the STZ-induced rat model of diabetes due to its simplicity, high 

reproducibility and mainly because alterations in cardiac functions are primarily due to 

diabetic cardiomyopathy [228]. These features turn it out as one of the most widely used 

hyperglycemic models of type 1 diabetes mellitus. 

Diabetic cardiomyopathy develops as a result of an hyperglycemic state and, as 

observed in other models of heart failure, there is an initial adaptive stage of the heart to 

stress conditions, but as stress conditions endure the heart loses the capacity to adapt to 

the stress factors and heart failure (with systolic and diastolic dysfuntion) ensues. As 

previously mentioned, several pathways are associated with the different stages of 

disease progression, but the role of Wnt signaling in heart disease is still not very clear. In 

our study we started by analyzing heart function and gene expression in the early stages 

(adaptive stage) of diabetic cardiomyopathy. By the end of six-weeks upon diabetes 

induction the heart morphology and function already showed some hypertrophy of the LV 

wall and some dilation of the LV chamber, but these morphological alterations did not 

correlate with altered heart function. We assumed then that by four-weeks these changes 

should be still very conspicuous and, for that reason, in the time window between the 

four- and six-weeks upon diabetes induction an adaptive stage in diabetic cardiomyopathy 

can be considered. Moreover, by six-weeks the morphometric alterations point out to 

development of cachexia, a result already predicted, since insulin-mediated stimulation of 

PPARγ is a key regulatory factor of adipocyte differentiation [200]. 
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14.2 Gene expression 

REGULATION AT THE SURFACE: LIGANDs VERSUS RECEPTORs 

The existence of several Wnt signaling pathways is nowadays well accepted. 

Because 19 Wnt ligand members, 10 Fzd receptors and 2 LRP receptors were found in the 

mammalian genome, a great degree of complexity has arisen, turning the understanding 

of Wnt signaling cascades a very difficult task. 

 Since additional levels of complexity to Wnt signaling are linked to the divergence 

of functional activities among Wnt proteins, a broad classification of Wnts into two 

separate groups had already been made established. A first group termed ‘Wnt1 group’ 

containing Wnt1, Wnt2, Wnt2b/13, Wnt3 and Wnt3a appears to be capable of exclusively 

activating canonical Wnt signaling [1, 229]. A second group termed ‘Wnt5a group’ containing 

Wnt4, Wnt5a and Wnt11 possesses more elaborate signaling properties and has been 

associated to non-canonical Wnt signaling [230-231]. Simultaneously, it has been reported 

that the ‘Wnt5a group’ may suppress β-catenin-mediated signaling and thus, serve as 

dominant-negative forms of ‘Wnt1 group’ [232]. 

 Our results showed that in the early stages of diabetic cardiomyopathy there is an 

upregulation of Wnt2b and Wnt11. This is a very interesting result in the sense that not 

only we observe upregulation of Wnt ligands, which work on distinct Wnt pathway 

branches, but also because Wnt11 has been shown to be important during embryonic 

cardiogenesis [233] having an important role in the differentiation of cardiac cells. In 

addition, it was recently shown by Afouda et al. [234] and Flaherty et al. [235] that Wnt11 is 

required for mediating the cardiogenesis-induced function of GATA4 and other members. 

Although not presenting significant differences at an early stage of diabetes, there is 

already upregulation of GATA4, which is more marked during myocardial adaptive 

hypertrophic stage. 

 In parallel to an upregulation of some Wnt ligands, we also observed upregulation 

of some Fzd receptors and the LRP6 co-receptor. As not all Fzd and LRPs normally 

expressed in the heart are upregulated in DM hearts, we assumed that the ones 

upregulated have a specific function in diabetic cardiomyopathy. Regarding the Fzd 

receptors, one cannot conclude that they are specifically working together with Wnt2b or 

Wnt11, since they activate both Wnt pathways (canonical and non-canonical), in a 
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complex manner. An increase of Wnt2b, a ligand more associated to canonical Wnt 

signaling and the canonical specific receptor, LRP6, strongly supports an involvement of 

the canonical Wnt pathway, together with a possible activation of the non-canonical JNK-

pathway by Wnt11, in the early stages of this disease. 

 

CANONICAL WNT SIGNALING IN HEART DISEASE 

 The importance of canonical Wnt signaling activation in diabetic cardiomyopathy 

can possibly be divided in two processes: CPCs population maintenance and proliferation, 

and β-catenin stabilization for oxidative stress resistance responses through FOXO 

proteins. 

 As previously mentioned, it is nowadays accepted by some that the heart 

possesses a certain degree of regeneration, which contrasts to the old view of a terminal 

differentiated organ. This is mostly due to a special population of cells, the CSCs and CPCs 

present in the heart [148-149]. 

 Canonical Wnt signaling has been shown, in other contexts, to be important for the 

maintenance and proliferation of a stem cell like profile [236]. Our expression analyzes 

show that several Wnt ligands, receptors and co-receptors are expressed in the normal 

heart, suggesting a possible role in the maintenance of the CSC/CPC population. 

Interestingly, in the diabetic heart only one canonical Wnt ligand and one canonical Wnt 

signaling co-receptor are upregulated. This specific upregulation could aid, in the early 

stages of disease, to enhance the proliferative capacity of CSC/CPC population, so the pool 

of these cells increase, being possibly directed to differentiation by Wnt11. 

 In addition, an upregulation of canonical Wnt signaling could represent a 

mechanism, not yet demonstrated in heart disease, whereby β-catenin is stabilized and 

further recruited by FOXOs to respond to increased ROS levels. Although β-catenin 

stabilization can be achieved by indirect mechanisms namely GSK-3 inhibition, some 

consider that stabilization of β-catenin by the Wnt pathway is absolutely required for 

FOXOs activity [148]. This shifting to another pathway could also aid to explain, why we 

observe such a modest increased expression of two important downstream targets genes 

of canonical Wnt signaling, Axin2 and CyclinD1. It is interesting to note that as disease 

progresses the expression of all Wnt effectors initiate to decrease, although still being 

higher in diabetics when compared to controls. The highest reduction observed between 
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the four- and six-weeks animals is for the Wnt co-receptor LRP6. This result might suggest 

that as disease progresses, canonical Wnt signaling starts to be downregulated, although 

not totally. The maintenance of a certain level of activity is most likely still required for β-

catenin-FOXO interactions, because as we demonstrate, and as expected, high expression 

of Foxo genes is maintained at six-weeks, supporting the role of these proteins in diabetic 

cardiomyopathy.  

 

NON-CANONICAL WNT SIGNALING IN HEART DISEASE 

 As already mentioned, one of the Wnt ligands specifically upregulated in the heart 

of DM animals is Wnt11. This finding is rather interesting, taking into account the role of 

this ligand in cardiogenesis during embryonic development due to its ability to induce a 

cardiac phenotype in progenitor cells [112]. Several authors have already demonstrated 

during embryonic cardiogenesis that cardiac specification depends mostly on the 

inhibition of canonical Wnt signaling [106, 112, 237-238]. This can be achieved by specific 

canonical Wnt inhibitors and/or by activation of a non-canonical Wnt pathway by Wnt11, 

and/or by other pathways (e.g. bone morphogenetic proteins, Smads, etc). To further 

support a role for Wnt11 in the induction of a cardiac phenotype, other authors have also 

demonstrated that Wnt11 is able to induce in vitro differentiation of endothelial 

circulating progenitor cells [239], as well as in other adult progenitors [235]. Despite all these 

observations, so far a role for this ligand in heart disease has not been demonstrated. We 

show for the first time that during diabetic cardiomyopathy progression, there is an 

upregulation of Wnt11, which could indicate that in the early stages of heart disease, 

when an adaptive hypertrophy response develops, Wnt11 signaling might possibly exert a 

role in directing the CPCs differentiation towards cardiac cells, increasing the global 

amount of cardiac tissue. 

 As a matter of fact, Nagy et al. [233] has recently demonstrated that Wnt11 seems 

to be required for the correct co-localization of the cell adhesion molecules N-cadherin 

and β-catenin. Wnt11 knockouts showed an irregular organization of the developing 

ventricular wall, and this might be due to the improper localization of these two adhesion 

effectors. Since during hypertrophy development, alterations in cardiomyocytes 

morphology and orientation can be observed, one can also hypothesize that an increase in 

Wnt11 will aid to the proper morphological changes observed. 
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INTRACELLULAR REGULATION: THE KINASES 

 A key step in canonical Wnt signaling activation is highlighted by LRPs 

phosphorylation/activation. GSK-3 accounts for most of LRPs phosphorylation revealing a 

positive role for GSK-3 in canonical Wnt signaling [42, 44]. In addition, we also found that 

GRKs, proteins that traditionally phosphorylate and desensitize GPCRs, are also kinases 

responsible for the phosphorylation/activation of LRPs [47]. 

 Our reports are rather interesting, since we confirm upregulation of GSK-3β in 

diabetics, which could support its role as a regulator of LRP6 phosphorylation and 

subsequent canonical Wnt signaling activation. In accordance, as we observe both a 

decline after six-weeks of treatment, for GSK-3β and LRP6, we might correlate their 

decreased levels, supporting their cooperation. 

Regarding GRK6, it is impossible to correlate a direct involvement with LRP6 due to 

its various roles in cells namely desensitization of GPCRs and thence, other signaling 

pathways activation. 

 

REGULATION OF HYPERTROPHY  

It has been demonstrated by Masuelli et al. [123] a decrease of GSK-3β expression 

with subsequent accumulation of β-catenin, in hypertrophic cardiomyopathic hearts. 

However, our results and others [121-122, 240-241] demonstrate the opposite observation, but 

it is important to emphasize that Masuelli et al. [123] samples were extracted from hamster 

and human models at different time points of disease progression.  

 Additionally and of interest, GSK-3β overexpression has been demonstrated to 

function as a negative regulator of cardiac hypertrophy by inhibiting the expression of 

hypertrophic genes. Haq et al. [122] observed that GSK-3β inhibits ET-1-induced 

hypertrophy in neonatal rat cardiomyoytes. In an opposite manner, ET-1, a cardiac 

hypertrophic neurohormone, is reported to inhibit GSK-3β activity through activation of a 

Wnt-independent mechanism involving the Akt pathway. In addition, both ET-1 and GSK-

3β had been reported to stimulate the expression of BNP, an indirect inhibitor of cell 

hypertrophy, through regulation of GATA4. At the same time, Morisco et al. [240] 

demonstrated that GSK-3β is also able to negatively regulate BNP [242]. These contrasting 

reports apparently highlight the existence of a possible feedback mechanism in the 



 

- 86 - 

DISCUSSION 

regulation of hypertrophy and thence, at least, we checked the expression levels of these 

genes, during disease progression (from an early stage to six-weeks of induced-diabetes). 

Our results show a significant upregulation of ET-1 and GSK-3β, at four-weeks of 

treatment, suggesting that in an early stage of diabetic cardiomyopathy, both of these 

genes might be synergistically acting to induce an adaptive heart model. Yet, after some 

time, we observe a sharp decrease in ET-1 expression with subsequent upregulation of 

GATA4 and BNP, suggesting that at six-weeks of diabetes, the cardioprotective abilities of 

the heart presumably try to counteract hypertrophy. Nonetheless, the slightly decline in 

GSK-3β expression might suggest a possible decrease of its levels and function overtime, 

correlating to the Masuelli et al. [123] findings. In fact, as both ET-1 protein and its 

overexpressed mRNA levels are found in long terms of STZ-induced diabetes [243-244], we 

are thus expected to observe upregulation of ET-1, once more, overtime, as we start to 

observe a decline of GSK-3β expression. Our results are this way of great interest, as we 

demonstrate a possible time window, where ET-1 downregulation can be observed and 

possible used for pharmacological intervention of hypertrophy regulation. 

 

ENERGY BALANCE: METABOLIC ROLES OF PPARs 

 Normal insulin-producing organisms are characterized through production of 

insulin, a hormone that is central to the regulation of energy and glucose metabolism in 

the body. In response to high blood sugar levels, β-cells, a specific type of cells in the 

pancreas, stimulate the production of insulin with its subsequent release to the blood. 

Then, circulating insulin is sensed by the liver, muscle and fat tissue cells, which in turn, 

through activation of the PI3K/Akt pathway results in the translocation of glucose 

transporter proteins, such as GLUT4, to the plasma membrane, leading to the transport of 

glucose from the blood to the intracellular milieu. In an opposite manner, non-insulin 

producing organisms, such as type 1 diabetic patients, are unable to use glucose as a 

source of energy. Hyperglycemia is thus defined as the result of an excessive amount of 

circulating glucose, due to an inability of glucose transporters translocation to the plasma 

membrane. 

 This way, as type 1 diabetic hearts are unable to use glucose as a source of energy 

they must solely depend on fatty acids oxidation that is under the regulation of PPARs. 

Our data is of great significance, because as we detected upregulation of PPARγ during 
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progression of the disease state, we suggest that PPARγ activity could be directly 

regulating heart’s energetic balance, through increased fatty acids oxidation. 

 

PROTECTIVE SYSTEM: THE ROLE OF FOXOs 

 Increased fatty acids oxidation, as well as hyperglycemia, leads to increased ROS 

production, resulting in oxygen toxicity. A family of transcription factors called FOXO has 

emerged in the last years, as key players in oxidative stress resistance, by regulating 

several intracellular cascades involved in the trans-activation of antioxidant enzymes, 

amongst other functions. It has been demonstrated that FOXOs-mediation of downstream 

target genes transcription, is exerted by FOXOs-β-catenin interactions, which directly 

compete with TCF transcription factors for a free β-catenin limited pool [147-148, 175]. In 

addition, Schmidt et al. [245] demonstrated that FOXO3 inhibits cell cycle progression 

through inhibition of CyclinD1, which might correlate with the low levels of CyclinD1 by us 

detected, since we observe upregulation of Foxo3. In addition, we also demonstrate that 

along disease progression, Foxo3 has a more pronounced expression, which might 

correlate to a more central role, when compared to Foxo4. 

This result is of major importance, since it might support a negative regulation 

exerted by Foxos in CyclinD1 expression, by directly shifting the β-catenin pool towards an 

antioxidant response, rather downstream activation of canonical Wnt target genes. 

Moreover, Ni et al. [246] recently demonstrated that FOXO1 and FOXO3 inhibit cardiac 

hypertrophy, yet, through a non-canonical Wnt pathway. Since our previous studies 

support progression of hypertrophy, we cannot exclude that our Foxo levels are a direct 

response to regulation of cardiac hypertrophy and in simultaneous, could be 

counteracting ROS production through antioxidant genes induction. In addition, it is even 

plausible to consider FOXOs-induced apoptosis after some time. 

Our data is of great significance, since important canonical Wnt signaling genes are 

upregulated, as seen by increased Wnt2b, LRP6 and GSK-3β expression. Because diabetes 

promotes increased levels of ROS, we can assume that canonical Wnt signaling activation, 

through β-catenin stabilization could have a determinant role in antioxidant gene 

expression, when associated to FOXOs, shifting β-catenin from the co-activators TCF/LEF, 

resulting in downstream downregulation of CyclinD1. 
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Although our results support a main role for GSK-3β in LRP6 activation, we still 

cannot exclude a simultaneous role in the regulation of hypertrophy, where GSK-3β could 

easily detain various pools within cells. 

 

PPAR-FOXO INTERACTIONS: A POSSIBLE MECHANISM ON GLUT4 TRANSCRIPTION REGULATION 

A convergence between PPARs and FOXOs has also been made, where FOXOs were 

demonstrated to negatively regulate PPARs. Dowell et al. [150] discovered that FOXO1 

disrupts the DNA-binding activity of PPARγ/RXRα heterodimers, thence suppressing PPARγ 

activity. It is however interesting to observe that no correlation between PPARγ and Foxo1 

can be made, since Foxo1 levels decrease, even if some, in the diabetic model. 

Nevertheless, because we are using diabetic animal models and only FOXO1 has been 

studied to suppress PPARγ activity in insulin-responsive genes, it is plausible to assume 

that other FOXO members could suppress it as well.  

As already stated, PPARγ agonists have a preponderant role in the regulation of 

glucose homeostasis. Glucose is uptaken by cells through GLUT4, which in turn is 

negatively regulated by PPARγ activity. In an opposite manner, it has been demonstrated 

that FOXO1 upregulates GLUT4 gene expression by directly binding to the GLUT4 

promoter and indirectly, via repressing PPARγ activity. Interestingly, FOXOs are negatively 

regulated by Akt upon survival signals, such as insulin. In response to insulin, Akt is 

activated, phosphorylates FOXO1, promoting its nuclear exclusion, which in turn cannot 

suppress PPARγ activity, leading to GLUT4 transcription repression. These reports are of 

major interest, because as we are using type 1 diabetic models that are unable to 

stimulate insulin, Akt activity is suppressed. This way, we should observe FOXOs’ nuclear 

import/activation and further FOXOs-PPARγ-mediated activation of GLUT4 transcription. 

Yet, type 1 diabetic patients have attenuated or repressed GLUT4 transcription and it is 

still not clear how this precise negative regulation occurs. 

From our results we could suggest that, as we observe upregulation of canonical 

Wnt signaling genes, β-catenin could be directly engaging to FOXO members, in order to 

activate antioxidant genes transcription, and thus releasing PPARγ-mediated repression. 

This way, activation of canonical Wnt signaling could aid to answer such incongruence’s 

and confusions, where β-catenin might indirectly route FOXOs’ away from PPARγ, thence 
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inhibiting FOXOs-suppression activities, resulting in an attenuated or repressed GLUT4 

transcription. 
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15 | CONCLUSIONS 

In the presence of a stress situation the heart triggers cardioprotective responses, 

which enable the heart to pump enough blood to meet the metabolic demands of the 

organism. This cardioprotective balance is the result of several adaptive hypertrophic 

responses-activation that through extracellular matrix alterations lead to thickening and 

increased myocardium mass, with subsequent cell hypertrophy. In addition, these stress 

situations can also cause disequilibrium in the metabolic needs of the cardiac tissue, 

activating specific pathways to again achieve its internal balance. Our data sheds a new 

light over the role of Wnt signaling in the heart, through identification and association of 

various distinct signaling pathways and in simultaneous, the characterization of some of 

its effectors. We demonstrated that, at least, two Wnts are involved in the early stages of 

diabetic cardiomyopathy. Since both Wnts are also important during heart specification in 

embryonic development, one can conclude that during the early stages of heart disease, 

embryonic signaling pathways are activated, presumably having a similar role (plus others) 

to those observed during embryogenesis. Activation of Wnt pathways might have an 

important role not only in the adaptation of the cardiac tissue to stress conditions (namely 

in the hypertrofic response), but also in the establishment of a metabolic equilibrium 

through an interaction with pathways known to have a preponderant role in these 

processes. 

Our observations may also support the notion that in the adult organism exists 

groups of multipotent cells capable of undergoing differentiation into a certain cell type, 

in the presence of the correct stimulus. It is of crucial importance the understanding of 

such stimulus and how their action can be modulated. Since Wnt signaling is regarded as 

an important target for pharmaceutical intervention in other diseases, such as cancer, 

Alzheimer and osteoporosis, it is important to understand the risks and/or benefits that 

such interventions represent to cardiac function. Taking our results, one example that can 

be given of such risk, is a compound that could be developed to downregulate canonical 

Wnt signaling in cancer (since, in most cases, this pathway is highly activated). One can 

hypothesize that dowregulation of canonical Wnt signaling at the receptors level would 

impair the ability of cardiac cells to fight against oxidative stress, because no stabilization 
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of β-catenin would be observed. This would cause a premature aging of the cardiac tissue, 

with possible rapid progression to heart failure. 

 Near future experiments will try to uncover which cell population is the 

preferential target for each of the Wnt pathways, as well as try to determine the degree of 

activation of each branch by assessing the phosphorylated levels of important effectors. 
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16 | SUPPLEMENTS 

  

Expression of Wnt4 and ET-1 genes, respectively, in left ventricle heart samples of four-week animals, 
collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (***p < 
0.001 versus Ctrl; Data are mean ± SEM) 

 

  

Expression of Fzd3 and Rspo genes, respectively, in left ventricle heart samples of four-week animals, 
collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (*p < 
0.05 versus Ctrl; Data are mean ± SEM) 
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Expression of Norrin and Ror2 genes, respectively, in left ventricle heart samples of four-week animals, 
collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (Data 
are mean ± SEM) 

 

 
 

Expression of Axin2 and GSK-3β genes, in left ventricle heart samples of four- and six-week animals, 
respectively, collected after treatment. Results are normalized for GAPDH and expressed in arbitrary 
units (AU). (**p < 0.01 versus Ctrl; Data are mean ± SEM) 
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Expression of ET-1 and GATA4 genes, respectively, in left ventricle heart samples of six-week animals, 
collected after treatment. Results are normalized for GAPDH and expressed in arbitrary units (AU). (*p < 
0.05 versus Ctrl; Data are mean ± SEM) 

 

 

Expression of Fzd3 gene, in left ventricle heart samples 
of six-week animals, collected after treatment. Results 
are normalized for GAPDH and expressed in arbitrary 
units (AU). (Data are mean ± SEM) 
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