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ABSTRACT
Optimization with stochastic algorithms has become a rel-
evant approach, specially, in problems with complex search
spaces. Due to the stochastic nature of these algorithms, the
assessment and comparison is not straightforward. Several
performance measures have been proposed to overcome this
difficulty. In this work, the use of performance profiles and
an analysis integrating a trade-off between accuracy and pre-
cision are carried out for the comparison of two stochastic
algorithms. Traditionally, performance profiles are used to
compare deterministic algorithms. This methodology is ap-
plied in the comparison of two stochastic algorithms - genetic
algorithms and simulated annealing. The results highlight
the advantages and drawbacks of the proposed assessment.

Track Name: Genetic Algorithms

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global opti-

mization, Nonlinear optimization, Unconstrained optimiza-

tion; D.2.8 [Software Engineering]: Metrics—performance

measures

General Terms
Performance

Keywords
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1. INTRODUCTION
Stochastic algorithms are often used in the optimization

field. Due to their stochasticity, the performance analysis
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and the comparison between algorithms are not straight-
forward. Therefore, a relevant issue is the analysis of the
behavior of these algorithms when solving distinct classes of
optimization problems. Consequently, this implies the de-
sign of experiments and the use of statistical techniques to
make fair comparisons between algorithms. Note that for
stochastic algorithms, two goals need to be attained: (i) to
achieve a good approximation to the optimum - accuracy
and (ii) to reduce the variability of the solutions produced -
precision. From an optimization point of view, it is desired
to maximize the probability of obtaining good solutions and
to minimize the variability of the solutions.

Therefore, assessing the quality of a stochastic algorithm
commonly implies a large number of experimental compar-
isons with other stochastic or even deterministic algorithms.
Such comparisons always assume the use of performance
metrics. Because of their stochastic nature, they are also
statistical, and their computation requires experiments to
be conducted in order to obtain sufficient performance data.

On the other hand, the “No Free Lunch” theorem states
that it is not possible to find a single algorithm that behaves
better for all the problems [12]. Therefore, the comparative
study and the identification of trade-offs between the algo-
rithms performance, in terms of accuracy and precison, are
of great interest. This study can assist the decision of se-
lecting the best algorithms for each particular problem.

In the context of the comparison of deterministic opti-
mization algorithms, Dolan and Moré [4] proposed a method
based on performance profiles to compare solvers. This
method provides graphical representations of the distribu-
tion of performance measures over a problem set. However,
as far as we know, with the exception of the work of Bar-
reto et al. [2], the application of the performance profiles to
stochastic algorithms has not been studied, although it has
been applied without foreseeing its full implications.

In recent years, there has been a growing interest on the
use of statistical techniques in the analysis of stochastic al-
gorithms. There are some authors that have applied para-
metric statistical tests to compare the performance of algo-
rithms [3, 11]. Recently, Garćıa et al. [5] have studied the
application of parametric and non-parametric tests to the
comparison of evolutionary algorithms. They suggest and
show the advantages of using non-parametric tests for the
performance comparison of evolutionary algorithms.

In this paper, we intend to extend and study the appli-
cability of performance profiles to the context of stochas-



tic algorithms. Moreover, we propose a measure assisted
by graphical representation to identify the compromises be-
tween accuracy and precision of stochastic algorithms. The
emphasis of the paper is on the benchmarking process in the
context of stochastic algorithms, based on the concepts of
performance profiles.

The paper is structured as follows: in section 2 several
performance measures are presented; section 3 presents the
application of the performance measures to the results ob-
tained with two stochastic algorithms; and in section 4, some
conclusions and future work are discussed.

2. PERFORMANCE MEASURES
In stochastic algorithms, the solutions over a given num-

ber of independent runs show a certain variability. Typi-
cally, for test problems, it is possible to perform multiple
runs and select the best solution obtained. Moreover, the
optimal solution of the problem is often known a priori.
This knowledge can be seen as a reference target and used
in the assessment of the performance of the algorithms.

For those problems where the optimal solution is known
(this is the case of most test problems), it is possible to define
a success criterion based on the distance to the optimum, in
terms of the objective function value. A run is considered
successful if the solution obtained is within a neighborhood
defined by a given tolerance. The successful rate is com-
puted as the percentage of runs terminating with success. It
should be noted that this measure can only be computed if
the optimal solution is known. Moreover, this measure has
several drawbacks since it depends on the tolerance defined
and does not include any information regarding the distri-
bution of the obtained solutions. Clearly, it is convenient
to take the randomness associated to these solutions into
account. Thus, statistical procedures must be adopted.

2.1 Statistical analysis
The data obtained from several independent runs of a

stochastic algorithm applied to an optimization problem al-
lows the computation of several statistics. The mean best
solution measure is defined as the average of the objective
function values of the solutions obtained over all runs. It is
also possible to compute other statistics such as the median,
the first and third quartiles, the best and the worst solutions.
Diversity measures can also be computed such as standard
deviation and interquartile range. These measures do not
require the knowledge of the optimal solution. Graphical
representations such as boxplots or histograms can help the
visualization of the distribution of the results over all the
runs.

Therefore, algorithm comparison implies the use of spe-
cific statistic tests to establish when the differences on the al-
gorithms performance are truly statistically significant. Para-
metric tests can be used such as the t-test for independent
samples when two algorithms are compared or analysis of
variance when three or more algorithms are being compared.
The applicability of these tests is subject to certain condi-
tions namely, independence of runs, normality of data and
homocedasticity. In general, the distribution of the results
does not satisfy these requirements. Furthermore, for most
real world problems, the evaluation of the objective func-
tion and constraints may imply high computational times.
In this situation, due to limited time resources, it is not
possible to perform a large number of runs in order to ob-

tain a “representative” sample, so non-parametric tests are
preferable [5].

2.2 Performance profiles
The statistical analysis of algorithms performance for mul-

tiple problems is more difficult. Note that optimization
problems have different features that influence the results.
However, it is possible to compute the cumulative distribu-
tion of some measures. This is the case of the performance
profiles [4] that were proposed to compare the performance
of deterministic algorithms over a set of distinct optimiza-
tion problems. These performance profiles can be extended
to the context of stochastic algorithms with some adapta-
tions. A brief description of the performance profiles follows.

Let P and S be the set of problems and the set of solvers
in comparison, respectively, and let mp,s be the performance
metric required to solve problem p ∈ P by solver s ∈ S . The
comparison is based in performance ratios defined by

rp,s =
mp,s

min{mp,s : s ∈ S}

and the overall assessment of the performance of a particular
solver s is given by

ρs(τ ) =
1

total number of problems
{size{p ∈ P : rp,s ≤ τ}}.

For τ = 1, ρs(τ ) gives the probability that the solver s will
win over the others in the set. Thus, for τ = 1, the upper-
most curve shows the algorithm with the highest percentage
of problems with the best metric value. However, for large
values of τ , the ρs(τ ) measures the solver robustness. Over-
all, the highest the ρs values, the better the solver is. Also,
for solver s that performs the best on a problem p, rp,s = 1.
If rp,s = 2, it means that them-fold improvement by solver s
on problem p is twice the best value found by another solver
on the same problem p.

Dolan and Moré [4] used the computing time, tp,s, re-
quired to solve a problem p by a solver s to evaluate the
performance of the solvers. They suggested other measures
that can be used instead; however, not all the measures have
an absolute zero and the performance profiles may loose the
original meaning. In order to maintain the same principles,
in this paper it is used an m-fold improvement as suggested
in [1]. We remark that this measure can give non-positive
values, so we used instead a function

M(f) =

∣

∣

∣

∣

fstats − f∗

fworst − f∗

∣

∣

∣

∣

to define a metric, given by

mp,s(f) =

{

δ if M(f) ≤ δ

M(f) + δ otherwise,

being δ a small positive parameter to prevent mp,s(f) = 0,
since in this case no performance ratios rp,s could be com-
puted. Thus, we guarantee that the original meaning of
the Dolan and Moré [4] performance profiles is maintained.
fstats represents a statistic computed for objective function
values obtained in several runs (e.g., median, 1st quartile,
3rd quartile) and fworst the worst obtained value over the
runs. f∗ denotes the best known value of the objective func-
tion f for the problem under consideration.

The overall performance of algorithms on a set of opti-
mization problems can be assessed by the performance pro-



files. However, it is also desirable to inspect, for each prob-
lem, the trade-off between accuracy and precision of the al-
gorithms. The ideal algorithm should have small variance
in order to obtain a good approximation to the optimum
(accuracy) and minimize the risk of being far from it (pre-
cision). In general, the algorithm performance for a given
problem corresponds to a compromise between these two
goals. Thus, it is crucial to compute measures that repre-
sent accuracy versus precision. For this purpose, it is possi-
ble to compute the difference between the medians and the
interquartile range for the measures used in the the perfor-
mance profiles. These measures are, in general, preferable
than mean and standard deviation due to the non symmetry
of the distributions. Accuracy and precision measures can
be plotted in order to perceive the different compromises.

3. NUMERICAL RESULTS
In this section, previously described performance mea-

sures are used to compare the results obtained with two
stochastic algorithms on a set of test problems. The empha-
sis is not on the solvers but on the benchmarking process,
so we used two commercial available solvers. The set of
test problems was mostly based on a collection of problems,
arriving from quite different contexts.

3.1 Stochastic Algorithms
In the experiments, two stochastic algorithms have been

used: genetic algorithms and simulated annealing. We have
chosen the commercial implementations of these algorithms
by MatLab (MatLab is a registered trademark of the Math-
Works, Inc.): the ga and simulannealbnd commands of the
global optimization toolbox, version 3.0. The goal is to have
a set of results to test the performance measures. The two
solvers were used with the default options without any ex-
perimental work in order to fine tune the algorithms param-
eters. Therefore, results may be different if the parameters
are changed or if different versions of these solvers are used.
The maximum number of objective function evaluations was
set to 1,200 for both algorithms. The initial population of
the genetic algorithm is generated at random. Simulated
annealing starts the search from an initial guess of the op-
timum. Next, a brief description of these two stochastic
algorithms is provided.

None of the algorithms imposes any condition to the con-
tinuity or convexity of the search space and both require
only information on the objective function and constraints,
and no derivative or other auxiliary knowledge is necessary.
There are some important differences between these algo-
rithms.

Genetic algorithms (GAs) are population based algorithms
with search procedures that mimic the natural evolution of
the species in the natural systems [6].

Simulated Annealing (SA), a combinatorial optimization
algorithm first proposed by Kirkpatric et al. [8], was in-
spired on statistical mechanics.The annealing scheme refers
to the sequence of temperatures and rearrangements until
an equilibrium is reached at a given temperature [7]. The
cooling mechanism is used as an analogy for optimization
where, for instance, in a minimization problem, slight up-
hill movements are allowed.

3.2 Test problems
We use a set of benchmark minimax problems to test the

Table 1: Test problems
No Problem m n Optimum value

1 CB2 3 2 1.9522245
2 Rosen-Suzuki 4 4 -44

3 S Xu 5 7 247
4 H-P Schwefel 2 2 0

5 Maxl 20 20 0
6 Spiral 2 2 0

7 OET6 21 4 0.20160753 × 10−2

8 Crescent 2 2 0
9 DEM 2 2 -3

10 QL 3 2 7.2
11 CB3 3 2 2

12 LQ 2 2 -1.4142136
13 MXHILB 50 50 0

14 WF 3 2 0
15 EVD52 6 3 3.5997193
16 Davidon 2 20 4 115.70644

17 OET5 21 4 0.26359735−2

18 Polak 1 2 2 2.7182818

19 Hald-Madsen 1 2 2 0
20 Wong 1 5 7 680.63006

21 Watson 31 20 0.14743027 × 10−7

22 Polak 3 10 11 3.8872

23 Polak 6 4 4 -44

24 PBC3 21 3 0.42021427 × 10−2

25 Bard 15 3 0.50816327 × 10−1

26 Kowalik-Osborn 11 4 0.80843684 × 10−2

27 GAMMA 61 4 0.12041887 × 10−6

28 EXP 21 5 0.12237125 × 10−3

29 PBC1 30 5 0.22340496 × 10−1

30 EVD61 51 6 0.3490504926 × 10−1

31 Transformer 11 6 0.19729063

32 Filter 41 9 0.61852848 × 10−2

33 Wong 2 9 10 24.306209
34 Wong 3 18 20 133.72828

35 Polak 2 2 10 54.59815

36 Osborne 2 65 11 0.48027401 × 10−1

37 Shor 10 5 22.600162
38 Maxquad 5 10 -0.8414083

39 Gill 3 10 9.7857721
40 No. of active faces 21 20 0

performance of the two stochastic algorithms. This type of
problems appears in many engineering areas, such as optimal
control, engineering design, discrete optimization, Cheby-
shev approximation and game theory applications. The gen-
eral form of a minimax problem is

minimize
x∈Rn

f(x),

where f(x) = maxFj(x), Fj : Rn → R, j = 1, . . . ,m are
continuously differentiable functions. Some of these prob-
lems are described in full detail in [9], and others in [10].
The characteristics of the problems are summarized in Ta-
ble 1 that lists the name of the problem, the number of func-
tions of the minimax problem (m), the number of decision
variables (n) and the known optimum value. The problems
were coded in MatLab and can be obtained from the corre-
sponding author. For each problem, 100 independent runs
of each algorithm were performed.

3.3 Comparison using performance profiles
To compare the overall performance of the algorithms,

performance profiles, as described in previous section, were
used. Figures 1 and 2 show the performance profiles on the
median and on the minimum (best solution), respectively.
In order to investigate the effect of the number of runs per-
formed in the shape of the performance profiles, we depict
the profiles for 10, 30, 80 and 100 independent runs (Fig-
ures 1(a), 1(b), 1(c), 1(d), 2(a), 2(b), 2(c) and 2(d)). As
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Figure 1: Profiles for median.

expected, it is clear that the number of runs influences the
shape of the performance profiles. For instance, according to
Figures 1(a) and 2(a) for τ = 1, it seems that GA achieves
the best approximation to the optimum in a large major-
ity of the problems (60% and 65%, respectively). With SA
this value is less than 50% in both cases. Figures 1(b) to
1(d) contradict this statement. In fact, the algorithms per-
formance is very similar as it can be seen in Figures 1(c)
and 1(d) (both algorithms achieved a similar performance
on about 50% of the problems). Also, Figure 2(d) seems to
indicate a larger difference between the algorithms perfor-
mance when compared with Figures 2(b) and 2(c). It should
be noted that, for τ = 1 (please refer to Figure 2(a)), GA
solves 65% of the problems with the closest approximation

to the optimum. Recall, that in the performance profiles,
in τ = 1, ρs(1) gives the probability that the solver will
win over all the others. This is an important issue and, as
can be observed, an insufficient number of runs can lead to
misleading conclusions.

Additional information can be obtained for other values
of τ . For instance, for τ = 2, it can be observed that SA
solves more than 65% of the problems and GA about 70% of
the problems (Figures 1(b), 1(c), 1(d), 2(b), 2(c) and 2(d)).
These observations highlight the influence of the number of
runs in the performance profiles. It is clear that a small num-
ber of runs can compromise the analysis and the conclusions
of the comparison.

The robustness of algorithms can be assessed for large
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(a) 10 runs.
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Figure 2: Profiles for minimum.

values of τ . For 10 runs (Figures 1(a) and 2(a)), it can be
observed that GA solves all problems for τ ≈ 6, 000 and
τ ≈ 50, 000, respectively. On the other hand, SA solves
all problems for τ ≈ 112, 000 and τ ≈ 400, 000, respectively.
This relation is consistent for 30, 80 and 100 runs. In Figure
1 the values of τ where GA and SA solve all the problems
are in the order of 101 and 104, respectively, and in Figure
2 these values are in the order of 104 and 106.

In Figures 1 and 2, we analyze the performance from two
distinct points of view. With test problems, it may be inter-
esting to analyze the performance of an algorithm based on
the best solution found over all runs (“peak” performance).
In this sense, an algorithm is said to be “better” than other
if it found the best approximation to the optimal solution
over all the runs. This idea contrasts with an analysis based

on location measures. For instance, based on Figure 2(d),
we can conclude that GA outperforms SA; on the contrary,
Figure 1(d), based on the median, shows that the two algo-
rithms are similar in performance. Therefore, performance
based on extreme values should be read with care, if not at
all avoided.

This analysis should also include the information regard-
ing the variability. For real world problems, with computa-
tionally expensive objective evaluations, it is more impor-
tant to have an algorithm that exhibits a higher average
performance and small variability, than an algorithm that
has a “high peak” performance. It is crucial to have an al-
gorithm that carries the lowest risk of missing a “suitable
solution” due to the reduced number of runs that can be
performed (in most cases, a single run).
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Figure 3: Profiles for Stochastic Algorithms.

Figure 3 shows the performance profiles for first, second
and third quartiles for each algorithm. It can be observed
that the curves for these metrics cross each other. These
can be explained by the different variability of the distri-
butions of the results for each problem, reinforcing the care
with which performance profiles must be read in the case of
stochastic algorithms.

In Figure 4(a), we inspect, for each problem, the trade-
off between accuracy and precision. For this purpose, the
difference between the medians and the interquartile range
for the measures used in the the performance profiles are
plotted for each problem. In general, the algorithms per-
formance for a given problem corresponds to a compromise
between these two goals. The quadrants of the graph define
regions that allow the comparison of the results in terms of
accuracy and precision as follows:

• 1st quadrant - SA is more accurate and more precise
than GA;

• 2nd quadrant - SA is less accurate and more precise
than GA;

• 3rd quadrant - SA is less accurate and less precise than
GA;

• 4th quadrant - SA is more accurate and less precise
than GA.

For any problem that belongs to the 3rd quadrant, GA is
preferable to SA because GA is better in terms of accuracy
and precision than SA. Conversely, for any problem in the
1st quadrant, SA is preferable to GA because SA is better
in terms of accuracy and precision than GA. The 2nd and
4th quadrants define regions of indifference. Thus, problems
that belong to these quadrants can be solved by GA or SA
with different compromises between accuracy and precision,
according to the specificity of the problem at hand.

For illustrative purposes, and to reinforce the results plot-
ted in Figure 4(a), we show the boxplots for some of the
problems. Figure 4(b) shows the boxplot of the distribution
of the objective function values for problem 16. The median
of the results of GA is greater than the median of the re-
sults of SA, i.e., GA is less accurate than SA. In terms of
variability, it can be observed the larger interquartile range
of the results from SA when compared with the results from
GA.

The boxplot of the distribution of the objective function
values for problem 24 is shown in Figure 4(c). Here, the
median of the results of GA is clearly lower than the median
of the results of SA, i.e., GA is more accurate than SA. In
terms of variability, it can also be seen the larger interquar-
tile range of the results from SA when compared with the
results from GA.

Finally, Figure 4(d) is the boxplot of the distribution of
the objective function values for problem 38. Here, the re-
sults of SA are more accurate and precise than the results
from GA.

The results show that, in the context of stochastic algo-
rithms, the choice of the performance measure in building
up the performance profiles must be thought with caution.

4. CONCLUSIONS
In this work, we show that the number of runs influences

the shape of the performance profiles. The stability of the
profiles seem to be achieved for a number of runs over 30,
becoming stable for an even larger number of runs.

The use of performance measures based on the best solu-
tions is not sustainable, given the stochastic nature of the
algorithms and the non-symmetric distribution of the results
with the presence of very large extreme values. Performance
comparison must include some kind of measure in terms of
of accuracy and precision, allowing the enhancement of the
bi-objective nature of the assessment.
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Figure 4: Performance analysis by problem.

Future work will include the development of statistical
comparisons taking into consideration the dependence on
performance measures and also on the set of problems.
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