
MNRAS 499, 1300–1311 (2020) doi:10.1093/mnras/staa2844
Advance Access publication 2020 September 19

Radial derivatives as a test of pre-big bang events on the Planck data

R. Fernández-Cobos ,1‹ A. Marcos-Caballero1,2 and E. Martı́nez-González1
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ABSTRACT
Although the search for azimuthal patterns in cosmological surveys is useful to characterize some effects depending exclusively
on an angular distance within the standard model, they are considered as a key distinguishing feature of some exotic scenarios,
such as bubble collisions or conformal cyclic cosmology (CCC). In particular, the CCC is a non-stardard framework that predicts
circular patterns on the cosmic microwave background intensity fluctuations. Motivated by some previous works that explore the
presence of radial gradients, we apply a methodology based on the radial derivatives to the latest release of Planck data. The new
approach allows exhaustive studies to be performed at all-sky directions at a HEALPIX resolution of Nside = 1024. Specifically,
two different analyses are performed focusing on weight functions in both small (up to a 5-deg radius) and large scales. We
present a comparison between our results and those shown by An, Meissner & Nurowski (2017) and An et al. (2018). In addition,
a possible polarization counterpart of these circular patterns is also analysed for the most promising case. Taking into account
the limitations to characterize the significance of the results, including the possibility of suffering a look-elsewhere effect, no
strong evidence of the kind of circular patterns expected from CCC is found in the Planck data for either the small or the large
scales.
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1 IN T RO D U C T I O N

A usual way of testing the standard model of cosmology is to
confront the data to alternative models and scenarios that provide
a distinguishing prediction. In particular, looking for azimuthal
patterns have been a recurrent topic in the literature, at least, since
a spatial mapping of the cosmic microwave background (CMB)
fluctuations is available. This symmetry is particularly convenient
when modelling phenomena that depend exclusively on an angular
distance, such as flows that extend homogeneously from a source, or
spatial two-point correlations. For this reason, azimuthal patterns are
present in many different contexts, including some aspects within the
standard cosmological paradigm, such as the monopolar contribution
from the stacking of CMB peaks (e.g. Marcos-Caballero et al. 2016),
the imprint of Galactic supernova remnants (cf. Liu, Mertsch &
Sarkar 2014), or the integrated Sachs–Wolfe effect from cosmic
voids (e.g. Martinez-Gonzalez, Sanz & Silk 1990; Finelli et al. 2016).
Within more exotic scenarios, some specific azimuthal patterns have
been considered, for instance, as a footprint of bubble collisions (e.g.
Aguirre & Johnson 2011), the effect of a cosmic texture (Cruz et al.
2007), or an evidence of the intersection of different images of the
same last-scattering surface in a closed topology (Cornish, Spergel
& Starkman 1998).

Another scenario in which such circular patterns would be
expected is the conformal cyclic cosmology (CCC) presented by
Penrose (2010). Within this model, coalescences of black holes
from the previous aeon would leave a particular mark on the

� E-mail: rfdz.cobos@gmail.com

CMB intensity fluctuations as low-variance azimuthal patterns.
These imprints have been sought by different authors on the 7-
yr WMAP data. First, Gurzadyan & Penrose (2010) claimed a 6σ

detection of sky directions with anomalously low-variance angular
profiles, although several subsequent papers denied that statistical
significance. In particular, Wehus & Eriksen (2011), Moss, Scott
& Zibin (2011), and Hajian (2011) showed that there is nothing
special at the pointed centres of circles with anomalously low
variance when considering the expected fluctuations in the whole
data map. In a posterior paper, Gurzadyan & Penrose (2013) focused
on the non-isotropic distribution of these low-variance concentric
circles in the WMAP data. Such anisotropic distribution could be
a reflect of the same effect that produces the already known CMB
hemispherical asymmetry (see Planck Collaboration VII 2020b, and
references therein), which is not necessarily related to any pre-
big bang phenomenology. In addition, DeAbreu, Contreras & Scott
(2015) presented an analysis of both WMAP and Planck data in
which they demonstrated that the presence of these concentric circles
are not significant with respect to the expected pattern from standard
simulations.

More recently, several papers have been produced in order to
explore these circular patterns focusing on the analysis of cumulative
distribution functions (CDF) of some estimators computed from the
data maps. For instance, Meissner, Nurowski & Ruszczycki (2013)
designed a filter which highlights the ring-type features up to scales
associated with a radius of 22◦ on the intensity CMB map. The
significance of the most prominent structures are then evaluated in
terms of the tails of the CDF of the filtered field. They claim a
detection of ring-type structures on WMAP data at the 99.7 per cent
confidence level. In addition, there are other two works focusing on
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Planck data. In the first one, An et al. (2017) look for the presence
of circles in the large-scale CMB field using the differences of the
mean intensity between adjacent rings. They find an anomalous scale
around 8 deg of radius at a 99.6 per cent confidence level, although
they admit that this statistical significance is possibly overrated in
light of a potential look-elsewhere effect. In a second paper, An et al.
(2018) explore the scales up to a 5-deg radius computing the radial
slope inside the rings, finding evidence of an anomalous detection at a
99.98 per cent confidence level. Finally, in another recent paper, Jow
& Scott (2020) revisit the evidence of radial gradients, also including
a polarization analysis. They conclude that the significance of these
features is not relevant when the probability of finding a similar result
within the whole range of scales is considered.

In this paper, we use a similar approach to characterize the circular
patterns in terms of the radial derivatives. The method has already
been used to analyse the CMB derivatives up to second order within
discs by Marcos-Caballero, Martı́nez-González & Vielva (2017).
Since this methodology is more optimal than analogous approaches
in real space, it allows exhaustive analyses to be performed at all-
sky directions at a HEALPIX resolution of Nside = 1024 (Gorski et al.
2005). Both the small and large scales of the latest Planck data
release are analysed in order to check the statistical significance
of the results shown in previous works. In addition, a possible
counterpart in polarization is also explored for the most promising
case. In particular, a stacking analysis is performed to increase
the signal-to-noise ratio of the polarization signal. The paper is
structured as follows. The specific methodology is described in
the next section. In Section 3, we present a multiscale analysis of
azimuthal patterns in the Planck data using the end-to-end Planck
simulations. The statistical significance of the results is discussed
in Section 4. Finally, Section 5 collects the conclusions of the
analysis.

2 ME T H O D O L O G Y

In general, a vector field ζ±1 on the sphere can be spanned in the
helicity basis using the spin-weighted spherical harmonics ±1Y�m as

ζ±1 (n) =
∞∑

�=1

�∑
m=−�

ζ±1
�m ±1Y�m (n) , (1)

where ζ±1
�m denotes the coefficients of the expansion. Note that, in the

particular case in which ζ±1 is the gradient of a scalar field, these
coefficients can be expressed in terms of the spherical harmonic
coefficients a�m of the field as

ζ±1
�m = ∓

√
(� + 1)!

(� − 1)!
a�m. (2)

Suppose that the vector field ζ±1 is expressed in Galactic co-
ordinates. As we are interested in radial patterns from each sky
direction n, we use a locally defined rotation to align the local
reference system of ζ±1 at any other direction n′ with the geodesic
connecting n and n′. The field projected along the new axes (see
Fig. 1) is then averaged using the corresponding weight function
W centred at each direction n. This weight function defines the
region around n in which each vector component is averaged,
in such a way that it is null except inside the region, where its
value is set to 1. The following paragraphs are basically based
on the methodology described in Marcos-Caballero et al. (2017).
Explicitly, an estimator ζ̄±1 of the averaged vector components in
the new locally defined coordinates can be written in real space

Figure 1. Flat projection of a small patch of the sphere where the locally
projected vector components are shown at some directions n′ within a ring
(grey dots) around the central direction n. The value of the weight function
W (n · n′) is 1 inside the ring, while it is set to zero outside this region. In
the particular case in which the vector is the derivative of a scalar field, the
integral of the tangential component (dotted arrows) inside the ring is null.

as

ζ̄±1 (n) =
∫

d2n′ W
(
n · n′) ζ±1

(
n′) eiφ(n,n′), (3)

where φ
(
n, n′) is the angle between the geodesic connect-

ing Galactic north and the n′ direction, and the geodesic con-
necting the n and n′ directions. Note that, as the weight
function presents azimuthal symmetry on the sphere with re-
spect to the central direction, it depends only on the angu-
lar distance between the corresponding direction and the central
point.

Thereby, equation (3) describes a complex scalar field. On the
one hand, only the spinor components with even parity contribute
to the real part of this field, defining the radial contribution. On the
other hand, the odd-parity contributions give place to the imaginary
part, which is the vector component in the direction orthogonal to
the geodesic connecting n and n′. It is depicted using dotted arrows
in Fig. 1. In so far as we are interested in the CMB derivatives, the
integral of this tangential component within the azimuthally symetric
region selected by W is necessarily null. This is because, in this case
(as well as for all the greater order derivatives), it represents the curl
contribution of a gradient. Therefore, an estimator η̄ ≡ ζ̄+1 = ζ̄−1

for the averaged radial derivative of the CMB within the region
defined by W around each direction n can be expanded in terms of
the standard spherical harmonics Y�m as follows:

η̄ (n) =
∞∑

�=1

�∑
m=−�

D�a�mY�m (n), (4)

where a�m are the spherical harmonic coefficients of the intensity
field. Equation (4) implies that both the radial projection and the
average within the azimuthally invariant region defined by W can be
encoded as a convolution of the CMB intensity map with a window
function D�. This filter is computed as follows:

D� =
∞∑

�′=0

M��′W�′ , (5)

where W� denotes the filter coefficients of the weight function W,
and the coupling matrix can be written as

M��′ = − (
2�′ + 1

)√ (� + 1)!

(� − 1)!

�+�′∑
L=|�−�′ |

(2L + 1)

√
(L − 1)!

(L + 1)!

×
(

� �′ L

0 0 0

)(
� �′ L

1 0 −1

)
cL, (6)
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with

cL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π

2(L+3)

(L + 1)

L

⎛
⎜⎜⎜⎝

L + 1

L + 1

2

⎞
⎟⎟⎟⎠

2

, if L odd

0, if L even

. (7)

In practice, these cL coefficients are computed using the following
recursive rule:

cL+2 = L (L + 2)

(L + 3) (L + 1)
cL, (8)

with c0 = 0, and c1 = π /4.
Explicitly, in the case in which W selects a disc with angular

radius ε around the direction n, the harmonic coefficients W� can be
computed as

W disc
� (μ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if � = 0

−
√

1 + μ

1 − μ

P 1
� (μ)

�(� + 1)
, if � �= 0

, (9)

where μ = cos ε, and P 1
� (μ) denotes the associated Legendre

polynomial with m = 1. The coefficients for a ring with inner angular
radius r and thickness ε are computed as a normalized difference of
two discs:

W
ring
� (μi, μo) = (1 − μo) W disc

� (μo) − (1 − μi) W disc
� (μi)

μi − μo
, (10)

with inner μi = cos r, and outer μo = cos (r + ε) scales.
Summarizing, within this framework, it is possible to obtain a map

of averaged radial gradients η̄ by computing a single convolution
of the data map. Fig. 2 shows some examples of D� filters for
both the small-scale (upper panel) and the large-scale (bottom
panel) regimes considered in the following sections. Therefore, this
approach is less computationally expensive than the equivalent real-
space methodologies. For instance, while a coarse-grained grid of
centres is selected in other analyses, such as An et al. (2017), this
methodology enables us to consider the radial gradient around all
pixels of the data map.

3 PLANCK DATA ANALYSIS

In this section, we analyse the foreground-cleaned CMB maps pro-
vided as part of the Planck 2018 data release (Planck Collaboration
IV 2020a). In order to compute the significance of the results,
the same analysis is applied both to data and FFP101 simulations.
These end-to-end realizations are generated with the best available
model for the anisotropic instrumental noise, beam asymmetries,
and systematic effects present in the data. All maps are convolved
with a Gaussian beam of 10 arcmin full width at half-maximum
(FWHM) at a HEALPIX resolution of Nside = 1024. Note that, while

1The full focal-plane (FFP) simulations are Monte Carlo realizations which
include the CMB signal, the instrumental noise, and the systematic effects
expected in the Planck data. See Planck Collaboration IV (2020a) and
references therein for further details. All simulated maps used in this paper
have been previously propagated through the corresponding component-
separation pipeline by the Planck Collaboration as described in Planck
Collaboration VII (2020b).

Figure 2. Examples of D� filters for the small-scale (upper panel) and the
large-scale (lower panel) regimes. The W functions are parametrized by the
inner radius r, and the thickness of the ring ε. Both angular distances are
expressed in radians.

1000 CMB realizations have been provided, only 300 instrumental
noise realizations are available. Following the methodology used in
Planck Collaboration VII (2020b), we permute the signal and noise
realizations to generate a total of 999 simulations. In particular, we
add the same 300 noise realizations to the 0–299, 300–599, and 600–
899 sets, and the first 100 noise realizations to the 900–999 CMB
simulated maps.2 The whole analysis is performed using the SEVEM
maps, although we have checked that similar results are obtained
from the other Planck foreground-removed CMB maps.

Different sizes for the W function are considered in terms of
the inner radius r and the thickness ε. In this work, two different
analyses are distinguished. On the one hand, a small-scale analysis
in which both quantities are sampled at intervals of 0.01 rad, so that
the thickness does not exceed 2.5 deg and the outer radius is always
smaller than 5 deg. On the other hand, we explore a large-scale
domain from r = 0.06 rad to 0.34 rad with intervals of 0.04 rad.
Three different ring widths are considered in this case, namely ε =
0.04, 0.08, and 0.12 rad.

2Except for the CMB realization 970, because, as noted in Planck Collabo-
ration VII (2020b), the simulated map is corrupted.
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Table 1. Probability of finding a number of independent η̄ extrema in FFP10 simulations which is strictly greater than that
obtained from the SEVEM data for different thresholds and small-scale weight functions with inner radius r and thickness ε.

Weight functions P-values for maxima P-values for minima
r (rad) ε (rad) >3.0σ >3.5σ >4.0σ >4.5σ <−3.0σ <−3.5σ <−4.0σ <−4.5σ

0.00 0.01 0.751 0.371 0.176 0.338 0.019 0.082 0.349 0.742
0.02 0.066 0.130 0.083 0.828 0.439 0.800 0.953 0.843
0.03 0.350 0.120 0.034 0.037 0.462 0.036 0.334 0.108
0.04 0.567 0.510 0.724 0.253 0.039 0.074 0.051 0.598

0.01 0.01 0.130 0.051 0.008 0.074 0.272 0.349 0.818 0.696
0.02 0.448 0.150 0.001 <0.001 0.280 0.040 0.271 0.360
0.03 0.603 0.329 0.174 0.272 0.324 0.002 0.180 0.624
0.04 0.827 0.958 0.238 0.560 0.069 0.113 0.033 0.190

0.02 0.01 0.350 0.232 0.032 0.007 0.011 0.073 0.021 0.094
0.02 0.127 0.050 0.157 0.056 0.032 0.264 0.307 0.754
0.03 0.637 0.870 0.890 0.272 0.061 0.350 0.309 0.262
0.04 0.387 0.778 0.983 0.564 0.194 0.544 0.148 0.183

0.03 0.01 0.090 0.016 0.019 0.426 0.588 0.761 0.341 0.090
0.02 0.321 0.293 0.441 0.368 0.242 0.363 0.283 0.376
0.03 0.166 0.811 0.616 0.266 0.286 0.548 0.188 0.080
0.04 0.077 0.349 0.373 0.544 0.189 0.188 0.400 0.530

0.04 0.01 0.537 0.659 0.186 0.080 0.010 0.018 0.187 0.227
0.02 0.120 0.046 0.048 0.160 0.141 0.461 0.287 0.138
0.03 0.740 0.619 0.420 0.248 0.414 0.438 0.303 0.250
0.04 0.136 0.052 0.564 0.563 0.550 0.091 0.223 0.043

Given a certain weight function, the following steps are performed
for both data and simulated maps:

(i) Monopole and dipole are removed outside the Planck confi-
dence mask.

(ii) The CMB intensity map is convolved with the corresponding
D� according to equation (4).

(iii) The η̄ map is then normalized by the pixel-dependent standard
deviation computed from the first 900 simulated maps.

This normalization enables to weight properly those pixels mitigated
by the null values from the mask. Although no mask apodization is
applied before convoluting, this seems to be precise enough in the
large-scale case, in which the Planck confidence mask is kept in the
η̄ map. We avoid that potential mask effects bias the results applying
the same procedure to both data and simulations. However, in the
analysis of the small scale, we can afford to adopt a more conservative
approach. To ensure that the convolution does not take into account
any unreliable region, the Planck confidence mask is extended in
the following way: we convolve the mask with a Gaussian filter in
which the outer radius of W is taken as FWHM, and then we set to
zero all values less than 0.9. The η̄ map is then remasked with the
extended mask. This approach prevents point sources from growing
too much. Nevertheless, we check for the considered scales that
similar results are obtained from a more conservative mask in which
all centres whose W function overlaps more than a 1 per cent are
excluded.

The following estimators are then computed from the data allowed
by the corresponding mask:

(iv-a) The extrema (maxima and minima) above different thresh-
olds from the normalized η̄ map.

(iv-b) The CDF from the normalized η̄ map is sampled by using
10 000 bins. We check that the results remain basically unchanged
when a greater number of bins is considered.

Finally, in order to assess the statistical significance of the results,
we compute the corresponding p-values taking as reference the
distribution of values obtained from the FFP10 simulations.

3.1 Number of extrema

The number of maxima N∧ (minima N∨) above (below) different
thresholds obtained from the data is compared with the values
computed from 900 FFP10 simulations. This comparison is made
in terms of a non-standard p-value defined as P (N∧/∨ > Ndata

∧/∨),
namely the probability of finding a number of independent extrema
strictly greater than that obtained from the data, given the standard
model. In addition, we check that very few extrema are expected
above 4.5σ . The fact that it is common to find realizations in which
there is no extreme greater than this threshold is the reason for
not taking the standard definition of a p-value. If we considered
P (N∧/∨ ≥ Ndata

∧/∨), i.e. the probability of finding a number of extrema
greater or equal than that obtained from the data, then the p-
value would saturate provided that no extrema above this threshold
are obtained from the data. As expected, the difference between
both definitions is not significant at low thresholds (3σ and 3.5σ ),
while the former yields smaller p-values at high thresholds (4σ and
4.5σ ).

For the small-scale analysis, it is expected some clustering of
extrema in particular regions. Mainly for visualization purposes, we
additionally select an independent sample keeping only the most
extreme one from a region within the correlation scale given by
twice the outer radius of the ring. On the contrary, such criterion
makes little sense for the large-scale analysis since the proportion
of overlapping area of the W functions is smaller. In addition,
as the number of extrema above the considered thresholds is
smaller for this case, a reduction of the sample implies poorer
statistics.
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Figure 3. The 15 most prominent maxima of the radial gradient averaged with a weight function with r = 0.01 rad and ε = 0.02 rad (red points). The numbers
in the map correspond with the value of the normalized η̄ map at the corresponding direction. We also plot the 10 directions given for this case in An et al.
(2018) as blue stars. As background, it is shown the extended mask for this case.

3.1.1 Small-scale analysis

At a HEALPIX resolution of Nside = 1024, we find no significant
differences at small scales between considering the whole sample
of extrema or selecting the independent ones. As it is preferable to
consider the independent sample to identify different regions in the
sky, the figures in this section are based on this subset of extrema for
a better visualization. Accordingly, avoiding being redundant, only
p-values for independent extrema are shown to allow a consistent
comparison with the figures. We show the results for these p-values
in Table 1 for different small-scale weight functions with inner radius
r and thickness ε. In general, the number of extrema seems to be
compatible with the expected value from the Planck model. An
exception is found for a weight function with r = 0.01 rad and ε

= 0.02 rad. In this case, the number of maxima above 4.5σ obtained
from the data is, in fact, strictly greater than the same number
computed from any of the FFP10 simulations. However, using the
standard definition of the p-value, the statistical significance drops
when we focus on maxima above 4σ , in which case we obtain 5 times
the probability shown in the table.

This scale is also highlighted as possibly anomalous by An et al.
(2018). Note that the sign convention is changed between that
work and this analysis. As shown in Fig. 1, we consider that a
radial gradient which points towards the centre is positive, while
the convention used by these authors takes a slope as positive
when it points outwards the centre. The red points in Fig. 3 depict
the sky directions in which the 15 most prominent independent
extrema of η̄ are found for this case. The numbers in the map
correspond with the value of the normalized η̄ map at the corre-
sponding central direction. We also plot the 10 directions given
for the same weight function by An et al. (2018) as blue stars,
7 of which are among our 15 sky directions. However, there are
only 4 matches within our 10 most prominent maxima. We have
checked that considering a grid of centres at Nside = 64 (as the
mentioned authors do) does not make a big difference in our analysis.
Other variations between both methodologies might explain these
discrepancies. In the first place, although they are supposed to

trace the same, we use different estimators in practice. They might
involve different kinds of numerical errors. For instance, as can be
seen in Fig. 2, the D� filters, specially for small scales, are not
bandlimited. Nevertheless, this effect is expected to be innocuous
to the conclusions of the analysis. More important is the use of
the FFP10 end-to-end simulations as a guarantee that the noise
properties and some systematics present in the Planck data are taken
into account in the simulated maps. In addition, the normalization
of the radial derivative by the pixel-by-pixel standard deviation to
ensure that all pixels are properly weighted may produce changes in
the results.

In Fig. 4, we show the set of CMB intensity patches from the
SEVEM map centred on the sky directions depicted by red points in
Fig. 3. In most of them, the azimuthal pattern is visually recognizable.
But note that having a perfect ring is not necessary to obtain a maxima
in η̄, provided that there is an intense asymmetric contribution to the
radial derivative throughout the region allowed by the corresponding
W function. Moreover, most of these patches present a positive excess
in the central region. This is possibly due to the fact that, given
the imposed constraint, the field has no room to vary within the
disc defined by the inner radius of this particular W. Therefore,
the limitations associated with this specific scale might accidentally
entail that the low p-value is caused by a more general anomalous
‘peakness’ at these particular scale and locations, having nothing to
do with possible implications from CCC.

In addition, An et al. (2018) also find a small p-value in the case of
a weight function with r = 0.01 rad and ε = 0.03 rad. No evidence of
anomaly is found for maxima at this scale in this analysis. Actually, a
low p-value is obtained at this scale for the number of minima below
−3.5σ , but the low probability does not persist at the most extreme
thresholds. In any case, it would not correspond to the deviation
from the model found by An et al. (2018), since in our analysis η̄

minima represent directions in which the CMB temperature increases
outwards. As shown in Section 4, due to limitations to sample the
tail of the extrema distribution, obtaining a probability of 0.002 is
not a real threat for the standard model.
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Derivatives as a test of pre-big bang events 1305

Figure 4. CMB intensity patches centred on the sky directions in which the most prominent 15 maxima are found in the normalized η̄ map for a weight function
with r = 0.01 rad and ε = 0.02 rad. The mean value is subtracted from each patch for a better visualization, and the colour scale covers from −300 to 300 μK.
The grey regions depict data excluded by the extended Planck confidence mask, while the dotted circumferences represent the edges of the region defined by W.
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Figure 5. Stacked patches of CMB intensity (upper panel), Qr (middle
panel), and Ur (bottom panel) Stokes parameters centred at sky directions
in which η̄ maxima above 3.5σ are found with a weight function with r =
0.01 rad and ε = 0.02 rad. The colour bars are expressed in μK. The edges
of the region defined by W are depicted by the dotted circumferences.

3.1.2 Polarization analysis of the most deviated case

The polarization pattern at the locations depicted in Fig. 3 is also
explored using the Qr and Ur Stokes parameters. They provide a
representation of the polarization vector in terms of a local frame in
which the polarization axes are considered radially and tangentially
with respect to a reference centre, such as those depicted in Fig. 1 (see,
for instance, Planck Collaboration VII 2020b). As the corresponding
individual patches of Qr and Ur are noisy, an alternative approach
is applied. Let us consider, for the sake of the argument, that most
of these objects are elements of a particular natural kind. Under this
view, it would be convenient to perform a stacking analysis in order
to increase the signal-to-noise ratio of their peculiar features. Under
these circumstances, it may be possible to check if the polarization
pattern is compatible with the expected one from the standard model.
In this case, the radial profiles of Qr and Ur depend on the angular
cross-spectra between η̄ and the corresponding polarization mode,
namely C

η̄,E
� and C

η̄,B
� , respectively (see Marcos-Caballero et al.

2016). Note that a contribution from C
η̄,E
� is expected within the

standard model. In fact, those cross-spectra are nothing else than
filtered versions of the usual C

T ,E
� and C

T ,B
� , respectively. Fig. 5

shows the stacked patches of CMB intensity, Qr, and Ur Stokes
parameters centred at sky directions in which η̄ maxima above
3.5σ are found with a weight function with r = 0.01 rad and ε

= 0.02 rad. The orientation of the patches is defined relative to their
local meridian. In addition, a comparison between the angular radial
profiles from the data and the model is shown in Fig. 6. As expected,
the CMB intensity patch presents an azimuthal pattern. In terms of the
radial profile, the Planck intensity presents a systematical deviation
from the expected value. Nevertheless, the deviation is within the
errorbars and we should take into account that the bins of the profile
are expected to be highly correlated. We compute the following χ2

square from data and simulations:

χ2 =
n∑

i,j=1

[μ(θi) − μ̄(θi)] C−1
ij

[
μ(θj ) − μ̄(θj )

]
, (11)

where i runs over 16 rings at different angular distances from the
centre with an angular width of 20.6 arcmin, and μ(θ i) is the mean
angular profile of the selected extrema from the data at the centre
of each ring. The covariance matrix C between different rings and
the expected value of the angular profiles within the standard model
μ̄ are computed from the FFP10 simulations. As the distribution of
this estimator obtained from simulations fits well with a theoretical
χ2 with 16 degrees of freedom, we use it to compute a p-value as
the probability of obtaining a χ2 value from a standard realization
at least as great as the one computed from the data. In the case of
the intensity profile, this yields a value of 0.037 for maxima above
3.5σ , which could be indicating a certain deviation. However, the
p-value from maxima above 4.0σ is 0.841. Regarding polarization,
the Qr component from the data seems to be compatible with the
predicted level within the standard model. As expected, the Ur pattern
is noisy for both data and simulations. The corresponding p-values
for maxima above 3.5σ are 0.789 and 0.553, respectively, and for
maxima above 4.0σ are 0.936 and 0.866. Therefore, we conclude that
taking the group of extrema as a specific kind of events, the potentially
anomalous effect that we could have measured is diluted. Note that
for this W function, 63 independent η̄ maxima are detected on the
SEVEM data above 3.5σ , and 22 above 4.0σ . Only 9 independent
maxima are detected above 4.5σ , but we are not able to compute
properly the error bars of the profiles for this case as there are some
realizations in which no maxima are obtained above this threshold.
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Derivatives as a test of pre-big bang events 1307

Figure 6. Mean radial profiles in μK from the stacking of the CMB intensity and polarization at η̄ maxima above 3.5σ (top panels) and 4.0σ (bottom panels)
using a weight function with r = 0.01 rad and ε = 0.02 rad. The blue line depicts the radial profile from the SEVEM map, while the dashed black line is the mean
value from FFP10 simulations. The shadowed regions show the 68 and the 95 per cent confidence levels estimated from simulations. The differences between
data and simulations are explicity shown in the small bottom panels. The edges of the region defined by W are depicted by the vertical dotted lines.

3.1.3 Large-scale analysis

Analogously, Table 2 shows the p-values computed from the number
of extrema present in the η̄ maps generated with different large-scale
weight functions. As mentioned at the beginning of this section, due
to the small number of extrema we keep in some cases, considering
a subset of independent extrema is not useful for the large-scale
analysis because we obtain an unreliable statistics. The most deviant
case is then the counting of maxima above 3.5σ and 4σ for r =
0.26 rad and ε = 0.04 rad, which yields a probability of 0.001. We
also obtain a small p-value (0.004) for the case of maxima above 4σ

for r = 0.06 rad and ε = 0.04 rad, but the fact that no deviation is
observed above 4.5σ makes suspect that it could be a mere statistical
fluke. In any case, as it is shown in Section 4, a probability of 0.001
is not small enough in this analysis to be considered an anomaly.

Note that An et al. (2017) find the greatest deviation from a
particular scale with a radius around 8 deg when looking for
differences between the mean value of the CMB intensity fluctuations
within contiguous rings. This approach is a coarse-grain estimation of
the radial derivative in the centred region of a major ring that contains

the two contiguous ones. As there are some overlapping between
those rings and the W functions considered in this analysis, it would
be expected to observe a counterpart of that deviation from the model.
However, it does not seem to be found in this analysis. Nevertheless,
motivated by the possibility that we might be overlooking relevant
scales, we compute an extra case with r = 0.08 rad and ε = 0.12 rad,
that matches one of the scales (using their notation: γ = 0.14, and
ε = 0.06) in table 3 from An et al. (2017). However, no anomalous
p-values are obtained from this case either.
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Table 2. Probability of finding a number of η̄ extrema in simulations which is strictly greater than that obtained from the
SEVEM data for different thresholds and large-scale weight functions with inner radius r and thickness ε.

Weight functions P-values for maxima P-values for minima
r (rad) ε (rad) >3.0σ >3.5σ >4.0σ >4.5σ <−3.0σ <−3.5σ <−4.0σ <−4.5σ

0.06 0.04 0.217 0.044 0.004 0.147 0.806 0.506 0.437 0.340
0.08 0.815 0.606 0.140 0.042 0.931 0.803 0.503 0.413
0.12 0.791 0.849 0.668 0.286 0.671 0.196 0.136 0.060

0.10 0.04 0.497 0.258 0.174 0.159 0.937 0.907 0.756 0.146
0.08 0.512 0.873 0.853 0.407 0.411 0.240 0.118 0.021
0.12 0.686 0.381 0.547 0.272 0.312 0.104 0.089 0.164

0.14 0.04 0.472 0.324 0.307 0.091 0.298 0.453 0.739 0.144
0.08 0.404 0.218 0.240 0.478 0.439 0.429 0.402 0.196
0.12 0.631 0.481 0.636 0.286 0.699 0.550 0.882 0.268

0.18 0.04 0.252 0.054 0.696 0.326 0.580 0.617 0.348 0.168
0.08 0.770 0.628 0.659 0.421 0.978 0.818 0.396 0.404
0.12 0.801 0.782 0.893 0.297 0.861 0.962 0.863 0.303

0.22 0.04 0.632 0.634 0.296 0.334 0.798 0.928 0.994 0.328
0.08 0.759 0.453 0.254 0.414 0.757 0.718 0.744 0.422
0.12 0.344 0.122 0.086 0.101 0.591 0.662 0.754 0.268

0.26 0.04 0.038 0.001 0.001 0.084 0.780 0.374 0.244 0.079
0.08 0.157 0.052 0.114 0.120 0.780 0.859 0.820 0.400
0.12 0.273 0.087 0.061 0.033 0.766 0.764 0.543 0.062

0.30 0.04 0.827 0.473 0.614 0.166 0.832 0.550 0.594 0.334
0.08 0.559 0.329 0.549 0.201 0.904 0.692 0.117 0.426
0.12 0.661 0.464 0.456 0.283 0.756 0.753 0.721 0.256

0.34 0.04 0.552 0.408 0.702 0.618 0.679 0.670 0.774 0.143
0.08 0.871 0.708 0.638 0.232 0.603 0.753 0.718 0.404
0.12 0.766 0.551 0.420 0.149 0.542 0.626 0.847 0.268

Table 3. Given the Planck model, the probability of
finding a value of AR/L with a = 10 000 at least as
great as the value obtained from the SEVEM data for
different small-scale weight functions with inner radius
r and thickness ε.

Weight functions P-values
r (rad) ε (rad) AL AR

0.00 0.01 0.832 0.734
0.02 0.997 0.336
0.03 0.286 0.008
0.04 0.312 0.598

0.01 0.01 0.949 0.030
0.02 0.249 <0.001
0.03 0.328 0.321
0.04 0.382 0.853

0.02 0.01 0.117 0.034
0.02 0.570 0.084
0.03 0.412 0.830
0.04 0.440 0.969

0.03 0.01 0.351 0.282
0.02 0.777 0.360
0.03 0.159 0.636
0.04 0.201 0.483

0.04 0.01 0.049 0.281
0.02 0.037 0.168
0.03 0.317 0.674
0.04 0.017 0.454

One could argue that the fact that An et al. (2017) exclude all
centres whose W function overlaps a fraction more than 1 per cent of
the area with the confidence mask may increase the significance
of their results. The size of the sample is drastically reduced
when considering such an aggressive mask. For the smaller scales
considered in this analysis, this mask excludes typically an 80–90
per cent of the sky. It rises above the 90 per cent for radius greater
than 0.30 rad, making unfeasible the analysis of extrema for r >

0.22 rad even for the most permissive thresholds (3.0σ and 3.5σ ).
In any case, no small p-values are found for r < 0.22 rad excluding
all centres whose W function overlaps more than 1 per cent with the
Planck confidence mask, not even for r = 0.06 rad and ε = 0.04 rad.

3.2 Cumulative distribution functions

In this Section, we consider an alternative statistic, which is also
sensitive to the tails of the CDF from the normalized η̄ map.
In particular, it was also followed by An et al. (2017, 2018) to
evaluate their results. Specifically, the tails of the CDF from data
and simulations are compared by using the estimator described in
Meissner (2012):

AR = − a

N

n∑
i=1

di ln
[
1 − (F (xi))

a
]
,

AL = − a

N

n∑
i=1

di ln
[
1 − (1 − F (xi))

a
]
, (12)

where N is the total number of unmasked pixels in the η̄ map. It is
assumed that the CDF is sampled using n bins, in such a way that
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Derivatives as a test of pre-big bang events 1309

Figure 7. Difference between the CDF from the SEVEM data and the theoretical CDF computed as the mean from the FFP10 simulations for a W function with
r = 0.01 rad and ε = 0.02 rad. The whole range is shown in the middle panel, while a zoom of the left and right tails is shown in the left-hand and right-hand
panels, respectively. The shaded regions correspond to the 68 per cent and 95 per cent confidence levels estimated from the FFP10 simulations.

Table 4. Given the Planck model, the probability of
finding a value of AR/L with a = 10 000 at least as great as
the value obtained from the data for different large-scale
weight functions with inner radius r and thickness ε.

Weight functions P-values
r (rad) ε (rad) AL AR

0.06 0.04 0.357 0.063
0.08 0.566 0.049
0.12 0.076 0.831

0.10 0.04 0.720 0.286
0.08 0.031 0.947
0.12 0.159 0.561

0.14 0.04 0.432 0.384
0.08 0.279 0.104
0.12 0.798 0.634

0.18 0.04 0.381 0.640
0.08 0.519 0.796
0.12 0.988 0.814

0.22 0.04 0.993 0.410
0.08 0.843 0.417
0.12 0.797 0.091

0.26 0.04 0.190 0.029
0.08 0.896 0.179
0.12 0.317 0.081

0.30 0.04 0.535 0.496
0.08 0.282 0.430
0.12 0.667 0.470

0.34 0.04 0.441 0.650
0.08 0.792 0.572
0.12 0.807 0.410

xi denotes the centre of the ith bin and di represents the number
of points contained in the corresponding bin. A theoretical CDF,
F, is computed as the average of the CDFs obtained from the first
900 FFP10 simulations. The estimator is parametrized by a positive
real number a, which changes the weight of the tails. Given a large
enough value for a, the outcome of this analysis does not significantly
depend on its value. To the extend that we are interested in comparing
with An et al. (2018), the results of this section are shown for a =

10 000, which is the value they use. Typically, 99 per cent of the
value of AR (AL) is determined by bins with η̄ � 3.3σ (η̄ � −3.3σ ),
while 80 per cent comes from bins with η̄ � 3.5σ (η̄ � −3.5σ ). For
instance, taking n = 10 000, almost all the contribution comes from
∼800 bins for each tail (while 80 per cent of the contribution comes
from ∼400 bins). Within reasonable values, the total number of bins
is not important either. Finally, we considered a p-value computed
as P (AR/L ≥ Adata

R/L), namely the probability of finding in standard-
model realizations a value of AR/L at least as great as the value
obtained from the data.

For the small scales, the p-values associated with the AL and AR

estimators for a = 10 000 and different W functions are shown
in Table 3. In addition, the histograms of the AL/R values from
simulations are shown in Fig. 8, where the vertical lines represent
the value from the data. As in the case of the number of extrema,
the major deviation from the model is found using a weight function
with r = 0.01 rad and ε = 0.02 rad. This p-value is consistently low
for a > 1000. Ultimately, a great value of AR is consistent with a
greater number of maxima with large values of η̄.

Note that the estimators described by equation (12) are only valid
within the domain in which the theoretical CDF is not saturated. This
means that this approach excludes some data points in those cases
where the tails of the CDF from the data are more extended than the
tails of the theoretical CDF. This should not be particularly dramatic
as, in these cases, the valid data points in the right (left) tail would
be systematically lower (higher) than the theoretical ones. For the
particular case with r = 0.01 rad and ε = 0.02 rad, we observe that
the range of variation of the CDF from the data is within the domain
of the theoretical CDF when centres are considered at Nside = 1024.
However, this is not always the case, since the left tail from the data
is more extended than the theoretical one when centres are selected
from a grid at Nside = 64. The former case is shown in Fig. 7, in
which the difference between the CDF from data and simulations is
plotted (central panel). A zoom on the left (left-hand panel) and right
(right-hand panel) tails is also shown. Note that the variation scale for
the left tail is lower than the variation for the right one. The right tail
of the CDF from data is systematically lower than the simulated one
up to η̄ ∼ 4.8σ , although it should be kept in mind that these points
are highly correlated. Some points are then concentrated around this
value so that the CDF from data saturates before the theoretical one.

Finally, the p-values computed from the CDF for the correspond-
ing large-scale W functions are shown in Table 4. The most deviated
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Figure 8. Values of AL (left-hand panels) and AR (right-hand panels) from data and simulations for different small-scale weight functions parametrized by the
inner radius r and the thickness ε. The blue histograms depict the values from the first 900 FFP10 simulations, while the red histograms show the subset of the
last 99 FFP10 simulations. The values from the SEVEM data are represented by the black vertical lines.

value is 0.993 for AL with r = 0.22 rad and ε = 0.04 rad. Keeping
only those centres whose W functions overlap less than 1 per cent
with the confidence mask, the lowest p-values are 0.007 for AL with r
= 0.10 rad and ε = 0.08 rad, and 0.009 for AL with r = 0.06 rad and ε

= 0.12 rad, which are not small enough to be considered anomalous
(as shown in the next section).

4 THE SIGNIFICANCE PROBLEM

No FFP10 realization as deviated as the data has been found when
convolving the normalized η̄ map with a weight function with r
= 0.01 rad and ε = 0.02 rad. Despite this evidence, it is hard to
determine what is the statistical significance of the observed deviation
from the standard prediction. In the first place, we are only able
to assign an upper limit to the probability (<1/1000) of finding
such value for the radial derivative. As an example, the histograms
tracing the probability distribution of AL/R values in the standard
model for different weight functions are shown in Fig. 8 (in blue).
In addition, we use the last 99 FFP10 simulations as an independent
set of standard realizations. Their AL/R values are shown as the red
histograms. The black vertical lines depict the values obtained from
the SEVEM data map. As in a few cases the red histograms contain
AL/R values greater than the whole set obtained from the first 900
simulations, it is obvious that this number of simulations is not
enough to trace properly the right tail of the probability distributions.
An analogous problem is also present when analysing the number of
extrema.

In the second place, we should be aware that the whole configura-
tion space in this test involves different scales (explicitly, 20 for the

small-scale, and 24 for the large-scale analyses) for the two tails of
the CDFs (or alternatively, for the number of two types of extrema
above four different thresholds). So, given the mentioned limitations
of the significance test, it is important to estimate how likely are such
deviations in this larger configuration space. To check the possibility
of a look-elsewhere effect, we use the 99 extra simulations that were
excluded in the previous section as independent data sets. As the
p-value is saturated when it is obtained a value of AL/R greater than
those computed from the first 900 realizations, we consider another
approach to evaluate how unexpected are the results. In particular, an
asymmetric distance is defined in terms of the width which enclose
a 68 per cent of the area under each distribution around the median
value. The deviation of the data from the median is then considered
in units of the corresponding distance (towards the left or the right,
depending on the position of the data with respect to the median).
For the small-scale analysis, we find that 3 of 99 simulations present
a deviation from the median of the AL or AR values which is greater,
for at least one of the considered scales, than the one obtained for
the real data in the case with r = 0.01 rad and ε = 0.02 rad.

The analysis of the number of extrema is a bit different, because the
highest thresholds are dominated by a Poissonian regime. Assuming
that the counting of extrema is described by a Poissonian distribution,
we are able to compute its parameter λ as the mean of the number
computed from the 900 simulations. Therefore, we define the
characteristical distance for each distribution in terms of

√
λ. In

this case, the deviation of the data is then computed from the λ

value and expressed in
√

λ units. In the small-scale analysis, when
the 99 simulations convolved by any of the considered W functions
are explored, we find that 2 of them (both for a threshold of 4.5σ )
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present a greater deviation than the one observed in the data for r =
0.01 rad and ε = 0.02 rad when considering the whole set of extrema.
On the contrary, no simulation is found with a greater deviation
when considering the subset of independent extrema. However, the
selection procedure causes a depopulation in the histogram tails,
where the frequencies are low beforehand. This affects the calculation
of

√
λ, making the deviation appear artificially larger. Moreover, for

the large scales, we find many realizations with greater deviations
than the one associated with the lowest p-values in Table 2.

Therefore, in view of all these results, the small p-values quoted
in Section 3 should be interpreted as statistical flukes.

5 C O N C L U S I O N S

We have reviewed some of the most recent results in the literature re-
garding the presence of ring-type structures in the CMB fluctuations
such as those predicted by the CCC. In particular, a methodology
based on the radial derivative is applied to the Planck data. As it can
be reduced to a CMB map filtering, this approach is much faster than
other methods computed in real space.

Our analysis is splitted in two distinct regimes exploring both
small and large scales. In each one of them, several W functions
are considered, testing different values for the inner radius and the
thickness of the ring. Additionally, for each weight function, two
different estimators are applied to the Planck data and compared
with their expected values from realistic FFP10 simulations. On the
one hand, we use the counting of extrema in the averaged radial
derivative η̄ map to check if there is an unusual presence of sky
directions with anomalously great radial derivatives. On the other
hand, the comparison is made in terms of the tails of the CDF from
the normalized η̄ map.

At small scales, the most pronounced deviation from the model
is obtained from the same angular scale than the one pointed by
An et al. (2018). However, in our assessment, and consistently
with Jow & Scott (2020), the confidence level when considering
this deviation to be anomalous is significantly smaller than the
99.98 per cent claimed by these authors. Although our results are
limited by the finite number of simulations, specially in relation to
the look-elsewhere effect analysis, they show no strong evidence to
claim a significant deviation from the standard model. Regarding the
large-scale analysis, we conclude that the statistical significance of
the deviations from the model is not large enough to be considered
anomalous.
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