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Abstract: Urbanization and climate change are the main driving force in the development of sus-
tainable strategies for managing water in cities, such as sustainable urban drainage systems (SUDS).
Previous studies have identified the necessity to develop decision-making tools for SUDS in order to
adequately implement these structures. This study proposes a simulation–optimization methodology
that aims to ease the decision-making process when selecting and placing SUDS, with the specific
goal of managing urban flooding. The methodology was applied to a real case study in Dresden,
Germany. The most relevant variables when selecting SUDS were the spatial distribution of floods
and the land uses in the catchment. Furthermore, the rainfall characteristics played an important
role when selecting the different SUDS configurations. After the optimal SUDS configurations were
determined, flood maps were developed, identifying the high potential that SUDS have for reducing
flood volumes and depth, but showing them to be quite limited in reducing the flooded areas. The
final section of the study proposes a combined frequency map of SUDS implementation, which is
suggested for use as a final guide for the present study. The study successfully implemented a novel
methodology that included land-use patterns and flood indicators to select SUDS in a real case study.

Keywords: SUDS; flood reduction; multi-objective optimization; sustainable urban drainage;
hydrodynamic modelling; SWMM

1. Introduction

Due to the pressures exerted by urbanization on watersheds, as well as the need
to dispose of and treat stormwater, urban drainage systems have always been a major
concern when designing and managing cities. Furthermore, the effect of climate change in
altering rainfall patterns (e.g., more extreme events) is nowadays a major concern when
designing sustainable strategies for stormwater management [1]. For more than 15 years,
the concept of sustainability in urban drainage has become more relevant, and today it
is considered fundamental when designing and managing urban drainage systems [2].
Alternative approaches have emerged seeking to complement and alleviate conventional
urban drainage systems. The concept of sustainable urban drainage systems (SUDS) has
emerged as a water management alternative, with the main objective of changing the
paradigm of traditional urban water management [3]. The general idea of this type of
strategy is to decrease the negative effects of urbanization on watersheds, by enhancing
decentralized water infiltration, retention, and detention [4].

In this context, it is vital to develop decision-support tools (DST) for SUDS in order
to implement them widely and properly. A DST corresponds to any functionality that
develops a technical methodology to evaluate performance criteria or constraints, in order
to assist in a practical way in making a decision [5]. These decisions may be in regard to
their design or their location.
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The first study to perform a categorization of DST-SUDS was conducted by Lerer et al. [6].
This research categorized tools depending on the issue they helped to solve, the issues
being how many, where, and which SUDS to adopt. Based on this, subsequent studies and
reviews considered DST-SUDS that specialized in spatial location [7]. Progressively, these
tools were coupled with optimization methodologies that allowed to the determination of
optimal and cost-efficient SUDS configurations [8].

Table 1 presents a summary of the studies assessed in the literature review, including
the main findings and contributions from each author. In general terms, the field of
DST-SUDS, which includes optimization, is a recent field. The first reported studies
addressing this subject were published in 2018 [4,9–11]. Before this, there had been isolated
efforts to include processes that aimed to define some variable referring to SUDS, such as
Baek et al. [12] and Chui et al. [13], which performed basic iterative methodologies.

Regarding the optimization algorithms employed, most of these approaches were
based on meta-heuristics, such as genetic algorithms. However, some studies employed
particle swarm optimization [14] and simulated annealing [15,16]. Independently from the
algorithm employed, two performance variables were used: the structure cost and one
performance variable (e.g., volume, peak flow, or pollutant loads reductions). This implies
that, in most cases, the problems were constituted as multi-objective optimization.

Regarding the types of solutions, most of the studies that included a multi-objective
optimization approach yielded a graph with a Pareto front as the final result [17–21]. Only
a few studies, mainly those focused on finding optimal designs, produced a single optimal
solution [15,22].

From the literature review presented in Table 1, some gaps in the field were identified.
First, studies mainly focused on small [20] or hypothetical [20] catchments, thus reducing
the real-life applicability. Furthermore, studies focused mainly on peak or volume runoff
reductions, but failed to evaluate the effect of SUDS in reducing flood risk. Li [23] focused
on the application of optimization methodologies for flood control measures, but the study
did not involve SUDS. Furthermore, the available studies are based on simplified models
that are usually not calibrated and are not discretized into different land uses, which makes
it impossible to guarantee that SUDS are being allocated on feasible surfaces [18]. Moreover,
all of the mentioned studies have focused on one or two design events, but a meticulous
study on the effect of the design event of SUDS selection is still needed.

The present work proposed an innovative tool that aimed to address the previously
mentioned gaps in the field. To this end, the tool placed a special emphasis on flood risk
mitigation by implementing SUDS. Regarding real-life applicability, the present approach
was developed using a calibrated urban drainage model (UDM) from a part of the city of
Dresden (Germany). As an innovative proposal, the locations of different SUDS typologies
were identified according to suitable land uses for each of the structures. Furthermore, the
present study proposed novel performance indicators that adequately represented the flood
risk reduction (flooded volume, area, and depth). In order to do so, the UDM was coupled
with a 2D flood propagation model. Finally, twelve different rainfall events were used to
evaluate the effects of the hydrological characteristics of rainfall events on the performance
and selection of SUDS.
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Table 1. Studies including optimization algorithms for SUDS-DST.

Study Algorithm Independent
Variables Dependent Variables Type of Solution Type of Temporal

Modelation
Study Case
Area (ha)

[12] Fixed iterative steps Area Loads Sensitivity
analysis Design events 1.25

[22] Genetic algorithms Design Costs Unique design Design events 2137
[17] Genetic algorithms Area Multi-objective Pareto front Design events 500
[9] Particle swarm Design Multi-objective Pareto front Design events 870

[24] Fixed iterative steps Design
Area Cost Unique design Design events Hypothetical

[10] Genetic algorithms Design Multi-objective Pareto front Design events 77

[25] Genetic algorithms
Type

Location
Area

Runoff volume
Cost Unique design Design events 73,000

[15] Simulated annealing Area
Number of structures Cost/benefit Unique design Design events 140

[26] Genetic algorithms Area Cost/benefit Optimal scenarios Continuous

[18] Genetic algorithms Design
Volume

Cost
Peak flow

Pareto front Design events 14.7

[27] Genetic algorithms Area Volume
Cost Design events

[20] PICEA-g Area
Volume
Loads
Costs

Pareto front Design events 60

[19] Particle swarm Number of structures
Volume
Loads
Costs

Pareto front Design events 1800

[16] Simulated annealing Design
Volume
Loads
Costs

Optimal scenarios Continuous 181.97

[21] Genetic algorithms Area Volume
Costs Pareto front Continuous 11

[11] Genetic algorithms
Particle swarm Location Volume

Costs Pareto front Design events 1398

2. Case Study

An urban catchment in Dresden, the capital of Saxony, eastern Germany was used
as the study area. The catchment has a total surface of 22.9 ha, and it is comprised of
different land uses, such as mixed settlement, residential areas, schools, and vegetated
areas. Land cover data were obtained from the European Settlement Map of the Copernicus
Project [28]. Approximately 42.7% of the total catchment area corresponds to impervious
surfaces, mainly buildings, streets, and parking lots. The rest of the catchment, i.e., 57.3%,
corresponds to vegetated surfaces, such as gardens, lawns, and other pervious surfaces.
The climate in Dresden is classified as temperate oceanic climate (Cfb), according to the
Köppen Climate Classification [29]. The average annual temperature is 9.4 ◦C, and the
average annual precipitation is 665 mm [30].

The sewer system in the area follows a separate scheme; hence, two different types of
sewer subnetworks are present. On the one hand, a sanitary system collects the wastewater
generated by the different buildings in the area and transports it to a collector in the north
of the area, which further transports it to the wastewater treatment plant. Furthermore,
runoff produced in the area is collected by a stormwater system and discharged into a
nearby river, called Lockwitzbach. In the present study, only the stormwater system was
considered in all analyses. Figure 1 illustrates the different characteristics of the study area
and its drainage network.
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3. Materials and Methods
3.1. Hydrodynamic Simulation and Flooding

Urban drainage models (UDMs) can reproduce the complex dynamics and processes
associated with urban pluvial flooding and provide reliable estimations of their dynamics
and magnitude. Furthermore, UDMs can also simulate the effects of different types of
SUDS on the water balance and drainage networks. In this context, a hydrodynamic model
of the study area was developed and implemented in the EPA Stormwater Management
Model (SWMM) [31].

Information regarding the structure and hydraulic properties of the separate system
in the area was provided by the local wastewater company Stadtentwässerung Dresden
GmbH. An automatic subcatchment generator tool (GisToSWMM) was used to determine
and delineate the contributing areas and their connection to the sewer system [32]. As
an input, the tool requires information about the sewer network structure, a digital eleva-
tion model (DEM), and land cover data. Topographic data were obtained from the state
service for geoinformation and geodesy Saxony (Staatsbetrieb Geobasisinformation und
Vermessung Sachsen [GeoSN]), while land cover types were obtained and adapted from
the European Settlement Map of the Copernicus Project [28].

The model performance and accuracy were assessed by comparing simulation data
with observed discharge values in the outlet. Available measured data corresponded to
fifteen rain events between October 2017 and April 2018. These corresponded to precipi-
tation events with depths above 5 mm and at least 5 h of dry-weather conditions before
and after the events. Three performance indicators were used to evaluate model accuracy:
Nash–Sutcliffe efficiency (NSE) [33], peak flow error (PFE) [34] and volumetric efficiency
(VE) [33]. The outcomes of these indicated that the developed model performed quite
well in general, with most of the NSE values higher than 0.7, and most of the PFE and VE
values lower than 0.3. Table 2 summarizes the characteristics of the rain events and the
goodness-of-fit results obtained.
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Table 2. Rain characteristics and goodness-of-fit results.

Event Depth [mm] Duration [h] Return Period
[Years] NSE PFE VE

1 5.8 220 0.16 0.72 0.07 0.02
2 6 255 0.16 0.87 0.23 0.28
3 5.3 240 0.13 0.77 0.30 0.30
4 10.6 235 0.50 0.95 0.03 0.07
5 5.9 150 0.17 0.95 0.30 0.04
6 9.5 245 0.39 0.55 0.24 0.20
7 11.8 365 0.62 0.87 0.25 0.17
8 9 305 0.35 0.78 0.28 0.22
9 5.4 220 0.14 0.49 0.08 0.48

10 6.9 335 0.21 0.78 0.33 0.03
11 7.5 195 0.25 0.87 0.29 0.05
12 9.9 380 0.42 0.74 0.00 0.12
13 5.1 205 0.13 0.69 0.60 0.08
14 22.1 670 3.15 0.84 0.36 0.24
15 5.7 70 0.17 0.70 0.26 0.09

As mentioned before, hydrologic–hydrodynamic simulations were used to determine
which nodes of the sewer system flooded and their corresponding flood volume. Twelve
rainfall scenarios were simulated in EPA SWMM. They corresponded to ‘Euler Type II’
design storms [35] with reference to the precipitation intensities of the city of Dresden,
Germany, according to the coordinated storm event intensities [36]. Such synthetic events
had a five-minute discretization step and were based on the assumption that the largest
instantaneous precipitation depth occurred at the end of the first third of the event duration.
The twelve Euler Type II design storms used in this study were a combination of three
different durations, 30, 120, and 360 min, and four return periods of 10, 20, 50, and 100 years.
Synthetic events were selected instead of real precipitation data in order to preserve the
occurrence frequency of flooding events, and hence to systematically analyze the influence
of SUDS on the network during such conditions.

3.2. Flooded Area and Depth Definition

Determination of flooded areas and their corresponding flooded water depths was
achieved by coupling results obtained in EPA SWMM with a surface diffusive overland
flow model proposed by Chen et al. [37]. The hydrodynamic model was used to determine
the locations of flooding junctions and the total flooded volume in each of them. This
information was then used together with a DEM of the study area as an input in the
diffusive overland flow model to simulate surface flow to estimate flood extension and
depths. In this approach, every raster cell from the DEM acted as storage. The cells located
above a flooding node were considered initial source cells and they were filled with the
corresponding flood volume from the hydrodynamic simulation results. Flood water
was allocated into adjacent cells only if the elevation of the source cell was higher than
the nearby ones, thus resembling gravitational surface flow. Using the distributed water
volume and the number of cells flooded with water, a flood depth was calculated. If this
depth was higher than a given threshold, the new cells filled with water acted as new
source cells. The process continued iteratively until a depth threshold was reached or until
no new flooded cells were identified. The result of this process was a raster map with the
same resolution as the DEM used as input. The values of each cell in the generated flooded
map corresponded to water depths. Based on this, it was possible to analyze the extent of
flooded areas and flood depths associated with each flooded node in the study area.
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3.3. SUDS Design and Costs Estimation

The typologies included in the study were green roofs (GR), permeable pavements
(PP), infiltration trenches (IT), and rain gardens (RG). These were selected since they
corresponded to the minimum combination of structures that would allow the inclu-
sion of source treatment, transport, and storage/retention strategies. The design pa-
rameters for each typology (Table 3) were defined from a previous study [38], in which
the authors defined the optimal parameters from the SWMM LID editor by means of a
sensitivity analysis.

Table 3. Design parameters used in the EPA SWMM LID editor for green roofs (GR), rain gardens
(RG), infiltration trenches (IT, and permeable pavements (PP).

Variable Units GR RG IT PP

Surface
Berm Height mm 90.00 150.00 0.00 0.00
Vegetation volume mm 0.10 0.00
n Manning mm 0.09 0.11 0.24 0.03
Slope % 1.00 1.00 1.00 1.00

Soil
Thickness mm 30.00 500.00 150.00
Porosity % 0.47 0.40 0.43
Field capacity % 0.24 0.17 0.10
Wilting point % 0.07 0.11 0.02
Conductivity mm/h 265.67 167.99 115.00
Conductivity slope - 10.00 21.09 10.00
Suction head mm/h 65.00 37.31 65.00

Storage
Thickness mm 200.00 500.00 10.00
Void ratio % 0.58 0.75 0.54
Seepage rate mm/h 101.10 24.00 172.00

Drain
Flow coefficient - 2.00 2.00
Flow exponent - 0.50 0.50
Offset mm 0.00 0.00

Pavement
Thickness mm 50.00
Void ratio % 0.37
Impervious surface fraction % 0.08
Permeability mm/h 745.33

Drainage Mat (Green Roofs)
Thickness mm 10.00
Void fraction % 0.47
n Manning mm 0.07

Different construction and design manuals were evaluated in order to fix a nominal
cost (per area unit) for each typology. Torres et al. [39] reported similar conditions to those
in the present study, and therefore similar costs were used. These costs were reported as
capital and annual maintenance costs (Table 4). The latest were reported annually as a
percentage of the capital cost. For calculating the total cost of the solutions, the net present
value was estimated, using 25 years as the life expectancy for the structures.

Table 4. Capital and annual maintenance costs for SUDS.

Typology Capital Cost [€/m2] Annual Maintenance Cost [%/m2-Year]

GR 145 10
RG 50 5
IT 120 2.5
PP 60 0.1
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3.4. Optimization Algorithm and Modes Coupling

As can be seen in Table 1, genetic algorithms (GA) are efficient and easily adapted to
this type of problems. Due to this reason, it was decided to implement this algorithm for
the present study, using MATLAB [40] as the coding platform. Although it was intended to
use different optimization algorithms, i.e., simulated annealing, particle swarm, or other
non-traditional optimization methodologies, and compare their computational efficiencies,
the high running time was a crucial constraint that did not allow for this. However, it is
highly recommendable to use and compare different algorithms and methodologies for
future studies.

The general framework proposed for the procedure is presented in Figure 2. Regarding
the design specifications, the objective functions were defined as total flooded volume
and cost of SUDS. At the same time, the independent or decision variables were set as the
subcatchments from the EPA SWMM model, which would have the presence of SUDS.
The constraints for assigning SUDS were defined depending on the land uses. Hence,
typologies were assigned following the description made in Table 5. It is worth clarifying
that the presence of SUDS in each subcatchment was defined as total or null, which means
that, if a subcatchment was selected, it was assumed that it was completely covered by the
corresponding SUDS.
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Table 5. Typologies assigned by land use.

Land Use Typology Assigned

Stone paver Permeable pavement
Vegetation Rain garden

Roof Green roof
Street Permeable pavement

Sand gravel Infiltration trench

Following the design specifications, the initial configuration was randomly defined
by the GA algorithm. After this step, the iterative process (defined as the blue rectangle
from Figure 2) started. The total flooded volume (calculated as the sum of the volume
flooded in each node) and the costs of the solutions were determined. At each step, the GA
automatically defined whether the stopping criteria had been met, defined in MATLAB as:
Max_Stall_Generations = 20, and Tol_Fun = 0.001. If the stopping criteria were not met,
the algorithm automatically assigned SUDS in different subcatchments, and started the
process again. Once the stopping criteria were met, the final design was reached. As this
problem consisted of a multi-objective optimization, the final design was a Pareto front,
which presented the optimal solutions of SUDS in terms of costs and flooded volume.
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The computational complexity of the methodology consisted of interconnecting the
different modules/stages of the process. Initially, the UDM developed in SWMM had to be
automatically coupled with a Python-based tool to develop, run, and extract the results of
the models systematically. With this capability, the next step of the procedure consisted of
developing a MATLAB script that processed the results of the UDM and used the extracted
results as the objective functions of the GA algorithms. Once the optimal configurations of
SUDS were found, another computational resource had to be developed in order to generate
the results. On one side, MATLAB was used to develop a script to generate and analyze
the Pareto fronts. On the other side, a QGIS-Python script was developed that allowed
the mapping of the results, based on the selection of SUDS yielded by the optimization
problem. Lastly, each optimal scenario was coupled with the 2D flood propagation model,
which generated flood maps using and flood depths. The complete codes are publicly
available in the GitHub profile of the first author of this article.

4. Results and Discussion
4.1. Reference Scenarios

The reference scenarios consisted of hydrodynamic and flooding simulations on the
study area for the 12 design events, without the presence of SUDS. The results obtained
were the total flooded volume, area, and depth for each rainfall event. Results indicated
that flooding occurred in all scenarios, but in different amounts, ranging from 471 m3 to
1250 m3 of flooded water (see Table 6). As expected, the return period and the duration of
the rainfall events had a strong influence on the generated flood volumes. The increase in
these two variables always generated a larger amount of water flooding. Something similar
occurred with the maximum flood height, in which the difference among events did not
exceed 25 cm.

Table 6. Flooded volume, area, and height for the reference scenarios.

R. Period
[Years]

Duration
[Mins]

Flooded
Volume [m3]

Flooded
Area [m2]

Maximum Flooded
Height [m]

10 30 471 4172 0.48
10 120 526 4420 0.51
10 360 565 4020 0.54
20 30 612 4048 0.59
20 120 688 4212 0.64
20 360 724 4236 0.66
50 30 813 4236 0.76
50 120 937 4564 0.83
50 360 987 4480 0.66

100 30 978 4488 0.64
100 120 1182 4712 0.75
100 360 1250 6100 0.79

However, the flooded area did not present the same dynamics. In this case, results
were not directly related to the nature of the rainfall events, as the flooded area only varied
from 4020 m2 to 4712 m2. These variations were not directly related to the characteristics
of the events. The only outlier was the rainfall event with T = 100 years and d = 360 min,
where the area flooded reached 6100 m2.

Figure 3 presents the flood maps obtained for the two extreme rain events (lowest and
highest rainfall depth). The analysis of these events, which coincided with the dynamics
identified for the rest of them, showed that the most susceptible areas to be flooded were
the same in all cases. Regarding flood heights, they ranged between 0.009 m and 0.47 m for
the smallest event. As the design event was larger, the maximum flood depths increased,
and also new flooded areas gradually appeared. The event with the highest flood depths
reached values of up to 0.8 m, and presented new flooded areas with higher water levels.
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4.2. Pareto Front for SUDS Cost Efficiency

The optimization–selection process was performed 12 times, one for each rainfall de-
sign event. Overall, each process took from 6000 to 30,000 iterations, depending on the rain
event, which took between 6 and 9 h of computational processing time. Furthermore, the
number of generations needed for the GA algorithm to reach the stopping criteria ranged
from 20 to 60. To illustrate the performance of the GA algorithm and the improvements
reached at each generation, Figure 4 shows the 11,600 iterations that were necessary to
reach the Pareto front for the event with T = 10 years and d = 30 min.
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The twelve Pareto fronts were highly variable, depending on the rainfall events (see
Figure 5). Overall, it was identified that the larger the event was, the greater the range of
variation of costs and flooded volume. From the twelve events, nine offered solutions in
which flooding was reduced completely.
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Regarding the influence of hydrological variables of rain events, it was not possible to
identify a clear pattern. In all cases, the events with the highest costs were the ones with a
duration of 360 min. However, for the 10- and 20-year return period events, the 120 min
duration event had lower implementation costs. For 50 and 100 years, the 30 min event had
the lowest costs. In addition, it was identified that there were events with similar behaviors
within them, and in none of these cases were the return period or the duration the same.

To select a specific configuration from each Pareto front, the cost efficiency of each
point was calculated, and the one with the highest performance was selected (Table 7).
This efficiency was calculated as the percentage of volume reduced with respect to the
reference scenario, per million euros invested. Additionally, the total investment for each
configuration was included. In this case, the indicator was highly correlated with the return
period of the events. The cost efficiency of each scenario reduced progressively when the
return period increased. Consequently, these solutions were selected for assessing the
effect of SUDS in the flooding areas and depths (Section 4.4). In all cases, it was identified
that the process was influenced by the costs of the solutions: the solution with the lowest
investment was always the most cost efficient.
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Table 7. Cost efficiency for the 12 rainfall events.

R. Period [Years] Duration [Mins] Total Investment
[106 €]

Cost Efficiency of Selected
Configuration

[% Volume Reduced/106 €]

10 30 0.92 1.06
10 120 0.69 1.34
10 360 1.64 0.59
20 30 1.35 0.73
20 120 1.99 0.46
20 360 1.43 0.65
50 30 1.62 0.59
50 120 1.08 0.87
50 360 1.86 0.50

100 30 2.26 0.43
100 120 2.34 0.39
100 360 2.32 0.34

4.3. Typologies Selection and Distribution

Figure 6 presents the frequency with which each subcatchment was selected for SUDS
implementation over the different configurations in the Pareto front. Results are shown
only for the two extreme return periods (10 and 100 years). However, the dynamics found
for the rest of the events were similar. As expected, results suggested that increasing
return periods led to a higher implementation of SUDS. This makes practical sense and
is in agreement with previous studies [17,19]. The same dynamics were identified for the
duration of the events. These results suggest that the nature of the rainfall design event
has a clear effect on SUDS implementation, and it is highly advisable to select an accurate
design event from the beginning of the process.

Regarding the spatial distribution of SUDS, in the events with T = 100 years, almost all
subcatchments were selected, and their selection frequencies were high (in many cases 1).
It was also possible to identify some differences between the three events, with progressive
but slight increases in the implementation of SUDS, as the duration of the event increased.
On the other hand, for the 10-year return period, it was identified that the differences
between the three events were sharper. In all cases, the distribution of SUDS started from
focused and specific locations, and as the duration of the event increased, these zones were
expanded. These areas coincided with the susceptible areas of flooding from Figure 3,
leading to the conclusion that this is an important aspect to consider when placing and
designing SUDS.

With respect to the use of typologies, PP were identified as the most used, followed by
RG and GR, while IT were rarely used. It was identified that the frequency and distribution
of SUDS were directly related to the land uses in the basin. Thus, PP constituted the most
used typology due to the fact that the land use suitable for their installation (stone paver
and streets) was the most common in the basin. The same occurred with the rest of the
typologies. This was evidenced by the clear similarity between the SUDS selection maps
and the land-use maps of the case study (Figure 1). From this, it was possible to identify
that the selection of SUDS was based primarily on land uses, rather than on the suitability
or performance of each typology. No clear pattern was identified regarding how certain
typologies were favored depending on the hydrological conditions of the design events.

4.4. Flooded Area and Depth

The analysis of flood areas also identified a differential effect of SUDS depending
on the rainfall event (see Table 8). The range of flooded area reduction (with respect to
the reference scenario) varied between 0.5% and 40%. When investigating the reasons
for such a high range of reductions, it was found that, although the return period and
the duration of the events did show some relationship with the results, this dynamic was
not conclusive. A tendency was identified showing that the higher the return period, the
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greater the percentage reduction in the flooded area. However, this did not apply for all
return periods (e.g., 10 and 20 years). Likewise, variability in the results was identified
within the same return periods, which could be attributed to the effects of the durations of
the events. However, this dynamic was not consistent for all durations.
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Table 8. Reference areas flooded and SUDS performance reducing these areas.

R. Period
[Years]

Duration
[Mins]

Total
Investment

[106 €]

Reference
Flooded

Area [m2]

SUDS
Flooded

Area [m2]

Reduction
Area

Flooded [%]

10 30 0.92 4172 4020 3.64
10 120 0.69 4420 4020 9.05
10 360 1.64 4020 4000 0.50
20 30 1.35 4048 4040 0.20
20 120 1.99 4212 3936 6.55
20 360 1.43 4236 3972 6.23
50 30 1.62 4236 3960 6.52
50 120 1.08 4564 4480 1.84
50 360 1.86 4480 2896 35.36

100 30 2.26 4488 3636 18.98
100 120 2.34 4712 3464 26.49
100 360 2.32 6100 3656 40.07

The variables that did have a direct and consistent relationship with the reduction in
the flooded area were the total cost of the solution and the flooded area of the reference
scenario (presented in Table 7). In both cases, a proportional relationship was identified
between the variables and the performance of SUDS. This latest statement leads to the
conclusion that when assessing the effectiveness of SUDS mitigating areas flooded, the
most relevant variables to consider are the reference area flooded and the money to be
invested in the solution.

Figure 7 illustrates the effect of SUDS on the flood depths as a function of the return
period and the duration of the rain events. The empirical cumulative distributions of
flood depths for the reference (i.e., without SUDS implementation) and SUDS scenarios
are compared. Only the results for the 10- and 100-year return period scenarios are shown.
Regarding the reference conditions, outcomes of this analysis indicate that for all rainfall
scenarios, between 85% and 90% of the flooded areas had an associated depth equal to or
lower than 0.2 m. Furthermore, maximum flooded depths ranged between 0.4 and 0.8 m,
and increased with higher durations and higher return periods, as expected due to the
increase in flooded volumes.

The implementation of SUDS led to a general reduction in maximum flooded depths,
which ranged between 0.15 and 0.4 m. The results suggest that the efficiency of water depth
reduction may have been influenced by the event intensity. In fact, the highest reductions
were obtained for the 100-year return period events, where the SUDS implementation led
to a decrease in depths from values higher than 0.65 m in the reference conditions to depths
lower than 0.25 m. A similar behavior can be seen for the 10-year return period event with
the highest duration, i.e., 360 min. However, for the other two scenarios of the 10-year
return period, the reduction in maximum flood depths was not as significant as in the
other cases.

The reason for this type of behavior may be associated with the optimization algorithm
used. The current approach focused on reducing total flood volume, however this does
not necessarily imply that flooded areas and depths were proportionally decreased. In
some cases, topography does not allow for a wide diffusion of flood water, thus leading to
small flooded areas with greater depths. Reducing total flooding volumes in the catchment
may then lead to small reductions in flooded areas and depth, since it would focus only
on specific parts of the catchment. This can be seen, for example, in the low percentage of
reduced flooded areas in most of the scenarios (see Table 8) and the low depth reductions
in scenarios 10T_30D and 10T_120D. For events with a higher intensity and duration, in
which total flood was influenced by more than one overflowing node, more SUDS were
allocated in the catchment, and the reduction in flooded areas and depths were higher, as
can be seen in the results obtained in Table 8 and Figure 7. Further developments of the
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approach could be focused on using flooded areas or depths as additional objectives of the
optimization algorithm.
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4.5. Combined Frequencies Analysis

The final step of the study consisted of generating a combined scenario (Figure 8) by
calculating the cumulative frequency of selection of the subcatchments, calculated as the
normalized sum of the 12 independent scenarios. This final scenario was performed in
order to provide a final recommendation for SUDS implementation in the area considering
all the 12 rainfall events. Results showed that certain subcatchments were selected in 83%
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of the cases for RG, PP, and GR. At the same time, the maximum frequency of selection for
IT was 65%.
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The results suggest that the most relevant variable in the process was the spatial distri-
bution of floods. This is evidenced by the high correlation between the flood map (Figure 3)
and the cumulative frequency map (Figure 8). The area most susceptible to flooding, and
therefore the most recommended for implementing SUDS, was the southwestern portion of
the basin, with cumulative SUDS implementation frequencies of 0.83. Furthermore, there
were zones with intermediate cumulative frequencies (between 0.4 and 0.8), which in all
cases were spatially focused. Based on the results obtained, it is suggested that priority
should be given to the selection of subcatchments based on the cumulative frequency
criteria, but it should also be attempted to cover each of the sensitive areas.

Finally, an analysis was conducted regarding the selection of the different SUDS
typologies. As in the individual analyses (of each event), the results suggested that the
selection and suitability of the SUDS typologies were due to spatial and land-use criteria,
rather than to the inherent characteristics of each typology.

5. Conclusions

The proposed methodology proved to be efficient and applicable to a real case study.
The genetic algorithms showed a good performance. However, the running times of the
models were high (between 6 and 9 h per scenario). The EPA SWMM hydrodynamic models
were successfully coupled to meta-heuristic methodologies, and the flood propagation
model allowed successful evaluation of the actual effect of SUDS on flood mitigation.
Overall, SUDS showed a high capacity to mitigate flood risk, and in 9 of the 12 scenarios it
was possible to find configurations that reduced the flooded volume to 0. The Pareto front
results were highly variable depending on the design event used. Consequently, SUDS
configurations and their performance also depended highly on the type of event.

Cost efficiency was proposed as a suitable indicator to select configurations within the
Pareto front. However, the multiple solutions offered by this type of solution also allowed
the inclusion of other selection criteria, such as maximum allowable costs or minimum
expected performances. In any case, the proposed methodology seems to be an important
asset to assist SUDS decision-making in real case studies.
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Regarding the location and frequency of SUDS location, the key aspects identified
were the areas susceptible to flooding and the land uses of the basin. Consequently, both
the spatial location and the selection of typologies depended more on these aspects than
on other possibilities, such as the suitability of the typologies to manage certain rainfall
conditions. The cumulative frequency analysis allowed the identification of the most
sensitive areas when analyzing the 12 rainfall events. It is suggested that this latest map
should be used as the general recommendation for implementing SUDS, as it jointly assesses
the effect of SUDS, regardless of the hydrologic characteristics of the rainfall events.

The analysis of flooded areas allowed the identification of a wide range of perfor-
mances of SUDS, depending on the rainfall event. The investment and the total flooded
areas for the reference scenarios were identified as relevant variables when determin-
ing these effects. These two variables were even more important than the hydrologic
characteristics of the rainfall events.

The analysis of flood depths led to the conclusion that SUDS presented a high potential
for reducing the maximum depths. This behavior is clearly correlated with the nature of
the rainfall events, as the potential for reduction increased when the return period of the
events was higher. As the area and the height of the flooding were identified as key aspects,
it is highly recommended to include these variables as part of the objective variables in the
optimization algorithm, as it was proven that, for this case, the algorithm prioritized the
volume reduction, rather than these two variables.

So far, the existing methodologies and studies in the field had not coupled the opti-
mization algorithms for SUDS selection with a flood propagation model, which is expected
to be an important contribution of the present study to the field. Another novel benefit
with regard to the methodology proposed was the successful inclusion of different flood
indicators, such as flooded volume, depth, and area. Furthermore, it is proposed that
selecting SUDS based on the actual suitability of the land uses will strengthen the value of
the study. On the other side, there were some limitations regarding the methodology used.
First, it is acknowledged that the running time for the optimization algorithms remained
very high, and some refinement in this field is still lacking. Secondly, the framework pro-
posed only used four different typologies, and it is still necessary to diversify the number
of structures and allow the possibility of interconnecting these structures into treatment
trains. Furthermore, an opportunity for future research was identified in the aspect of
including climate-change mitigation potential with SUDS. Furthermore, for future stud-
ies, it is recommended to evaluate the efficiency of different multi-objective optimization
algorithms in order to compare them with GA, and to evaluate the suitability of using a
non-parametric test. Additionally, it is suggested to include different objective variables,
such as area or flood height. Regarding the cost analysis, it is advisable to include life
cost analyses that allow the quantification of the economic benefits obtained due to the
reduction in the flood risk by SUDS. Finally, it is necessary to apply the same methodology
to different case studies in order to ensure the replicability of the proposed framework.
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