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Abstract. We introduce topological prismatoids, a combinatorial abstraction

of the (geometric) prismatoids recently introduced by the second author to
construct counter-examples to the Hirsch conjecture. We show that the “strong

d-step Theorem” that allows to construct such large-diameter polytopes from

“non-d-step” prismatoids still works at this combinatorial level. Then, using
metaheuristic methods on the flip graph, we construct four combinatorially

different non-d-step 4-dimensional topological prismatoids with 14 vertices.

This implies the existence of 8-dimensional spheres with 18 vertices whose
combinatorial diameter exceeds the Hirsch bound. These examples are smaller

that the previously known examples by Mani and Walkup in 1980 (24 vertices,

dimension 11).
Our non-Hirsch spheres are shellable but we do not know whether they are

realizable as polytopes.

1. Introduction

One of the most important open questions in polytope theory is how big can
the graph-diameter of a polytope P be in terms of its dimension d and number n
of facets. The gap between the known lower and upper bounds for this function,
that we denote Hpoly(n, d), is extremely big: no polynomial upper bound for it is
known, and no polytope is known whose diameter exceeds 1.05(n− d).

It has been known for more than 50 years [17] that Hpoly(n, d) ≤ Hpoly(2n −
2d, n − d). In practice, this means that, to answer the diameter question, one can
restrict to the case n = 2d. The famous Hirsch conjecture from 1957 stated that
Hpoly(n, d) ≤ n − d. The conjecture is now disproved [24] but known counter-
examples to it are still rare. We call such counter-examples non-Hirsch polytopes.

The problem can be addressed topologically, by looking at simplicial spheres. In
this context we denote by Hsph(n, d) the greatest diameter of the adjacency graph
of all simplicial (d − 1)-spheres with n vertices. We call such a sphere non-Hirsch
if this diameter exceeds n − d. Since Hpoly(n, d) is known to be attained at some
simple polytope for every n and d, we have that Hsph(n, d) ≥ Hpoly(n, d): for a
simple P attaining Hpoly(n, d), the boundary complex of the polar of P is a sphere
showing the inequality. Even though there is no reason to believe that these two
functions coincide for every value of n and d, one expects their asymptotics to be
similar. (For example, all known upper bounds for diameters of polytopes hold also
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for spheres, including the Klee-Walkup result that Hsph(n, d) ≤ Hsph(2n−2d, n−d).
See Proposition 2.2).

The Hirsch bound Hpoly(n, d) ≤ n − d is only known to hold for n − d ≤ 6 [8],
n ≤ 12 [7] and d ≤ 3, but the smallest known non-Hirsch polytopes have d =
n − d = 20 [21]. The smallest known non-Hirsch sphere previous to our work was
constructed by Mani and Walkup [20]. It is a shellable 11-sphere with 24-vertices
(d = n− d = 12) shown to be non-polytopal by Altshuler [2].

The main outcome of our work is the construction of non-Hirsch (d− 1)-spheres
with d = n− d = 9.

Theorem 1.1. There exist non-Hirsch 8-spheres with 18 vertices. That is,

Hsph(18, 9) > 9.

This is close to minimal since the inequality Hsph(n, d) ≤ n− d is known to hold
for n− d ≤ 5. This was proved for polytopal spheres by Klee and Walkup [17], and
we show in Section 2.2 (Theorem 2.3) how to modify their proof for non-polytopal
ones.

One reason to concentrate on small examples is that from them it is very easy to
construct bigger ones. In particular, from the example mentioned in Theorem 1.1
one easily derives the following:

Corollary 1.2. Hsph(2d, d) > d for every d ≥ 9.

Proof. The suspension (or “double-pyramid”) operation shows Hsph(n+2, d+1) ≥
Hsph(n, d) + 1. �

Adding connected sums to the suspensions used in this proof we obtain a more
refined asymptotic bound (see Theorem 2.4). Applying it to the non-Hirsch sphere
of Theorem 1.1 gives:

Corollary 1.3. For every n and d,

Hsph(n, d) >

⌊
n− d

d

⌋
·
(⌊

10d

9

⌋
− 1

)
' 1.11(n− d).

Our construction leading to Theorem 1.1 uses the same prismatoid technique
developed by the second author and present in all non-Hirsch polytopes known
so far [24, 21], but we abstract it to a combinatorial/topological context. Recall
that a d-prismatoid P is a d-dimensional polytope whose vertices lie in two parallel
facets. Removing from ∂P the relative interiors of these two facets produces a
polyhedral complex homeomorphic to the Cartesian product of a (d − 2)-sphere
and a segment, and with all its vertices in the boundary. This complex, that
we assume to be simplicial, is what we call a topological (d − 1)-prismatoid. See
Section 3 for details. The width of a topological prismatoid C is defined to equal 2
plus the minimum distance, in the adjacency graph, between facets incident to one
and the other component of ∂C. In this setting we prove the following analogue of
[24, Theorem 2.6]:

Theorem (Theorem 3.5). Let C be a topological prismatoid of dimension (d− 1),
of width l and with n > 2d vertices. Assume that its two bases are polytopal. Then,
there exists a topological (n− d− 1)-prismatoid C′ with 2n− 2d vertices and width
at least l + n− 2d.
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In particular, if l > d then C′ is a non-Hirsch simplicial sphere of dimension
D − 1 := n − d − 1, with N := 2D = 2n − 2d vertices, and of adjacency diameter
larger than N −D.

Since this theorem is related to the d-step property of Klee and Walkup [17], we
say that topological (d− 1)-prismatoids of width larger than d are non-d-step. Our
goal is to find non-d-step topological prismatoids with n− d as small as possible.

We do this by a simulated annealing approach on the graph of flips among
non-d-step prismatoids of a given dimension. That is, we start with a topological
(d − 1)-prismatoid of width l > d and do flips in it at random, but preserving
the width and giving higher probability to the flips that go in the direction of
decreasing n. See Section 3.1 for the definition and properties of flips in topological
prismatoids, and Section 4 for details of our heuristics and implementation.

We choose as starting point the 28-vertex prismatoid constructed in [21, Corol-
lary 2.9], which has dimension d = 5 as a polytope, that is, d−1 = 4 as a topological
prismatoid. From it we find thousands of non-d-step topological 4-prismatoids with
number of vertices below 28. In particular, we find four combinatorially different
ones with 14 vertices. Any of these four implies Theorem 1.1, via Theorem 3.5.
Observe that although the prismatoids are found computationally, the proof that
they are non-d-step is elementary and can be done by hand.

The constructed prismatoids are analyzed a bit in Section 5. For the four smallest
ones we have checked that they are shellable, with respect to a natural notion of
shelling of topological prismatoids that we introduce in Section 3.4, and which
implies shellability for the resulting non-Hirsch spheres mentioned in Theorem 1.1
(see Proposition 3.14). Shellability is necessary for polytopality, but we do not
know whether our prismatoids (or spheres) are polytopal.

Acknowledgements. We thank Mortitz Firsching and Michael Joswig for useful
discussions and comments.

2. Preliminaries

2.1. Pure simplicial complexes, simplicial spheres. Here we compile several
notions from combinatorial topology.

A simplicial complex C is a collection of subsets of a finite ground set V (typically,
V = [n] := {1, . . . , n}), that is closed under taking subsets. It is pure of dimension
d− 1 (in which case we call it a (d− 1)-complex ) if all maximal elements of C have
the same cardinality, equal to d. The elements of C are called faces and maximal
faces are facets; more specifically, a face of size i is called an (i − 1)-face. Some
faces have special names according to their cardinality:

• Faces of size 1 and 2 are called vertices and edges; together they form a
graph, the 1-skeleton of C.

• Faces of size d and d − 1 are called facets and ridges; they also define a
graph, called the adjacency graph (or dual graph) of C: its vertices are the
facets and two facets are adjacent if they share a ridge.

• Every complex has a face of size 0, the empty face.

We call Hasse diagram of C the Hasse diagram of the partial order of faces by
inclusion. That is, it is a directed graph with an arc f1 → f2 for every pair of faces
f1 and f2 with f2 = f1 ∪ {v} for some v ∈ V . Observe that the 1-skeleton and the
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adjacency graph of a pure complex contain the information about the lower two
and the higher two levels of the Hasse diagram, respectively.

Example 2.1. The boundary complex of a simplicial d-polytope is a pure simplicial
complex of dimension d− 1.

A subcomplex of C is a subset of faces that is itself a complex. The subcomplex
induced by a subset W of vertices is the set of faces of C contained in W . As-
sociated to every face f ∈ C there are the following three (perhaps non-induced)
subcomplexes of C.

• The deletion of f in C is the set of faces disjoint from f . That is, it equals
the subcomplex induced by V \ f .
• The star of f in C is the set of faces f ′ such that f∪f ′ is also a face. Equiva-

lently, it is the simplicial complex whose facets are the facets of C containing
f . Observe that with our definition the star is a closed neighborhood of f .
• The link of f in C is the set of faces in the star that do not contain f . That

is, it equals the deletion of f in the star of f .

We call neighborhood of f the set of vertices of its star.
Every simplicial complex C has a realization as a topological space obtained

as follows: consider a disjoint family of simplices in RN (for sufficiently big N)
consisting of a simplex of dimension i for each i-face in C. Then take the topological
quotient of this set of simplices, by identifying faces as indicated by containment
in C. A simplicial (d − 1)-manifold or triangulated manifold (with or without
boundary) is a pure (d − 1)-complex whose realization is a manifold. A simplicial
(d−1)-sphere or (d−1)-ball is defined in the same way. A simplicial (d−1)-sphere
is polytopal if it can be realized as the boundary complex of a d-polytope.

Every ridge of a simplicial manifold is contained in either two or one facets.
Ridges of the first type are called interior and those of the second type are called
boundary. The boundary of a (d−1)-manifold C is the (d−2)-pure complex having
as facets the boundary ridges. That is, all faces contained in boundary ridges are
boundary faces. The adjacency graph of a simplicial manifold C is the graph having
as nodes the facets of C and as edges the pairs of facets that share an interior ridge.

2.2. The Hirsch conjecture and its relatives. The (combinatorial) diameter
of a polytope is the diameter (in the sense of graph theory) of its 1-skeleton. Let
Hpoly(n, d) denote the maximum diameter among all d-polytopes with n facets.
The Hirsch conjecture stated that Hpoly(n, d) ≤ n− d. The first counter-examples
have been obtained in [24, 21] and exceed the conjecture by a 5% or less. (As
a historical note: the original conjecture by Hirsch referred to perhaps-unbounded
polyhedra, but the unbounded case was disproved in 1967 by Klee and Walkup [17].
Since then, the expression Hirsch conjecture has been used for the bounded case)

It has been known for long that Hpoly(n, d) is attained at a simple polytope
for every n and d. In particular, Hpoly(n, d) equals the maximum diameter of the
adjacency graphs of simplicial d-polytopes with n vertices. Generalizing this a
little bit we define Hsph(n, d) to be the maximum diameter of the adjacency graphs
of simplicial (d − 1)-spheres with n vertices, and Hsimp(n, d) to be the maximum
diameter of the adjacency graphs of pure simplicial (d−1)-complexes with n vertices.

The latter is known to be exponential, but the first two are conjectured to be
polynomial and perhaps not far from the Hirsch bound. More precisely, Table 1
sums up the known bounds. The lower bounds in the last two rows of the table are
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meant asymptotically: they hold for fixed but sufficiently large d and as n goes to
infinity. They follow from the known smallest known non-Hirsch polytope (n = 40,
d = 20 [21]) and sphere (n = 24, d = 12 [20]) via Theorem 2.4 below, whose proof
follows from the following considerations.

Lower bound Upper bound

Hsimp(n, d)
Ω
(

nd−1

d2d!

)
(Criado-Newman 2019 [9])

O
(

nd−1

d!

)
(Santos 2013 [25])

Hsph(n, d)
' 1.08(n− d)

(Mani-Walkup 1980 [20])
' 1.11(n− d) (This paper)

min{2d−3n, nlog d−2}
(Larman 1970 [18],

Kalai-Kleitman 1992 [15])
Hpoly(n, d)

' 1.05(n− d) (Matschke-
Weibel-Santos 2017 [21])

Table 1. Known bounds for maximum diameters of classes of
simplicial complexes

Additionally, the Hirsch bound is known for 2-spheres (all of which are polytopal)
and for spheres with n− d ≤ 5. The latter is stated in [17] only for polytopes, but
the proof works for spheres with minor changes as we sketch below.

In the proof we need the one-point suspension construction: the one-point sus-
pension of a simplicial complex C at a vertex w is the complex C′ obtained by
considering the usual suspension C ∗ {{w1}, {w2}} of C and then merging the stars
of edges ww1 and ww2 into the star of a single edge w1w2 so that the vertex w
disappears. For a more direct and explicit description:

C′ := {F, F ∪ {w1}, F ∪ {w2}, F ∪ {w1, w2} : F ∈ linkC(w)}
∪ {F, F ∪ {w1}, F ∪ {w2} : w 6∈ F ∈ C}.

The one-point suspension of a sphere is a sphere with one more dimension, one more
vertex and (at least) the same diameter as the original one. One-point suspensions
of polytopal spheres are polytopal. (See details for example in [16, 24]).

Proposition 2.2 (Sphere version of [17, Proposition 2.10]).

Hsph(n, d) ≤ Hsph(2n− 2d, n− d) ∀n, d.

Proof. Let S be a (d− 1)-sphere with n vertices and let F and G be two facets in
it. If n = 2d then there is nothing to prove.

If n < 2d we use induction on 2d−n. Observe that F and G cannot be disjoint,
so let v ∈ F ∩G. Denote S ′ = linkS(v), and consider F ′ = F \{v} and G′ = G\{v},
which are facets in S ′. The distance from F to G in S is clearly bounded by the
distance from F ′ to G′ in S ′, and S ′ is a (d− 2)-sphere with at most n− 1 vertices.
By inductive hypothesis the diameter of S ′ is bounded by Hsph(2(n − 1) − 2(d −
1), (n− 1)− (d− 1)) = Hsph(2n− 2d, n− d).

If n > 2d we use induction on n− 2d. Denote S ′ the one-point suspension of S.
Then,

diam(S) ≤ diam(S ′) ≤ Hsph(n + 1, d + 1) ≤ Hsph(2n− 2d, n− d),

by inductive hypothesis. �
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Theorem 2.3 (Sphere version of [17, Theorem 4.2]). For any n, d with n− d ≤ 5,
Hsph(n, d) ≤ n− d.

Proof. By Proposition 2.2 we can assume n = 2d. So, let S be a (d − 1)-sphere
with 2d vertices and let F and G be two facets in it achieving the diameter. We
want to show that he distance from F to G to be at most d.

The proof follows the one in [17] for the polytopal case and consists of the
following three claims. Claims 1 and 2 do not need the assumption that d ≤ 5, and
correspond to Theorem 2.8 and Proposition 3.4.(b) in [17].

Claim 1: there is no loss of generality in assuming F ∩G = ∅. If this is not the
case, let S ′ = linkS(F ∩G). Then, F ′ := F \G and G′ := G \ F are facets in S ′ at
distance at least equal to the distance between F and G in S. Observe that S ′ is a
(d−1−k)-sphere, where k = |F ∩G|, and it has between 2d−2k and 2d−1 vertices.
If S ′ has 2d − 2k vertices, the diameter of S ′ is bounded by Hsph(2d − 2k, d − k)
which, by induction on d, is at most d − k. If S ′ has more than 2d − 2k vertices,
let S ′′ be the iterated one-point suspension of S ′ at each vertex w not in F ′ ∪G′.
S ′′ is a sphere of dimension d − k − 1 + l and with 2d − 2k + 2l vertices, where l
is the number of times we did the one-point suspension. In S ′, F ′ and G′, each
together with one of the two vertices of each suspension, give two complementary
facets which are at least at the same distance as F ′ and G′ were in S ′.

Claim 2: assume F ∩ G = ∅. There are vertices v ∈ F and w ∈ G such that
{v, w} is an edge in S and such that F and G are adjacent respectively to facets
F ′ and G′ with {u, v} ∈ F ′ ∩G′. Let F ′ be any facet adjacent to F . Let w be the
unique vertex in F ′ \ F and u the unique vertex in F \ F ′. It is impossible for the
d − 1 facets adjacent to G and containing w to all of them use u: indeed, if that
happened then these d− 1 facets together with G form a ball with w in its interior,
implying that there are no other facets in the star of w; this is impossible because
F ′ is in the star of w too. Hence, there is a facet G′ adjacent to G, using w, and
using a vertex v of F other than u. This proves the claim for the edge vw thus
obtained.

Claim 3: with v, w as above, there is a path in starS({v, w}) of length at most
d − 2 between a facet F ′ adjacent to F and a facet G′ adajcent to G. The proof
of this claim is the complicated part, occupying most of Section 4 (pages 69–71)
of [17]. The good thing is that we do not to even check that the proof extends to
spheres, since it is a statement about the link of the edge {u, v} in S and that link is
a (d− 3)-sphere, hence polytopal for d ≤ 5. Indeed, what Klee and Walkup show is
that the following (which paraphrases [17, p. 69, ll. 4–8]) holds for every simplicial
k-polytope Q with k ≤ 3 and with between 2k and 2k + 2 vertices: “if the vertices
of Q are divided into two disjoint classes X and Y , each consisting of at most k+ 1
vertices, then there is a path of length at most k from a facet contained in X and a
facet contained in Y .” This proves the claim by letting Q be a polytope isomorphic
to linkS({v, w}), k = d− 2, and X and Y be F \ {v} and G \ {w}, respectively. �

We call a d-polytope or (d− 1)-sphere with n vertices non-Hirsch if it has diam-
eter l greater than n− d. Its excess is defined to be l

n−d − 1. From any non-Hirsch
sphere or ball infinitely many additional ones can be obtained by the following
procedures:
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• The join of a (d1 − 1)-sphere S1 with n1 vertices and diameter l1 and a
(d2−1)-sphere S2 with n2 vertices and diameter l2 is a (d1 +d2−1)-sphere
with n1 + n2 vertices and diameter l1 + l2. It is denoted S1 ∗ S2.
• The connected sum of two (d−1)-spheres S1 and S2 with n1 and n2 vertices

and of diameters l1 and l2 is a (d− 1)-sphere with n1 + n2 − d vertices and
of diameter at least l1 + l2−1. It is denoted S1#S2. (Strictly speaking, the
diameter of a connected sum of two spheres depends on the choice of facets
to glue; we here assume that they are glued in the worst possible way).
• The suspension of S has one more dimension and two more vertices than
S, and its diameter is one more than that of S.

These constructions, which all preserve polytopality, lead to the following:

Theorem 2.4 (Variation of [24, Theorem 6.5]). If for a certain d0 we know that
Hsph(2d0, d0) = l0, then

Hsph(n, d) >

⌊
n− d

d

⌋
·
(⌊

d

d0

⌋
(l0 − d0) + d− 1

)
' l0

d0
(n− d), ∀n, d.

In particular, we have Hsph(n, d) & (n− d) l0
d0

for n� d� d0.
The same holds for Hpoly.

Proof. Let S0 be the initial sphere, of dimension d0 − 1, with 2d0 vertices, and
with diameter l0. Then, for every k the k-fold suspension S∗k of S has dimension
kd0−1, diameter kl0, and 2kd0 vertices. Letting k = bd/d0c and performing d−d0k
suspensions on S∗k we obtain that

Hsph(2d, d) ≥
⌊
d

d0

⌋
(l0 − d0) + d, ∀d, k.

Let T d be the (d− 1)-sphere on 2d vertices obtained so far. By a connected sum
of bn/dc − 1 = b(n− d)/dc copies of T d we conclude that

Hsph(n, d) ≥ Hsph(dbn/dc, d) ≥
⌊
n− d

d

⌋
·
(⌊

d

d0

⌋
(l0 − d0) + d

)
−
⌊
n− d

d

⌋
+ 1

=

⌊
n− d

d

⌋
·
(⌊

d

d0

⌋
(l0 − d0) + d− 1

)
+ 1.

�

The smallest non-Hirsch spheres constructed in this paper have dimension 8, 18
vertices, and excess 1/9, which gives the bound in Corollary 1.3.

2.3. Prismatoids and the strong d-step theorem. The d-step theorem of Klee
and Walkup is the statement that Hpoly(n, d) ≤ Hpoly(2(n− d), n− d) for every n
and d. In particular, it reduces the study of the Hirsch conjecture or the asymptotic
behavior of Hpoly(n, d) to the case n = 2d. The proof works with no change for
Hsph(n, d), since it is purely combinatorial.

Santos’ construction of non-Hirsch polytopes is based on a version of this result
for a particular class of polytopes, the so-called prismatoids.

Definition 2.5. A prismatoid is a polytope Q with two parallel facets Q+ and Q−,
that we call the bases, containing all the vertices. We call a prismatoid simplicial
if all faces except perhaps Q+ and Q− are simplices. Observe that the faces of a
prismatoid of dimension d, excluding the two bases, form a simplicial complex of
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dimension d − 1 and homeomorphic to the product of Sd−2 with a segment. We
call this complex the prismatoid complex of Q.

The width of a prismatoid is the distance from one base to the other, measured
in the adjacency graph.

Theorem 2.6 (Strong d-step theorem for prismatoids [24]). If Q is a simplicial
d-prismatoid of width l and with n > 2d vertices, there exists a simplicial n − d-
prismatoid Q′ with 2n− 2d vertices and width at least l + n− 2d.

In particular, if l > d then (the simple polytope dual to) Q′ violates the Hirsch
conjecture.

Santos’ original counterexample applies this result to a 5-prismatoid with 48
vertices and of width six, thus obtaining a non-Hirsch 23-polytope with 46 facets.
This was improved in [21] to a 5-prismatoid of the same width but with only 25
vertices, which provides a non-Hirsch polytope in dimension 20.

3. Topological prismatoids and the topological strong d-step
theorem

3.1. Prismatoids and flips in them. We now define the main object we work
with:

Definition 3.1. A ((d − 1)-dimensional) topological prismatoid C is a (d − 1)-
dimensional pure simplicial complex homeomorphic to Sd−2 × [0, 1] (that is, it is
homeomorphic to a cylinder), and such that every face with all its vertices in the
same boundary component is a boundary face. Put differently, the two boundary
components, each homeomorphic to Sd−2, are induced subcomplexes.

Bistellar flips were introduced for general manifolds in [22] and they are a stan-
dard tool in combinatorial topology by now, as local modifications that preserve
the PL-type. The main result of Pachner [22] is the converse: every two PL-
homeomorphic simplicial manifolds can be transformed into one another via a
sequence of bistellar flips. We here adapt the general definition to the case of
topological prismatoids:

Definition 3.2. A flip in a topological prismatoid C is a triple (f, l, v) of pairwise
disjoint subsets of V (C) such that f is a face, l is a minimal nonface, linkC(f) =
∂(l) ∗ v, v is either the empty face or a vertex, and one of the following two things
happens:

• |f | + |l| = d + 1 and v = ∅, in which case l is required to intersect both
bases of C. (Observe that in this case linkC(f) = ∂(l) ∗ v = ∂(l)).
• |f | + |l| = d and v is a vertex, in which case f and l are required to be

contained in the base opposite to v.

In both cases, the result of the flip is the prismatoid

C′ = C \ starC(f) ∪ (l ∗ ∂(f) ∗ v).

flips with v = ∅ are called interior flips and flips where v is a vertex are called
boundary flips. The support of the flip is f ∪ l ∪ v.

Put differently, an (f, l, v) flip removes all faces containing f and inserts as new
faces all subsets of f∪ l∪v that contain l but not f . The interior flips do not change
the boundary and are exactly the traditional bistellar flips; the main new feature of
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our definition is that we allow flips that change the boundary, but guaranteeing the
two bases to still be induced subcomplexes after the flip. Observe that a boundary
flip can remove or add a vertex. This happens when f or l, respectively, have size
1.

Remark 3.3. In Definition 3.2, V (C) is understood as the ground set of the pris-
matoid, which may contain points that are not used as vertices. In particular, a
boundary flip may have l = {w} for a w that is not a vertex, and f a facet in a
base. The result of the flip is that this facet is stellarly subdivided with the new
vertex w.

We need this type of flips because we want flips to be reversible for the simulated
annealing framework. These flips are the inverse of vertex-removing flips.

An important feature used in our implementation is that knowing only the sup-
port u of a flip we can recover the sets f , l and v and thus perform the flip:

• If u has a single vertex from one of the bases then the flip is a boundary
flip, and that vertex is v. Indeed, in an interior flip l has at least one vertex
from each component by definition, and f has at least another from each
base because the condition link(f) = ∂(l), with |f | + |l| = d + 1, implies
that f is an interior face.
• In both cases, the set f∪v equals the intersection of all facets of C contained

in u. This allows us to recover f , and hence l, once we know v by the
previous point.

The support u of a flip must have d + 1 vertices, since it is the vertex set of a
d-ball of the form l ∗ ∂(f) ∗ v, that is, the join of an i-simplex and the boundary of
a j-simplex, with i + j = d− 1.

Moreover, the following result allows us to detect flips:

Proposition 3.4. Given a set u of d+1 vertices (or d vertices and an unused point
in the case of insertion flips) not all in one base, let f , l and v be as above. The
following conditions are necessary and sufficient for u to support a flip in (f, l, v):

(1) u is the neighborhood of a ridge.
(2) neigh(f) has d + 1 vertices (or d vertices in case of insertion flips).
(3) l is not a face of C.

3.2. The strong d-step theorem for topological prismatoids. We here prove
the main theoretical result that allows us to use topological prismatoids to search
for non-Hirsch spheres. The width of C is two plus the distance, in the adjacency
graph, between the set of facets incident to one base and the set of facets incident
to the other (the distance between two sets is, as customary, the minimum distance
between respective elements).

Theorem 3.5 (Strong d-step theorem for topological prismatoids). Let C be a
topological prismatoid of dimension (d − 1), width l and with n > 2d vertices.
Assume that its two bases are polytopal. Then, there exists a topological (n−d−1)-
prismatoid C′ with 2n− 2d vertices and width at least l + n− 2d.

In particular, if l > d then C′ is a simplicial sphere of dimension D − 1 :=
n − d − 1, with N := 2D = 2n − 2d vertices whose adjacency graph has diameter
larger than N −D.
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Remark 3.6. The excess of the non-Hirsch sphere produced via Theorem 3.5 from
a topological (d− 1)-prismatoid C of width l and n vertices equals

l − d

n− d
.

Thus, we call that quotient the (prismatoid) excess of C.

Proof. By induction on n − 2d it suffices to construct a prismatoid of dimension
d with n + 1 vertices, width at least l + 1, and such that its bases are polytopal.
Repeating this procedure n − 2d times we arrive at a (D − 1)-prismatoid with
2D vertices. In such a prismatoid the bases are simplices, so the prismatoid is a
(D − 1)-sphere with 2D-vertices and diameter at least l + (n− 2d).

For the inductive step, let B+ and B− be the two bases of C. Since C has more
than 2d vertices, at least one of them (say B+) is not a simplex. Let S+ be a
simplicial polytopal (d− 1)-sphere containing B+ and with no additional vertices.
S+ exists since B+ is polytopal: Let P ⊂ Rd be a d-polytope realizing B+ and
choose a sufficiently generic lifting function h : vertices(P ) → R. Then S+ can be
chosen to be the boundary complex of conv{(v, h(v)) : v ∈ vertices(P )}.

Let S+
1 and S+

2 be the two closed (d − 1)-balls whose intersection is B+ and
whose union is S+. Let v1 and v2 be two additional vertices. Consider the following
simplicial complex:

C′ := (C ∪B+
1 ) ∗ v1 ∪ (C ∪B+

2 ) ∗ v2.

C′ is a topological d-prismatoid with bases S+ and the suspension S− := B− ∗
{v1, v2} of B− (see Figure 1). It is not yet the prismatoid we want since it has
n + 2 vertices and we want only n + 1. Later in the proof we show how to reduce
the number of vertices by one, but for the time being let us not care about that.
Instead, for reasons that will become apparent later, when computing the length of
paths in the adjacency graph of C′ we will neglect the steps of the form F ∗ v1 to
F ∗ v2 or vice versa, for facets F of C. We claim that, even with this reduced way
of counting steps, C′ has width strictly larger than C.

To prove the claim, let F ′0, . . . , F
′
t be a path in C′ from a facet F ′0 adjacent to S−

to a facet F ′t adjacent to S+. Since we want our path as short as possible, there
is no loss of generality in assuming that F ′t is the only facet adjacent to S+. That
is, each facet F ′i , i ∈ {0, . . . , t− 1}, is of the form Fi ∗ vj for a certain facet Fi of C
and j ∈ {1, 2}. We have that:

• Facets Fi and Fi+1 are either adjacent or the same; the latter happens if
and only if F ′i and F ′i+1 are of the form F ∗ v1 and f ∗ v2 for the same facet
F of C.
• The first facet F0 is adjacent to B−, since F ′0 is adjacent to S− = B− ∗
{v1, v2}.
• The last facet Ft−1 is adjacent to B+, since F ′t−1 is obtained from the facet
F ′t = Ft ∗ vj by changing a single vertex, and Ft is a facet of S+, not of C.

Thus, as claimed, the width of C is strictly larger than that of C, even neglecting
the steps F ∗ v1 ↔ F ∗ v2.

We now get rid of one vertex without decreasing the width of C′. For this, let v
be any vertex of B− and observe that

linkC′(vv1) = linkC′(vv2) = linkC(v).
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B−

B+ B+

B−

S+

S−

v1

v2

Figure 1. Sketch of the construction of the prismatoid C′ (right)
from C (left) in the proof of Theorem 3.5

This implies that we can substitute in C′ the stars of edges vv1 and vv2 by the star
of a single edge v1v2, to obtain a topological prismatoid with one less vertex, that
is, with n + 1 vertices. More precisely, we let:

C′′ := C′ \ (vv1 ∗ linkC(v) ∪ vv2 ∗ linkC(v)) ∪ v1v2 ∗ linkC(v).

restricted to S−, which was the suspension of B−, this operation produces the one
point suspension of B− at vertex v. Thus, C′′ is a prismatoid with bases S+ and the
one-point suspension of B− at v. It has n+ 1 vertices, dimension d, and it has the
same width as C′ if we neglect the steps of the form F ∗v1 ↔ F ∗v2; in particular, it
has width strictly larger than that of C. S+ is a polytopal (d−1)-sphere by the way
we constructed it, and the other base is also polytopal since one-point suspensions
of polytopes are polytopes. �

Remark 3.7. Analyzing the proof of Theorem 3.5 the reader can check that the
only place where we need the bases of C to be polytopal is in order to construct
the (d − 1)-sphere S+ from the base B+ of C. That is, strictly speaking we do
not need each base B to be polytopal but only to be embeddable in a sphere of
one more dimension without extra vertices (and we need to keep this property
recursively until B becomes a simplex). We do not know whether all spheres have
this property but we suspect not.

3.3. Prismatoids of large width via reduced incidence patterns. In all pre-
vious constructions of non-Hirsch polytopes, the proof that the prismatoids to which
Theorem 3.5 is applied is non-d-step uses the following result.

Proposition 3.8. Let C be a (geometric or topological) prismatoid with bases B+

and B−. A necessary condition for C to be d-step is that there are vertices v ∈ B+

and w ∈ B− such that vw is an edge and the star of vw contains facets incident to
both bases.



12 FRANCISCO CRIADO AND FRANCISCO SANTOS

This proposition is a rephrasing of [21, Proposition 2.1], and used in part (3)
of [24, Lemma 5.9]. Observe that the necessary condition in the statement is exactly
Claim 2 in the proof of Theorem 2.3. Following [21] we introduce the following
graph-theoretical way to visualize this property:

Definition 3.9. Let C be a topological prismatoid with bases B+ and B−. The
incidence pattern of C is the bipartite directed graph having a node for each vertex
of C with bipartition given by the bases and with the following arcs: for each
v ∈ B+ and w ∈ B− we have an arc v → w (resp., w → v) if there is a facet F in C
containing vw and incident to B+ (resp., incident to B−). The reduced incidence
pattern is the subgraph induced by vertices that are not sources.

In this language, Proposition 3.8 becomes:

Proposition 3.10 (Topological version of [21, Proposition 2.3 ]). Let C be a topo-
logical prismatoid. If there is no directed cycle of length two (that is, a “bidirectional
arc”) in its reduced incidence pattern then C is non-d-step.

Proof. Suppose C is d-step, so that there is a sequence of facets F1, . . . , Fd−1, each
adjacent to the next, and with F0 adjacent to B+ and F1 adjacent to B−. In
particular, F1 consists of a vertex v of B− and d − 1 vertices of B+, and Fd−1
consists of a vertex w of B+ and d − 1 vertices of B−. This can only happen if
v is already in Fd−1 and w in F1, so that v and w form a 2-cycle in the reduced
incidence pattern. �

Remark 3.11. The absence of cycles of length two is sufficient but not necessary
for being non-d-step. For example, two of the four small non-Hirsch prismatoids
described in Section 5 do have cycles of length two in their reduced incidence pat-
terns.

Using the fact that in a reduced incident pattern without cycles of length two
all vertices must have out-degree at least two, the minimum possible patters were
classified in [21]. The proof works without changes for topological prismatoids:

Lemma 3.12 ([21, Proposition 2.4]). Let C be a topological prismatoid whose re-
duced incidence pattern has no cycles of length two. Then, the reduced incident
pattern has at least eight vertices.

Moreover, the only two possible patterns with eight vertices are those of Figure 2
(vertices of one base are white, vertices of the other are grey).

It is interesting to note that the prismatoids constructed in [21, 24] have the
reduced incidence pattern on the left of Figure 2 while the ones we obtain in this
paper are related to the pattern on the right. See Section 5 for details.

3.4. Shellability of (topological) prismatoids. The following concept of shelling
for prismatoids is a special case of shelling of relative simplicial complexes, in the
sense of [11, Section 4.2]. Indeed, C is shellable from B+ to B− in the sense of
Definition 3.13 if and only if the relative complex (C, B+) is shellable.

Definition 3.13. Let C be a topological prismatoid with bases B+ and B−. A
prismatoid shelling of C from B+ to B− is an ordering F1, . . . , FK of the facets of
C with the following property: for each i = 1, . . . ,K, the intersection of |Fi| with
|B+| ∪ |F1|,∪ · · · ∪ |Fi−1| is a (d− 2)-ball in the boundary complex of Fi. Here, the
notation | · | applied to a subset of vertices means the subcomplex induced by them.
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Figure 2. The two minimal reduced incidence patterns without
cycles of length two

Proposition 3.14. Shellability is preserved under the “strong d-step construction”
of Theorem 3.5.

Proof. Let C be a prismatoid with polytopal bases and let C′ be the prismatoid
obtained from it in the proof of Theorem 3.5. Let F1, F2, . . . , is a shelling order of
C.

By the way the sphere S+ is constructed in that proof, there is a line shelling
of S+ that completely shells the half-sphere S+

1 first, and then the half-sphere S+
2 .

The shelling of C′ is then as follows: Following the shelling order of S+, shell first
S+
1 ∗v1, then S+

2 ∗v2. After that is done, do F1 ∗v1, F1 ∗v2, F2 ∗v1, F2 ∗v2, . . . ,. �

Remark 3.15. It is not clear to us whether the bases of a prismatoid that is
shellable in the sense of Definition 3.13 have to be shellable themselves.

4. Metaheuristics and implementation

In this section, we show our approach to find non-d-step topological prismatoids
with few vertices.

The general idea is to start with a 28 vertices prismatoid as defined in [21], and
perform flips on it attempting to remove vertices while preserving its width. A
general, well known framework to do this is simulated annealing. We take this one,
instead of the smaller one with 25 vertices also constructed in [21], as a starting
point because it has much more symmetry.

Simulated annealing is a very common metaheuristic algorithm for optimization
problems, used when we have a search space and an “adjacency relation” between
pairs of feasible solutions. The idea is to perform a random walk through the
state graph of a problem, but favoring moves that improve the desired objective
function over moves that do not. It has been used successfully in combinatorial
topology to simplify simplicial complexes while preserving a condition (typically
their homeomorphism type) [6] or, in conjunction with other strategies, to tackle
the problem of sphere recognition [14, 13].

There is a variable, the temperature, regulating the probability assigned to each
possible step as a function of how much it improves or worsens the objective. At
higher temperatures the choice is more random; when the system cools down it
converges to accepting only improving moves. Formally, the probability of accepting
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a step that increases cost by ∆c at temperature t is:{
1 if ∆c < 0,

exp(−∆c/t) if ∆c ≥ 0.

Note that it is very important to choose the potential step with uniform probability,
among all the neighbor of the current state. This “a priori” probability distribution,
together with the cooling schedule, produces an “a posteriori” probability distribu-
tion of performing the step. This gives higher probability to improving steps, but
also gives chance to worsening steps at high temperatures.

That is, areas of the graph with smaller values of the objective function are more
likely to be explored. As the temperature cools down, the random walk will focus
on these areas and make optimizations with more detail. Loosely speaking, the first
few iterations of the algorithm are more exploration-focused, and the last iterations
are exploitation-focused.

Formally, simulated annealing requires the following aspects to be decided:

• A state graph representing the feasible states of the problem and an adja-
cency relation, plus an initial state.
• A cooling schedule, that defines temperature as a function of time, thus

modulating the probability of acceptance of a cost-increasing step.
• An appropriate objective function that we aim to minimize.

In our particular problem, our state graph consists of all non-d-step topological
4-prismatoids, with an edge between a pair of prismatoids if they differ by a flip.
This graph is undirected, since every flip is reversible by another flip.

There is a lot of research on cooling schedules for different problems. It is known
that SA converges to the global optimum for a certain cooling schedule [3], but
it is too slow for any practical application. Since the best schedule depends on
the problem, several adaptative schedules have been proposed too [12]. However,
the most common approach is to define a geometric cooling schedule, of the form
Tt = t0 ∗ est, where the parameters t0 (initial temperature), s (cooling speed) and
the number of iterations are adjusted manually. Since the flipping operation is very
fast, we have chosen a slow schedule with a high number of iterations.

The particular parameters have been obtained by trial and error. We used
cooling schedule T (k) = 1000 · 0.99997k and 500000 iterations for each run.

4.1. The objective function. The objective function guides our algorithm to-
wards non-d-step topological prismatoids with few vertices. This is, prismatoids
with many vertices should have higher cost.

A naive approach would be to just take the number of vertices as an objective
function. But this objective function has large plateaus, connected subgraphs of
the state graph with constant number of vertices, and it does not push our state
towards less vertices. So we have to find a way to break ties between prismatoids
with the same number of vertices by giving less cost to prismatoids from which
we expect it to be easier to remove vertices. That is, the objective function we
want has the number of vertices as a main component, plus a smaller (heuristic)
tie-breaker that pushes the algorithm in the right direction.

A flip that removes a vertex must be of type (1, d); therefore, in order to perform
it we must have a vertex with exactly d+1 neighbors, which is the smallest possible
size for the neighborhood of a vertex in a prismatoid. So, a good approach is to
try to reduce the size of the neighborhood of a vertex until it is precisely d + 1.



TOPOLOGICAL PRISMATOIDS AND SMALL SIMPLICIAL SPHERES OF LARGE DIAMETER15

However, just taking the size of the smallest neighborhood as a tie-breaker is not
sensitive enough because the algorithm will then not try to reduce the neighbor-
hoods of other vertices. For this reason, we use as a tie-breaker a generalized mean
of the sizes of neighborhoods of vertices. More precisely, the objective function that
achieved the best performance in practice among the ones we tried is

cost(C)) = |V (C)|+ ε

(∑
v∈V (C) |neigh(v)|−3

|V (C)|

)−1/3
.

4.2. Data structures. A proper “topological prismatoid” data structure for our
problem needs to allow for the following operations:

• Construction from the list of facets.
• Check if a set of vertices is a face.
• Iterate through the maximal subfaces of a face.
• Iterate through the minimal superfaces of a face.
• Perform a flip.
• Compute the width of the prismatoid.
• Get a valid random flip (with uniform probability).

We implement a prismatoid C as a map of pairs (face,neighborhood), indexed by
the faces in C. Faces and neighborhoods themselves are of type “set of integers”.
We also store the bases of C in the same manner.

Observe this implicitly gives us the Hasse diagram (maximal subfaces and mini-
mal superfaces): Each face F is directly above those of the form F \ {v} for v ∈ F ,
and directly below those of the form F ∪{w} for w ∈ neigh(F ). There is no need to
store the adjacency graph, because it is implicit in the Hasse diagram. The facets
adjacent to a facet F are computed from the neighborhood of the non-boundary
ridges in F . Boundary and interior ridges are distinguished by their neighborhoods
having d + 1 and d elements, respectively.

To compute and update the width we store, for each facet, the distance to the
first base (chosen arbitrarily but once and for all) and the number of paths achieving
that distance. In this way we do not need to explore again all facets to compute the
new width after performing a flip, we just need to update the values that change.
For this, when we perform the flip the new facets are inserted into a queue, and
the distances are updated by cascading through the prismatoid.

A flip is implemented simply by removing the old faces and inserting the new
inserted faces. What is not so straightforward, and needs to be addressed, is how
to implement an unbiased generation of random flips among all the possible ones.

For this, we imitate to some extent the technique used in polymake [10]. In
polymake, there is a set of pairs (f, l), called “options” satisfying some conditions
for flipability, in particular conditions (1) and (2) of Section 3.1. The flips are
categorized by dimension of f . But the list of candidate pairs (f, l) is very hard
to update after a flip is performed. Among other things, some potential flips may
change their f and l while preserving their support f ∪ l.

Since the support of every flip is the neighborhood of a ridge, one could simplify
this by using the list of ridges instead of the pairs (f, l) as input to generate a
random flip. But choosing randomly from the list of ridges creates bias: some flips
are more likely than others since several ridges (actually |l| of them) correspond to
the same flip.
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Figure 3. Top: distribution of the 4093 prismatoids by number
of vertices. Bottom: distribution by number of vertices and facets.
The initial prismatoid has 28 vertices and 272 facets.

To avoid these drawbacks we store and update the list of ridge-neighborhoods.
That is, for each ridge F we store the facet F1 containing F or the union F1 ∪ F2

of the two facets containing F depending on whether F1 is in the boundary or
the interior. This is very easy to update, and it also makes it very easy to spot
vertex-adding flips (which correspond to boundary ridge-neighborhoods and are
characterized by having d instead of d + 1 elements). Since there is a bijection
between flip-defining ridge-neighborhoods and flips, via the (f, l, v) formalism in-
troduced in Section 3.1, it is easy to choose flips uniformly at random: choose a
random ridge-neighborhood and discard non-valid ones.

We find this approach more stable and requiring less changes to the data struc-
ture than the ones based on (f, l) pairs or in ridges alone.

5. Results. Small non-d-step prismatoids and spheres

As said in the previous section, we ran our algorithm with cooling schedule
T (k) = 1000 · 0.99997k and 500000 iterations for each run. We let it run for three
days on an openSuse 42.3 Linux machine with 16 GB of RAM and an AMD Phenom
X6 1090T processor, after which we had concluded 4093 runs. We thus obtained
4093 non-d-step topological 4-prismatoids, with number of vertices ranging between
14 and 28. Figure 3 shows the distribution we obtained for the number of vertices
alone (top) and for number of vertices versus number of facets (bottom).

For the rest of this section we focus on the 4 smallest examples, with 14 vertices.
We call them #1039, #1963, #2669 and #3513 since these are their indices among
the 4093 experiments that we did. They are listed in Tables 2–5. Vertices from one
base are labeled 0 to 6 and vertices from the other are a to g. In the tables, the
facets of each prismatoid are grouped by layers, where a layer consists of all facets
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#2669

Figure 4. The reduced incidence patterns of the four smallest
non-d-step 4-prismatoids

sharing the number of vertices they have from each base. It is remarkable that the
four examples obtained have a lot of similarities:

• They have combinatorially isomorphic bases. Indeed, in all cases the list of
facets of the bases are as follows. (To relate this to the tables, observe that
the bases correspond to the first and last layer in the prismatoid, removing
from each facet the unique vertex from the other base).

0123

0134 0234 1234
0145 0245 1245

0156 0256 1256

0126

and

abcd

abde acde bcde
abef acef bcef

abfg acfg bcfg

abcg.

Observe that both are the face complex of the stacked 4-polytope with
seven vertices. That is, they are the boundaries of the stacked 4-balls
{01234, 01245, 01256} and {abcde, abcef, abcfg}, respectively.
• They have the same f -vector (14, 85, 220, 241, 92).
• They are all shellable, with a shelling that is monotone on layers. That is,

no facet of one layer is used until finishing the previous layer. In the tables,
facets within each layer are given in a shelling order.
• The vector of number of facets in different layers is the same (11, 35, 35, 11),

and symmetric, in three of them. In #2669 we get the slightly asymmetric
vector (11, 34, 36, 11).
• Their reduced incidence patterns, shown in Figure 4, are very similar. In

#1963 and #3513 the reduced incidence patterns coincide with the one
in the right part of Figure 2, minimal by Lemma 3.12. In #1039 and
#2669 they are are almost the same, except each of them has a single
“outlier” facet incident to a base (0bcde in #1039 and 0234a in #2669)
that introduces a new vertex in the pattern and creates directed cycles of
length two. In particular, in these two Proposition 3.10 is not enough to
prove the non-d-step property.

Note that the starting prismatoid of the algorithm had the other reduced
incidence pattern of minimal size, the one in the left in Figure 2.

We do not know whether any of the four is polytopal.
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0256g
0245f

1256g

1245f
0234e

0123d

1234e
0126d

0156g
0145f

0134e

126cg
015bg

015bf

014ae
013ae

013ad

016cd
016cg

014bf
014ad

014cd

014bc

123ae
124af

123af

123bf
123bg

123cd

123cg
026bg

026cd

026ce
026be

126cd

025af
025bg

024af

024ae
025ae

025be

125bg
125bf

023ce

023cd
124ae

14abf
13abf

13acd

13acg
13abg

06bce

04abd
04bcd

14bcg
14abg

14acg

14acd

26abf
26ace

26abe

05abf
03ace

05ace

03acd
05acd

05cde

05bde
05abd

04abf

25abf
25abe

01bcg

06bcg
26bcg

23bcg

23bcf
23acf

23ace

26bcf
26acf

5acde
5abde

3bcfg

3acfg
3abfg

0bcde

6bcef
6acef

6abef
4abcg

4abcd

Table 2. Prismatoid #1039

0126d

0123d
0134e

0234e

1234e
0145f

0245f

1245f
0156g

0256g

1256g

014ae

024ae
013ae

014af

024af
025af

025ae

124af
013af

016bd

026bd
013bd

023bd

123bd
023be

026be

123be
124be

124bd

016bg
013bg

126cd

124cd
124ac

126cg

125cg
125cf

015cf

013cf
015cg

025cg

025ce
026cg

026ce

013cg

14abe

24abe
24abd

25abe

25abd
13abe

03abe

06abe
03abf

06abf

13abg
14abg

24acd

12acf
25acf

25acd

05acf
05ace

06ace

06acf
13acf

16bcd

14bcd
26bcd

25bcd

25bce
26bce

13acg

14acg
16bcg

06bcg

06bcf
03bcf

14bcg

03bcg

5abde

6abef
3abfg

5acde

6acef
4abcd

5bcde

6bcef
3acfg

4abcg

3bcfg

Table 3. Prismatoid #1963

0156g
0256g

1256g

0123d
0126d

0134e

1234e
0234a

0145f
0245f

1245f

023ad
013ad

026ad

013ae
034ae

234ae
123ae

124ae

026bg
025bg

125bg

016cg

126cg
015cg

016cd

126cd
123cd

123cg

123ag
124ag

124bg
015cd

015ad

015ae

024af
026af

026bf

025bf
125bf

124bf

015bf
015be

014bf

014be

24abg
23abg

13acg

14acg
13acd

23acd
26acd

06acd

14acd
05acd

05ace

06ace

06bcg
26bcg

23bcg

05bcg
15bcg

14bcg

14bcd
15bcd

05bce
06bce

24abf

23abf

04abf
04abe

06abe

14abe
14abd

15abd

15abe
06abf

23acf

26acf
23bcf

26bcf

5abde
5acde

5bcde

4abcg
4abcd

3abfg
6abef

3acfg

6acef
3bcfg

6bcef

Table 4. Prismatoid #2669

0156g

0256g
1256g

0134e

0234e
1234e

0126d

0123d
0145f

0245f

1245f

015ag

025bg
125bg

026bg
126bg
016bg
016bd

026bd
025bd

015af
014af
014ag

014bg

024af
024ae

124af
124ae
123ae
025af

025ae
123af

125bf
126bf
014bc

014ce

013ce
023ce

025ce
025cd
023cd
013cd

123cd
126cd

126cf
123cf

04abg

05abg
15abg

05abd
04abd
15abf
25abf

25abe
26abf

26abe
13abf
13abg

14bcg

14acg
14ace

04ace
05ace
13ace
13acg

13bcg
23ace

05acd
04acd
01bcd

04bcd

16bcd
26bcd

25bcd
25bce
26bce
26ace

26acf
23acf

16bcf
13bcf

5abde

3abfg
6abef

4abcg
4abcd
5acde
5bcde

3acfg
3bcfg

6acef
6bcef

Table 5. Prismatoid #3513



TOPOLOGICAL PRISMATOIDS AND SMALL SIMPLICIAL SPHERES OF LARGE DIAMETER19

References

[1] A. Altshuler. A peculiar triangulation of the 3-sphere. Proc. Amer. Math. Soc. 54 (1976),
449–452.

[2] A. Altshuler. The Mani-Walkup spherical counterexamples to the W v-path conjecture are

not polytopal. Mathematics of operations research 10:1 (1985), 158–159.
@articlebertsimasTsitsiklis1993, author = ”Bertsimas, Dimitris and Tsitsiklis, John”, doi =

”10.1214/ss/1177011077”, fjournal = ”Statistical Science”, journal = ”Statist. Sci.”, month

= ”02”, number = ”1”, pages = ”10–15”, publisher = ”The Institute of Mathematical Statis-
tics”, title = ”Simulated Annealing”, url = ”https://doi.org/10.1214/ss/1177011077”, volume

= ”8”, year = ”1993”
[3] D. Bertsimas, J. Tsitsiklis,. Simulated Annealing. Statistical Science, 8:1 (1993), 10–15. DOI:

10.1214/ss/1177011077

[4] A. Björner and L. J. Billera. Face numbers of polytopes and complexes. In Handbook of
Discrete and Computational Geometry, Third Edition, edited by Jacob E. Goodman, Joseph

O’Rourke, and Csaba D. Tóth, CRC Press, November 2017, pp 447–474. ISBN 9781498711395

[5] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler. Oriented matroids. Encyclo-
pedia of Mathematics and Its Applications, vol. 46. Cambridge University Press, Cambridge,

1993.

[6] A. Björner, and F. H. Lutz. Simplicial manifolds, bistellar flips and a 16-vertex triangulation
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