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ABSTRACT   

Verification is still the bottleneck of the complex digital system design process. Formal techniques have advanced in 
their capacity to handle more complex descriptions, but they still suffer from problems of memory or time explosion. 
Simulation-based techniques handle descriptions of any size or complexity, but the efficiency of these techniques is 
reduced with the increase in the system complexity because of the exponential increase in the number of simulation tests 
necessary to maintain the coverage. Semi-formal techniques combine the advantages of simulation and formal 
techniques as they increase the efficiency of simulation-based verification. In this area, several research works have 
introduced techniques that automate the generation of vectors driven by traditional coverage metrics. However, these 
techniques do not ensure the detection of 100% of faults.  

This paper presents a novel technique for the generation of vectors. A major benefit of the technique is the more efficient 
generation of test-benches than when using techniques based on structural metrics. 

The technique introduced is more efficient since it relies on a novel coverage metric, which is more directly correlated to 
functional faults than structural coverage metrics (line, branch, etc.). The proposed coverage metric is based on an 
abstraction of the system as a set of polynomials where all system behaviours are described by a set of coefficients. By 
assuming a finite precision of coefficients and a maximum degree of polynomials, all the system behaviors, including 
both the correct and the incorrect ones, can be modeled. This technique applies mathematical theories (computer algebra 
and number theory) to calculate the coverage and to generate vectors which maximize coverage. 

Moreover, in this work, a tool which implements the technique has been developed. This tool takes a C-based system 
description and provides the coverage and the generated vectors as output.  

Keywords: Lagrange Interpolation, domain testing, coverage, mutation testing. 
 

1. INTRODUCTION  
Functional verification is the main task in the design process of complex system, which can account for 70% of the 
resources of the project. Several techniques exist to deal with the verification, from simulation techniques to formal 
techniques, passing through semiformal techniques. However, these techniques do not reduce the gap between the 
capacity of design and the capacity of verification.  

The most common industrial technique is still simulation. However, its great inconveniences are in knowing when the 
system is sufficiently verified and in maximizing the probability of stimulating and detecting bugs at minimum cost in 
terms of time and computation resources. The main automatic technique to improve the verification capacity of the 
simulation is the coverage metric.  For this reason, many research works have been focused on defining new coverage 
metrics, the ideal situation being when the metric has a direct correspondence to the design errors. 

The automatic coverage metrics used in industrial tools are mainly the classical code-based coverage metrics derived 
from the software testing field [1]: line/block coverage, branch/conditional coverage, expression coverage and path 
coverage. However, these metrics only provide information about how the code has been stimulated. They are not 
enough to identify a stopping criterion. 

Different research lines have attempted to improve the correlation between the coverage metrics and design errors. One 
approach is to evaluate the quality of the verification test benches with behavioral fault models based on the classic 
stuck-at-fault model [2, 3] or based on bit coverage of the variable, signal and port and the stuck-at of condition [4] or 
using the mutation fault coverage of software [5, 6] for hardware design verification [7]. 
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Another important approach is a tag (error) coverage method based on Hardware Description Language (HDL) coverage 
and observability information [8] and the control-oriented coverage metric that propagates error effects along all possible 
erroneous control-flow paths throughout processes [9]. 

Another strategy of software testing, domain analysis [10], is used to defined new coverage metrics [11, 12]. It is better 
than classical code-based coverage and it is focused on the detection of control flow errors of software. The work [11] 
evaluates the fault coverage in behavioral VHDL descriptions and [12] applies the new metric to measure the 
completeness and quality of the validation approach on several benchmark circuits and industrial circuits under design. 

This work presents a new coverage that includes control and data flow. This coverage is based on mathematical theory 
and software testing which are described in section 3. As the system models are represented by polynomial functions 
(section 2), some mathematical theories can be applied to establish the number of vectors that completely define specific 
functionality. Moreover, it can be applied to improve some domain strategies in software testing. Section 4 presents the 
new metric and explains how the generation of test benches can be optimized. Finally, section 5 presents experimental 
results. An automatic program has been developed to obtain the test benches from C functions that model hardware and 
the final coverage. These results are compared with classical code-based coverage metrics and mutation testing. Finally, 
the conclusions are presented. 

2. SYSTEM MODEL 
In this paper, we assume that the hardware system is described as a set of statements that operate with integer data. These 
integer data are normally bounded, thus they can only take a finite set of values (typically 2m two’s complement values, 
where ‘m’ is the word bit number). Some basic operators are supported (addition, subtraction, multiplication, relational 
and logic operators) as well as ‘if’ control statements. 

Concerning loop statements, a predefined number of iterations are unrolled in a similar way to the time frame expansion 
in ATPG and Bounded Model Checking [16]. The bit-level logic operations are converted into integer expressions. 
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Fig. 1. Polynomial descriptions of a simple example. 

 
With the previously commented consideration, every execution path in the system description can be modeled with 
polynomials (which model the system behavior) and a set of constraints, which model the if-statement conditions. A if 
statement is a constraint that is converted into a polynomial inequality or equality. A simple example is shown in Fig. 1 
with one constraint and two paths (True and False paths). Each path is modeled with one inequality (if statement) and 
one equality, the polynomial functionality of the path. 

3. PREVIOUS WORK 
The goal of this section is to show some theories from computer algebra and software testing that will be used to define 
the new coverage metric. These theories will be presented and adapted to their application.    
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3.1 Notation 

As has been described in the previous section, the system under verification is described with a set of polynomials. Let 
‘r’ be the number of variables or dimension of one of these polynomials. Let X=(x1,…,xr) be any point in the input space. 
Two types of input spaces or domains are considered: real (Rr) and ‘q’-element discrete (Fq

r) input domains. Let 
R[x1,…,xr] be the space of all r-variable polynomials with real coefficients and R[x1,…,xr]d be the subspace of 
polynomials of total degree of at most ‘d’. This subspace is formed by polynomials 

  ∑=
i

i
i xaXP )( . (1) 

where the coefficients, ai, are real numbers and i = (i1, …, ir)  with i1 + … + ir ≤ d, where ii is an integer that fulfils 0 ≤ ik 
≤ dk, k = 1, …, r. Additionally, riii xxx ...1= .  For example, the polynomial “3.1x2y + 4.2x - 0.7” is a member of the set  
R[x, y]3: 2-variable polynomials of total degree of at most 3. 

Let  Fq[x1,…,xr]d be the sub-space of r-variable polynomials with  Fq coefficients and total degree of at most ‘d’. The 
number of polynomials of this sub-space is denoted by # Fq[x1,…,xr]d. Equation (1) also models these polynomials but 
the coefficients (ai) and the input variables (xi) are elements of  Fq, in this case. For example, the polynomial “3xy + 2y2 
+ 1”, is a member of the 4-element 2-variable 2-degree polynomial set F4[x, y]2 and the input variables, (x, y), can only 
take 4 values: 0,1,2,3. 

3.2 Estimation of the number of test benches that completely define the functionality of a path (data flow) 

The main goal of this subsection is to present computer algebra theory (Lagrange interpolation) that can be used to 
estimate the number of test benches that completely verify a polynomial function of a path and the properties that these 
patterns have to fulfill.  

Interpolation is the problem of constructing a function ‘p’ from a given set of data [17]. The interpolation data are 
obtained by sampling another function (f), thus both functions coincide in that data set. In this paper, we are interested in 
interpolation by polynomials, thus the function ‘p’ will be a multivariate polynomial. This topic is classic in computer 
algebra and numerical analysis [17][18][19], but we are only interested in some results related to the “Lagrange 
Interpolation Problem”. This problem can be stated in the real domain in the following form:  

Given a finite number of Rr points ( X1,…, XL ) and some real constraints y1,…,yL , find a polynomial p ∈ R[x1,…,xr]d , 
such that: 

 ( ) LjyXp jj ,...,1==  (2) 

In particular, we are interested in values of  L for which there exists only one polynomial ‘p’. From the verification point 
of view, this set of L inputs is the maximum number of test benches that has to be applied to a polynomial model in order 
to guarantee that there is only one possible behavior. Thus, if a polynomial model is affected by a bug or a “functional 
fault” that modifies the polynomial coefficients but not the polynomial degree (so, the faulty or buggy polynomial is an 
element of R[x1,…,xr]d), there will be points of the previously commented set in which the faulty/buggy polynomial and 
the correct polynomial take different values. As far as we know, there is no published method that interpolates a 
multivariable polynomial from a totally random set of points although this is possible in special cases. For example, for 
real numbers, the interpolation by tensor product (or rectangular grid) is a classic method to obtain a set of  L 
interpolation points [11]. The first step is to select (di +1) random values of the variable xi, i = 1,..,r, where di is the 
polynomial degree of variable xi. Afterwards the tensor product of these values provides the N interpolation points, with 

  ∏
=

+=
r

i
idL

1

)1( . (3) 

For example, given a system output that is modeled by the polynomial f(x, y, z) = 8x2 + 9y + 10z3 + 9, it is possible to 
define a set of “L = (2+1) (1+1) (3+1) = 24” test benches that distinguish this polynomial from any other polynomial, 
with a degree in (x, y, z) of (2, 1, 3). In order to obtain this set of test benches, it is only necessary to define 3 sets of 
random values. The first set has three random x values (x1, x2, x3), the second set has two random y values (y1, y2) and 
the last set has four random z values (z1, z2, z3, z4). The “tensor product” of these sets defines the 24 test benches: 
(x1, y1, z1), (x1, y1, z2), …, (x3, y2, z4).  
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3.3 Estimation of number of test benches that completely define an equation / inequality restriction (control flow) 

This section presents the domain testing method inherited from the software testing which is used to check the 
constraints or boundary conditions. This method establishes a number of test benches by condition. Next, they are 
explained the limitations and how they are corrected to. Finally, it is defined the number of test benches that completely 
verifies a polynomial constraints of a path and the properties that these patterns have to fulfil.  

The domain testing method, proposed by White and Cohen [10], is a strategy to discover errors in the boundary 
conditions of software. This strategy consists in generating a set of points on the border of both domains in order to 
check the limit and detect shifts or changes of the boundary. The work [10] introduces a method of generating this set of 
points known as N x 1. This strategy requires two types of points: N ON-points lie on the border of closed domain and 
one OFF-point on the border of open domain. Clarke et al. [14] propose other strategies to generate the points, known as 
N x N and V x V. The former is similar to the previous strategy, but with N points in both domain and each ON-point 
has to be as close as possible of an OFF-point. The latter strategy consists of a set of points that corresponds to the 
vertices of the domains. A simplified strategy is proposed in paper [15], which requires a constant number of points 
independently of the dimension or the type of the boundary condition or the number of vertices on the given border. 

All of these techniques consider linear boundary conditions and/or the possibility of obtaining a very small distance 
between the ON and OFF points. However, nonlinear boundary conditions are probable in hardware. Moreover, in the 
integer domain, the minimum distance is limited to one. These properties increase the number of possible errors that 
cannot be discovered by a set of test benches. Fig. 2 shows an example of the N x N or V x V strategy with nonlinear 
constraints and integer domains. The stuffed points represent ON points and the hollow points, the OFF points. The set B 
is the closed domain and set A is the open domain. The problems of this strategy are visible: there are many possible 
functions that fulfil these conditions. 

 

A B 
if ( 25x + 9y2 – 144y +801 ≥ 0) 
    Domain B 
else 
    Domain A 

 
Fig. 2. Limitations of N x N and V x V strategies. 

In order to reduce the possible errors, Lagrange interpolation can also be applied to the restrictions. The proposed 
strategy is to generate L x L points according to formula 3. For example, the case in figure 2 needs 6 ON-points and 6 
OFF-points to guarantee that all possible errors are detected. 

The main disadvantage of this method is the number of points that must to be generated compared to the previous 
methods. However, the number of points can be reduced when the domain is defined by several restrictions or when a 
restriction is shared by several domains. In the former case, the intersection point between two restrictions is the best 
point because it is common to two restrictions and it is equivalent to two points, one for each restriction. Figure 3 shows 
this case. The boundary of the domain B is generated by two linear restrictions. It is necessary to generate 2 x 2 points 
per restriction or 4 points for each domain. However, only three points are generated for each domain. The common 
points are equivalent to 4 points.  
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Domain A 

Domain B 
if (x + 2y – 33 ≤ 0) 
    if (10x – 9y – 40 ≤ 0)   
        Domain B 
else 
    Domain A 

Common points 

 
Fig. 3. Optimizations of the test bench generation 

In the latter case, the restriction is common to several domains. Therefore, if a domain generates all the points necessary 
to check the restriction, the other domains do not need to generate more points. 

4. COVERAGE METRIC 
4.1 Metric 

The new coverage metric represents the probability of detecting functional errors in the set of test benches. This metric 
depends on the number of the path. In this work, the number of path is restricted to a limit of depth established by an 
input argument of the tool. For each path, it takes into account two parameters: the functionality of the path and the 
boundary condition of the path. Section 3 shows the number of points needed to reach 100% coverage in functionality 
and the restrictions of the path. The sum of both numbers defines 100% of path coverage. 

The (4) is the equation of the coverage. It is equal to the sum of the coverage of each path divided by the number of 
paths. 
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The implemented tool covers each path, generates several points to check the data and control flow and updates the 
coverage. The false paths are detected and not included in the equation. The points of a path are weighted depending on 
the number of points obtained. A unchecked restriction is penalized more than a restriction with some points.  

4.2 Test benches Selecting Strategy 

The objective is to generate enough points for each path so that the polynomial function and the path limits are defined. 
It is important to observe that the points that check restrictions of a path are valid to check the path function. However, 
this is not true otherwise. This is the reason why the first step is to generate the points that check the boundary path, and 
then, the points that check the function of the path. In general, checking the functionality of the path requires fewer 
points than checking the boundary path. This property enables the reduction of the number of points.  

In order to generate the points that check the restrictions, the tool looks for ON-points or OFF-points that fulfil both 
restrictions. The restrictions of a path are taken in sets of two to search common points: the intersection of both 
restrictions.  
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5. EXPERIMENTAL RESULTS 
In order to demonstrate the coverage capacity of this new metric, a set of test benches were generated using a new tool 
and then, the test benches were compared with traditional coverage metrics and mutation testing. Three examples are 
considered. The first, ALU, is a control and data example. It models the main functionality of PIC17. The second, 
Triangle, is a control dominated example whose function is the detection of the type of triangle (scalene, isosceles, 
equilateral and non triangle). Finally, Ellipf is a data dominated example (from HLSW 92 benchmarks). It’s a fifth order 
elliptical wave filter. Some characteristics are shown in the table 1.  

 Lines Branches Paths Mutants 

ALU 70 20 14 1231 

Triangle 50 34 18 951 

Ellipf 55 0 0 1103 

Table 1: Characteristic of the benchmarks 

The tool developed automatically generates a set of test benches. The input is a C function which models reactive 
processes. This tool searches for the set of test benches with maximum coverage but with the minimum number of ones. 
The tool does not support pointers. The results are shown in table 2. The second row is the number of test benches 
generated by the new tool. The next row shows the code coverage (line, branch and path) of the set of test benches. The 
fourth row corresponds to the new coverage and finally, the last row to the coverage of mutation. This coverage metric is 
obtained using the Mothra tool [20] which considers 22 mutant types of operators for Fortran 77. 

  ALU Triangle Ellipf 

Number of test benches  27 22 7 

Code coverage 

Line coverage 100% 100% 100% 

Branch coverage 100% 100% 100% 

Path coverage 100% 100% 100% 

Proposed Coverage  59% 86% 100% 

Mutation Coverage  80% 81% 94% 

Table 2: Comparison of coverage metrics 

These results show the limitation of the code coverage. All the sets of test benches obtain 100% in the coverage metrics 
(line, branch and path). However, the proposed coverage is less than 100%, except in the ellipf example (data dominated 
example). The test benches generated obtain good mutation coverage. The mutation coverage is less than the proposed 
coverage in two cases for two reasons. First, the difficulty of modelling the correct range of the variables in Mothra and 
second, there are mutant operators that change the order of polynomials, for example, the mutant arithmetic operator 
replacement (aor) and scalar for constant replacement (scr). The consequence is an increase in the number of test 
benches, which it is not contemplated in this new coverage.  

 

 Proposed coverage Mutation coverage 

 Number of 
test benches Coverage Number of 

test benches Coverage 

ALU 27 80 754 89 

Triangle 22 81 664 83 

Ellipf 7 94 1083 96 

Table 3: Comparison of sets of test benches 
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Finally, the set of test benches is compared to the set generated by Mothra. Table 3 shows the number and coverage for 
each set. The number of tests of the new tools is much smaller than for the automatic generator of Mothra but with a 
similar coverage. 

6. CONCLUSIONS 
This work introduces a new coverage metric that is closer to the system functionality. It enables the detection of parts of 
the functionality that are difficult or impossible to detect with classical code coverage. It has coverage percentages that 
are smaller than the traditional line, branch and path coverage. Although the calculation of the coverage is more complex 
than code coverage and the generation of the test benches requires more computational effort than random generation, 
the result is better because the number of test benches is reduced drastically and the coverage metric is closer to the 
system functionality. 

REFERENCES 

[1] Beizer, B., "Software testing techniques", Van Nostrand Reinhold, New York, 1983. 
[2] Thaker, P.A., Agrawal, V.D. and Zaghloul, M.E., "Register-transfer level fault modeling and test evaluation 

techniques for VLSI circuits", Proc. ITC 940-9 (2000). 
[3] Thaker, P. A., Agrawal, V. D.; Zaghloul, M. E., "Register-transfer level fault modeling and test evaluation 

techniques for VLSI circuits", IEEE International Test Conference (TC), p. 940-949, 2000. 
[4] Ferrandi, F., Fummi, F.; Pravadelli, G., Sciuto, D., "Identification of Design Errors through Functional Testing", 

IEEE Transactions on Reliability,  v.52, nº 4, p. 400-412,  December 2003. 
[5] King, K.N., Offutt, A. Jefferson, "Fortran language system for mutation-based software testing", Software - 

Practice and Experience,  v.21, nº 7, p. 685-718,  Jul 1991 
[6] Offutt, A.J., Lee, A.., Rothermel, G., Untch, R. H., Zapf, C., "Experimental determination of sufficient mutant 

operators", ACM Transactions on Software Engineering and Methodology,  v.5, nº 2, p. 99-118,  Apr 1996. 
[7] Baraza, J.-C., Gracia, J., Blanc, S., Gil, D., Gil, P.-J., "Enhancement of fault injection techniques based on the 

modification of VHDL code", IEEE Transactions on Very Large Scale Integration (VLSI) Systems,  v.16, nº 6, 
p. 693-706,  June 2008. 

[8] Fallah, F., Devadas, S., Keutzer, K., "OCCOM - Efficient computation of observability-based code coverage 
metrics for functional verification", IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems,  v.20, nº 8, p 1003-1015,  August 2001. 

[9] Verma, S., Ramineni, K., Harris, I.G., "A control-oriented coverage metric and its evaluation for hardware 
designs", Journal of Computer Sciences,  v.5, nº 4, p. 302-10,  2009. 

[10] White, L.J., Cohen, E.I., "A domain strategy for computer program testing", IEEE Transactions on Software 
Engineering,  v SE-6, n 3, p. 247-57,  May 1980. 

[11] Qiushuang Z., Harris, I.G., "A domain coverage metric for the validation of behavioral VHDL descriptions", 
Proc. International Test Conference, p. 302-8, 2000. 

[12] Luo C., Yang J., Shi L., Wu X., Zhang Y., "Domain strategy and coverage metric for validation", Proc. 6th 
International Symposium on Quality Electronic Design, p. 40-5,  2005. 

[13] White, L.J., Cohen, E.I., "A domain strategy for computer program testing", IEEE Transactions on Software 
Engineering,  v SE-6, nº 3, p. 247-57,  May 1980. 

[14] Clarke, L.A., Hassell, J., Richardson, D.J., "A close look at domain testing", IEEE Transactions on Software 
Engineering,  v SE-8, nº 4, p. 380-90,  July 1982. 

[15] Bingchiang J., Elaine J. W., "A simplified domain-testing strategy", ACM Transactions on Software 
Engineering and Methodology 1994. 

[16] Drechsler R., “Advanced formal verification”, Kluwer Academic Press, 2004. 
[17] Gasca, M., Sauer, T., "Polynomial interpolation in several variables", Advances in Computational Mathematics, 

v.12, nº 4, p 377-410, 2000. 
[18] Ar, S., Lipton, R.J., Rubinfeld, R. Sudan, M., "Reconstructing algebraic functions from mixed data," 

Foundations of Computer Science, 1992. Proc. 33rd Annual Symposium on, vol., no., pp.503-512, 24-27 Oct 
1992. 

Proc. of SPIE Vol. 8067  80670U-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Nov 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[19] Krick T., "Straight-line Programs in Polynomial Equation Solving", Foundations of Computational 
Mathematics Conference, 2002.  

[20] DeMillo, R.A., Guindi, D.S., McCracken, W.M., Offutt, A.J., King, K.N., "An extended overview of the 
Mothra software testing environment", Software Testing, Verification, and Analysis, 1988., Proc. of the Second 
Workshop on , vol., no., pp.142-151, 19-21 Jul 1988 

Proc. of SPIE Vol. 8067  80670U-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Nov 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


