
ABSTRACT
This paper considers the problem of determining whether a
quaternion random vector is proper or not, which is an impor-
tant problem because the structure of the optimal linear pro-
cessing depends on the specific kind of properness. In par-
ticular, we focus on the Gaussian case and consider the two
main kinds of quaternion properness, which yields three dif-
ferent binary hypothesis testing problems. The testing prob-
lems are solved by means of the generalized likelihood ratio
tests (GLRTs) and the locally most powerful invariant tests
(LMPITs), which can be derived even without requiring an
explicit expression for the maximal invariant statistics. Some
simulation examples illustrate the performance of the pro-
posed tests, which allows us to conclude that, for moderate
sample sizes, it is advisable to use the LMPITs.

1. INTRODUCTION

During the last years, quaternion signal processing has re-
ceived increasing interest due to its applications in problems
such as design of space-time block codes [1], analysis of
polarized waves [2], or modeling of wind profiles [3]. The
application-oriented research has also been complemented
with some theoretical works, such as those considering the
statistical characterization of quaternion random vectors [4],
where it has been proved that the structure of the optimal lin-
ear processing depends on the particular kind of properness,
and therefore it becomes crucial to determine whether our
quaternion data are proper or not.

This paper considers the problem of testing for the
properness of a quaternion Gaussian vector. Thus, we re-
visit a recent derivation of three generalized likelihood ra-
tio tests (GLRTs) [5, 6], and complement this work with
their locally most powerful invariant counterparts. Unlike
the GLRTs, the derivation of the locally most powerful in-
variant tests (LMPITs) is rather involved. However, thanks
to the Wijsman’s theorem [7], and by correctly exploiting the
specific invariances of each testing problem, one can obtain
the LMPIT statistics without the need of an explicit expres-
sion for the maximal invariants. In particular, the GLRT and
LMPIT statistics for our testing problems are respectively
given by the determinant and Frobenius norm of the corre-
sponding sample coherence matrices. Additionally, we point
out several interesting connections with the problems of test-
ing for the properness of a complex random vector [8,9], and
with the sphericity tests for real and complex random vec-
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tors [10, 11]. Finally, the advantage of the LMPITs over the
GLRTs is illustrated by means of some numerical examples.

2. PRELIMINARIES

We will use bold-faced upper case letters to denote matrices,
bold-faced lower case letters for column vectors, and light-
faced lower case letters for scalar quantities. Superscripts
(·)∗, (·)T and (·)H denote quaternion (or complex) conjugate,
transpose and Hermitian (i.e., transpose and quaternion con-
jugate), respectively. The notation A ∈ Fm×n denotes that
A is a m× n matrix with entries in F, where F can be R,
the field of real numbers, C, the field of complex numbers,
or H, the skew-field of quaternion numbers. ℜ(A), Tr(A),
‖A‖, and |A| denote the real part, trace, Frobenius norm,
and determinant of matrix A. A1/2 (respectively A−1/2) is
the Hermitian square root of the Hermitian matrix A (resp.
A−1). The diagonal matrix with vector a along its diagonal
is denoted by diag(a), In is the identity matrix of dimension
n, and 0m×n is the m×n zero matrix. Finally, the Kronecker
product is denoted by ⊗, E is the expectation operator, and
in general Ra,b is the cross-correlation matrix for vectors a
and b, i.e., Ra,b = EabH .

2.1 Quaternion Algebra
Quaternions are hypercomplex numbers defined by

x = r1 +ηrη +η
′rη ′ +η

′′rη ′′ ,

where r1,rη ,rη ′ ,rη ′′ ∈R are four real numbers, and the three
imaginary units1 (η , η ′, η ′′) satisfy

η
2 = η

′2 = η
′′2 = ηη

′
η
′′ =−1,

which also implies ηη ′ = η ′′, η ′η ′′ = η , and η ′′η = η ′.
Quaternions form a skew field H [12], and therefore they

satisfy the axioms of a field except the commutative law of
the product, i.e., for x,y ∈H, xy 6= yx in general. The conju-
gate of a quaternion x is x∗ = r1−ηrη −η ′rη ′ −η ′′rη ′′ , and
the inner product of two quaternions x,y is defined as xy∗.
Two quaternions are orthogonal if and only if (iff) their scalar
product (the real part of the inner product) is zero, and the
norm of a quaternion x is |x|=

√
xx∗ =

√
r2

1 + r2
η + r2

η ′ + r2
η ′′ .

Furthermore, we say that ν is a pure unit quaternion iff
ν2 =−1 (i.e., iff |ν |= 1 and its real part is zero).

Quaternions also admit the Euler representation

x = |x|eνθ = |x|(cosθ +ν sinθ) ,

1In this paper we use the general representation {η ,η ′,η ′′} instead of
the conventional canonical basis {i, j,k}.
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where ν is a pure unit quaternion and θ ∈ R is the angle (or
argument) of the quaternion. Taking this into account we can
easily define the rotation and involution operations [12]:

Definition 1 (Rotation and Involution) Consider a non-
zero quaternion a = |a|eνθ = |a|(cosθ +ν sinθ), then

x(a) = axa−1,

represents a three-dimensional rotation of the imaginary part
of x. Specifically, the vector [rη ,rη ′ ,rη ′′ ]

T is rotated an angle
2θ in the pure imaginary plane orthogonal to ν . In the par-
ticular case of pure quaternions ν , x(ν) represents a rotation
of angle π , which is an involution.

Finally, a quaternion x can also be represented by means
of the Cayley-Dickson construction x = a1 +η ′′a2, where

a1 = r1 +ηrη , a2 = rη ′′ +ηrη ′ ,

can be seen as complex numbers in the plane {1,η}.

2.2 Second-Order Statistics of Quaternion Vectors
The second-order statistics (SOS) of a n-dimensional quater-
nion random vector x = r1 +ηrη +η ′rη ′ +η ′′rη ′′ are obvi-
ously given by the joint SOS of the vectors r1,rη ,rη ′ ,rη ′′ ∈
Rn×1 in its real representation. However, analogously to the
case of complex random vectors [13], the statistical analysis
can benefit from the definition of an augmented quaternion

vector2 x̄ =
[
xT ,x(η)T

,x(η ′)T
,x(η ′′)T ]T

. Thus, the SOS of
x are given by the augmented covariance matrix [4]

Rx̄,x̄ =


Rx,x Rx,x(η) R

x,x(η ′) R
x,x(η ′′)

R
(η)

x,x(η) R
(η)
x,x R

(η)

x,x(η ′′) R
(η)

x,x(η ′)

R
(η ′)

x,x(η ′) R
(η ′)

x,x(η ′′) R
(η ′)
x,x R

(η ′)

x,x(η)

R
(η ′′)

x,x(η ′′) R
(η ′′)

x,x(η ′) R
(η ′′)

x,x(η) R
(η ′′)
x,x

 ,

which contains the covariance matrix Rx,x = ExxH

and three complementary covariance matrices Rx,x(η) =

Exx(η)H
, R

x,x(η ′) = Exx(η ′)H
and R

x,x(η ′′) = Exx(η ′′)H
.

Interestingly, this representation allows us to easily relate the
SOS of the quaternion vector x and those of some common
transformations [4]:

Lemma 1 Consider the full-widely linear transformation

y = FH
x̄ x̄ = FH

1 x+FH
η x(η)+FH

η ′x
(η ′)+FH

η ′′x
(η ′′),

where Fx̄ =
[
FT

1 ,F
T
η ,F

T
η ′ ,F

T
η ′′

]T
∈H4n×n. Then, the SOS of

y are given by Rȳ,ȳ = F
H
Rx̄,x̄F, where

F =


F1 F

(η)
η F

(η ′)
η ′ F

(η ′′)
η ′′

Fη F
(η)
1 F

(η ′)
η ′′ F

(η ′′)
η ′

Fη ′ F
(η)
η ′′ F

(η ′)
1 F

(η ′′)
η

Fη ′′ F
(η)
η ′ F

(η ′)
η F

(η ′′)
1


︸ ︷︷ ︸

4n×4n

.

2From now on, we will use the notation F(a) to denote the element-wise
rotation of matrix F.

Lemma 2 A rotation y=x(a) results in a simultaneous rota-
tion of the orthogonal basis {1,η ,η ′,η ′′} and the augmented
covariance matrix

Rȳ,ȳ({1,η ,η ′,η ′′}) = R
(a)
x̄,x̄({1,η(a∗),η ′(a

∗),η ′′(a
∗)}),

where the expressions in parentheses make explicit the bases
for the augmented covariance matrices.

Lemma 3 The augmented covariance matrices in two differ-
ent orthogonal bases are related as

Rx̄,x̄({1,ν ,ν ′,ν ′′}) = ΓRx̄,x̄({1,η ,η ′,η ′′})ΓH ,

where

Γ =

[
1 01×3

03×1 ΛνQΛH
η

]
⊗ In,

Q ∈ R3×3 is the rotation matrix for the change of basis
[ν ,ν ′,ν ′′] = [η ,η ′,η ′′]QT , Λν = diag

(
[ν ,ν ′,ν ′′]T

)
, and

Λη = diag
(
[η ,η ′,η ′′]T

)
.

2.3 Properness of Quaternion Random Vectors
Analogously to the complex case [13], the structure of the
optimal linear processing of quaternion random vectors de-
pends on the quaternion properness. In [4] (see also the ref-
erences therein), the authors have presented two main kinds
of quaternion properness:

Definition 2 (Q-Properness) A quaternion random vector
x is Q-proper iff the three complementary covariance ma-
trices Rx,x(η) , R

x,x(η ′) and R
x,x(η ′′) vanish.

Definition 3 (Cη -Properness) A quaternion random vector
x is Cη -proper iff the complementary covariance matrices
R

x,x(η ′) and R
x,x(η ′′) vanish.

Here we must note that, as a direct consequence of
Lemma 3, Q-properness implies Cη -properness for all η .
Furthermore, the Cη -properness definition is directly related
to the complex properness of the vectors in the Cayley-
Dickson representation of x [4]:

Lemma 4 A quaternion random vector x is Cη -proper iff
the complex vectors a1,a2 ∈Cn×1 in its Cayley-Dickson rep-
resentation x= a1+η ′′a2 are jointly proper, i.e., iff the com-
plex vector a = [aT

1 ,a
T
2 ]

T is proper (Ra,a∗ = 02n×2n).

From a practical point of view, the main implications of
the properness definitions consist in the simplification of the
optimal linear processing of quaternion random vectors. In
the general case, the optimal linear processing is full-widely
linear, i.e., we must simultaneously operate on the quaternion
random vector and its three involutions. However, in the case
of proper vectors the optimal linear processing simplifies as
follows [4]:

Lemma 5 (Semi-widely linear processing) The optimal
linear processing of Cη -proper vectors is semi-widely linear

y = FH
1 x+FH

η x(η).

2065Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on November 04,2022 at 09:48:09 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 6 (Conventional linear processing) The optimal
linear processing of Q-proper vectors takes the form

y = FH
1 x,

i.e., we do not need to operate on the quaternion involutions.

Finally, in [4] the authors introduced a third kind of
quaternion properness, which can be interpreted as the dif-
ference between Cη and Q properness.

Definition 4 (Rη -Properness) A quaternion random vector
x is Rη -proper iff the complementary covariance matrix
Rx,x(η) vanishes.

3. TESTING FOR PROPERNESS OF QUATERNION
GAUSSIAN VECTORS

3.1 Problem Formulation

Analogously to the complex case [8,9], determining the kind
of properness of a quaternion random vector is an impor-
tant problem because it establishes the most convenient kind
of linear processing. In this paper, we focus on quaternion
Gaussian vectors and define the three following hypotheses:

• HQ: The quaternion random vector x is Q-proper.
• HCη : The quaternion random vector x is Cη -proper.
• HI : The quaternion random vector x is not constrained

to be Q-proper nor Cη -proper.

Thus, we will consider three different testing problems:
1) the problem of determining whether x is Q-proper or not
(HQ versus HI ); 2) the problem of determining whether
x is Cη -proper (HCη versus HI ); 3) the problem of de-
termining whether the Cη -proper vector x is also Q-proper
(HQ versus HCη ).

3.2 Maximal Invariant Statistics

Before proceeding, let us summarize the invariances of the
quaternion properness definitions:

• Q-Properness: Taking into account Lemmas 1-3, it is
easy to see that the Q-properness definition is invariant
to rotations and invertible conventional linear transfor-
mations, i.e., x is Q-proper iff y = FH

1 x(a) is Q-proper
for all non-null a ∈H and invertible F1 ∈Hn×n.

• Cη -Properness: Analogously, the Cη -properness defini-
tion is invariant to invertible semi-widely linear transfor-
mations, i.e., x is Cη -proper iff y = FH

1 x+FH
η x(η) is

Cη -proper for all F1,Fη ∈ Hn×n resulting in an invert-
ible transformation ȳ = F

H
x̄.

Now, we can easily introduce the invariances and maxi-
mal invariants of the three testing problems.

3.2.1 Maximal invariant for HQ versus HCη

Assume that we are given T i.i.d. realizations x[t] (t =
0, . . . ,T − 1) of a zero-mean quaternion Gaussian vector x,
and define the augmented sample covariance matrix R̂x̄,x̄ =
1
T ∑

T−1
t=0 x̄[t]x̄H [t]. Thus, it is easy to see that a sufficient

statistic for the problem of testing HQ versus HCη is

D̂Cη =


R̂x,x R̂x,x(η) 0n×n 0n×n

R̂
(η)

x,x(η) R̂
(η)
x,x 0n×n 0n×n

0n×n 0n×n R̂
(η ′)
x,x R̂

(η ′)

x,x(η ′)

0n×n 0n×n R̂
(η ′′)
x,x(η) R̂

(η ′′)
x,x

 .
Moreover, noting that the testing problem is invariant under
invertible conventional linear transformations, we can intro-
duce a transformation y[t] =FH

1 x[t] such that R̂y,y = In and
R̂y,y(η) is a real diagonal matrix, where the entries in the
diagonal are given by the (ordered) sample canonical cor-
relations [4, 14] between the random vectors x and x(η).
Thus, the n sample canonical correlations constitute a maxi-
mal invariant (under the group of invertible conventional lin-
ear transformations) for testing HQ versus HCη .

Finally, it is straightforward to prove that there exists a
one-to-one correspondence between the n sample canonical
correlations and the eigenvalues of the sample Rη -coherence
matrix [4], which is defined as Φ̂Rη = D̂

−1/2
Q D̂Cη D̂

−1/2
Q ,

with

D̂Q =


R̂x,x 0n×n 0n×n 0n×n

0n×n R̂
(η)
x,x 0n×n 0n×n

0n×n 0n×n R̂
(η ′)
x,x 0n×n

0n×n 0n×n 0n×n R̂
(η ′′)
x,x

 .
3.2.2 Maximal invariant for HCη versus HI

In this case, the sufficient statistic is R̂x̄,x̄, but taking into ac-
count the invariance of the testing problem under invertible
semi-widely linear transformations, we can introduce a trans-
formation y[t] = FH

1 x[t] +FH
η x(η)[t] such that R̂y,y = In,

R̂y,y(η) = 0n×n, R̂
y,y(η ′) = Σ̂η ′ and R̂

y,y(η ′′) = Σ̂η ′′ , where

Σ̂η ′ = diag(ĉ1)−diag(ĉ2) , Σ̂η ′′ = diag(ĉ1)+diag(ĉ2) ,

and c =
[
cT

1 ,c
T
2
]T ∈ R2n×1 are the (ordered) sample canon-

ical correlations between the complex vectors a = [aT
1 ,a

T
2 ]

T

and a∗, i.e., c contains the sample circularity coefficients of
the complex random vector a [8, 15]. Thus, as suggested by
Lemma 4, the problem of testing for the Cη -properness of
x reduces to that of testing for the complex properness of a,
and the maximal invariant is given by the circularity coeffi-
cients c, or equivalently, by the diagonal matrices Σ̂η ′ ,Σ̂η ′′ .

Finally, we must also point out that there exists a one-
to-one correspondence between the sample circularity coef-
ficients of a and the eigenvalues of the sample Cη -coherence
matrix [4], which is defined as Φ̂Cη = D̂

−1/2
Cη R̂x̄,x̄D̂

−1/2
Cη .

3.2.3 Maximal invariant for HQ versus HI

This case is much more difficult than the previous ones. The
testing problem is invariant under rotations and invertible
conventional linear transformations, but the derivation of a
maximal invariant is rather involved. Following the previ-
ous lines, we can see that the sufficient statistic R̂x̄,x̄ can be
written as[

F̃ 02n×2n

02n×2n F̃(η ′)

]−H [
I2n Σ̃

Σ̃ I2n

][
F̃ 02n×2n

02n×2n F̃(η ′)

]−1

,
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Table 1: GLRT statistics for Quaternion Gaussian Vectors

Test GLRT statistic
HQ vs. HI P̂Q =− 1

2 ln
∣∣Φ̂Q

∣∣
HCη vs. HI P̂Cη =− 1

2 ln
∣∣Φ̂Cη

∣∣
HQ vs. HCη P̂Rη =− 1

2 ln
∣∣Φ̂Rη

∣∣
with

F̃ =

[
F1 F

(η)
η

Fη F
(η)
1

]
, Σ̃ =

[
Σ̂η ′ Σ̂η ′′

Σ̂η ′′ Σ̂η ′

]
.

Thus, introducing the transformation y[t] = FH
1 x[t] and

defining G = F−1
1 Fη , we can see that a maximal invari-

ant (under invertible conventional linear transformations) for
testing HQ versus HI is given by

{
Σ̂η ′ ,Σ̂η ′′ ,G

}
, i.e., 2n

(ordered) sample canonical correlations and a quaternion ma-
trix G ∈Hn×n, which is unambiguously specified up to indi-
vidual products of its rows by unit quaternions in the plane
{1,η}.

Here, it is obvious that the above maximal invariant does
not have the simple form of those derived in the previous
cases. Moreover, although intuitively appealing, there is not
a one-to-one correspondence between the maximal invari-
ant and the eigenvalues of the sample Q-coherence matrix
Φ̂Q = D̂

−1/2
Q R̂x̄,x̄D̂

−1/2
Q [4]. Finally, we should note that

we have not yet considered the invariance of the test under
quaternion rotations y = x(a). However, although this in-
variance could introduce a slight reduction in the degrees of
freedom of the quaternion matrix G, it does not seem to be
enough for deriving a maximal invariant in the form of the
previous cases.

3.3 Generalized Likelihood Ratio Tests (GLRTs)
The problem of testing for the properness of a quaternion
Gaussian vector has been previously considered in [5, 6],
where three generalized likelihood ratio tests (GLRTs) were
derived. Table 1 shows the test statistics for our three testing
problems, and the GLRTs reject the null (proper) hypothe-
sis for high values of the GLRT statistics, which are always
non-negative. Specifically, the test statistics P̂Q,P̂Cη ,P̂Rη

can be seen as estimates of the quaternion improperness
measures presented in [4], and they satisfy the relationship
P̂Q = P̂Cη + P̂Rη , which has been used in [5] for intro-
ducing a multiple hypotheses test based on the three previous
measures. Finally, the performance of the proposed GLRTs
has been evaluated in [5,6] by means of simulations, whereas
the complex counterpart, i.e., the performance analysis of the
GLRT for testing the properness of complex random vectors
has been addressed in [9, 16, 17].

3.4 Locally Most Powerful Invariant Test (LMPITs)
Although the GLRTs result in simple detectors and perform
well in most practical situations, they can suffer from poor
performance in the case of small sample sizes T . In order to
solve this problem, in this subsection we present the locally
most powerful invariant tests (LMPITs) for the three consid-
ered testing problems. As shown in Table 2, the test statistics

Table 2: LMPIT statistics for Quaternion Gaussian Vectors

Test Invariances LMPIT statistic

HQ vs. HI FH
1 x(a)

∥∥Φ̂Q
∥∥2

HCη vs. HI FH
1 x+FH

η x(η)
∥∥Φ̂Cη

∥∥2

HQ vs. HCη FH
1 x

∥∥Φ̂Rη

∥∥2

are given by the Frobenius norm of the corresponding sample
coherence matrices, and the LMPITs reject the null (proper)
hypothesis for high values of the test statistic.

Due to the lack of space, we do not include here the
(rather tedious) derivation of the test statistics, and refer
the interested reader to the journal version of this paper
[18]. However, we must point out that the derivation of the
LMPITs follows the lines in [19] for the complex case. The
key idea consists in using the Wijsman’s theorem [7], which
allows us to obtain the ratio between the maximal invariant
densities, even without an explicit expression for the maxi-
mal invariant. With this idea in mind, a Taylor series expan-
sion of the covariance matrices around their proper counter-
part, and exploiting the invariances of each testing problem,
one can finally come up with the expressions in Table 2.

4. FURTHER COMMENTS AND CONCLUSIONS

Let us here point out some important facts. Firstly, the GLRT
and LMPIT statistics are functions of the eigenvalues of the
corresponding coherence matrices, which was obvious in the
cases of testing HCη versus HI , and HQ versus HCη , but
it was not clear (although intuitively appealing) for the Q-
properness test. Secondly, it can be easily proved that the
GLRT and LMPIT for testing the Cη -properness of x reduce
to the respective GLRT and LMPIT for testing the properness
of the complex vector a = [aT

1 ,a
T
2 ]

T [8, 9]. Moreover, in the
scalar case x ∈H the proposed Q-properness tests are equiv-
alent to the GLRT [10] and LMPIT [11] for sphericity of the
real vector [r1,rη ,rη ′ ,rη ′′ ]

T , whereas the tests for HQ versus
HCη are equivalent to the GLRT and LMPIT for sphericity
of the proper complex vector [a1,a2]

T .
Regarding the practical performance of the proposed

tests, we must note that the GLRTs preserve the invariances
of the testing problem, which means that they will be outper-
formed by the LMPITs when the null (proper) and alternative
(improper) hypotheses are sufficiently close. Here, we simply
illustrate the performance of the tests by means of a numeri-
cal example with ten-dimensional (n = 10) quaternion Gaus-
sian vectors with zero mean and SOS as specified in Table
3, where Λη is a diagonal matrix whose k-th diagonal entry
is 10−k

20 , and Λη ′ is diagonal with entries k−1
40 . The receiver

operating characteristic (ROC) curves are shown in Figures
1 and 2, where we can see that, for practical sample sizes T ,
the proposed LMPITs outperform the GLRTs. Moreover, al-
though the performance gap is moderate in the two simplest
tests, the difference is very significative in the case of testing
for Q-properness (Fig. 2). Finally, future research will focus
on a rigorous performance analysis, which should provide
further insights on the tradeoffs among the number of vector
observations, the distance between the hypotheses, and the
practical performance of the tests.
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Figure 1: Receiver operating characteristic curves for the
problems of testing HCη versus HI (Cη -properness test),
and HQ versus HCη .

Table 3: Second Order Statistics for the Simulations

Rx,x Rx,x(η) R
x,x(η ′) R

x,x(η ′′)

HI I10 Λη Λη ′ 010×10
HCη I10 Λη 010×10 010×10
HQ I10 010×10 010×10 010×10
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