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friction forces for any seafloor surface. This provides an improvement in the mooring systems simulation, as
it captures additional non-linearities on the mooring line performance due to seabed interaction.

The method is based on constructing a triangulation for the seabed and projecting mooring line nodes by
using the vertex normal vectors of each triangle, ensuring the continuity of the projection. For the sake of
the computational cost reduction, the line nodes are first projected into the closest triangles. Also, whenever
the floor is flat, inclined or horizontal, a point-to-plane projection expression is used instead. The projection
method described has been implemented to a finite element model. The initial condition problem was solved
with a static approach, based on finding the static equilibrium with Newton-Armijo algorithm. This improves
other static approaches which use the catenary equation, and that are only valid for a flat seabed.

The model was successfully verified against the analytical solution of an inextensible catenary line in a
slope. Furthermore, the simulation results were validated against experimental scale tests on a single chain
mooring line with three different seafloor structures: one flat floor and two different sloped steps. For each of
them, static and dynamic regular tests were performed. Moreover, high and low frequency fairlead movements
were imposed in the dynamic tests, aiming to validate the model both in cases with and without snapping
loads. Overall, the obtained results were coherent and allow to validate the accuracy of the proposed model.
Finally, a mooring line over an irregular seabed surface was studied, comparing the results obtained by directly
applying the developed method for complex bathymetries, by interpolating the surface by an inclined plane
and using the constructed projection algorithm for that case or, by last, approximating by a flat seafloor.
The comparison of the results among the different approaches illustrates the importance of considering the
seabed slope and irregularities for the fairlead tension prediction. Also, this flat seafloor was evaluated with
two different projection methods: the one specific for horizontal seafloors and the one developed for general
seabed surfaces. This allows to compare the computational time required in both of them.

1. Introduction

Wave and wind power are called to become a renewable and clean
energy source. In fact they are currently a global interest topic. Both
can be highly exploited in deep water areas by the installation of float-
ing structures secured by mooring systems. Therefore, an anomalous
performance of the mooring system could result in a damage or even
a loss of the devices. Mooring lines are anchored to the seabed and
connected to a point close to the sea surface called fairlead, located
in a floating platform. These lines need to withstand high peak loads
that mostly occur when the mooring line slacks and then is retightened.
This behavior is commonly referred as snap-slack or snap loads. Studies
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in Norway (Rolfsen et al., 2013) showed that dynamic snap loads
caused an excess load on mooring lines, producing one of the most
common causes of failure of mooring systems. In addition, snap loads
also increase the fatigue damage of the line. Accurately predicting the
complete dynamics of the mooring can avoid possible failures and will
result in cost saving, and numerical simulations provide a useful tool
to develop this prediction.

A wide range of the numerical simulations developed for moorings
are based on the finite element method. Aamo and Fossen (2000)
worked with linear finite elements, and Montano et al. (2007) imple-
mented Continuous Galerkin method in their work. In addition, Palm
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et al. (2017) have already used Discontinuous Galerkin obtaining ac-
curate results. Lumped mass models (Hall and Goupee, 2015; Azcona
et al,, 2017) are also a common approach in mooring line simula-
tions. The presented work is based on the previous work developed
by Rodriguez et al. (2020), a numerical method which simulates the
dynamics of a mooring system using finite element method (FEM) first
order elements and Continuous Galerkin. In the cited model, a static ap-
proach based on the catenary equations is used in order to solve FEM’s
initial condition problem. For the temporal simulation, a dynamic ap-
proach which emphasizes the importance of different non-linear forces
such as tension, internal damping or friction is preferred.

Gobat and Grosenbaugh (2001) concluded in their work that study-
ing with precision the seabed interaction is crucial, as it generates snap
loads when the contact point speed exceeds the transverse wave speed
of the mooring. Feng et al. (2016) have previously studied that the
seafloor surface significantly influences the hydrodynamic characteris-
tics of the floating body. In addition, there are certain external forces to
which the mooring line is subjected that strongly depend on the seabed
surface such as normal ground or friction forces, whose importance for
developing accurate models has already been discussed by Devries and
Hall (2018).

However, the seabed surface is usually approached by a flat plane,
introducing an error for not only snap tensions but also for line posi-
tioning. Complex bathymetries can appear at any seafloor depth, but
there are some points in which its relevance increases such as the
continental shelf, as it leads to a strong change in bathymetry. It also
produces problems in certain locations in which the seabed surface
presents significant irregularities such as in the Canary Islands, a target
site where the absence of continental shelf leads to large seabed slopes.

A two dimensional static numerical model of a mooring line in
a slope has already been developed (Feng et al., 2020). In addi-
tion, Thomsen et al. (2017) cites three different software able to simu-
late mooring lines in seabeds modeled as horizontal, sloping or with a
three dimensional bathymetry: OrcaFlex, Flexcom and ProteusDS. They
are also equipped with friction models that consider the seabed struc-
ture. In the OrcaFlex user guide (OrcaFlex, 1987-2022) it is explained
that the seabed coordinates are used to construct a triangulation which
is interpolated by either a linear or a cubic polynomial method. The
(Flexcom, 2021), has also utilized the cubic interpolation method of
the triangulation. software (ProteusDS, 2018) uses a mesh discretizied
into squares describing the seabed equipped with polygonal normals
able to model ground normal and friction forces. Nevertheless, none of
the above methods are described in detail in the scientific community,
leaving a gap in literature that this paper tries to fill.

OrcaFlex was used by Jaiswal et al. (2016) in an extensive study
which showed significant differences in line tensions between two
approaches: considering a complete description of the seabed or ap-
proximating it by constant slope planes. In their work, it was concluded
that it was specially important to predict with precision the touchdown
point location, as line stiffness depends on the weight of the mooring
part which goes from the fairlead to the touchdown point: the sus-
pended weight. The location of this point can be radically different if
the seabed is modeled by any approximation instead of considering the
true representation.

The presented work is focused on developing a new methodology
in the three-dimensional simulation of a mooring line laying on any
irregular surface seabed. The proposed method is based in a state of
the art continuous projection method Orazi and Reggiani (2020), that
can be applied to calculate the mooring line friction and normal forces,
achieving realistic results in the mooring line positioning as well as
in its tensions. The constructed projection algorithm is applicable for
both dynamic and static approaches, providing a reliable simulation.
In addition, in order to reduce computational cost, the projection
algorithm varies when the seabed surface is flat, forms an inclined
plane or is a complex bathymetry.
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Fig. 1. Graphical description of the system of reference used. r, is the anchor position
while r(t = 0) corresponds to fairlead initial position.

The paper is organized as follows: in Section 2, a description of
the numerical model used to simulate the mooring line is exposed,
followed by the development of the continuous projection method and
its application to friction and ground normal forces. Then, in Section 3
a specific situation of the mooring line configuration described by an
analytical solution was compared with the numerical obtained results
by simulating it, verifying the developed method. Section 4 provides an
experimental validation of the model with different seabeds in a qua-
sistatic performance, without snapping loads, as well as of the model in
a dynamic performance, with the appearance of snapping loads. Finally,
in Section 5 an irregular seabed surface is studied by three different
methods whose results were compared: directly applying the developed
projection algorithm for complex bathymetries, approximating it to an
inclined plane and using the projection algorithm version for these
seabed surfaces and approximating it by a flat surface. The work ends
with several conclusions explained in Section 6.

2. Model description

This section starts with a brief description of the numerical method
in which the simulation of mooring lines developed by the Environ-
mental Hydraulics Institute is based. Later, the novel part is presented.
It describes a projection method that can be applied to evaluate the
interaction between the mooring line and any seabed, something that
the simulation could not do before. This method operates differently
depending on whether the seafloor surface is horizontal, inclined plane
or irregular. Then, the models used to evaluate friction and ground
normal forces are also detailed, as well as some problems that have
to be taken into account when a seafloor with irregular surface is
introduced.

2.1. Numerical solution of the mooring line dynamics

In this subsection, the mooring line dynamics model and equations
are introduced, as well as the finite element method used to solve the
arised partial differential equation.

The frame used in this work has its origin of coordinates in the fair-
lead’s projection in the sea surface. The sea surface level corresponds to
z = 0, with ez pointing opposite to the seabed. Hence, the mooring line
z-position is generally negative. The x-axis is parallel to the direction
of the vector that joins the fairlead with the anchor, taking negative
values as it advances along the mooring line. On the other hand, the
y-axis is perpendicular to the ones previously defined. The mentioned
graphical frame description can be seen in Fig. 1.



P. Desiré et al.

2.1.1. Formulation of the problem

If flexion and torsion effects are ignored, mooring lines dynamics
can be modeled by Newton’s equation expressed per unit of length. The
expression is described in Aamo and Fossen (2000):
Pre8) _ 0 e yue, )+ £ )1 +e(t, 5)) )

or? 0s

where y, is the mooring line mass per meter, s € [0, L] is the arc
length parameter, being L the mooring line length; 7 is the time variable
and 1, is the initial time, r : [y, 00) x [0, L] — R? is the position of
the mooring line, T [ty,0) X [0,L] — R is the mooring tension,
t: [ty,0) x [0, L] — R3 is the unitary tangential vector to the mooring
line, f : [ty, o) X [0,L] — R? is the external forces vector and e :
[tg, 00) X [0, L] — R is the strain of the mooring.

The tension T was modeled by adding a damping coefficient to
Hook’s law, as it is described by Rodriguez et al. (2020):

70

T:EA(e+ﬁ%) 2

where EA is line’s Young’s Module multiplied by line’s section and f
is the internal damping coefficient.

The mooring is subjected to several external forces. Their expres-
sions, based on Palm et al. (2013) description, are the following:

f:fhg+fdn+fdt+fmn+fN+ff 3
cfrg =10 (‘;“Jr_e‘)’;" g is the buoyancy force. py, and p, are the water

and mooring line densities per unit of length respectively.

* fan = —%CD,,d pw v, v, is the hydrodynamic normal drag force.
Cp, is the normal drag coefficient, d is the mooring line diameter
and v, the normal velocity.

c far = —%C pidpy | |v; s the hydrodynamic tangential drag force.
Cp, is the tangential drag coefficient and v, the tangential velocity
. ,

* fom = —%PWCMN a, is the normal added mass force. Cyy is

the added mass coefficient and a, the normal acceleration.

* fn is the ground normal force, described in Eq. (11).

* fy is the friction force. Its implementation will be shown in
Eq. (12).

The problem is fixed in space to Dirichlet boundary conditions. The
restrictions are given by the position of the anchor and the fairlead: the
anchor is fixed to a point r, contained in R? and the fairlead position
is described by a vector rg : [ty, ) — R3:

r(t,0)=rg; r(t,L) =rg(t) (@)

After the application of the finite element method discretization to the
arc length parameter in Eq. (1), a time differential equation is obtained,
which can be modeled as an initial value problem. Its solution will be
discussed in Section 2.3.

2.1.2. Numerical solution of the PDE
Eq. (1) is non-linear, and can be expressed as the following second-
order partial differential equation (PDE):

F=®(,r,1) 5)

The first step to solve this equation is to develop a spatial discretization
of the mooring line and using a Galerkin continuous based first order
finite element method, as it was done by Aamo and Fossen (2000). The
mooring line is divided into N nodes, getting r(z,s) = (ry,ry, ... .Fny_1)-
Each mooring line node position is a three dimensional vector with the
point coordinates. The spatial boundary conditions must be imposed in
this step, being ry_, the position of the fairlead and r, the position of
the fixed anchor.

Following the method proposed by Aamo and Fossen (2000), a lin-
ear system of ordinary differential equations (ODE system) is generated.
Its solution provides the accelerations (¥) in each mooring line node. In
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Fig. 2. For a certain mooring line node i with a vector position of r; and a seabed
surface S, the terms d;; and dp,; have been represented, as well as its projection into
the seabed surface, r;.

order to temporarily integrate and later solve the ODE system subjected
to the initial condition, the second order ODE is reduced to a first
order system and finally, a second order implicit backward differential
method (Bonaventura and Gomez, 2021), commonly referred as BDF2,
is used.

2.2. Projection algorithm

The aim of this work is to model the interaction between the
mooring line and the seabed, considering all the bathymetry shape
complexity. Therefore, there is a great interest in calculating ground
normal and friction forces. However, in order to evaluate these forces in
a variable seafloor surface, a projection algorithm must be developed.

2.2.1. Formulation of the terms

The calculation of normal and friction forces lays on certain terms
which depend on the seabed surface, as it will be presented in
Eq. (11) and Eq. (12) respectively.

Let S be the irregular seabed surface. As it was defined above,
{r;}}¥5! is the position of a mooring line node i. Furthermore, r; is
the closest point to r; contained in the surface S. That is, each r]
S satisfies that Vrg € S, |Ir; — rjll < |lr; — rgll. Therefore, r; is the
projection of r; in the seabed surface .S and, at this point, the unitary
normal vector to the seabed surface pointing outwards, is denoted as
ng;. In non-convex surfaces, it could be the case that the projection
point was not unique, but this problem is already considered in the
projection algorithm introduced in Section 2.2.2.2.

It is also interesting to describe the direction of projection, a unitary
vector defined as follows:

r,—r;
dp; = ——— (6)

llri = rill

The direction of projection should vary in a continuous form between
the mooring line nodes in order to avoid computational problems when
the jacobian used in the temporal simulation is calculated. Finally, d;
is defined as the penetration depth of the line node i in the seabed
surface S. It is positive when the line node is over the seabed and
negative when it is buried into it. In other words:

dg;=(r;—r})-ng; @)

It is important to notice the difference between both terms: the dp; is
a three dimensional vector while dg; is a scalar. A graphical example
is introduced in Fig. 2. ds; will be positive when the line node i is
over the seabed .S, whereas d p,; will be treated as positive if it points
towards the sea surface. The two terms are obtained for each mooring
line node by a continuous projection method described in the following
sections.

2.2.2. Adaptation of the projection method to the type of seafloor surface

The proposed projection method is suitable to be applied at any
type of seafloor. However, if the surface is flat (inclined or horizontal),
which are common models to represent the seabed, the general method
can be replaced by a point-to-plane projection expression, reducing the
computational cost required in the flat cases.
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I = (rix, riy, riz
rj = (rix riy, riz) 7=l S, Tiz)
\n = (nx, ny, nz)
e 7
T ’

1y'= (rix Tiy, 74) 7 = (rix + it nx iy + pi - ny, riz+ pi - nz)

Fig. 3. Mooring line node r; and its projection r} in two different seabeds. On the left,
an horizontal seabed is shown, at height z,. On the right, the inclined seabed.

2.2.2.1. Horizontal or inclined flat seabed. The horizontal flat seabed
structure case is the simplest one: the direction of projection will always
be the z-axis for every line node, so dp; = e3 Vi. The distance between
the mooring line nodes and the ground can be obtained by dg;; =
r;, — Z, Vi, being z, the seafloor height in the system of reference and
r; . the z-coordinate of the position of the node i, r;.

When the seabed surface is an inclined plane, the process starts by
calculating the unitary normal vector of the plane n with three not
aligned points. The plane satisfies the equation P - n = k, being P a
point contained in the plane. The normal vector of the inclined plane
which models the seabed surface is the direction of projection for every
mooring line node, dp; = n Vi. To obtain the projected mooring line
nodes coordinates, the following process was developed:

Let r} be the position of the projected line node i. r} is contained in
the inclined plane and satisfies its equation:

r;~n:k (8)

r} is contained in the line with direction n that also contains r;, the line
node position vector. Therefore, it satisfies the following parametric
equation:

ry=r;+un )

Joining both Egs. (8) and (9), for each mooring line node i, it is
obtained that y; = k—r;-7i, allowing to calculate r} by replacing the term
u; in Eq. (9). dg,; will be calculated by the expression dg; = allr} —r,||
being « = sign(rp ), with rp = r; —r; and rj , its z-coordinate (see
Fig. 3).

2.2.2.2. Complex bathymetries. When the seabed surface is neither hor-
izontal or plane, several difficulties appear. The first concern is the
interpretation of the seabed surface, which can be carried out by
triangulating the seafloor surface. In order to avoid an unnecessary
computational cost, the surface should be described in the least tri-
angles needed. To be able to construct the triangulation, the seabed
surface must be firstly described by several points. Then, a Delaunay
triangulation (Lee and Schachter, 1980) using all the mentioned points
as vertexes of different triangles is created.

A second problem to treat is the necessity of obtaining a projection
direction which varies continuously. This is crucial to avoid compu-
tational problems in the calculation of the jacobian needed for the
temporal simulation.

The proposed method uses an algorithm to project into a triangu-
lated surface (in this case, the seabed surface). This projection tool was
developed by Orazi and Reggiani (2020), and it is based on the vertex
normals, the mean of the adjacent triangle normals in each vertex,
instead of the normals of each triangle. This ensures a continuous
variation of the projection direction. Before starting to project, it is
computationally profitable to construct a change-of-frame matrix M for
each of the triangles that form the triangulation of the seabed surface.
M is composed by a series of translations and rotations that end up
laying the chosen triangle into the XY plane, simplifying the projection
process. It should be noticed that M~ must be also calculated in order
to return to the usual system of reference.

The projection process then starts by selecting a mooring line node
and one of the triangles which describe the seafloor surface. Both the
line node and the chosen triangle are moved to the layed triangle frame
with its matrix M. The next step is to check whether the mooring line
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node is inside the selected triangle or not. To do that, Optimized FCP
algorithm is used (Orazi and Reggiani, 2020), which uses the barycen-
tric coordinates (s,7) of the mooring line node inside the triangle. This
process should be repeated for each triangle until the selected node is
inside one of them. When this happens, the direction d is calculated:

d = ny + (ny — ny)s + (ny — ny)t (10)

The equation was taken from Orazi and Reggiani (2020). ny,n; and
n, are the normal vertexes of the selected triangle in the layed triangle
change of frame. Therefore, being i the mooring line node, its direction
of projection is calculated by dp; = d - M~!. The distance between the
mooring line node and the seafloor surface can be obtained as the z
coordinate of the line node when it is moved to the XY frame. For each
line node i, this value corresponds to d; .

The developed algorithm selects a mooring line node and iter-
ates over the triangles which describe the seafloor surface until it
is projected inside one. However, this can result in an unnecessary
computational cost if the desired triangle is the last one checked.

The computational cost can be reduced by adding a list of trian-
gles for each line node ordered by the distance between the triangle
centroid and the node. Then, if the method iterates following the list,
the searched triangle will be found sooner. The triangle list order is
computed automatically based on the static solution, and it has to been
updated for each node and for each time iteration. As future work, this
list could be computed only once at the start of the simulation when
the floor line nodes displacements are not large. This improvement
is highly profitable when the number of triangles is large; in other
case, ordering the list can have a higher computational cost than going
through in the entire list of triangles.

2.2.3. Application to the calculation of forces

Once dp; and d;; have been calculated for every mooring line node,
it is possible to obtain the ground normal and friction forces for any
type of seabed surface.

» Ground normal force

The implementation chosen for the ground normal force was a com-
bination of the models developed by Palm et al. (2013) and Trubat
et al. (2020). Both of them are based on a spring damper system and
consider a flat seafloor. However, some changes were introduced to
adapt it to an irregular seafloor surface. The direction of the force was
set to dp; defined in Eq. (6) instead of following the z-axis, while the
distance between the mooring line node and the seafloor was replaced
by dg ;. The expression obtained for a certain mooring line node i is the
following:

fn=-dGgdg —2G \/Ggdyymin(0,v,)dp; + |Ip,lldp; an

being d the line diameter, y, the mooring mass per length, Gx the
ground normal stiffness per unit area and G the fraction of critical
damping (will be taken as 1 from now on). dg; is the ground penetration
for the selected line node, dg = dg ;d p;, while v, is the velocity normal
to the seafloor v, = v - dp;. Finally, the component associated to
the equilibrium ground normal force opposing the line weight, ||p,ll,
is given by the expression ||p,|| = |p-dp;|. p is the line’s submerged
weight, defined by p = ( - 7V—V[‘)’) Y08, being yy, the mooring mass per
length under water and g = —ge,, with g = 9.8 m/s? the scalar value of
Earth’s gravity.

« Friction force

The friction force direction is contained in the seabed surface and
opposes the movement. The description of the force is based on De-
vries and Hall (2018) saturated damping model, which considers the
seafloor as flat. In order to model the interaction with an irregular
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Fig. 4. Using the static approach for a catenary line on a sloped seabed can result in
a buried mooring line, which is not realistic.

Fig. 5. The initial mooring line configuration of Newton-Armijo method r® should
be carefully selected. Otherwise, it could reach the static equilibrium at the inverse
catenary.

seabed surface, the velocity in the plane XY is replaced by the velocity
perpendicular to dp ;.

—Cllf =, i o, < o,
f= kil S n v’c) F.d ' ¢ a2
=CilIfall ol otherwise.

being C, the kinetic friction coefficient, v, a velocity threshold (a
scalar) and f, the previous calculated normal force. v, is the velocity
contained in the seafloor surface plane, and can be obtained by v, =
v—v,dp;, where v is the total velocity of the line node and v, is defined
as in the ground normal formulation.

2.3. Initial condition problem

The mooring simulation is based on finite element method which
uses stiffness and mass matrices, and therefore depends on an initial
condition that can be found by a static approach.

Before implementing an irregular seabed bathymetry, the static
approach was defined as the catenary between the fairlead and the
anchor. However, this situation does not represent a reliable initial
condition when the seafloor is not flat because there could be buried
parts, as it is shown in Fig. 4. This will increase tensions and move
away from a realistic behavior. Therefore, the catenary static approach
was changed to the static equilibrium of the mooring line.

The static equilibrium is found using Newton-Armijo (Kelley, 2003)
iterative method, which is capable of solving non-linear systems in the
form F(r) = 0, where r contains the mooring line nodes positions and
F(r) is the vector containing the forces in those positions. The algorithm
reaches the equilibrium when the relative error between the iterations
is lower than 1073,

Newton—Armijo method needs to start the iteration with a mooring
line positioning (r®) in which a good convergence is ensured. This
is achieved by choosing r» as a catenary between the anchor and
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the fairlead. Using other mooring line positioning as Newton-Armijo
method initial point can lead to reach the static equilibrium at the
inverse catenary as it can be seen in Fig. 5, which is not realistic. This
is what happened when line between the fairlead and the anchor was
taken as the point to start the iterations.

2.4. Discretization problem

The described method projects the FEM nodes in which the mooring
line is divided into the seabed surface. If the mooring line is not
well discretizied in accordance to the irregularities of the seafloor, the
seabed surface cannot be well interpreted as shown in Fig. 6:

The number of mooring line nodes needed depends on the irregular-
ities of the seabed: if it is too tight or complex, the number of nodes in
which the mooring line is divided must be larger. However, elevating
the number of nodes will enlarge exponentially the duration of the
simulation. In order to select a good number of nodes and avoiding
the mentioned problems, a sensitivity analysis must be performed,
studying the point of convergence of the fairlead tension for different
discretizations. For the case described above, the following results were
obtained:

It can be seen that using a discretization of 75 nodes, convergence
is achieved in the presented case. However, most of the seafloors are
simpler, and it is not necessary to use such a large amount of nodes.
The dynamic differences between the number of nodes would have
been stronger than the ones in Table 1 if the size of the step had been
bigger. Nevertheless, this section is focused in the importance of the
mesh definition rather than in the dynamics of the mooring line.

As expected, the computational time increases fast with the number
of nodes. This happens because the size of the PDE describing the
mooring line dynamics increases, and solving it requires more time.
In addition, using a large quantity of triangles to describe the seafloor
surface increases the computational time. To perform a more efficient
simulation, local mesh refinement can also be applied in areas with
narrow irregularities on the seabed.

3. Analytical verification

The results obtained by the developed method can be compared
with the analytical expression of a catenary in a slope provided
by Batista and Perkovic (2019). In their work, they modeled a static
mooring system (fairlead position rj is fixed to a point) anchored to
an inclined seabed. As the seafloor is inclined, the projection method
used in the simulation will be the point-to-plane projection described in
Section 2.2.2.1. This comparison gives a measurement of the accuracy
of the numerical simulation, in particular, to its capacity to model a
mooring laying on an inclined plane.

In their article, Batista and Perkovic (2019) introduce a two dimen-
sional mooring line which lays into an inclined plane and is subjected to
an external known force H. This external force is applied to the fairlead
and it elevates the mooring line, which starts to behave as a catenary
from a touchdown point P,. The mooring is anchored to the inclined
plane and its other extreme, the fairlead, does not move. Regarding the
description of the forces involved, Batista and Perkovic (2019) treat the
mooring line as inextensible, the ground as impenetrable and ignore
friction effects. The described situation is represented in Fig. 7.

The frame of reference is defined the same way as in the previous
Section 2.1, but in this case it is restricted to the plane y = 0 in order
to achieve a bidimensional numerical simulation.

Most of the parameters used to characterize the mooring line have
been chosen in accordance to the parameters that will be later used
in the experimental validation, as it can be seen Tables 2 and 5.
Young’s Modulus multiplied by the catenary area (EA), which appears
in tension description shown in Eq. (2), was highly increased in order
to model an inextensible mooring line. On the other hand, the floor
can be modeled as impenetrable by enlarging the parameter G in the
ground normal force described in Eq. (11) up to 3 - 10 N/m?.
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Fig. 6. In the presented seabed surface (blue), there is a small step in the middle of an inclined plane, but there are no mooring line nodes laying on it, causing a bad interpretation

of the seabed structure. The mooring line presented in this figure is divided into 15 nodes.

Table 1

An example of a sensitivity analysis for the situation described in Fig. 6 in which the fairlead tension is compared to the discretization. The
computational time ratio is also shown, which is the quotient between the computational times required for the studied case and for the one

with 15 nodes.

Nodes 15 25 35 45 55 65 75 85
Fairlead Tension [N] 3.13-10° 3.24-10° 3.18-10° 3.10- 10° 3.19-10° 3.06 - 10° 3.10- 10° 3.10- 10°
Computational time ratio 1 1.79 4.01 5.59 10.30 13.57 18.13 24.66
of : ' T . T
r — Numerical
g — Analytical
E 50+ -
s
=%
o)
o

To
Py

a

Fig. 7. Scheme of the situation proposed by Batista and Perkovic (2019). a is the plane
inclination. The mooring is anchored to the inclined plane at r, and the fairlead, rp,
is static. P, is the point where the mooring line starts to elevate from the ground.

Table 2

Characterization of the mooring line.
Abbreviation Parameter Value
L Length [m] 635
Yo Weight per unit of length [kg/m] 835.4
d Line diameter [m] 0.3539
EA Young’s Modulus multiplied by area [N] 5. 10"
r; Coefficient of the internal damping coefficient 0.005

as function of EA

Cp, Normal Drag Coefficient 2.5
Cp, Tangential Drag Coefficient 0.5
Cun Added mass Coefficient 3.8
Pw Water density [kg/m?*] 1025
Gy Ground normal stiffness per unit area [N/m?] 3-10"

3.1. Results comparison

Firstly, the position of the analytical solution provided by Batista
and Perkovic (2019) and the positions of the mooring line nodes
returned by the numerical simulation were compared. In addition,
a second analysis was consisted of comparing the fairlead tension

-100 -

-600 -500 -400 -300 -200 -100 0
X-coordinate [m]

-100 T T .
H=45-10°N, — Numerical |
— Analytical
—-105 H=43-10°
S
= = 6
e =4 10N
$-110
[(a]
-115

-230 -225 -220 -215
X-coordinate [m]

Fig. 8. Comparative between the analytical expression obtained from Batista and
Perkovic (2019), in red, and the mooring line nodes positions obtained from the
numerical simulation, in blue. The inclination of the seabed surface to which the
mooring line is anchored is « = 15°. The figure below is a magnification.

obtained numerically by the simulation and the one given analytically
was performed.

3.1.1. Position comparison

The comparison between the mooring line nodes positions and
the coordinates of the analytical solution was performed for different
values of external horizontal force H. Fig. 8 shows the obtained results:

The differences between the analytic and numerical solutions were
quantified in Table 3. As the number of nodes in which the mooring line
has been discretized is 32, only certain of them are shown in Table 3.
In particular, the selected nodes correspond to the rounded value of
the nth percentile of the list of them, with » € {10,20,...,90}. Node
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Table 3

Absolute difference (in meters) between the numerical and analytic results for certain
mooring line nodes. The difference in the index (i,j) is associated with the node j
and has been calculated as 4 = \/4,(j)? + 4,(j)?, where 4,(j) is the absolute difference
between the numerical and the analytical values of the x-positions of the jth node, and
A.(j) is the same count with the z-positions.

H [N] Node

2 6 9 12 16 19 22 25 29

45-10° 0.031 0.085 0.042 0.159 0.169 0.182 0.129 0.23 0.249
43-10° 0.014 0.051 0.039 0.162 0.185 0.187 0.148 0.237 0.255
4.-10° 0.023 0.012 0.064 0.167 0.211 0.142 0.178 0.208 0.255
3.7-10° 0.014 0.123 0.029 0.178 0.177 0.2 0.125 0.255 0.275
35-10° 0.017 0.078 0.037 0.161 0.231 0.181 0.204 0.244 0.277

Table 4

Relative error (6T = |Ts —T,|/T,) between the analytical fairlead tension (7,) and
the one obtained from the numerical simulation (7)) for different horizontal external
forces H.

H [kN] Ty [kN] T, [kN] |Ty =T, [kN] 6T
3500 5369 5373 4 0.0007
3700 5184 5188 4 0.0008
4000 4915 4912 3 0.0006
4300 4633 4637 4 0.0009
4500 4453 4454 1 0.0002
6
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Fig. 9. Comparative of the fairlead tension obtained from the analytical expression
and the one obtained from the numerical simulation for different values of H.

number O corresponds to the anchor while node number 31 represents
the fairlead.

3.1.2. Fairlead tension comparison

For the same values of the external horizontal force H as the ones
used before, it was possible to compare the fairlead tension calculated
with the analytical expression provided by Batista and Perkovic (2019)
with the values obtained numerically.

3.2. Discussion of the results

The results show great accordance between the analytical solution
and the one obtained by the numerical method, proving the good
behavior of the developed point-to-plane projection method.

Table 3 shows that the absolute differences between both analytical
and numerical solutions differ quantities lower than 0.3 m. Regarding
the total length of the mooring line, 635m (see Table 2), it can be
traduced to errors lower than 0.05% of the mooring length. This
error is of the same order of magnitude that allowed by Newton—
Armijo’s method discussed in Section 2.3. In Table 3 it can be seen
that the mooring line nodes located near the anchor show even smaller
differences between both solutions.

This high accordance is also shown in Fig. 8, where the graphs
of both solutions almost overlap. With certain effort, it can be distin-
guished that the numerical simulation is slightly below the analytical
expression. This error is due to the impossibility of achieving an ab-
solutely inextensible mooring line, which only could be reached if
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Table 5

Characterization of the mooring line. Most of the coefficients determination were based
on the studies of Palm et al. (2017): the water density, the normal and tangential drag
coefficients, the added mass coefficient or the ones related with friction force (velocity
threshold and kinetic friction coefficient). The ground normal stiffness was taken from
Barrera et al. (2020). The mooring line length, diameter, weight, Young’s Modulus
multiplied by area and internal damping coefficient have been chosen in accordance
to Mahfouz et al. (2020).

Abbreviation Parameter Value
L Length [m] 635
%0 Weight per unit of length [kg /m] 835.4
d Line diameter [m] 0.3539
EA Young’s Modulus multiplied by area [N] 3.15-10°
F; Coefficient of the internal damping coefficient 0.001
as function of EA
Cp, Normal Drag Coefficient 2.5
Cp, Tangential Drag Coefficient 0.5
Cyn Added mass Coefficient 3.8
pw Water density [kg/m’] 1025
Gy Ground normal stiffness per unit area [N/m’] 3.10°
v, Velocity threshold [m/s] 0.01
Cx Kinetic friction coefficient 0.3

Young’s Modulus (E A) was set to infinity. However, it must be a finite
parameter, introducing certain error. Although the value could not be
infinite, it was set to 5.055-10'! kg/s> m (Table 2) which is more than a
hundred times higher than the experimental used value 3.15- 10° kg/s’
m (Table 5). This selected value is high enough to simulate the desired
inextensible behavior, as the results show.

The error produced by not achieving a complete inextensible moor-
ing line would have been even lower if the simulated mooring was
shorter and softer. However, one of the objectives was to validate the
experimental set up, so the characterization of the parameters of the
mooring line in this section should be as similar as possible to the one
described in the experimental validation section, as it was previously
discussed.

Finally, both Table 4 and Fig. 9 show great accordance, giving
relative errors in fairlead tensions lower than 1073, It can be seen that
the relative error is not homogeneous, as it is higher in some cases and
lower in other ones. This could be due to the convergence criteria used
for the Newton-Armijo method. However, in all of the cases, it can be
concluded that the results are really accurate.

4. Experimental validation
4.1. Model test set up

In order to validate the proposed model, a single mooring line was
subjected to forced oscillation scale tests, which have been conducted
in the COCOTSU wave and current flume facility managed by the
Environmental Hydraulics Institute. This device is 56m long, 2m wide
and has a variable height between 1.8 m and 2.5 m. It is equipped
with a wave generation system based on a 2m piston-type paddle, as
well as with a wave dissipation system. However, the performed tests
have been carried out without waves. Fig. 10 shows some flume views:

The mooring lines were simulated by means of chains, and located
inside the flume. They were attached to the seabed by a steel plate that
worked as an anchor, and moored to a linear actuator. Froude scaling
laws were applied to reproduce the hydrodynamic behavior at model
scale.

The mooring line used during the test program can be characterized
by the following characterization:

As the intention of the tests is to verify the accuracy of the simula-
tion of a mooring line in a variable seabed surface, the mooring tests
were repeated into three different surfaces described in Fig. 11, which
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Fig. 11. Three different sloped seabed configurations, from top to bottom: no-slope, gentle-slope (4° of inclination) and steep-slope (19° of inclination). The used scale is 1 : 75.

are no-slope, gentle-slope (4°) and steep-slope(19°) cases. The location
of the step, as well as its length, vary for the three tested seabed types.
In addition, the main difference between the sloped cases is that the
gentle-slope case is dominated by the interaction with the line into
its bottom concave corner whereas the steep-slope case is dominated
by the interaction with its top convex corner. This variations allow to
properly study the dynamics of contact.

For the sloped steps, Fig. 11 shows that the seabed structure is
described as a mixture of flat and inclined floor pieces, and it cannot be
described as only one of them. This way, the projection method used
was the general one, able to describe any type of seabed surface. Com-
paring the precision of the results between the sloped and no-sloped
cases will determine whether the introduction of this method increases
the discrepancies between the numerical and the experimental results
or not.

In Fig. 11, it can be seen the two axial load cells used in both the
anchoring and fairlead points. The TECSIS F2808 forced transducers
used at 100 Hz have an accuracy of 0.1% of their force, 20N. They
are used to identify the dynamic performance and snap tensions of the
mooring line. In addition, to make the mass of the anchoring point per
unit length the same as that of the chain underwater, floats are added
at its axial load cell.

The linear actuator Bosch:ECM80 was used to impose different
harmonic movements to the fairlead. It reaches an acceleration of
9.5 m/s* and a maximum force of 600N, and it is supported by an
aluminium structure built inside the flume.

For each of the three cases, two different tests comparing the
numerical (num.) and experimental (exp.) results were performed.
The first one corresponds to a fairlead imposed movement of low
frequency, with 17 s of period, a mean drift of 15 m and an amplitude
of 2.5 m. This condition allows to model a quasistatic performance
case because gradients of fairlead tensions follow the gradient of surge
displacements, as it can be seen in the Figs. 12, 14 and 16. Hence,
the dynamic effects are low, allowing these tests to validate the model
without snapping loads.

In the second case, the fairlead oscillations frequency increases up
to a period of 6 s, while their amplitude reaches 5 m. Also, the fairlead
movement has no offset. This time, as the Figs. 13, 15 and 17 show, the
fairlead tension peaks are not located at the maximum surge position
but at its maximum velocity, which is reached when the surge gradient
changes it sign. The described situation aims to validate the model
with snapping loads and to evaluate the dynamic performance of the
mooring line. Therefore, it is expected to have a higher sensibility to
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Fig. 12. Fairlead tension time series with amplitude of 2.5 m, a mean drift of 15 m
and period of 17 s for the no-slope configuration.
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Fig. 13. Fairlead tension time series with amplitude of 5 m, no offset and period of
6 s for the no-slope configuration.
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Fig. 14. Fairlead tension time series with amplitude of 2.5 m, a mean drift of 15 m
and period of 17 s for the gentle-slope configuration.

the seabed contact than the previous configuration. With the results
obtained for the six described cases, the following fairlead tension
temporal series were obtained:

The agreement of the numerical and experimental results overall is
limited by the scaling effects, specially by the introduction of a spring
at the anchor in the experiment in order to reproduce the line stiffness
properly, as it can be seen in Fig. 11. The introduction of a sloped
seabed does not affect the agreement.

In the quasi-static performance, the lowest tension peak value dif-
fers in the three different configurations of the seabed. For the flat
seabed (Fig. 12), its value is around 2.5-10° N. In the case of the gentle-
slope configuration (Fig. 14), its value decreases up to 2.2 - 10°® N and
finally, in the steep-slope seabed (Fig. 16), it decreases again achieving
a value of 2 - 10° N. However, the different values of the experimental
lowest tension peak are well-captured by the numerical simulation,
although the numerical results of the steep-slope case show a slightly
worse result. This happens because the mooring line discretization in
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Fig. 16. Fairlead tension time series with amplitude of 2.5 m, a mean drift of 15 m
and period of 17 s for the steep-slope configuration.

55 x10°
’ -~ —Exp. Fairlead Tension —Num. Fairlead Tension - - Fairlead Position

Fairlead Tension [N]
o
Fairlead Position [

0 5 10 15 20 25 30
Time [s]

Fig. 17. Fairlead tension time series with amplitude of 5 m, no offset and period of
6 s for the steep-slope configuration.

this case does not allow to capture the contact between the line and the
seafloor with all the possible precision. In the case with a horizontal
seafloor, it was found a higher tension than in the other cases. This
is because the portion of the mooring line that touches the seafloor
is lower when the seafloor is horizontal than when an inclination is
introduced.

In the dynamic performance, the fairlead tensions are higher in
the flat seabed configuration (Fig. 13), decrease when the gentle-slope
configuration is considered (Fig. 15) and decrease even more when
the studied case is the steep-slope (Fig. 17). This behavior is expected
due to the increment in the fraction of the mooring line touching the
seafloor, as it was previously explained. In addition, the numerical
results do perfectly couple with these decreases in tension for all cases.

Finally, as it was anticipated, the tension differences between the
different seabed configurations are higher in the dynamic performance



P. Desiré et al.

[l irregular
[inclined plane
[l Horizontal plane

-30
-70 -

Depth [m]

-120
100

Y [m]

-75 T T ;
“Irregular /,,,»/'
-80 “~Inclined plane =

~—Horizontal plane!
-85 i

-90

-95

Depth [m]

-100 Pl

A05- < T

110 : ‘ w
700  -600 -500 -400 -300  -200

X [m]

-100 0 100 200
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plane y = 0.

than in the quasi-static performance. Nevertheless, the total tensions
of the quasistatic performance are higher because in them, the fairlead
movement had an offset which made the mooring line more tense.

In conclusion, the agreement between the numerical and the exper-
imental results for both the sloped-cases is similar to the one obtained
with a flat seabed, allowing to successfully validate the implementation
of the complex bathymetry model.

5. Effect of the variable bathymetry

In this section, an irregular and inclined seabed surface is studied. It
was created using the Fractal landscape generator with diamond-square
algorithm (Kaya, 2022), which is a common tool for developing realistic
landscapes for videogames graphics. The algorithm depends on certain
parameters: the resolution, the amplitude of the irregularities and the
smoothness. This last parameter is a value between 0 and 1, when the
closer it is to 0, the smoother is the surface. The selected value was 0.3.

A mooring located in this surface can be modeled in various ways.
The first one consists of using the projection algorithm developed for
irregular bathymetries, which needs the seabed surface coordinates
as a parameter. These coordinates are obtained by the previous cited
diamond-squared algorithm (Kaya, 2022). Another possible interpre-
tation of the situation is to treat the irregular surface as an inclined
plane, which can be achieved by interpolating the seabed surface by
a plane. This approximation allows to use the described point-to-plane
projection method for inclined seabed surfaces. Finally, the mean of the
depth of all the points forming the seabed surface can be calculated (z)
and the irregular surface can be approximated by an horizontal plane
located at z. In this case, it is used the projection method for horizontal
seafloors.

Studying the solutions obtained by these three methods allow to
calculate the numerical differences in their positions as well as in their
fairlead tensions. The magnitude of these differences will determine
the importance of considering an irregular bathymetry rather than
approximating it by an horizontal seabed surface, which has been the
method used so far.

As it can be seen in Fig. 18, there are irregularities along both X
and Y axis. In order to evaluate their impact, the fairlead was imposed
to describe a circular movement in the plane XY of amplitude 2.5 m,

10
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a period of 12 s and its origin at x = 10 m, y = 0 m. The mooring
line characterization has been chosen as the same described in Table 5.
Once the numerical simulations were performed, each of them with
their corresponding method of projection, the positions of the mooring
line nodes obtained at a certain fixed time were compared:

In the case in which the true seabed is considered, in Fig. 19 it can
be seen that the fairlead movement can rise a big part of the mooring
line from the seabed. For the inclined and the horizontal seabeds, the
rise is more gradual. In addition, the predicted touchdown point will
be different in each of the three cases. This has a big impact in line
stiffness, as it was concluded by Jaiswal et al. (2016).

The fairlead tensions for each of the three methods have also been
analyzed. In Fig. 20, fairlead temporal tension series for the three
different approaches used in this problem are represented. Both total
and dynamic tensions have been calculated. The total tensions are the
natural measurements while the dynamic tensions have been obtained
by subtracting the correspondent pretension, which has been calculated
as the average of the total tensions in each of the cases.

Dynamic fairlead tension series in Fig. 20 allow to compare the
three methods without considering initial pretensions. In them, the
irregular treatment case shows a higher peak tension, reaching a value
of 5. 10° N, than the other two approximations, whose peak is lower
than 4 - 10° N. This is coherent with the previous discussion done
for the position results exposed in Fig. 19, which concluded that the
touchdown point and the fast change of the part of the mooring line
that is rised from the seabed produced a high impact on line tensions.

Fig. 20 also shows total fairlead tension series, which provide
an interesting conclusion: the horizontal approximation has a higher
total tension than the inclined plane approach. The horizontal ap-
proximation total peak reaches 2.4 - 10° N while the inclined plane
approximation keeps in 2.2 - 10® N. This difference appears not only in
the highest peak, but also in the whole temporal series. This is because
the horizontal case depth, z, has been calculated with the mean of
the z-positions obtained by applying the diamond-square algorithm (in
other words, the ones used to describe the irregular seabed surface)
instead of the points where the mooring is really touching the seafloor.
Then, the horizontal seafloor depth is higher than it should be, making
that a higher fraction of the mooring line is raised, increasing the total
tension. In addition, Fig. 19 shows that the touchdown point of the
inclined plane surface is higher than the one in horizontal seabed,
which explains that the total tension of the horizontal case is higher
than the one in the inclined plane. In addition, the total fairlead tension
obtained for the irregular case is the highest one, in coherence with the
previous analysis. Its peak values 2.8 - 10° N.

Another relevant aspect that should be discussed is the increase
in computational time caused by the use of the projection algorithm
developed for general seafloor surfaces. For this task, the horizontal
seafloor described in Fig. 18, located at a depth of z = —93.5m, was
used. The mooring line characterization was the same as in the previous
part of this section.

The mooring line simulation was performed using two different
approaches. The first one consisted of using the point-to-plane pro-
jection method for horizontal seabeds. The second approach starts
by triangulating the seafloor surface and using the general projection
method. Therefore, all the difference in simulation time will be due
to the projection algorithm used and not to other factors, such as the
change in tensions that appears when different seafloor surfaces are
introduced. The results obtained can be seen in Table 6.

The results show that the use of the developed projection method
for irregular bathymetries increases the computational time around a
20%. This percentage is not very high, especially knowing that the
accuracy of the simulation is greatly improved, as it has been previously
discussed.
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Table 6
Computational time required in a simulation of 120 s for two different projection
algorithms. The mooring line and the seafloor were the same for both cases.

the ground was made impenetrable by increasing the ground
normal stiffness coefficient and the mooring was treated as in-

Projection algorithm Computational time (s)

Specific for horizontal seabed
General

11236
13488

6. Conclusions

The presented work provides a method to simulate mooring lines in

complex bathymetries.

(1) The method lays in a continuous projection that allows to calcu-
late the parameters which describe the ground normal and the
friction forces in a complex seafloor structure. The models used
to implement these two forces are based on previous studies.
The projection algorithm is able to distinguish whether the
seafloor surface is flat (horizontal or inclined), where the pro-
jection process will be described as a point-to-plane projection,
or if it describes a complex bathymetry, where a triangulation
models the seafloor surface and the vertex normals are used to
provide continuity to the projection method. An extra developed
implementation allows to search the closest-barycenter triangle
for a certain mooring line node before starting the projection
process, which can reduce computational cost when the number
of triangles used to describe the seabed surface is high.

The initial condition problem was solved by searching the FEM
static equilibrium with Newton-Armijo iterative method of solv-
ing non-linear systems. Newton—-Armijo needs a first mooring line
positioning to start its iterations, which was set as a catenary
between the fairlead and the anchor. Other first configurations
converged to the inverse catenary and were discarded. Using a
catenary as the static approach is not correct in general when the
seafloor is not flat. It could be observed that the line nodes should
be increased when the seabed structure is complex.

The method was verified with the analytical expression of a
catenary in an inclined plane. In order to approach the simulation
conditions as much as possible to the ones described in the article,

(2)

3

(€]
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5

-

6
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extensible by increasing Young’s Modulus. The results showed
extremely great accordance between the numerical obtained re-
sults and the analytic solution: the positioning comparison obtains
relative errors lower than 5 - 10~* while the relative differences
in the fairlead tension comparison are lower than 10~3, having
the same order of magnitude introduced by the Newton-Armijo
convergence criteria.

Several experimental scale tests were used to validate the accu-
racy of the proposed model. High frequency fairlead tests were
used to validate the model with snapping loads while the low
frequency movements aimed to validate the model without snap-
ping loads. The comparison between the flat floor with the two
different sloped tests allowed to validate different contact dy-
namics. The results confirmed that the introduction of a complex
bathymetry did not affect the agreement of the numerical and ex-
perimental results. The proposed numerical model could predict
the effect of the bathymetry on the line tension.

A practical case of a mooring line over an irregular seabed
surface was exposed. The results obtained numerically for three
different proposed solutions were compared. At first place, the
developed projection algorithm for complex bathymetries was
directly applied. Then, the irregular surface was interpolated by
an inclined plane and the projection method constructed to sloped
seabed surfaces was used. By last, the mean of all the seabed
surface points depth was used as the depth of an horizontal flat
seafloor, being able to apply the projection method for horizontal
seabeds. The differences between these three methods exalt the
importance of considering a variable bathymetry. The general
projection algorithm could predict fairlead tension: the dynamic
fairlead tension peak in this case was 5 - 10° N while, in the
other approximations it decreased until 4 - 10°. The difference in
the results comes from the prediction of the touchdown point,
which varies the raised section of the mooring line and plays an
important role in determining the line stiffness.

In order to quantify the increase in computational time in the
proposed method, a horizontal seafloor was triangulated. Then,
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two different analysis were performed: the first one used the hor-
izontal seafloor projection method, while the second was based
in the general projection method. Is was found that the last one
represents an increase in computational time of 20%.

In conclusion, the proposed model could be verified against an analyti-
cal solution as well as validated with different experimental scale tests.
It can be concluded that the described implementation can be used to
simulate mooring lines in complex bathymetries, highly improving the
accuracy of the mooring line simulations which consider the seabed to
be horizontal. This is specially valuable in certain locations in which the
seafloor rapidly varies, such as in deep waters or in the Canary Islands.
Working with irregular seafloor surfaces provides a big improvement
in the calculation of friction and ground normal forces, improving the
numerical results for both dynamic snap loads and line positioning. This
allows to develop more secure devices and results in cost saving.

As further work, it is proposed to actualize the FEM used in the
simulation, basing it in discontinuous Galerkin and using higher order
finite elements.

It will also be interesting to contemplate other more complex fric-
tion model which take into account both static and dynamic friction.
Furthermore, in an inclined plane, the friction is not isotropic, so a
next possible step could be to implement a model able to reproduce
an anisotropic friction. Also, the centroid-based order of the list of
triangles used in the projection method developed for irregular surfaces
could be optimized. Finally, coupling a line with a floating structure
will allow to study the effect of variable bathymetries in complete
mooring systems.
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