
Comp1,1t Syst Sci & Eng (2011) 6: 425-434
© 2011 CAL Publishing Ud

lntcrnational Journal of

Computer Systems
Science & Engineering

Early, time-approximate modeling
of multi-0S Linux platforms in a
systemC co-simulation environment

H. Posadas 1, E. Villar 1
, Dominique Ragot2 and Marcos Martinez3

1 Mirmd<'Uronic rn¡:inc'('fin¡.: <:mu¡> TUSA, l/11ivNsity o(C111I,1/,ri,1 S.111ta11</,•r, S¡iain. E-m,1il: pos,ul,1sh@'teisa.u11ic,1n.es, vi/lar�ilt1·is,1.unic:,1n.es
2 n,,ill'., <:nmn11111ic;1tin11s C:0/0111/ll's, /{iris, J"r,,nn•. I.-mail: Dominil)111•.r,1¡Jot�"fr.thalc.•.,¡.:mup.com
11 Jc•si¡.:11 of Sy.,tc111s 011 Silinm I JS2 /{1tl'm,1, V.ill'nci,1, S¡,,1in. r-m,,i/: M,,rc:os.m,1rtirw7.@i/s2.es

n11, i11n,.,,,,., o(c:0111pul.itio11,1/ flllW<'r in eniheddrd syst,•rns h,,s .,llowcd int<'grnting togetlwr h;,rd rc,1/-tirne tasks and rich applic,1Iions. Complex SW
inír,,struclurc·s, 011I,,inin¡: /)()ih RTOS and (;I'(>S ª"' requircd 10 h,indlC' Ihis r:omplexity. To oplimally m,Ip sys1mI func1ion;iliIy lo lhc h,ird-RT SW dom,1in,
lo llll' gt•n,·r.,I purpllSl! SW dllm,1i11 or lo I IW prriphc•rab, ,•ar/y µerforrn.tnce c·v,,lu,,tions ill the firsl sleps of che clesign process are required. Approxim.ite
lim,·d co-simul.,tion h,1s hc ·c·n pmpos,·d ,,s a f,,sl solulion (or systcrn modding al carly design sleps. This co-simulation lechnic¡uc allows sirnulaling syslems
al sp1·c·cl dos,• lo fum·Iio11,1l ,•x,n,tion, while consiclC'ring liming <'fi('C"IS. As a conscquc•ncc, syslern performance eslirnalions can be ohlained eJrly, allowing
<'ffiC"iPnl d,·sign s¡Mn! ,•xplor,,lion ,,nd sysl<'lll rc.fi111•mc·11I. To ,,chiev(' f,1sl simul,Hion sp,�,d, lhe SW c.ode is pre-,mnot.,tpd with lime informalion. The
,urnol,ll<'d me/e• is Ih,·11 11.1Iivdy c•xc•rntc-d, pc•rforming wh.11 is r,,ll('d n,11ivc-li,ised co-simul,1Iion. l'revious nalive-hilsed simulalion environmenls are nol
prq>.lf<•d to modc•I nwlli OS sy,I,•nis, so tlw p1·rforrn,rnr<· <'v,1/u,1tion of tlw difí,•rent SW domains is nol possible. This pap<'r proposes a new emliedded
sy,l<'rn rnod,•lin¡: solution, onsidc•ring du.,I RTOS/(;l'OS sy,tc•111s. A rc·.il I.inux-h,,sPd infrastruclure h,1s /icen modclc,d an intcgr,llrd into a sIate-of-1he-art
co-sicm,l,1tion c•nvironrm•nl. llH• n·suiling solulion is c,1p,1bll' o(111odc·li11g ,md cv;ilu,1ting all I IW ancl SW system componcnls providing Ihe designer with
v.ilu,,bl,, i11íom1,11io11 for ,.,,rly syst<•m oplimiz,1tio11 ,rnd dPsi¡¡n ,p,1ce <•xplor,,lion.

Kc•ywonb: Co-simul.1Iion, TI M, Approxim.itdy-tin"�I, R,•,il-tinJC' linux

l. INTRODUCTION

lncn.:asingly cn1hcddcd syslcm complcxily has allow1.:d integral•
ing hard n:al-tinw tasks and rid1 non-RT arrlication together.
The comhination ol' 1hese h1.:1erngc11cous concurrcnl componenls
intcracling among thcmsclvcs makcs the sys1e111 more difficull
to prcdic1 ami control. /\s a consequencc, more complex in­
l"rastruclurcs are required ano 1his is spcdally imponant when
considcring opernling sysIe111s. Complcx cmhedded SW usually
requires considering n:use ami inIcgra1ion or lhin.J party compo­
nenls, and thus, sophisticated operating systems (OS) are rc­
quin;d 11 J. /\mong complcx OSi.:s, Linux-hased <>Ses ar1.: sorne

vol 26 no 6 Novcmbcr 2011

or thc mosl commnnly used in emheddcd systcms. Linux is a
free, opcn-source OS providing a POSIX-hased API. Linux of­
fcrs powcrful ano sophis1ica1cd systcrn manag1.:mcnt facili1ics,
a rich cadre of <levice support, rcputation for rcliahility and ro­
hustncss, and exlensive documenlalion.

Al the samc time, ekctronic dcsigns have to deal wi1h time
conslrains. Response times, or input and oulpul ratcs make sys­
lerns lo includc rcal-Iimc charactcristics [2,3 J. As a consequem:c,
holh design tools and platform infrastructures havc 10 hc pre­
pared f"or handling real-lime dcsigns. Howevcr, a standard gen­
eral purpose operating syslem (GPOS) as a Linux kernel cannot
suppon haro real-lime tasks. Hard real-time tasks rcquire fa.

425

EARLY, TIME-APPROXIMATE MODELING OF M ULTI-OS LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIAONMENT

cilitics to guarantce dcadlines are always, in thc same way as
real-time operating systcrns (RTOS) do. The use of thesc RT
facilities result in a complete modification in the ordcr tasks are
cxecutcd and in general in thc overall system execution.

In onlcr to combine all requircd system capahilitics togcther
with high el'ficien9. sorne clcctronic systerns integrate GPOS
and RTOS in the samc proccssor. This solution allows rcducing
the numher of processors rcyuired in the systcm, which mini­
mizcs arca, powcr consumption and pricc. Howevcr, the opti­
mization of such cornplex and flexible platíorms rcquires early
system evaluations in order to guarantee that the resulting sys­
tcm has cnough cornputational powcr to support ali thc rcquircd

functionality accomplishing thc spl!cilied times.
In traditional HW/SW co-design ílows, the software devclop­

ment tcam had lo wait to thc firsl hardw,tre protolypes in order
to verify and validate the codc. As a consequcnce, evaluation
of th<.: wholc design was donc latc in the d..:sign proccss, requir­
ing costly re-dcsign processes whcn certain catastrophic design
errors wcre dctcctcd (i.e. CPU utilization rcquired to he higher
than JOO<'k).

To oven:ome this prohlem, analytical and simulation tech­
niques havc bccn proposcd. Analytical teehniques are hased on
static analysis or software code, considering ali possihle paths in
the CFG (Control Flow Graph). They are usually employed to
calculate thc WCET (Worst Case Execution Time) f'or rc:al-timc
systcms. However, cstimations ohtaincd using WCET [281 are
usually too pcssimistic and have to he eomplemcntcd hy simu­
lation techniqucs.

Simulation techniques are widely useJ for hoth l'unetional ver­
ification and performance estimation. For such purpose, a large
varicty of hardware componcnt modcls and software moJcling
tcchniques have hccn developcd. The abstraction levcl of these
modcls is usually a tnide-olT hctwcen requin:d speed and accu­
racy.

Onc of thc most cmployed simulation techniyucs is the use
of an lnstruction Set Simulator (!SS) [291. An !SS rcads the
hinary code compilcd for !argel platform and exccutes the in­
struetions using a larget proecssor modd. However, simulation
times are too long for cfficicnt carly estimations or design spaee
exploration. Furthcrmore, ISS systems rcquirc the final SW in­
fras1ruc1urc, so large enginecring effort in porting the OScs is
also required.

A first solution proposed to reduce these drawhads it to use
interpreters or as a hinary code translators [101. These tedmiques
achieve shorter simulation times than modcling the ful! processor
internally, hut at thc cost of providing less accurate results. This
is caused hy thc rcduction of i111crnal details considcred in the
pr0<.:essor modds. Ncvcrthelcss. 1his solution is still slow l'or
clfü.:ient early estirnations, specially when hig Jesign spm.:es have
to he covcred. Atlditionally. thcse solutions also rcquire high
poning clTon.

To speed up simulation times. approximate 1i111eeo-si111ulation
techniques hascd on nativc execution havc hccn employcd. HW
deseription and thc C /C + + codcs of thc cmhcdded SW are
simulated togethcr using the facilities provided hy thc Sysll.:mC
languagc, a C + + lihrary for systcm modcling. Using this so­
lution cmhcdded software can he direetly executed ovcr the host
machi ne, without rcquiring ISSs or any too! eapahle of cxccuting
target hinary codc in the hosl. To ohtain pcrformanccestimations
of SW componcnts, application SW code rnust he instru,rn:nted

hefore the executinn, aduing infonnation of the perfor111anee it

is expected thc code will have in the !argel platfDrm. The infor­
malion re4uircd to make thc instrumentation can he ohtained al
source, inlcrmcdiate or assemhly level. The SW infrastructure is
hased on high-lcvcl modcls of the involvcd OSs, so porting effort
is minimal ii' the OS models are availahlc. The resulting nalive
exccution aehievt:s very fast simulation times, without rcquiring
delaikd mndds of platform components.

In that context. ahstract OS modcls have hccn prnposl.!d for
fast time-approximate co-simulalion [18, 19, 21, 241. Thesc OS
modcls provide hasie sc.:heduling and conununication eapahil­
ities for Systl.!lll and HW Jevcloprncnt oricnted environrncnts.

However. thc cffocts of harJ RT facilities, which have a grcat
impact in SW execution, are not considen.:J in tite rcsulting
timeapproximate co-simulations. As a conscqucnee, functional
exl.!cutions and performance estimations ohtained without them
are potcntially wrong.

To sol ve the previously descrihed prnhlems, the papcr prcsents
a rnmpletl.! RT/GP OS modcl integrated in a SystemCrrLM co­
simulation envinmment. The devclopcd modcl covers the rnost
import,rnl fi.:atures proposcd as RT extcnsions for Linux, improv­
ing performance cstimatinn, system modcling and eo-simulation
al timc-approximate lt:vel.

Thc paper is structuri.:d as follows. Thc ncxl section presents
thc state of the art in two ways: OS 1111,dcling in high-lcvel
frameworks, and hard RTirnprovcments in Linux-hascd systcms.
Section 1 descrihcs a list of hard-RT improvemcnts n.:quiri.:d for
cmhedded systems. Section 4 proposcs solutions to integrate
thcse foatun:s in a SystemC modcl. Finally an cxampl.:, results
and conclusions are prescnted.

2. RELATED WORK

2.1 REAL-TIME ANI> MlJl:rI OSES

St.:veral resean.:h works have enhanced tht.: real-time performance
of Linux. f'irstly. lngo Molnar dcvelopcd thi.: real-time pre­
emption patch [41. This patch adds three main tcchnologics
to enhance the rt.:al-timc performance of Linux, which arc IRQ
threads, RT mutexes. and high resolution timers 151. The IRQ
thread is a kernel lhn:ad handling top-halves of interrupts, which
is wokcn up hy ISRs when intcrrupts oecur. In 16 l. interrupts are
also hanJleJ hy in1crrupt servic.:e tasks whose rolc is thc same as
thi.: IRQ threads.

ktimers [91 and UTIME [101 provides opti111ized implcmcn­
lations for timcr rt.:solution in thc Linux Kernel. Suhsequently
GcorgcAnzingcr introtlUl:cd the High-Resolution Timers (HRT)
patch 1151. Rohust mutex implcmentali<HlS has hccn proposcd
in f'USYN l 11 I ,mu f'utex f 121.

Ali thesc prnposals havc inspircd the creation of dual Oss in
orJer 111 handh: propcrly hoth real-time and gencral-purpose ap­
plications. For cxamplc, Adt.:os 171 provides a flexible cnvirnn­
rrn:nt for sharing hardware rcsources among multiplc operating
systems. or anmng multiplc instani:cs ol' a singlc ()S. To this end.
/\deos cnahlcs multiplc kcrnt.:I t:llmponcnts. called drnnains. to
cxist simultani.:ously on the samc hardware.

The most wi.:11-known approach for adding hanJ ri.:al-1i111e ca­
pahilitics to Linux consists in t.:mht.:dding a dedicated schi.:lfuler

426 computcr systcms scicncc & cnginccrin, �

H. POSADAS ET AL

a imc<l al managing l i mc-cri t i cal tasks i nsidc t he kerne l . Severa!
cxampk:s can he rou nd.

TirncSys 1 1 4 1 . Rcd l l awk 1 1 <1 I , RTLinux and i ts cvo lu t ion . En­
lcrprisc Rea l -Time Man;1gL' 1 1 tcnt Systc1 1 1 (lffMS) 1 1 7 1 prov i <le
Linux-hasc<l opcra t i ng systL' l l l s rnnt ai n i ng hoth general purposc
an<l rca l - t i 1 1 11; d1un; 1 ins . Rli\ 1 1 X I startcd rn ,111 thc s,m11; .ipproad1
as RTl . inux , hut uses a d i lfrrcn t i n tcrrnpt v i rt ua l izat ion tcch­
n i4uc, hasc<l on thc /\deos !ayer.

I n t h i s contcxt . t he II Y/\ DES 1 1 :\ 1 system is hu i l t ovcr t hc
/\deos ! ayer i n ordcr to priori t i ze hardware intL·rrupl proccssing.
an<l impk111c1 1 t t i te 1 1 1ea 1 1 s of crn,pcra t ion hctween t ite RT<)S con­
l rol ler ami the Linux kernel . Thc eorc or the H Y/\DES rca l t i 1 1 11;
systcm is i 1 1 1pk1 1 tcn1ed in ;111 /\deos donwin cal led DIC (i .c . Dc­
tcrm i n is t ic l nlcrru pl Co11 1pu 1 ing). c 1 1 1hod ied in a regu lar modu le
i nsidc thc Linux kerne l . S ince it is hased on Rl i\ 1/fusion · s corc
implc11 1cn1a1 io11, lhc l > IC co11 1 rol ler i 1 1 1 ple 11 1cn 1s the prirnary and
sccondary opcra t ion .

2.2 I I IG II -LEVEL CO-S I M tJLATION

/\dcquatc pc 1forn1ance cs1 i 1 11at ions are cr i t ica! whL·n des ign ing a
lar¡;c systcm. Severa! sol u t i ons hav..: hccn proposcd. i nc l ud i ng
WCET sol ut i 1 >n s l 2X. 1 1 l. ISS-hascd s i 1 1 1u la 1 ions 1 29 I .i nd v i rt u ­
a l ua l i zat ion 1 10 1 , caeh (l llC wi th d i ffen:nt qua l i t ics for d i ffcn:nt
<lcs ign sh:ps and pu rposcs.

Ohta in ing fast. n:a l i st ic SW sys1e1 1 1 - lcvcl rn-s imulal ion has
hccn an import. int devc lopna:111 arca in n:cenl ycars 1 1 8-25 1 .
Thcsc co-s imu lat ions are hu i h o n top o f systcm- lcwl languagcs
(SU.) as SystcrnC 1 2<1 1 - In thesc h igh - lcvcl s imulat ions, thc
HW pla1 J' or1 1 1 i s composed of approx i matc-t i mc SystemC modc ls
of l hc I I W rn11 1ponc11ts. Tite SW is s imulatcú though nat i vc
cxecu t ion of prc-annolaled SW rndc 1 27 1 (hg.u rc 1) .

Thcsc work s usual ly apply surt ic il'lltly m:curatc t ime cst ima­
t ions togcthcr w i t l t < >S modcls . 1 h >Wl'Vcr, OS modcls oricntcd
lo HW-SW co-s imu lat ion cnv i ronments. are usua l ly ;ihstrael or
parl i a l 1 1 1 1 1dc ls . Most of t hcse models are focused on schedu l i ng
and p rovidc a 1 1 1 i n i 1 1 1al se l ol' l'al' i l i t ies I I X, 1 9, 23 . 2-1 1 . Thcse
ahs1 rac1 OS 1 11odc ls al low lhc tasks' exernt ion order 10 he takcn
in to account w i t l t i n the systcm s imu lat ion, prov id ing 1 1 1uch mon:
accu ralc resu l ls t i tan only us ing t he s tandard SystcmC fac i l i t ies.

Thcsc OS 1 1 1odc ls do 1101 support a rea l . crn11plc1e /\P I . Thus,
tite appl ica t ion code cannot he re l i ncd co111plctc ly. Thc rcsu l t i ng
code co11 1 a ins ahsl racl sys1e 1 1 1 cal l s, wh it:11 are nol i 1 1 1plcmen 1ed
in t i te real OS. so addi t iunal n: l i nc 11 1enl is n:q u i rcd to run t i te
SW i n lhe targe l pla 1 forn1. · 1 ; , avoid t hcse prohlcms. JK'W models
hascd on rea l RTOS havc hccn proposcd 1 20 . n l . With t hcse
OS modcls. SW rd in i ng hccomcs 1 1 11,rc cflicicn l . Tite use of real
/\P i s makcs lhe ,1pp l i ca 1 ion code crcated d i rcc1 ly cxccu lahlc on
the !a rgel p la 1 fon1 1 . reducing l hL' design cffort .

·ni dc 1 1 1011 s1rale t i te 1 1 1;1t 1 1 r i 1y ol' l i te arca. in 1 2:'í I a co11 1parison
of somc ol' lhL· 1 1 1odl'ls prcscntcd prcvious ly is ¡wrfonned .

Thosc n1odc l s prcsen l a f i na l l im i tat ion . /\ l though appl icat ion
code rc l i ncmcnt i s 1 1 1os1 ly .�upportcd . l lardwarc dq1c 111k11 1 Soft­
ware (l l dS) . such as dr iv<.:rs. is 11 0 1 . /\ more complclc 1 1 1odc l . ca­
pahlc of 1 1 1anag in¡!. in lcrrupl ion hand lcrs and d rivers. i s rc4u i red.
/\t1e1 1 1p1s al I IW/SW intcrfoce modcl i ng havc hecn madc at the
h igh leve ! 1 2 1 . 22 ¡. l lowcver. nonc of the previous modc ls rnn­
la ins hard RT eXll' l lsions.

vol 26 no 6 Novcmhcr 20 1 1

Summariz ing, therc is a lack of h igh-lcvel simulators capaolc
of modcl i ng a l i thc HW platform components i n detail togethcr
wi th OS modcls contain i ng harú rea l - t ime cxtcns ions. In th is
work a solu l ion to ovcrcornc th is l imilat ion is prescnted.

To implcmcnt thc RT modcl ing i n fraslructure in SyslemC. the
so lu t ion proposcd i n t h i s papcr i s lo dcvelop a dual GP/RT OS
modc l , consi<lering thc fcaturcs from thc Hyaúcs projcct. To do
so, thc Linux-hascd w-sirnulat ion cnv ironment proposcd in [22)
has hccn cx tcnúed.

Whcrevcr Times is spec i fic<l, Times Roman or Times N!.!w Ro­
man may he u sed. lf nc i ther is avai lah lc on your word processor,
plcasc use the fon l c loscsl in appcarance 10 Times. Avoid using
bi t-mappc<l fonls if poss ih le . Truc-Type I or Open Typc fonls
are prcfcrred. Picase emhcd symhol fon ts, as wel l , for math , e le.

REQUIREMENTS FOR REAL-TIME

MODELING

Soft Real - t ime tasks a re supponcd in Linux applying d i fferen t
prior i t ics and schc<l u l i ng modes. Howevcr, 1 h i s so lu t ion i s not
va l id for hard RT lasks. For cxarnp lc, dctcrmin istic In tcnsive
Cornpu t i ng (D IC) tasks rcqu irc boundcd latcncies, re l i ab lc cx­
ccution detcrmin ism, an<l a s1ric1 priority managemcnt . The i r
cxecut ion quantum must no t he sign i ficant ly pcrtu rhe<l hy non
rea l- t ime acl iv i ties, which cannot he ensured in that way. Time­
cri t ical data acqu is i t ion tasks requ ire a complete sel of hard real­
t ime fcaturcs. Guaran1eed low i n tcrrup t and d ispateh la tencics
;irc required for thl:sc l ii gh-priori ty tasks. Thus, addi t ional hard
rea l - t ime support is requ i re<l.

A plat l'orm capahle of mo<lc l ing rea l- t ime systcms, must pro­
v ide sol u t ions for mo<le l ing thc performance of thc app l icat ion
SW, the cffcct of the opcra t i ng systcms and thc HW platform.
Modcls of the H W platforrn at mu l t ip l c lcvds of ahst raction
can he f'ound in lhc l i tcraturc, so th i s work is ccntcred on SW
rn<le modc l i ng ami OS modcl i ng. SW codc model i ng rcqu i rcs
cons iúcri ng thc cxccut ion t imes o f thc cross-compilcd co<le i n
thc targct p la1 1'or111 an<l thc dclays produced h y cache m iss-:s.
Al thc samc t ime , OS rnodcls must inc lude general-purpose and
rea l - t ime add i t ional support. Thc RTOS modc l i ng i n frast rucwrc
dev..: loped i n th i s paper ex lcnds a prcv ious Li nux OS modcl w i th
a ncw RT supporl . a l low ing lhc coex istcncc of hot h OScs. Thus,
it is possi hlc 10 contro l thc i n tcrrupl managcmcn t i n a RT way
an<l l hen lo m in im ize the latencies (Figure 1) .

To prov idc adequalc har<l-RT add i t ional support. t he fol low ing
points must he cons idcrcd :

• /\ hard RT suhsystcm must cocxi sl on thc same hardware to­
gcthcr w i th l he general purposc OS kernel and appl icat ions.
Thc cocxistence must also a l low casy migrat ion of cx is t i ng
rea l- t ime appl icat ions ovcr thc new hard-RT kernel .

• Low-prior i ty in lerrupl hand lers can orig i na l l y preempl
h igh-priority t imc-cri t ical lasks, i n t roduci ng unhou ndc<l la­
tcn¡;ics. Thus. a ncw in lerrupl con t rol musl be crcated to
i nterccpl, mask and priori l izc thesc i n terrupts propcrly.

• Sorne non RT cx i st ing OS scrvices nced 10 he rc­
imple111c11 1e<l to ensurc houn<lc<l latcncics and m in i mal j i t­
ter.

427

EARLY, TIME-APPROXIMATE MODELING OF MULTl-0S LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

Annotated
B

SystemC models
1

A nnotatcd A pplicat ion S W

1 application
1 Peripheral 1SW (C/C++) model RTAPI 1 POSD< API

1 1Bus rnodel RT OS

1 Original non-RT OS

. . j Memory j j Peripheral 1 model model lnrcrrupr Con1rol

Host computer �,
HanJwar.: pl;11for111

1

Fi¡.:urc 1 SyslcrnC-hascd high-lcvcl co-simula1ion and archi1.:c1urc uf 1hc OS mod.:I rmposcd.

• System tima precision must he upgra<le<l for ti111e-<.:ritical
tasks.

• Additionally, new system <.:alis ar1.: required lo access the
new services.

An cxampk of such a scrvice is thc standard nanoslccp() l'ca­
ture. Its timing precision depends on the pcriod or lhc systc111
tick. Sincc lhc system tick period is usually or lhe ordcr of
milliseconds, exact real-time sleeps cannol he ensurcd.

As the original OS modcls a son. hul not a hard real-time
systern, iL wi 11 he rel'em;d 10 as "non-RT" inl'rastructun; in the
following 10 simplify the texl. The new RT extension will ht:
cullcd the "RT" infrastructure.

4. CODE CHARACTERIZATION

In ordcr to model the performance ol' the application SW. execu­
tion times and cache operalion details are added lo the original
SW coc.k, to transform lhe fum:tional host execution in an ac­
curate native simulation modcl. To do so, instrumentation has
hccn used. Ins1ru111cn1a1ion is a well-known tcchni4ue whid1
is usually employe<l to provic.Je extra functionality to a certain
upplieation code. This annotated software is communicated in
runtime with 1he cache modd and the simulation time manager,
so SW exccution limes an<l hit/miss rates are eslimatcd.

To accomplish this l,tsk, it is nccessary lo pcrform a previous
chaructcrization ol' hasit: hlocks in h:rms of timing and t:achc
hchavior. Basic hlocks are ic.Jcntitiec.J an<l the number of instruc­
tions and cache lint:s pcr hlock are t:ak:ulated and annotaled.
Differcnt works at assemhly level, intermediate level or sourt·c
kvd have heen proposed over the tasi years for oht:.tining that
inl'ormation. Among them, assemhly leve! proviues the most re­
liahle characterizatinn an<l thus, it has hccn used in lhis work. In
fact, a hyhrid lechnique is proposed: while hasic hlock iuenlili­
ca1ion is perl'ormed at source leve!, t:haracterization is ohtained
frorn assemhly code. This str:itegy simplifies thc characleriza­
tion process and spccds up the analysis lime. f-igure 2 shows an
ovcrview or the t:ache cstimation process, including hasit: hlock
characterization.

Due to the rich syntax oi' source cmks, a C / C + + code parser
has h..:en dcvcloped. so 1he c.liffcrcnt clt:rnenls ofthe language arc
easily identilied: declarations, stalemenls. exprcssions. etc. Thc
parser is based in a C/C++ grammar ror Bison. The key concept
in hasic hlock identilication at source lcvel is inscrting specilic

:.J,h..; •_; • lo.

j• .. r•,•., ¡',,V

I
' , ry-•! ,, •• ,,.,11.,, '

\ C,,.10 /
'--·- ·· --__.•

------ - ---

1/? �.�-;�;�:]

(,, ,;,-1..)
-...... -----··-·/

r; ,.:i-.,•,1<,! .. 111·,1
1 h ·.r, 1rw,.,o,, ,,,�,

,---

(,,,.., ·1o�ri':'"'1)
\ l.,l'lt·
' �-·· ----· __ ,,

r�:..,_.,._ �
7

.::j· í ' 1
.•. - - .,· . ., ... , •• <:,,., ... ,
r. .. •h•,-.'¡)',!,•I

···--·---·

Figure 2 Complt:rc cs1i111arion pnx.:c."'is.

PJ for (init: cond; step)
¡ P2

body:

P3 } P4

mark _Pl:
init

.L2:
cond

bcond .L3
mark_P2:

body

1114rk P3:

. L3:

step
b .L2

mark P4:

Fi�un,] Markcd c•Klc and cquivalcnl assc111hlc.

marks al the hcginning anú thc cnú of each hasic hlm:k. This
marked c.:oúe is thcn cross-co111pilecl. so lhe marks in!roduced
are prescrvcd in the targel a,scmhly 1:ode. This proccc.lure guar­
anlces tlwt thcr..: is always a dircct corrclalion helween source
and ass1:111hly hlods. Thus, lhc main queslions are: whal lypc
of marks should he inscrled, and where should they he insened
within sourcc code'! The adopted solution is lo lak1: advan­
tage or C/C ++facilities to mix asscmhly instruclions within
sourcc code wi1h the asm se111en1:e. /\sm volatilc sen1e11ces are
pr..:serveu after cornpilation. so 1hey are easily identified in the
targct asscmhly codc. /\dditionally, lo kcep the hehavior of the
original codc. the asm ins1rue1ions insertcd consist simply of

428 . computcr systcms scicncc & cnginccrin ,g

H. POSADAS ET Al

lahels. Thus, inserted marks looks as:

'asm volatile(' 'mark_xx: '')'

/\ second oecision to he taken is wlu.:re the marks must he

placcd. As stated hcforc, niarks should Jcli1nit cm.:h hasic block
at sourcc lcvcl. Thus. cach C/ C + + statcmcnt rcquires a custom
analysis. i\s an exampk, the · for' st.llcmcnt nceds four marks,
which are inscrtcd al the kcy points P 1, P2. P] ano P4. n.:pre­

sented in Figure]. Markcd codc is then cross-compi!l.'.J for thc

target rroccssor. Thc «..:ross-compilation process considers ali
possihle opti111iza1ions. The n:sullanl optimizcd assrnihly codc
with equivalcnt lahcls is also shown in Figure '.l.

The numhcr of instructions of each hasic hlock is easily oh­
lained fron1 !he assemhly «..:ode. L2 and L] are system lahels
inserteo hy the rnmpiler 10 itcratc aml exil 1he loop. rcspec­
tively. /\llhough crnnpikr optimizations may alter the Control

Flow Graph (CHi), lahels are preserved in thc same on.Jcr since
lhcy have hecn declared as volatilc. The outpul of this process
is a tahk with hlo.::k/instruction p,1irs. This tahlc is uscd later to

d1ara«..:1eri1.e cach hasic hlod in terms of times and cache lines.
lnslructions and data cache modeling n.:quin.:s also slatie in­

strumental ion, annotaling the cache lines requin.:d on ea«..:h hasic
hlock, ami the corresponding accesses to lhe cache model ror
diccking if thc lincs are already in cache or acccsscs to the main
memory arc requireJ. More infornwtion ahoul cad1c mo<lcling
can he found in 1]21 ,tnJ 1331.

Comrilcr opt imizations may alleet hoth inlra-hlm;k and inh.:r­
hlock hchavior. lntra-hlock o¡iti111i1.a1ions arc rnnsidercJ in the
charactcri1.ation of the hloeks rrnm assemhly codc. This asscrn­
hly eode ¡¡(rc,1dy includcs hoth front-cn<l anti hack-cnd or1i111iza­
tions. lnter-hlock optí111i1.ations are considere<.! hy dcli111iting the
hasie hlocks at source lcvcl. Ncverthclcss. thcrc are somc com­
piler optin1i1.ations whid1 eannol hc accura1cly considcreJ with
this techniquc. Loop unrolling replicatcs thc hody of a loop
slatement in thc asscn1hly eode, hut frolll source ¡mini of view it
is a unique hlock.

Ncvcrthcless. wc think that this is a vcry fost. easy anJ portahle
way or ohlaining sunicicntly aernratc estimations for !he first
stcrs of the desig.n proccss. whcn the platform. the HW/SW par­
til ion, resourcc alloealion. cte. are hcing explored anJ deeideJ.
/\t lhc heginning of thc dcsign process. thc HW ami SW codes
arc usually not the colllplctcly optimi1.cd final ones. Thus, iflhe
codc use for thc modcling is not the final one. il can he consiJ­
ereJ lhat thc cllecl or thesc optimíza1ions will rcsult in an error
similar or larg.cr 1han 1he crror prnvoked hy !he use or volatilc
murks. Su1111llari1.ing. for carly mmli..:ling. speed ami llexihility
are 11111ch more illlportant al this level than 100',1, or aecuraey.

5. GPOS MOl>ELING

The modcling of a gcneral-purpose operating. systcm n.:quircs
modcling parallelism. eoncurrency anti other serviccs for com­
munication. synchronization and timc managcmenl. For imple­
menting thcm. the l'OSlX standard has heen followcd.

5.1 MODELING PARALLELISM OF SW

TASKS

Parallclism is modelc<l by using the SC_THREAD process of
SystemC. Thercforc, hoth POSIX processcs and threads are
modeled in thc same way. Thus, thc lihrary implcmcnls the
rcquired actions thal givc cach elcment its own characlerislics.
The characterislics or processes anJ threads are Ioaded in a list
when they are crcated and these paramctcrs can be mooificd dur­
ing simulation using thc methods the POSIX standard Jcfincs.
However, modcling thc capahilities dcrivcd hy thc use of scpa­
rate memory spaccs in SystcmC is not straightforward.

In ordcr to enicicntly support dynamic thread creation, a
thread-pool is initializcd when thc simulation starts. This pool

has a preddined numhcr of SC_THREADS (thc numher can he
moditieo in the souree coJc) whieh are maintained in a hlocked
statc. During simulation, when a ncw thread is declared, a thread

from the pool is resumed, and stope<l again whcn its functionulity
is over. Thcn. !he threads can he rcuscd.

5.2 MODELING THE SCHEDULER

Although SystemC provides concurrcncy support, scheduling
is not considercd. The SystemC undcrlying kernel activates in
ead1 cyclc ali thc threads that are not hloeked, without any cun­
sideration ahout prioritics or policics. Thus, a schcduler has
hecn plaecd on top of 1he Sys1cmC kernel to ensure that only
eme thread is cxccuted in each processor al a time. This sched­
uler cnsures that ali threads n:main hlocked, cxccpt the onc with
thc grcatcst priority, which is unhlocke<l. In fact, one thread is
unhlocked per proccssor descrihcd in thc system. The threaJ
exccutes thcn until a servicc from the operating system, such as

a semaphorc or a mutex, makes it to he hlocked again. At this
time the schcdulcr unhlocks thc next task to exccutc.

Each cxccution has two parts. The íirst one is the functional
exceution, and the sccond onc is the temporal cxccution. That is,
1he code is cxecutcd in zero time (in thc simulatinn) and thcn thc
thread is slepl to take up the corresponJing time in the proccssor,

thc time annotated in the sourcc codl!. This time is applicd just

when a systcm call is pcrformed. As a conscquenee. this place­
menl in time is produccd hcrore inter-proccssor communicalion
and synd1roni1,ations are madc. lf Juring thc timc the thread is
skpt. another proecss with higher priority is awokcn. it is exe­
euled. to the other process is informeJ ahout that precmption.
Thus it has to wait to hc scheJulcJ again hcfon.: entering the sys­
tem eall. As a rcsult. whcn a communic..:ation is madc, thc stalc
of hoth processcs is corrcct.

Howcver this approach docs not mmlcl prl!cmption correctly
as a SC_THREAD is cxecutcd unlil a wait statement is rcaehed.
In orc.ler to modcl prcemption aocquatcly, thc "wait" function

uscJ to sleep thc thrcaJ anc.1 modcl thc cxecution timc auto­
matically returns when another proccss is aw¡¡ken. Thcn, thc
remaining time is savcd anJ thc process waits for the scheduler.
Whcn it is resumcd. the rcmaining time is waited ano then thc
process can continuc. In Figurc 4. an cxample is used to show
the resull whcn using thc proposcd solution.

In this example, lask I executes !he SW co<le until the ncxt
system calls. At the enJ, the timc accumulated dueto executiun

vol 26 no 6 Novcmhcr 2011

429

EAALY, TIME-APPAOXIMATE MOOELING OF MULTl-OS LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

T=0

T=I0

T=J0

T=50

T=70

Tiindus

Ta,k
l'riority

T;L,k 2

l'riority 2

Sirnulalion E.�timation

LIT= 75

.;:.a:,,, -:.r¡lf•c·tc'd
;;,;., /Jft't'lllfllÜm:
�'.� l::rmr
�-)
.·"

-:.,,!.�

Pn,lictahlc:
Tímcout

·' in1crrup1 T =65 us

� ·-·---·
,:\
!��- l/11,'.AJWrtc•d

prc·c·m¡Hitm:
Hrror

(.'odc Time

LIT= 10

ITl cxct:ution D annotation

T=0

T:10

T=.111

T=.J0

T=l>O

T=70

T=X0

T='IO

T;"k
Priori1y

Task 2
Priority 2

Simulalion fo\tinrnlion
timr

oT=0 llT= 7.�

LIT= 1.�

c;,:•�ne'!°'!!.'.
llT= 10

.............

llT= Jo

Cndl.· Ti111c

LIT= 10

AT= 10

□ c;.;.crution u::J an1101a11on

Figure 4 Prcc111p1ion 111odcli11g.

of severa! hasic hlocks is 75us. Then, a "wuit" function is calleo
for that time. Howcver, at T=25 us, 1ask 2 is awaken, and task
1 has to he prcempted. To model thal, Lask I is resumed, it
calculates tha15Ous remains 10 he wai1ed and moves lO a hlocking
slatc. Task 2 cxecules, anJ when i1 finishcs, task l is schcdule<l
again, and it waits for the 50 us. But, again il is preempted.
rcmaining 20 us. Thus, the process is repeated again, until all
tht: time is expected, and thcn thc system e,dl can he performed.

This modcling solution docs not modify the SystemC kernel.
l1 is hase<l on the use of "wuit()" and "notify" SystemC primi­
tivcs.

5.3 POSIX Interface modeling

POSIX servi<.:es are provided hy the GPOS modcl in thrce dif­
fcrcnt ways. Sorne of thcm use the underlying host functions,
others are complctely new, anti 1hose Lhat dercnd slrongly on
the hardwarc platform havc 10 he adartcd LO modcl corrcclly its
pla1fúrm-dcrcndcn1 functionality.

lfthe OS of the host comru1er is POSIX hased, such as UNIX

or Linux rlatforms, sorne of thc host POSIX fu11ctions can he
rcused. These funclions are hasically 1hose thal are platfonn
independenl. Malhemalical functions, string munagcmcnt, ele.,
maintain thcir functionality in every pla1form and they do not
interforc with Lhc schcdulcr or Lhe parallelism capahilities of thc
system. Thus, Lhcy can he used to rnodcl, al lcasl, Lhc platl'orm
functionality. To indude thc timing co.�l, these funclions are
wrapped inlo ncw functions 1ha1 take in10 accounl thc Lime 1hc
function will take in thc final processor.

The sccond group of the API fonctions is composed of lhosc

facilities thal allow lhc <lcsigncr lo inlcract witlt tite clemcnl8
Lhal have hccn implc111en1eJ in Lite software cxeculion support
dcscriheJ. l\1rallclism, schcduling, com111unica1ion, synchro­
nization and liming lcaturcs are co111plc1cly platform depcnden1,
so new implemcntations on 1or or thc SystemC services has hecn
devcloped.

The lusl group of POSIX API functions is composcd of those
functions whose implementation is strongly dcrcndcnl on the
har<lware platform. Thus, a general platl'orm execution support
111odel is not possihle. Sorne cxamples are th<.: 1/0 functions,
which strongly dcpcnd on Lhe systclll drivers, so the implcmen­
lalion cannol he r<.:usahlc on differenl pl:11forms. lnstead of Lhal,
modcls 1ha1 allow !he designcr 10 simulate thc functionality are
providcd.

Ad<litionally, as n.:4uireJ hy the POSIX standard, docks for
each pro<.:ess and 1hrcad, and l'or thc wholc simulation have heen
implc1rn.:n1cd. Timers. :-.Jeep facilities and alarms are <ldined hy
using these docks. The values of 1he clocks are updalcd and the
cxecution Lime es1in1a1ed for each ende segllll'lll. The a<.:tions
of Lhe clemenls dcclarcd over the111, are executed hy udding the
lime cad1 evcnl will take lo the evcnts lisl of lhc schedulcr.

The de111en1s 1hat dercnd on Lhe real-lime doek of lh<.: systcm
havc hccn i111plcmcnted in a diffcrenl way. Wi1h 1his purrose, a
SC_ THREAD has hcen JcfineJ 1ha1 is slert 11n1il Lhe next evcnt
of thal dock is rcquin:d.

Finally signals havc heen modelcd as dclined hy lhe POSIX
standard. Thc signa! manager can ac<.:ess the scheduler lo allow
ali hlocking co111111uniG1Lions Lo i111ple111en1 signals 1ha1 mean 1ha1
a 1hrcad can he stopped or unhloekcd indepen<lently of lhc cause
that rrodu<.:c<l 1his hlockagc. /\n addilional SystemC lhread is
used hy thc signa! man,1gcr lo cxcculc the at.:lions related lo
dclivcrcd signuls. since no 01hcr prm:css can exccute them.

430 computcr systcms scicncc & cnginccrin, g

' H. POSADAS ET AL
.

6. HARD RT OS EXTENSION MODELING

IN SYSTEMC

Once modeled the POSIX standard in order to provide an GPOS
modcl, thc extension devcloped to support RT characteristics
hused on the Hyades implementalion cun he presented. In the
real i111plemenlatio11, the twD operating systems un: placed to run
in the same computer over an Adeos infraslruclure. Iloth OSes
are mainly independent, with memory separatiDn and difláent
task anti resource control. Thus, if a task needs to migralc rrom
Dne OS domain tD the olhcr, it is necessary 10 have two lask
control iníraslruclurcs, one on each OS, synchroni1ed in some
way.

To create an efficient OS nmdcl, a dillercnt approach is used.
Both OS dornains are execuled within the samc mcmory arca
in thc sarne host executahle program. /\s therc is no physical
separalion hctwecn thc OS domains most or the resources and
inl"orrnation can he sharcd hetween the two domains.

To creatc the new OS modd, thc original OS modcl has hccn
maintained, ;1dding a new hard RT OS infrastructure. TD allow
easy use oJ' hoth environmcnts. modilications are hiddcn to the
uscr as much as possihle. Thc uscr can program the SW code
in thc sarne way, indcpcndently of which OS domain thc task
is in cach time. Only the runctions for moving tasks from onc
domain to the other must he explicit in the code.

To changc lhe domain the application mus! makc a system
call. The function namc in the mrn.Jel h;is maintaincd thc corrc­
sponJing Hyadcs namc: pthrcaJ_migrate_rt (Jomain).

RegarJing the original OS modcl, threc interna) moJilie:itions
havc heen arplicJ:

• Schcduling inl"rastructun::s h;1vc heen intcrlcaved creating
;i single sche<luler. Whcn ;i prrn.:essor is rclcascJ ora task
is awokcn, lasks of lhc harJ-RT domain are sclec1ed firsl.
ami lasks of thc other domain later. This cnsurcs cor-recl
selcction ordcr.

• lntcrrurts are shielded ¡11HI launchcd hy thc schcduling sys­
te111. 'li> do su, intcrrupts have associateJ prioritics. Wh..:n
a task of the RT domain with high..:r priurity is running.
intcrrupts are dclayeJ.

• Original systcm cal Is havcs hcen wrappcd. Thc OS modcl
that 111us1 providc lhc scrvice is sclccteJ in thc wrappcr.

The new hard RT cxtcnsion covcrs most of thc hard RT im­
provc111cn1s prescntcd in scction 11. In fact ali the extcnsions
considcred in the I lyacks (JS havc hcen implcml'nlcd.

Thc requircd mechanisms used to allow thc cxecution of hoth
OS Jrnnains can he su111111arizcd in thn:c arcas: thc modl'ling or
the lwo (>S do111ains and their intt.:ractions. thc ink�rrupt 111odcl­
ing. and th..: additional rcatures for RTsupport. espL'cially latency
and jitter rcduetion.

6.1 OS DOMAIN MODELING

To allow hard RT tasks to he i ncl udcJ whi le 111:ii 111:iining the prc­
vious opcration mode intact, two OS domains have hcen mod­
elcJ, following the real Hyades implcmcntation. Howevcr, the
overhead causcd in the real syste111 hy running two compktcly

different OS domains has heen minimized in the moJel. Using
separate OS models implics that the act of moving tasks from one
10 the other is very complex and time consuming. Ali the task
information must he duplicated and the copies must he stoppcd
and resumcd depending on whieh domain the task is eurrently
rn.

Thus, Lhe proposed solution is to crcatc a ncw infrastructure for
lask schcduling and intcrruption control, maintaining the original
OS motlel infrastruclurc as far as possihle. Thus. the extended
OS has two scparate infrastructures containing the implcmenta­
tion or the system calls. Howcvcr, thc clemenls for task man­
agcmcnt, such as task crcation and des1ruc1ion, schcduling and
preemplion mcchanisms, are shared. Ali tasks are created and
destrnycd as non RT t:isks. RT operation modc is only rcachcd
when calling thc migration systcm cal) al run-time.

Thc schcduler considers two lists of tasks, eme for the tasks in
the RT domain and thc other for the tasks in the 11011-RT domain.
When a ncw task is required, the first list is accessed. lf thcre
is no lask rcady, the second lisl is used. Thus, migration only
requires changing the list where the task is and modifying the
internal task status value whcre thc current domain is indicatcd.

To control rn:emptions, intcrrurt handlers are not launchcd
automatically. Handlers are motlcled as high priority tasks and
aJJ..:d 10 thc scheduler. When an interrupt is received, a pre­
cmption evcnt is always raiscd, making the currcnt task call the
seheduler. However, when the curren! task is a RT one and has
highcr priority than lhc interrupt, it is sclccted by the schcduler
and it can continuc. Thus, pn.:cmption <loes not really occur.
Furthermorc, in this case thc time cosl associated with schc<luler
cxecution is not addcd to thc simula1ion time. As a conscqucnce,
no traces of prcemption are included in thc model.

This solution cnahles hoth rnodcls to he handlcd together, in
a simrlcr way than in the real implementation.

The cxccution ílow of a l.ask is as follows:

• AII tasks start as 11011-RT lasks, running under the original
OS domain.

• Wh..:n il is neccssary to entcr a real-time section, the task is
moved to the RTOS domain, ch;inging the list whcre it is.

• Finally, when the RT scction tinishes, the task rnust rcturn

to thc non-RT domain.

• When a task is destroyed in a RT section, il is automatically
moved to thc non-RT domain and thcn destroyed.

As a conscquence, the schedulcr has heen extended 10 cover
the ncw tasks' states. New states for the RT tasks have heen
addcd to thc original non-RT scheduler slates (Figure 5). The
original non-RT OS rnodcl eonsidcrs 7 statcs: Crcated. Rcady.
SupcrUser, W:iiting, Uscr, Blocked & Zomhic. The new RTOS
domain only considcrs 3 states: Exccuting. Blocked and Ready
(Figure J). Thus, a RT task has two states, one for thc RT dornain
and onc for the non-RT domain.

When a task is moved from thc 11011-RT to the RT domain. the
task is moved to Blocked in the non-RT dornain, and moved to
Exc..:uting in the RT domain.

When moving from thc RT to the non-RT domain, thc opcr­
ation is similar: the task status in thc RT domain is moved to
rnocked. and its status in the non-RT domain 10 Rcady. In that

431 vol 26 no 6 Novcmbcr 2011

EARLY, TIME-APPROXIMATE MOOELING OF MUl.Tl-0S LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

Figure 5 Sy�1cmC-hasi;<l high-lcvcl co-si111ula1ion.

if((11ext_task = RT_scheduler()) == NULL)(//New code
next_task = mmRT_sclteduler():

JI/ Newrnde
res11111e (next_wsl.:);

Figure 6 Sys1cmC-hascd high-lcvcl co-sirnulation.

way, ali tasks are at !casi hlockeJ in one ofthe Jomain lists. This
avoids hoth domains considcring thc samc task to he exccutahle
at the same tim..:, thus ensuring corree! task scheduling.

To model the execution of hoth schedulers, the scheduling
control in thc original OS modd has heen minimally moJifieJ.
Thl.! cal! to the scheduling runction has hccn rcpl,1cetl hy a two­
step process (Figure 6). In thc ncw co<lc thc sche<lulcr first
search..:s for a task in the RT list. Jf a RT task is scheduleJ, thc
task is resumed ami the non-RT list is not used; otherwise. the
non-RT list is called.

6.2 DUAL INTERRUPT SUPPORT

lnterrupts are one or the most importan! risks ror hard real-time
systems. In a common OS, interrupts are unpre<lictahlc. They
pre-empt the currcnt task withoul considering i1s priority and can
provokc priority invcrsions. Thus, thcir m.kquate managemenl
is critica! for a RT OS. To solw this prohle111, a douhlc inlerrupt
management 1..:vcl has hecn integratcJ in the new OS model.
First. the interrupl is proccsscd hy thc RT in1crrupt control. lf a
RT handlcr has been associate<l lo this intcrrupl, il is launchcd
cunsidering the handlcr priority and the priority of the lasks in
the RT domain. lf a task with highcr priori1y is running, the
interrupl is JclaycJ until no tasks with higher priority are rea<ly.
lf thcrc is no RT han<llcr for thc receiveJ intcrruption, thc IRQ
is dclivered to thc original non-RT infraslructure, an<l manageú
as usual. Sinci; ali RT tasks are manage<l in the RT úomain. the
original non-RT inlerrupt management can he maintaincJ.

To impkment thc douhle-levcl int1.:rrupt control. the original
OS function in charge of the interrupl reception has heen 111od­
ificd (Figure 7). Firsl, thc presence or not of a RT handlcr is
verificd. Ir not, a non-RT handler is cal leJ.

To control systcm latcncy and jiller. thrce main si;rvices are
providcd: high-prccision syslcm ticks. systcm call imperson­
ation ami ncw scrviccs.

ij(11w1wge_rt_irq (irq_11u111her) == 0)/ //New code
11w11age_irq (irq_1111111her);

JI/Newcode

Fi¡:urc 7 Sys1c111C-lx1,c<l hi!!h-lcvd co-si111ula1ion.

When any tima fcalurc, such as a timcr. limeoul, ,darm or
sb:p, is us..:J. ils accuracy <lepenJs on lhc systelll tick period.
Timcr fcalures are 111anagcJ <lepending on the tick inlerrupts.
Thc OS is nol capahlc of considcring continuous 1i111c aJvancc.
ll only im:r..:ascs thc clocks each time 1hc twrtlwarc timcr indi­
cates a n..:w p..:rio<l has clapscJ. Considcring 1ha1 con1111on ticks
have a p..:rioJ of millisccon<ls, time a<lvanccs of 111icroseco11Js

or nanoscconJs cannol he acc.:ura1cly managcJ. The system tick
perioJ cannot he casily rcduceJ. hecausc lhe managcmcnl of ali
the timi; fcatures lca<ls to the interrupl handling requiring a sig­
nifican! time. Thus. a m.:w tick stric1ly for real-time opcrations
is require<l. /\s fcw real-time fca1urcs are exp-:ucJ to he use<l
simultan..:ously. the intcrrupl managcmenl l.1lcncy is very low.
Thus, 1hc RT tick imcrruption c,tn have a vcry low period with­
out dramati..:ally increasing the syste111 overhea<l. Thc tick 1i111er
implcmentcJ is an a-pcriodic one. Th..: frequency is sel with a
uscr function. Each tinw the interruplion is raiscd. 1hc interrupt
hanJkr mus! he n.:anneJ.

The seconJ roinl to he considcre<l is system call i111person­
¡11ion. Some of the POSIX funclions 111anagcJ hy thc non-RT
infraslructure can ret¡uire spedal 111anagcment when useJ within
thc RT Jomain. Thcsc functions covcr task stalc changcs and ac­
curatc tirm: managcmenl. Acccsses lo mutcx, fifos, semaphorl.!s
ami othcr cornnrnnic,llion channcls usually hlock and unhlock
1asks. Whcn a task unlocks a mu1cx, anolher task hlockeJ in 1his
mulcx is unhlockcJ. This produces inconsislencies whcn using
the douhlc Jo111ain. Whcn unhlocking lhc muh.:x, the function

in thc original OS modcl movcs thc lask slalc frorn Blocked 10
ReaJy (in the non-RT domain). However, if lhe mulcx cal! is
done whcn thc task is in RT domain, thc orcration is incorrecl.
Instea<l of moving lo the RcaJy �late in !he non-RT Jomain, the
stale must he mowJ in 1he RT Jomain (Figure 3).

To sol ve this pmhlcm, 1hc function cal! musl dciccl 1hc dom.tin
from whid1 il is calleJ anJ pcrform the corree! operalion. In
thc proposed mo<lel. the solu1ion applicd is 10 modify the OS
function in charge of modifying lhe lask stale. This function
dctecls the domain whcre thc lask is anJ modifies thc sl,1le in !he
corresponJing schedult.:r. This is easier than 111odifying ;ill the
functions Jircl·tly.

Furthermon:. !he nanoskcp() funclion has hcen modified.
Whcn callcd from thc RT dornain. it uses 1he RT syslem tick
instcad of thc common �ys1cm 1ick. Thus. !he accuracy of thc
function is automalically increased.

Finally. to rnanage ali this fealun:s and lo provide some ad­
di1ional HT fca1urcs, a ncw /\PI hascJ on lile l lyades DIC API
has hcen imph.:mentcJ. Functions have hccn consiJcred for RT
inlcrrupl managcment. RT task 111anagemcnt, RT li1ning anJ RT
synchronizat ion d1anncls.

432 . computcr systcms scicncc & cnginccr· 2E) mg

'H. PO�ADAS ET AL .,

200

150+-+--\-------------'

100+-+--+-----------�

50 -t.---+-=i!M�----------;

o +-,.....,..-,-,.....,.�"T""",.x..:i �"T""",--,-"T"""r-T--;

,;:,'? .._'? ,,.,'? ,.,'? "J,.? ,'? ro'? '\ '? q,? OJ'? us

700

600 ·-7

500 -----------� -Non-RT

400

300
---RTOS

200

100

o
"'

o

l•i¡:urc 8 Lalcnc-y and c,.:cu1ion ji11cr oí a Sys1c111C-t>a.sed high lcvt!I co-simula1ion.

1:ahlc I Nu111hcr of c-ydcs mcasurcd and cs1imatcd.

Numher of cydes
Wi1hout op1i111izations (-o0) With oplimizations (-02)

Skyeye SCoPE Error(<¼,) Skyeye SCoPE Error(%)
Buhhle 1000 30504511 30504511 o 4010006 4510501 12,4812

Buhhlc 10000 5200180007 5200180007 o 400120008 4001:mo11 0,0025
Voi.:odcr 13466069 140(16581 4.45945 6599JJ0 8'.B8713 26,357
Fa<.:torial 2747041 2996535 9.08228 1498521 1498518 0.0()02

Hanoi 18481575 17695142 4.25523 13107284 11141209 14.9999

Tahlc 2 Simulation 1i111cs with <.lifli:rclll conligurations.

Skycye Proposcd technique
Time Time

U uhhlc 1000 01112.186s 01110.028s
Buhhle 10000 41116.5(Xls 0m3.486s

l'auorial 01111.07 Is ·om0.014s
Hanoi 0m9.426s 01110.043s

Yrn.:o<lcr 10 0m48.79Js 0m0.262s

7. EXPERIMENTAL RESULTS

Spce<l-up
x78
x71
x76

x219
xl87

To dc111ons1ra1c tite hcnclits or 1hc HT cx tcnsion propose<l thc
original OS modd ami thc ncw cx1cndcd OS havc hccn com­
pared. This will show how !he proposcd cx1cnsions reduce the
systc111 ji11er in onlcr to cnsun: HT capahilitics.

Tite OS modcls have hcen tcsle<l using the f'ollowing programs
on an ARM92<ll pla1for111:

• La1eni.:y: Thc la1cncy lcsl 111casurcs the latcncy of thc a­
pcriodic ti111cr set al I 0kl-l:1. f'rcquency.

• Crund1cr: Measurcs thc cxccution jillcr ora co111p111a1ion­
i111cnsivc loop running wi1h or without thc RTcnvironmcnt.

Thc lcsts were run tog.cllwr wi1h some tasks modelini.t in1en-
sivc co111pu1i11g tasks ami a nctwork intcrrnpl llood.

�

In figure 8. wc i.:an sec 1he jillcr. Applying suitahh; cxcculion
times lo the inlcrruptions, OS intcrnal opcrations ami consid­
ering lhc HW platfonn infrastructure cffccls. a RT 1imcr wi1h
<lclays lcss titan 5 khz has hccn oh1aincd. This is 111ud1 more
acrnra1c !han lhe s1andard 1i1m:r 1110dcled in 1he standard POSIX
nwdcl, which is ;1 100 llz limcr. Thus. this cxlension cnahlcs
thc 111odcling or more time-dcpcndent applications.

Figure Xh also shows lhal RT cxtensions outpcrfonn Linux hy
rcducing lhe cxerntion jillcr of an intcnsivc <law computation.

vol 26 no 6 Novcrnhcr 2011

Without data cache Without cachcs
Time Spcc<l-up Time Speed-up

0m0.028s x78 0m0.025s x80
0m2.792s x88 0ml.92s X IJQ

01110.014s x76 0m0.012s x90
0m0.032s x294 0mü.020s x479
0m0.185s x26J 0m0.105s x464

When running thc application, the cxccution lime required by
the mo<lcl f'or this data computalion is im:rcasc<l hy ahout J.5%
w.r.t the ideal computation time, with a maximum incremenl of
10% (Non-RT linc).

Whcn applying the RT infrastructurc, thc mean ovcrhca<l
a<lded hy lhe OS is rcduee<l to a 1 %, hui some exccutions arc
incrcased hy 8% (RTOS linc). This ovcrhcad is cause<l hy thc
nctwork interruptions. Thus, whcn applying the IRQ shicl<l,
considering that the data compulation has a high RT priority. 8%
ini.:rcments are diminatcd, limi1ing 1hc inen:mcn1 to 2%.

To cheá the simulation specd an<l thc cs1ima1ion accuracy of
thc tedrniqm: proposc<l, soma.: small cxamplcs and C implcmcn­
talion of 12.2 Khps GSM Yocodcr haw hccn simulatcd. Rcsults
ohtained with thc proposcd technique havc hcen contrastcd with
ISS simukllion (Skycye) (Tahlcs 1, 2).

As can he shown. thc proposcd tc<.:hniquc a<.:hicves high spcc<l
up when compare<l with typi<.::il ISS-hast.!<l co-simulation tcch­
niqucs.

Finally, thc rc<luetion of cnginccring cost for checking thc
systcm in <liffcrent platforms has to hc considercd. As thc OSs
usc<l in the tci.:hniquc are Systc111C modcls 1ha1 run on thc hosl
co111puter. not dirci.:tly on a targcl platl'orm, minimal porting is
rcquire<l when exploring <.lillcrcnl platforms.

433

EARLY, TIME-APPROX IMATE MODELING OF MULTl-0S LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

8. CONCLUSIONS

A largc rcscarch cf
f

on in real-time extcnsions for common op­
erating systcms, espccially Linux, can be found in thc litcraturc.
As embcddcd systems are usually RT systems, thcsc cxtcnsions
may havc an important i n llucncc on system performance and
must he moJcled. Currcnt high-level s imulat ion i n f'ras tructure
consiJers modding thc OS w i th sufficient ly accurate est imation
t imes. Thus, thesc modcls can he extemk:d with ncw RT fcatu res.
Thcse RT extcnsions, a l t hough affcct i ng low-l cvcl fcatures of the
RTOS, are appl icd al thc sou rcc-co<lc lcvc l . Thus, thc resu l t i ng
tcchniquc improves the simulation ti me. Thc work shows how
nativc s irnulat ion can he accuratc cnough to model RT f'eaturcs
of a RTOS.

Us i ng thesc ex tended modcls, performance estimations or RT
systems can be improvcd in tcrms of accuracy/spced . As a con­
sequence, the rcsul ts of des ign spacc cxplorat ion anJ systcm
re fi nemcnt processcs, which use the proposed RT model ing i n ­
frastructun:, cciu l d be o pt imi1.ed. Thc proposcd sol u tion l'or i n ­
tcgra t ing thc RT extcnsions, is to implcmcn t a sccond i n tcrrupt
contro l , second RT schedul ing and a new set of user spacc func­
t ions. These ex tensions are placed togethcr w i 1h a common OS
modcl in order to ohtain a complete system with hoth real and
non-real time capah i l i t ies. Nativc s imulation is a powcrfu l tcch­
nology to erticicnt ly model mul t i-OS, L inux p latforms.

As the impleme111a1ion i s main ly separate from the original OS
mo<lcl and the connec t ion points have hecn c learly iden ti !ied, i t
is possihle to app ly thc solu t ions proposetl in this papcr to other
s imu lat ion i n frastructures. As a fu ture work, el'fic ient modcl ing
of platforrns execul i ng completely <l i ffc renl OSs l i kc L i nux an<l
Win:12 are heing invest igate<l.

ACKNOWLEDMENTS

Th is work has heen supported hy the Spanish M I CyT and 1he
EC through Complcx FP7-2497lJ9 and the TEC2008-04 1 07
projecls.

REFERENCES

1 . R. Lchrhaurn, "Using Linux i n Emhedue<l an<l Real-Time Sys­
tcms", Linux Journal , J ul y 2000.

2. G. Tahoa<la. J . Touriño & R. Dna l lo. "Performance analysis of
messagc passing l ihrarics on high-speed c luslers", IJCSSE, Jan­
uary. 20 1 0.

3. A . Kal ly el al, " Perfurmam:c :11 1alysis ami tun ing t'or clustcrs wi lh
ccNUMA nodes for scicn t ifü: cnpul i ng - a case sludy", IJCSSE,
Scp1emh<:r, 2009

4. lngo Mol nar real - t ime prcernpl palch , hl lp://¡x:oplc .redhal .
corn/mingo/rcal l i mc-pn:c rnpt/

5. S. Diclrich, D. Walkcr, "Thc Evolut ion ot' Real -Time Linux", J >rnc.
of Real -Time Linux Workshop. 200.5.

6. L. E. Lcyva, P. Mejia, an<l D. <le N i 1., "Pn.:<l ictahlc l i llcrrupt Man­
agcmcnl for Real Time Kcrnels ova convent ional PC I lardw.irc",
Proc. of the RTAS. 2006.

7. K. Yaghmour, "Adap1a1ive Domain Environmcnl t'or Opcrating
Systcms", hup://opcrsys.com/flp/puh/Adcos/adcos. pdf

8. L. Dozio, P. Manlcgazza. "Real Time Dislri huted Control Sys1en1s
Using RTAI", Proc of I SORC, 2003.

9. T. Glc ixner. "ktimers subsystem", Linux Kernel Mai l ing Lisl,
2005. hllp://l kml .org/lkml/2005/9/ 1 9/1 24.

1 0. D. Nichaus, R. Mcnon, S . Balaj i , F. Ansari, J . Kcirnig, and
A. Shclh. "Micros1:cond r1:solu1ion Limcrs for Linux", 1 997.
hl lp://www.i lle. ku.cdu/ut i me/.

1 1 . l. Pcrez. S. S1:arty, D. P. Hnwdl anti H. 1-lu. "l woultl hale uscr
space locking if i t wercn · t that sexy . . . ". Proc of OLS, 2004.

1 2. H. Franke. M. K i rkwood, and R. Russd l . "Fuss, fu1excs and fur­
wocks : Fasl userlevcl lock ing in l i nux". Proi.: or OLS. 2002.

1 3 . G. Chanlcperdrix, A. 1-krli.:monl, D. Ragol, and P. Kajfasz, "ln­
h.:gration or Real-Time Serv iecs i n Uscr-Spacc Linux", 61h RTL
Workshop, 2004.

1 4. Timesys, hnp://www.limesys.com/
l :'i. H igh Resolution Tim1:rs pmjeet,

hl I p://soun.:cl'orge. nel/projcc ts/h igh-n:s-l i m<.:rs
1 6. RcdHawk Real-t ime Linux, h 11p://www.ccur.co111/
1 7 . Enterprise Real -Time Managcmenl Systcm (lffMS),

http://www.fsrnlahs.com
1 8. Gcrst lalll:r, A. Yu. H. & Gajsk i , D .D. "RTOS Modcl i ng for System

Level Dcsign", Prnc. or DATE, 2003.
1 9 . He, Z. Mok, A. & Pcng, C. "Timed lffOS mo<lcl i ng l'or trnhc<lded

Systcm Des ign", Proc. of RTAS, I EEE, 200.'i
20. Hass:m M.A . , Yosh inori S . , K. Takcuch i , Y. & l mai, M. "RTK-Spec

TRON: A S imulal ion Mmlel of an ITRON ttased RTOS Kernel i n
SystcmC". Proc of DATE, 2005 .

2 1 . Yoo, S. N icolescu, G. Gauthier L.G. & Jcrraya, A .A. "Au1orna 1 ic
gencration of fast time<l simulalion modcls l'or opera1 ing syslcms
in SoC dcsign", Proc. of DATE, 2002.

22. H. Posadas. D. Quijano, J. CaMi l l o, V. Fern.índ<.:1., E. Vi l lar, M .
Marlín..:z: "SystcmC l' la11'or111 Model i ng for lkhavioral Si 1 1 1ula­
ti1,n anti 1'..: rforn1ancc Est imal ion ol' Eonhcddcd Systcms" in L.
Gornes an<l J . M. r-ernandes (Eds.): "Bchavioral Modd ing for

Emhedded Systems and Tcchnologics: Appl ical ions for Dc.sign
and l rnpl..:mc111a1 iun··, IG I G lohal . 2009-07 .

2 � . Hc\sel , F. ; da Rosa. V. M . ; Rcis , I .M . : l'lanrn;r, R . : Marcon, C.A . M . ·
Su, in, A.A. : "Ahs1racl RTOS modcl i ng for cn1hcdd..:d .syslems':
l'rnc. of l{SP 2004.

24. Schirner G.; Dom..:r. R . : " ln l roducing Pn:emplive Schcdul ing i n
Ahs1r:1c1 RTOS M odcls using Rcsu l l Oricnled Mode l ing", Dcs ign,
A u1oma1ion ,111<1 Test i n Europe, 2008.

2.5. Shaoul. A . ; Mallar. K. ; E lkall.:eh, A. : "A n itl..:al A l' ! for RTOS
rnodding al thc sysiem ahstrac lion lcveI··, ! 'roe . ot' I SMA. 2008.

26. SystemC, www.systcmc.org
27. J. Schncrr, O. tt ringmann. A . Vichl, W. Roscnsl ic l . "l l igh­

Pcrformance Timing Simulal ion or Embcddc<l Software". In proc .
ni' DAC, 2CX IX.

28 . R .Whi lhc lm . J . Enghlom el al l . "Thc worsl case cxecut ion 1 i 1nc
prohlcm - ovcrv icw of mcthods and survey of tool s". ACM Trans .
Emheddcd Crnnpu1 ing Sy,tcms. 2008

29. Al{Mulal<ir. h11p: //www.ar111.c11111/s11pp<1rl/A RM1 1 la1 1 1r.h 1 1 1 1 I
30 . QEM U. hllp://www.(jt:lllu.org/
3 1 . R . Ohcrmaisscr. C. El -sa l loum. ll. I l uhcr. 1 1 . Kopi;lz, "Modc l i ng

and Ycri ficalion ot' DisIr i hu1,·d R..:a l -Time Sysl<.: l \ lS using l 'criod ic
Fin i te S iall: M,u.:h incs", IJ('SSE. Ju ly. 2008

:12. J. Cast i l l , 1 1 . Posadas & E. Vi l lar. "Fasl inslrucl ion cache nuidel­
ing for Approx imale Tim<:d I IW/SW co-sim1 1 la I ion". i n prnc. of'
GLSVLS l ' I 0

�-'- 1 1 . Posadas. L. 1 lía,. & E. V i l lar, " l 'asl dala cad1e 111odc l i ng t'or

nat ivo.: ,·o-simu la t ion". in prcx: . of' AS l'-DA(" 1 1 .

434 computcr systcms sdcncc & cno-inccrin , 2E) .., �

