International Journal of

Computer Systems
Science & Engineering

" Comput Syst Sci & Eng (2011) 6: 425--434
©2011 CRL Publishing Ltd

Farly, time-approximate modeling
of multi-OS Linux platforms in a
systemC co-simulation environment

H. Posadas', E. Villar', Dominique Ragot*> and Marcos Martinez®

! Microcloctronic ngineering Group THSA, University of Cantabria Santander, Spain. E-mail: posadash@tcisa.unican.es, viflar@teisa.unican.es
“Thales Communications Colombes, Paris, France. L-mail: Dominique.ragot@ir.thalesgroup.com
3/)(-51';;/! of Systems on Silicon)82 Paterna, Valencia, Spain. -mail: Marcos.martinez@ds2.es

The increase of computational power in embedded systems has allowed integrating together hard real-time tasks and rich applications. Complex SW
infrastructures containing both RTOS and GPOS are required to handle this complexity. To optimally map system functionality to the hard-RT SW domain,
to the general purpose SW domain or 1o LW peripherals, early performance evaluations at the first steps of the design process are required. Approximate
timed co-simulation has breen proposed as a fast solution for system modeling at carly design steps. This co-simulation technique allows simulating systems
atspeed close o functional execution, while considering timing eflects. As a consequence, system performance estimations can be obtained early, allowing
efficient design space exploration and system refinement. To achieve fast simulation speed, the SW code is pre-annotated with time information. The
annotated code is then natively execated, performing what is called native-based co-simulation. Previous native-based simulation environments are not
prepared o model multi OS systems, so the performance evaluation of the different SW domains is not possible. This paper proposes a new embedded
systermn maodeling solution considering dual RTOS/GPOS systems. A real Linux-based infrastructure has been madeled an integrated into a state-of-the-an
co-simulation environment. The resulting solution is capable of modeling and evaluating all 11W and SW system components providing the designer with

valuable information for carly system optimization and design space exploration.

Keywords: Co-simulation, TEM, Approximately-timed, Real-time finux

of the most commonly used in embedded systems. Linux is a

1. INTRODUCTION
{ree, open-source OS providing a POSIX-based API. Linux of-

Increasingly embedded system complexity has allowed integrat-
ing hard rcal-time tasks and rich non-RT application together.
The combination of these helerogencous concurrent components
interacting among themselves makes the system more difficult
to predict and control. As a conscquence, more complex in-
Irastructures are required and this is specially important when
considering operating systems. Complex embedded SW usually
requires considering reuse and integration of third party compo-
nents, and thus, sophisticated operating systems (OS) are re-
quired [1]. Among complex OSes, Linux-based OSes are some

vol 26 no 6 November 2011

fers powerful and sophisticated system management facilitics,
a rich cadre of device support, reputation for reliability and ro-
bustness, and extensive documentation.

Al the same time, clectronic designs have to deal with time
constrains. Response times, or input and output rates make sys-
tems (o include real-time characteristics (2,3). As aconsequence,
both design tools and platform infrastructures have to be pre-
pared for handling real-time designs. However, a standard gen-
cral purposce operating system (GPQOS) as a Linux kemnel cannot
support hard rcal-time tasks. Hard rcal-time tasks require fa-

425

EARLY, TIME-APPROXIMATE MODELING OF MULTI-OS LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

cilities to guarantee deadlines are always, in the same way as
rcal-time operating systems (RTOS) do. The usc of these RT
facilitics resultin a complete modification in the order tasks arc
exccuted and in gencral in the overall system execution.

In order 10 combine all required system capabilitics together
with high clficiency. some clectronic systems integrate GPOS
and RTOS in the same processor. This solution allows reducing
the number ol processors required in the system, which mini-
mizes arca, power consumption and price. However, the opti-
mization ol such complex and flexible platforms requires carly
system evaluations in order to guarantee that the resulting sys-
tem has cnough computational power to support all the required
functionality accomplishing the specified times.

In traditional HW/SW co-design flows, the soltware develop-
ment team had (o wait to the first hardware prototypes in order
to verify and validate the code. As a consequence, evaluation
of the whole design was donce late in the design process, requir-
ing costly re-design processes when certain catastrophic design
crrors were detected (i.e. CPU utilization required o be higher
than 100%:).

To overcome this problem, analytical and simulation tech-
niques have been proposed. Analytical technigues are based on
static analysis ol soltware code, considering all possible paths in
the CFG (Control Flow Graph). They are usually employed o
calculate the WCET (Worst Case Exccution Time) for real-time
systems. However, estimations obtained using WCET [28] are
usually oo pessimistic and have to be complemented by simu-
lation techniques.

Simulation techniques are widely used for both fuactional ver-
ification and performance estimation. For such purpose, a large
varicty ol hardware component models and soltware modeling
techniques have been developed. The abstraction level of these
models is usually a trade-off between required speed and accu-
racy.

Once of the most employed simulation techniques is the usce
of an Instruction Sct Simulator (ISS) [29]. An ISS rcads the
binary code compiled for target platform and exccutes the in-
structions using a target processor model. However, simulation
times arce oo long forelficientcarly estimations or design space
exploration. Furthermore, ISS systems require the final SW in-
frastructure, so large engineering elfort in porting the OSes is
also required.

A first solution proposed to reduce these drawbacks it Lo use
interpreters or as a binary code translators [30]. Thesce techniques
achicve shorter simulation times than modeling the full processor
internally, but at the cost of providing less accurate results. This
is caused by the reduction of internal details considered in the
processor models. Nevertheless, this solution is still slow for
cfficientearly estimations, specially when big designspaces have
o be covered. Additionally, these solutions also require high
porting cffort.

To speed up simulation times. approximate tinie co-simulation
techniques based on native execution have been employed. HW
description and the €/C + 4 codes of the embedded SW are
simulated together using the facilitics provided by the SystemC
language, a € + + library for system modeling. Using this so-
lution embedded software can he direetly executed over the host
machine, without requiring 1SSs or any tool capable of executing
target binary code in the host. To obtain performance estimations
of SW components, application SW code must be instrumented

426

belore the exceution, adding information of the performance it
is expected the code will have in the target platform. The infor-
mation required to make the instrumentation can be obtained at
source, intermediate orassembly level, The SWinfrastructure is
bascd on high-level models of the involved OSs, so porting efTort
is minimal if the OS models are available. The resulting native
exceutionachieves very fast simulation times, without requiring
detailed models of platform components.

In that context, abstract OS models have been proposed for
fast ime-approximate co-simulation [18, 19, 23, 24]). These OS
models provide basic scheduling and communication capabil-
itics Tor System and HW development oriented environments.
However, the effects of hard RT facilitics, which have a great
impact in SW cxecution, are not considered in the resulting
timeapproximate co-simulations. As a conscquence, functional
excecutions and performance estimations obtained without them
are potentially wrong.,

To solve the previouslydescribed problems, the paper presents
a complete RT/GP OS model integrated in a SystemC/TLM co-
simulation environment. The developed model covers the most
important [eatures proposedas RT extensions for Linux, improv-
ing performance estimation, system modceling and co-simulation
at ime-approxinute level.

The paper is structured as follows. The next section presents
the state of the art in two ways: OS modeling in high-level
frameworks, and hard RT improvements in Linux-based systems.
Scction 3 describes a list of hard-RT improvements required lor
cmbedded systems. Scction 4 proposes solutions 10 integrate
these features in a SystemC model. Finally an example, results

and conclusions are presented.

2. RELATED WORK

2.1 REAL-TIME AND MULTI OSES

Several rescarch works have enhanced the real-time performance
of Linux. Firstly, Ingo Molnar developed the real-time pre-
cmption patch [4]. This patch adds three main technologics
1o enhance the real-time performance ol Linux, which are IRQ
threads, RT mutexes, and high resolution timers [S]. The IRQ
thread is a kernel thread handling top-halves ol interrupts, which
is woken up by ISRs when interrupts occur. In [6]. interrupts are
also handled by interruptservice tasks whose role is the same as
the IRQ threads.

ktimers [9] and UTIMIE [10] provides optimized implemen-
tations for timer resolution in the Linux Kernel. Subsequently
George Anzinger introduced the High-Resolution Timers (HRT)
patch [15]. Robust mutex implementations has been proposed
in FUSYN [11] and T'utex [12] .

All these proposals have inspired the creation ol dual Oss in
order to handle properly both real-time and general-purpose ap-
plications. For cxample, Adeos | 7] provides a flexible environ-
ment for sharing hardware resources among multiple operating
systems, or among multiple instances ol asingle OS. To this end,
Adcos cnables multipie kernel components, called domains, o
exist simultancously on the same hardware.

The most well-known approach for adding hard real-time ca-
pabilitics to Linux consists in embedding a dedicated scheduler

computer systems science & engineering

H. POSADAS ET AL

aimed at managing time-critical tasks inside the kernel. Several
examples can be found.

TimeSys [14], RedHawk | 16], RTLinux and its evolution, En-
terprise Real-Time Management System (RTMS) [17] provide
Linux-based operating systems containing both general purpose
and real-time domains. RTAT[8| started fron the same approach
as RTLinux, but uses a different interrupt virtualization tech-
nigue, based on the Adeos layer.

In this context, the HYADES [13] system is built over the
Adcos laycer in order o prioritize hardware interrupl processing,
and implement the incans ol cooperationbetween the RTOS con-
troller and the Linux kernel. The core of the HYADIEES realtime
system is implemented in an Adeos domain called DIC (i.c. De-
terministic Interrupt Computing), embodied in a regular module
inside the Linux kerncel. Since it is based on RTA/fusion’s core
implementation, the DIC controller implements the primary and
sccondary operation.

22 HIGH-LEVEL CO-SIMULATION

Adequate performance estimations are critical when designing a
large system. Several solutions have been proposed. including
WCET solutions |28, 311, ISS-based simulations [29] and virtu-
alualization |30, cach one with different qualities for different
design steps and purposes.

Obtaining fast, realistic SW system-level co-simulation has
been an important development arca in recent years | 18-25].
These co-simulations are built on top of system-level lunguages
(SLL) as SystemC [26]. In these high-level simulations. the
HW platformis composcd ol approximate-time SystemC models
of the HW components. The SW s simulated though native
execution of pre-annotated SW code [27] (Figure 1).

These works usaally apply sulficiently accurate time estima-
tions together with OS models. However, OS models oriented
to HW-SW co-simulation environments, are usually abstract or
partial madcels. Most of these models are focused on scheduling
and provide a minimal scet ol facilities |18, 19, 23, 24]. These
abstract OS models allow the tasks™ execution order to be taken
into account within the system simulation, providing much more
accurate results than only using the standard SystemC facilities.

These OS maodels do not support a real. complete APL Thus,
the application code cannot be retined completely. The resulting
cade contains abstract system calls, which are not implemented
in the real OS, so additional refinement is required to run the
SW in the target platform. “To avoid these problems, new models
based on real RTOS have been proposed [20. 22]. With these
OS models, SW refining becomes more elficient. The use of real
APls makes the application code ereated direetly exccutable on
the target platforn, reducing the design cffort.

To demonstrate the maturity of the arca. in |25] a comparison
ol some of the models presented previously is performed.

Those models present a final timitation. Although application
code retinement is mostly supported, Hardware dependent Soft-
ware (HAS), such as drivers, is not. A morcecomplete model. ca-
pable of managing nterruption handlers and drivers, is reguired.
Atempts at THIW/SW interfuce modeling have been made at the
high level (21, 22]. However, none of the previous models con-
tains hard RT extensions.

vol 26 no 6 November 2011

Summarizing, there is a lack of high-level simulators capable
of modcling all the HW platform components in detail together
with OS models containing hard rcal-time cxtensions. In this
work a solution 1o overcome this limitation is presented.

To implement the RT modeling infrastructure in SystemC, the
solution proposced in this paper is 1o develop a dual GP/RT OS
model, considering the features from the Hyades project. To do
50, the Linux-based co-simulation environment proposced in [22]
has been extended.

Wherever Times is specified, Times Roman or Times New Ro-
man may be used. I neither is available on your word processor,
please use the font closest in appearance to Times. Avoid using
bit-mapped fonts il possible. True-Type 1 or Open Type fonts
arc preferred. Plcase embed symbol fonts, as well, for math, ctc.

3 REQUIREMENTS FOR REAL-TIME

MODELING

Solt Real-time tasks are supported in Linux applying difterent
prioritics and scheduling modes. However, this solution is not
valid for hard RT tasks. For example, deterministic Intensive
Computing (DIC) tasks require bounded latencies, reliable ex-
ceution determinism, and a strict priority management. Their
exeeution quantum must not be significantly perturbed by non
rcal-time activitics, which cannot be ensured in that way. Time-
critical data acquisition tasks require a complete set of hard real-
time features. Guaranteed low interrupt and dispatch latencics
are required for these high-priority tasks. Thus, additional hard
real-time support is required.

A platform capable of modcling real-time systems, must pro-
vide solutions for modeling the performance of the application
SW, the clfect of the operating systems and the HW platform.
Madels of the HW platform at multiple levels ol abstraction
can be found in the literature, so this work is centered on SW
code modeling and OS modeling. SW code modeling requires
considering the exceution times ol the cross-compiled code in
the target platform and the delays produced by cache misses.
At the same time, OS models must include general-purpose and
real-time additional support. The RTOS modeling infrastructure
developed in this paper extends a previous Linux OS model with
anew RT support, allowing the coexistence of both OSes. Thus,
it is possible (o control the interrupt management in a RT way
and then o minimize the latencies (Figure 1).

To provide adequate hard-RT additional support. the following
points must be considered:

e A hard RT subsystem mustcoexist on the same hardware to-
gether with the general purpose QS kernel and applications.
The coexistence must also allow casy migration of existing
real-time applications over the new hard-RT kernel.

e Low-priority interrupt handlers can originally preempt
high-priority time-critical tasks, introducing unbounded la-
tencies. Thus. a new interrupl control must be created o
intereept, mask and prioritize these interrupts properly.

e Some non RT cexisting OS services need 10 be re-
implemented to ensure bounded latencies and minimal jit-
ler.

427

EARLY, TIME-APPROXIMATE MODELING OF MULTI-OS LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

Annotated SystemC models
application 0OS model Peripheral
SW (C/C++) model
{ Bus model
Memory Peripheral
model model

|
[Annotated Application §W] ‘

RT AP{ POSIX API |
RT O8 Original non-RT OS§
' Interrupt Contral

Host computer

[Hardware platform j ‘

Figure 1 SystemC-based high-level co-simuliation and architectare of the OS model proposed.

e System timer precision must be upgraded lor time-critical
tasks.

e Additionally, new system calls are required to access the
NCW SCrvices.

An cxample of such a service is the standard nanosleep() fea-
ture. Its timing precision depends on the period ol the system
tick. Since the system tick period is usually of the order of
milliscconds, exact real-time sleeps cannot be ensured.

As the original OS models a soft, but not a hard real-time
systern, it will be referred (0 as “non-RT” infrastructure in the
following to simplity the text. The new RT extension will be
called the “RT" infrastructure.

4. CODE CHARACTERIZATION

In order to model the performance of the application SW, execu-
tion times and cache operation details are added to the original
SW code, to transform the functional host exeeution in an ac-
curale native simulation model. To do so, instrumentation has
been used. Instrumentation is a well-known technique which
is usually employed to provide extra functionality to a certain
application code. This annotated software is communicated in
runtime with the cache model and the simulation time manager,
s0 SW exccution times and hit/miss rates are estimated.

To accomplish this task, it is necessary to perform a previous
characterization ol basic blocks in terms ol timing and cache
behavior, Basic blocks are identified and the number of instruc-
tions and cache lines per block are calculated and annotated.
Different works at assembly level, intermediate level or source
level have heen proposed over the last years for obtaining that
information. Among them, assembly fevel provides the most re-
liable characierization and thus, it has been used in this work. In
fact, a hybnd technique is proposed: while basic block identifi-
cation is performed at source level, characterization is obtained
from assembly code. This strategy simplifics the characteriza-
tion process and speeds up the analysis time. Figure 2 shows an
overview ol the cache estimation process, including basic block
characterization.

Duc to the rich syntax ol source codes, a C/C ++ code parser
has been developed. so the different elements of the language are
casily identified: declarations, statements, expressions, ete. The
parser is based in a C/C++ grammar (or Bison. The key coneept
in basic block identification at source level is inserting specific

428

- J (/ = ;"“L"‘,f’*“l')

A Neviee Sloeguoe J

'
S Bhee s Todee

Figure 2 Complete estinuion process.

I mark_P1:

init
L2

cond

bcond .13
mark_P2:

body
mark_P3:

step

b L2

Pl for (init: cond; step)
(P2

body:
P3} P4 [

L3
mark_P4:

Figure 3 Marked code and equivalent assemble.

marks at the beginning and the end ol cach basic block. This
marked code is then cross-compiled, so the marks introduced
are preserved in the target assembly code. ‘This procedure gua-
antees that there is always a direct correlation between source
and assembly blocks. Thus, the main questons are: what type
of marks should be inserted, and where should they be inserted
within source code? The adopted solution is 1o lake advan-
tage of C/C + + facilities to mix assemhly instructions within
source code with the asm sentence. Asm volatile sentences are
preserved after compilation, so they are casily identified in the
target assembly code. Additionally, to keep the behavior of the
original code, the asm instructions inserted consist simply of

computer systems science & enginecring

" H.POSADAS ET AL

labels. Thus, inserted marks looks as:

‘asm volatile(' ‘mark_xx: ‘")’

A sccond decision 1o be taken is where the marks must be
placed. As stated belore, marks should delimit cach basic block
atsource level. Thus, cach C/ C ++ statement requires a custom
analysis. As an example, the for’ statement needs four marks,
which are inserted at the key points P1, P2, P3 and P4. repre-
sented in Figure 3. Marked code is then cross-compiled for the
target processor. The cross-compilation process considers all
possible optimizations. The resultant optimized assembly code
with cquivalent fabels is also shown in Figure 3.

The number of instructions of cach basic block is casily ob-
tained from the assembly code. L2 and L3 arc system labels
inserted by the compiler (o iterate and exit the loop, respece-
tively. Although compiler optimizations may alter the Control
Flow Graph (CIG), labels are preserved in the same order since
they have been declared as volatile. The output of this process
is a tuble with block/instruction pairs. This table is used laier o
characterize cach basic block in terms of times and cache lines.

Instructions and data cache modeling requires also static in-
strumentation, annotating the cache lines required on cach basic
block, and the corresponding accesses o the cache model for
checking if the lines are alrcady in cache oraccesses (o the main
memory are required. More information about cache modcling
can be found in [32] and [33]).

Compiler optimizations may alfect both intra-block and inter-
block hehavior. Intra-block optimizations are considered in the
characterization of the blocks from assembly code. This assem-
bly code already includes both front-¢nd and back-end optimiza-
tions. Inter-block optimizations are considered by delimiting the
basic blocks at source level. Nevertheless, there are some com-
piler optimizations which cannot be accuraiely considered with
this technique. Loop unrolling replicates the body of a loop
statement in the assembly code, but from source point of view it
is a unique block.

Nevertheless, we think that thisis a very fast, casy and portable
way of obtaining sulficicntly accurate estimations for the first
steps of the design process, when the platform, the HW/SW par-
tition, resource allocation, cte. are being explored and decided.
At the beginning of the design process. the HW and SW codes
arc usually not the completely optimized final ones. Thus, if the
code use for the modeling is not the final one, it can be consid-
cred that the effect or these optimizations will resalt in an error
similar or larger than the error provoked by the use ol volatile
marks. Summarizing, for carly modeling. speed and flexibility
are much more important at this level than 100% of accuracy.

S. GPOS MODELING

The modceling ol a general-purpose operating system requires
modcling parallelism, concurrency and other services for com-
munication, synchronization and time management. For imple-
menting them, the POSIX standard has been followed.

vol 26 no 6 November 2011

5.1 MODELING PARALLELISM OF SW
TASKS

Parallelism is modceled by using the SC_THREAD process of
SystemC. Thercfore, both POSIX processes and threads are
modeled in the same way. Thus, the library implements the
required actions that give each element its own characteristics.
The characteristics ol processes and threads are loaded in a list
when they are created and these parameters can be madified dur-
ing simulation using the methods the POSIX standard defines.
However, modeling the capabilitics derived by the use of sepa-
rate memory spaces in SystemC is not straightforward.

In order to efficiently support dynamic thread creation, a
thread-pool is initialized when the simulation starts. This pool
has a predefined number of SC_THREADS (the number can be
modificd in the source code) which are maintained in a blocked
state. During simulation, when anew thread is declared, a thread
from the pool is resumed, and stoped again when its functionality
is over. Then, the threads can be reused.

g2 MODELING THE SCHEDULER

Although SystemC provides concurrency support, scheduling
is not considered. The SystemC underlying kernel activates in
cach cycle all the threads that are not blocked, without any con-
sideration about prioritics or policics. Thus, a scheduler has
been placed on top of the SystemC kernel o ensure that only
one thread is executed in cach processor at a time. This sched-
uler ensures that all threads remain blocked, cxcept the one with
the greatest priority, which is unblocked. In fact, one thread is
unblocked per processor described in the system. The thread
cxecules then until a service from the operating system, such as
a semaphore or a mutex, makes it 1o be blocked again. At this
time the scheduler unblocks the next task to exceute.

Each exceution has two parts. The first one is the functional
exeeution, and the second one is the temporal execution. Thatis,
the code is exceuted in zero time (in the simulation) and then the
thread is slept to take up the corresponding time in the processor,
the time annotated in the source code. This time is applicd just
when a system call is performed. As a consequence, this place-
ment in time is produced before inter-processor communication
and synchronizations arc made. I{ during the time the thread is
slept, another process with higher priority is awoken, it is exe-
cuted. to the other process is informed about that preemption.
Thus it has to wait to be scheduled again before entering the sys-
tem call. As a result, when a communication is made. the state
of both processes is correct.

However this approach does not maodel preemption correctly
as a SC_THREAD is exceuted until a wait statement is reached.
In order to model preemption adequately, the “wait” function
used to sleep the thread and model the exceution time auto-
matically returns when another process is awaken. Then, the
remaining time is saved and the process waits for the scheduler.
When it is resumed, the remaining time is waited and then the
process can continue. In Figure 4, an example is used to show
the result when using the proposed solution.

In this example, lask 1 executes the SW code until the next
system calls. At the end, the time accumulated due to execution

429

D execution D annatation

EARLY, TIME-APPROXIMATE MODELING OF MULTI-OS LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

Task I Task 2 Task | Task 2
Priority | Priority 2 Priority I Priority 2
Simulation Estimation Events Simulation Estimation
time time
T=0 | AT=0—=>TJe AT=75 [Predictable: T=0 |AT=0-[AT= 175
4 Tinxout Fr I—
T=10 expiration T=10 *
T=25 us AT=25| |
T=20 =20 = .
3. reemption
4----)] “-'L'—'-""?‘. AT:l(]
T=30 A Expected AT= 10 T=30 | AT=10 “"‘"
e e iy |
SN preemption: e T PRSI
=75 %
T=d0 AT=7: o trror Z:> T=40 r
=50 Unpredictable: T=50 | AT=230{[.
Hardware L
T=hi) o interrupt T=65 us T=60 ’:r.
73 PR B o A
T=10 T=70 L4 ar=10
¥l Uneapected AT=10 |
T=R0) precmplion: T=80 S
lrror 3
T=Y0 T=90 e
Time (us Tioe (us l
v - - " | L
Code Time Code Time

Ccxecution B annotation

Figure 4 Preemption modeling.

ol several basie blocks is 7Sus. Then, a “wait” funcuon is called
for that time. However, at T=2S us, task 2 is awaken, and task
I has to be preempted. To model that, task 1 is resumed, it
calculates that SOus remains to be waited and moves 10 a blocking
state. Task 2 exceutes, and when it finishes, task 1 s scheduled
again, and it waits for the S0 us. But, again it is preempted,
remaining 20 us. Thus, the process is repeated agan, until all
the time is expected, and then the system call can be performed.

This modeling solution does not modify the SystemC kernel.
[t is based on the use of “wait()” and “notify” SystemC primi-
tives.

53 POSIX Interface modeling

POSIX scrvices are provided by the GPOS model in three dil-
ferent ways. Some ol them use the underlying host functions,
others are completely new, and those that depend strongly on
the hardware platform have 1o be adapted 1o model correctly its
platform-dependent functionality.

If the OS of the host computer is POSEX based, such as UNIX
or Linux platforms, some ol the host POSIX [unctions can be
reused. These Tunctions are basically those that are platform
independent. Mathematical [unctions, string management, cle.,
maintain their functionality in every platform and they do not
interfere with the scheduler or the parallelism capabilitics of the
system. Thus, they can be used to model, at least, the platform
functionality. To include the timing cost, these functions are
wrapped into new [unctions that take into account the time the
function will take in the final processor.

The second group of the API [unctions is composed ol those

430

facilities that allow the designer to interact with the elements
that have been implemented in the software execution support
described. Parallelism, scheduling, communication, synchro-
nization and timing features are completely platform dependent,
so new implementations on top of the SystemC services has been
developed.

The last group of POSIX API functions is composed ol those
functions whose implementation is strongly dependent on the
hardware platform. Thus, a general platform exceution support
modcl is not possible. Some examples are the /O functions,
which strongly depend on the system drivers, so the implemen-
tation cannot be reusable on different platforms. Instead of that,
models that allow the designer to simulate the functionality are
provided.

Additionally, as required by the POSIX standard, clocks for
cach process and thread, and Tor the whole simulation have been
implemented. Timers, sleep facilities and alarms are defined by
using these clocks. The values of the clocks arc updated and the
exeeution time estimated for cach code segment. The actions
ol the elements declared over them, are executed by adding the
time cach event will take to the events list ol the scheduler.

The clements that depend on the real-time clock ol the system
have been implemented in a different way. With this purpose, a
SC_THREAD has been defined thatis slept until the next event
of that clock is required.

Finally signals have been modeled as defined by the POSIX
standard. The signal manager can aceess the scheduler to allow
all blocking communications toimplementsignals that mean that
a thread can be stopped or unblocked independently ol the cause
that produced this blockage. An additional SystemC thread is
used by the signal manager to exceute the actions related to
delivered signals, since no other process can execute them.

computer systems science & engineering

“ H. POSADAS ET AL

6. HARD RT OS EXTENSION MODELING
IN SYSTEMC

Once modeled the POSIX standard in order to provide an GPOS
model, the extension developed to support RT characteristics
based on the Hyades implementation can be presented. In the
real implementation, the two operating systems are placed to run
in the same computer over an Adeos infrastructure. Both OSces
are mainly independent, with memory separation and different
task and resource control. Thus, if a task needs to migrate from
onc OS domain to the other, it is necessary o have two task
control infrastructures, one on cach 0OS, synchronized in some
waty.

To create an cfficient OS modcl, a different approach is used.
Both OS domains are excecuted within the same memory arca
in the same host exceutable program. As there is no physical
separation between the OS domains most of the resources and
information can be shared between the two domains.

To create the new OS model, the original OS modcel has been
maintained, adding a new hard RT OS infrastructure. To allow
casy usc ol both environments, modifications are hidden to the
user as much as possible. The user can program the SW code
in the same way, independently of which OS domain the task
is in cach time. Only the functions for moving tasks from one
domain to the other must be explicit in the code.

To change the domain the application must make a system
call. The function name in the model has maintained the corre-
sponding Hyades name: pthread_migrate_rt (domain).

Regarding the original OS8 model, three internal modificatons
have been applied:

e Scheduling infrastructures have been interleaved creating
a single scheduler. When a processor is released or a task
is awoken, tasks of the hard-RT domain are scelected first.,
and tasks of the other domain fater. This ensures correct
selection order.

o Interrupts are shiclded and launched by the scheduling sys-
tem. ‘To do so, interrupts have associated prioritics. When
a task of the RT domain with higher priority is running,
interrupts are delayed.

o Original system calls haves been wrapped. The OS model
that must provide the scrvice is sceleeted in the wrapper.

The new hard RT ¢xtension covers most of the hard RT im-
provements presented in section 1L In fact all the extensions
considered in the Hyades OS have been implemented.

The required mechanisms used to allow the execution of both

0S domains can be summarized in three arcas: the modeling of

the two S domains and their interactions, the interrupt model-
ing. and the additional features for RT support. especially latency
and jitter reduction.

6.1 0OS DOMAIN MODELING
Toallow hard RT tasks to be included while maintaining the pre-
vious operation mode intact, two OS domains have been mod-

cled, following the real Hyades implementation. However, the
overhead caused in the real system by running two completely

vol 26 no 6 November 2011

different OS domains has been minimized in the model. Using
separate OS models implices that the act of moving tasks from onc
to the other is very complex and time consuming. All the task
information must be duplicated and the copies must be stopped
and resumed depending on which domain the task is currently
in.

Thus, the proposed solution is to create a new infrastructure for
task scheduling and interruptioncontrol, maintaining the original
OS model infrastructure as far as possible. Thus, the extended
OS has two scparale infrastructures containing the implementa-
tion ol the system calls. However, the clements for task man-
agement, such as task creation and destruction, scheduling and
preemption mechanisms, are shared. All tasks are created and
destroyed as non RT tasks. RT operation mode is only reached
when calling the migration system call at run-time.

The scheduler considers two lists of tasks, one for the tasks in
the RT domain and the other for the tasks in the non-RT domain.
When a new task is required, the first list is accessed. If there
is no task ready. the second list is used. Thus, migration only
requires changing the list where the task is and modifying the
internal task status value where the current domain is indicated.

To control preemptions, interrupt handlers are not launched
automatically. Handlers are modeled as high priority tasks and
added to the scheduler. When an interrupt is received, a pre-
cmiplion event is always raised, making the current task call the
scheduler. However, when the current task is a RT one and has
higher priority than the interrupt, it is sclected by the scheduler
and it can continuc. Thus, preemption does not really occur.
Furthermore, in this case the time cost associated with scheduler
exccution is not added to the simulation time. As a consequence,
no traces of preemption are included in the model.

This solution cnables both modcels to be handled together, in
a simpler way than in the real implementation.

The exccution (low of a task is as follows:

e All tasks start as non-RT tasks, running under the original
OS domain.

e When itis necessary to enter a real-time section, the task is
moved to the RTOS domain, changing the list where it is.

e Finally, when the RT section finishes, the task must return
to the non-RT domain.

e When atask is destroyed in a RT section, it is automatically
moved to the non-RT domain and then destroyed.

As a conscquence, the scheduler has been extended to cover
the new tasks” states. New states for the RT tasks have been
added to the original non-RT scheduler states (Figure S). The
original non-RT OS model considers 7 states: Created. Ready.
SuperUser, Waiting, Uscr, Blocked & Zombic. The new RTOS
domain only considers 3 states: Exccuting, Blocked and Ready
(Figure 3). Thus, a RT task has two states, one for the RT domain
and onc for the non-RT domain.

When a task is moved from the non-RT to the RT domain, the
task is moved to Blocked in the non-RT domain, and moved o
Exccuting in the RT domain.

When moving (rom the RT to the non-RT domain, the oper-
ation is similar: the task status in the RT domain is moved to
Blocked. and its status in the non-RT domain 1o Ready. In that

431

Onginal Non-R'T domain

New RE domain i

i System call or
$ Intecropiion

‘
\

\

S

!
gr-meeecemmacrenaans

Figure 5 SystemC-bascd high-level co-simulation.

ift (next_task = RT_scheduler()) == NULL)[//INew code
next_tusk = nonRT_schedulen();
W New code
resume (next_task);

Figure 6 SystemC-hascd high-level co-simulation.

way, all tasks arc at least blocked in one of the domain lists. This
avoids both domains considering the same task to be exccutable
at the same time, thus ensuring correet task scheduling.

To model the execution of both schedulers, the scheduling
control in the original OS modc! has been minimally modificd.
The call 10 the scheduling function has been replaced by a two-
step process (Figure 6). In the aew code the scheduler first
scarches tor a task in the RT list. If a RT task is scheduled, the
task s resumed and the non-RT list is not used; otherwise, the
non-RT listis called.

6.2 DUAL INTERRUPT SUPPORT

Interrupts are once of the most important risks tor hard real-time
systems. In a common OS, interrupts are unpredictable. They
pre-empt the current task without considering its priority and can
provoke priority inversions. Thus, their adequate management
is critical for a RT OS. To solve this problem, a double interrupt
management level has been integrated in the new OS model.
First, the interrupt is processed by the RT interrupt control. Il a
RT handler has been associated to this interrupt, itis launched
considering the handler priority and the priority of the tasks in
the RT domain, 1f a task with higher priority is running, the
interrupt is detayed until no tasks with higher priority are ready.
I there is no RT handler for the received interruption, the IRQ
is delivered to the original non-RT infrastructure, and managed
as usual. Since all RT tasks are managed in the RT domain, the
original non-RT interrupt management can be maintained.

To implement the double-level interrupt control, the original
OS function in charge ol the interrupt reception has been mod-
ificd (Figure 7). First, the presence or not of a RT handler is
verified. Ifnot, a non-RT handler is called.

To control system lateney and jitter, three main services are
provided: high-precision system ticks, system call imperson-
ation and ncw services.

EARLY, TIME-APPROXIMATE MODELING OF MULTI-OS LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

it manage_rt_irg (irq_number) == 0)f //New code
manage_irg (irg_number);
J// New code

Figure 7 SystemC-based high-level co-simulation.

When any timer feature, such as a timer, timeout, atarm or
sleep, is used, its accuracy depends on the system tick period.
Timer features are managed depending on the tick interrupts.
The OS is not capable ol considering continuous time advance.
It only increases the clocks cach time the hardware timer indi-
cates a new period has clapsed. Considering that common ticks
have a period of milliscconds, time advances ol microsceconds
or nanoscconds cannot be accurately managed. ‘The system tick
period cannot be casily reduced. because the management of all
the time features leads to the interrupt handling requiring a sig-
nificant time. Thus. a new tick strictly lor real-time operations
is required. As few real-time features are expected o be used
simultancously. the interrupt management latency is very low.
Thus, the RT tick interruption can have a very low period with-
out dramatically increasing the system overhead. The tick timer
implemented is an a-periodic one. The [requency is set with a
user lunction. Each time the interruption is raised. the interrupt
handler must be rearmed.

The scecond point to be considered is system call imperson-
ation. Some ol the POSIX functions managed by the non-RT
infrastructure can require special management when used within
the RTdomain. These functions cover task state changes and ac-
curate time management. Accesses lo multex, (ilos, semaphores
and other communication channels usually block and unblock
tasks. When a task unlocks a mutex, another task blocked in this
mutex is unblocked. This produces inconsistencics when using
the double domain. When unblocking the mutex, the function
in the original OS model moves the task state from Blocked to
Ready (in the non-RT domain). However, il the mutex call is
done when the task is in RT domain, the operation is incorrect.
Instead of moving to the Ready state in the non-R'T domain, the
state must be moved in the RT domain (Figure 3).

To solve thisproblem, the function call mustdetect the domain
from which it is called and perform the correct operation. In
the proposed model. the solution applicd is o modily the OS
function in charge of modilying the task state. This lunction
detects the domain where the task is and modifies the state in the
corresponding scheduler. This is casier than modilying all the
functions dirccetly.

Furthermore, the nanosleep() lfunction has been moditied.
When called from the RT domain, it uses the RT system tick
instead of the common system tick. Thus, the accuracy of the
function is automatically increased.

Finally. to manage all this features and o provide some ad-
ditional RT features, a new API bascd on the Hyades DIC API
has been implemented. Functions have been considered for RT
interrupt management, RT sk management, RT timing and RT
synchronization channcels.

5‘5’?“’“'” systems science & engineering

H. POSADAS ET AL

500 .| —®—Non-RT
400 -/
£ .| —8—RTOS
300
200 ! R H IRQ-Shield
100 ‘ L X |
PRV SN S— ﬁmﬂr\u
us U R T R W S)
O v~ (N O « n O ~N ©o o

Figure 8 Lalency and exceution jitter of a SystemC-based high level co-simulation.

Table 1 Number of cycles measured and estimated.

o - Number of cycles
Without optimizations (-00) [With (.)_plimizuli()ns (-02)
¥ Skycye | SCoPE | Error (%) | Skycye SCoPE | Error (%)
Bubble 1000 30504511 30504511 0 4010006 4510501 12,4812
Bubble 10000 | 5200180007 | 5200180007 0 400120008 | 400130013 0,0025
Vocoder 13466069 14066581 4.45945 6599330 8338713 26,357
[actorial 2747041 2996535 9.08228 1498521 1498518 0,0002
Hanoi | 18481575 17695142 4.25523 13107284 11141209 14,9999

Table 2 Simulation times with different configurations.

Skyeye Proposcd technique Without data cache Without cachcs
T Time | Time Speed-up Time Speed-up Time Speed-up
| Bubblc 1000 | 0m2.186s | 0m0.028s x78 0m0.028s x78 0m0.025s x 80
Bubble 10000 | 4m6.500s | Om3.486s x71 0m2.792s x 88 0Om1.92s x 130
Factorial OmL.071s ("0m0.014s x76 0m0.014s x76 0m0.012s x90
Hanoi 0mY.426s | Om0.043s x219 0m0.032s x294 0m0.020s x479
Vocoder 10| Om48.793s | 0m0.262s x 187 Om0.185s x263 0m0.105s x464

7. EXPERIMENTAL RESULTS

To demonstrate the benelits of the RT extension proposed the
original OS model and the new extended OS have been com-
pared. This will show how the proposced extensions reduce the
system jitter in order to ensure RT capabilitics.

The OS modelshave been tested using the following programs
on an ARM9Y26(platforn:

e Lateney: The lateney test measures the fatencey of the a-
periodic tmer set at 10kHz frequency.

e Cruncher: Measures the exeeution jitter of a computation-
intensive loop running with or without the R'T environment.

The tests were run together with some tasks modeling inten-
sive computing tasks and a network interrupt flood.

In figure 8, we can see the jitter. Applying suitable exceution
times to the interruptions, OS internal operations and consid-
cring the HW platform infrastructure cffects, a RT timer with
delays less than S khz has been obtained. This is much more
accurate than the standaed timer modeled in the standard POSITX
maodel, which is a 100 Hz timer. Thus, this extension enables
the modeling of more time-dependent applications.

Figure 8b also shows that RT extensions outperform Linux by
reducing the exceution jitter of an intensive data computation.

vol 26 no 6 November 2011

When running the application, the execution time required by
the model for this data computation is increased by about 3.5%
w.r.t the ideal computation time, with a maximum increment of
10% (Non-RT line).

When applying the RT infrastructure, the mean overhead
added by the OS is reduced o a 1%, but some exceutions are
increased by 8% (RTOS line). This overhead is caused by the
network interruptions. Thus, when applying the IRQ shicld,
considering that the data computation has a high RT priority. 8%
increments are climinated, limiting the increment (o 2%.

To cheek the simulation speed and the estimation accuracy of
the technique proposed, some small examples and C implemen-
tation of 12.2 Kbps GSM Vocoder have been simulated. Results
obtained with the proposed technique have been contrasted with
ISS simulation (Skyeye) (Tables 1, 2).

As can be shown, the proposed technique achieves high speed
up when compared with typical 1SS-based co-simulation tech-
niguces.

Finally, the reduction of engineering cost for checking the
system in different platforms has to be considered. As the OSs
used in the technique are SystemC models that run on the host
computer, not directly on a target platform, minimal porting is
required when exploring different platforms.

433

EARLY, TIME-APPROXIMATE MODELING OF MULTI-OS LINUX PLATFORMS IN A SYSTEMC CO-SIMULATION ENVIRONMENT

8. CONCLUSIONS

A large rescarch effort in real-time extensions for common op-
erating systems, especially Linux, can be found in the literature.
As embedded systems are usually RT systems, these extensions
may have an important influcnce on system performance and
must be modeled. Current high-level simulation infrastructure
considers modeling the OS with sufliciently accurate estimation
times. Thus, these modcls can be extended with new RT [catures.
These RT extensions, although aftecting low-level features of the
RTOS, arc applied at the source-code level. Thus, the resulting
technique improves the simulation time. The work shows how
native simulation can be accurate enough to model RT features
of a RTOS.

Using these extended models, performance estimations of RT
systems can be improved in terms of accuracy/speed. As a con-
sequence, the results of design space exploration and system
refinement processes, which use the proposed RT modcling in-
frastructure, could be optimized. The proposced solution for in-
tegrating the RT extensions, is to implement a second interrupt
control, sccond RT scheduling and a new set of user space func-
tions. These cxtensions are placed together with a common OS
model in order to obtain a complete system with both real and
non-real time capabilitics. Native simulation is a powerful tech-
nology to cificicntly model multi-OS, Linux platforms.

As the implementation is mainly separate from theoriginal OS
model and the conncection points have been clearly identified, it
is possible o apply the solutions proposed in this paper to other
simulation infrastructures. As a luture work, cfficient modceling
of platforms exccuting completely different OSs like Linux and
Win32 arc bheing investigated.

ACKNOWLEDMENTS

This work has been supported by the Spanish MICyT and the
EC through Complex FP7-249799 and the TEC2008-04107
projects.

REFERENCES

. R. Lehrbaum, “Using Linux in Embedded and Real-Time Sys-
tems”, Linux Journal, July 2000.

2. G. Taboada, J. Touriio & R. Doallo, “Perlormance analysis off
message passing libraries on high-speed clusters™, JCSSE, Jan-
vary, 2010.

3. A Kally et al, " Performance analysis and tuning for clusters with
ccNUMA nodes for scientific coputing — a case study”, JCSSE,
September, 2009

4. Ingo Molnar recal-time precmpt
com/mingo/realtime-preempt/

5. S. Dictrich, D. Walker, “The Evolution of Real-Time Linux™, Proc.
of Real-Time Linux Workshop, 2005.

6. L. E. Leyva, P. Mcjia, and D. de Niz, “Predictable Iiterrupt Man-
agement for Real Time Kernels over conventional PC Hardware™,
Proc. of the RTAS, 2006.

7. K. Yaghmour, “Adaptative Domain Environment for Operating,
Systems™, hitp/fopersys.com/ftp/pub/Adeos/adeos. pdlf

8. L. Dozio, P. Mantegazza. “Real Time Distributed Control Systems
Using RTAI", Proc of 1ISORC, 2003.

patch, hup://people.redhat.

434

1

12,

14.
I5.

16.

17.

26.
2

2.
30.
3k

3

. T. Gleixner. “ktimers subsystem”, Linux Kernel Mailing List,

2005. hup:/flkml.org/lkmi/2005/9/19/124.

. D. Nichaus, R. Mcnon, S. Balaji, F. Ansari, J. Kcimig, and

A. Sheth. “Microsccond resolution timers for Linux™, 1997,
http://www.itle.ku.cdu/utime/.

. L Perez, S. Scarty, D. P. Howell and B. Hu. “I would hate user

spacce locking it it weren't that sexy...™. Proc of OLS, 2004.
H. Franke, M. Kirkwood, and R. Russcll. “Fuss, futexes and fur-
wocks: Fast userlevel locking in linux™. Proc ol OLS, 2002.

. G. Chanteperdrix, A. Berlemont, D. Ragot, and P. Kajlasz, “In-

tegration of Real-Time Scervices in User-Space Linux™, 6th RTL
Workshop, 2004.
Timesys, hup://www.timesys.com/

High Resolution Timers project,
huip://sourccelorge.net/projects/high-res-timers

RedHawk Real-time Linux, hup://www.ccur.com/

Enterprise Real-Time Management System (RTMS),

hup://www.fsmlabs.com

. Gerstlauer, A. Yu, H. & Gajski, D.D. “RTOS Modcling for System

Level Design™, Proc. of DATE, 2003.

. Hey Zo Mok, AL & Peng, C. “Timed RTOS modceling lor embedded

System Design™, Proc. of RTAS, 1EEE, 2005

. Hassan M.A_, Yoshinori S., K. Takcuchi, Y. & Imai, M. “RTK-Spcc

TRON: A Simulation Model of an ITRON Based RTOS Kernel in
SystemC™. Proc of DATE, 2005.

. Yoo, S. Nicolesceu, G. Gauthier L.G. & Jerraya, A.A. “Automalic

generation of fast timed simulation models Tor operating systems
in SoC design”, Proc. of DATE, 2002.

. H. Posadas, D. Quijano, J. Castillo, V. Fernidnder., E. Villar, M.

Martinez: "SystemC Platform Modeling for Behavioral Simula-
tion and Performance Estimation of Embedded Systems™ in L.
Gomes and J. M. Fernandes (Eds.): “Behavioral Modeling for
Embedded Systems and Technologies: Applications for Design
and Implementation™, IG1 Global. 2009-07.

. Hessel, Fooda Rosa, V.M. Reis, .M Planner, R.: Marcon, CA.M.;

Susin, ALA.: “Abstract RTOS modceling for ctibedded systems™
Proc. of RSP 2004.

24. Schirner G.: Domer, R.: “Infroducing Preemptive Scheduling in

Abstract RTOS Models using Result Oriented Modeling™, Design,
Automation and Test in Europe, 2008.

. Shaout. A: Mattar, K. Elkateeb, A “An idcal AP for RTOS

modeling at the system abstraction level™, Proc. of ISMA, 2008.
SystemC, www.systeme.org

J. Schnerr, O, Bringmann, A. Vichl, W. Rosensticl. “High-
Performance Timing Simulation of Embedded Software™. In proc.
of DAC, 2008.

. R.Whilhelm, J. Engblom et all. *"The worst case execution time

problem — overview of methods and survey of tools™. ACM Trans.
Embedded Computing Systems, 2008

ARMutator. htp:/www.arm.com/support/ARMulator.html
QEMU, hup://www.gemu.org/

R. Obermaisser, C. El-salloum, B. Huber, 11. Kopetz, “Maodeling,
and Verification of Distributed Real-Time Systems using Periodic
Finite State Machines™, JCSSL, July, 2008

J. Castill, 1. Posadas & L. Villar, “Fast instruction cache modcel-
ing for Approximate Timed HW/SW co-simulation™. in proc. of
GLSVLSI'10

I Posadas. L. Diaz & E. Villar, “Fast data cache modeling for
native co-simulation™, in proc. of ASP-DAC T 1.

Lé([)zr)nputer systems science & enginecring

