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n11, i11n,.,,,,., o( c:0111pul.itio11,1/ flllW<'r in eniheddrd syst,•rns h,,s .,llowcd int<'grnting togetlwr h;,rd rc,1/-tirne tasks and rich applic,1Iions. Complex SW 
inír,,struclurc·s, 011I,,inin¡: /)()ih RTOS and (;I'( >S ª"' requircd 10 h,indlC' Ihis r:omplexity. To oplimally m,Ip sys1mI func1ion;iliIy lo lhc h,ird-RT SW dom,1in, 
lo llll' gt•n,·r.,I purpllSl! SW dllm,1i11 or lo I IW prriphc•rab, ,•ar/y µerforrn.tnce c·v,,lu,,tions ill the firsl sleps of che clesign process are required. Approxim.ite 
lim,·d co-simul.,tion h,1s hc ·c·n pmpos,·d ,,s a f,,sl solulion (or systcrn modding al carly design sleps. This co-simulation lechnic¡uc allows sirnulaling syslems 
al sp1·c·cl dos,• lo fum·Iio11,1l ,•x,n,tion, while consiclC'ring liming <'fi('C"IS. As a conscquc•ncc, syslern performance eslirnalions can be ohlained eJrly, allowing 
<'ffiC"iPnl d,·sign s¡Mn! ,•xplor,,lion ,,nd sysl<'lll rc.fi111•mc·11I. To ,,chiev(' f,1sl simul,Hion sp,�,d, lhe SW c.ode is pre-,mnot.,tpd with lime informalion. The 
,urnol,ll<'d me/e• is Ih,·11 11.1Iivdy c•xc•rntc-d, pc•rforming wh.11 is r,,ll('d n,11ivc-li,ised co-simul,1Iion. l'revious nalive-hilsed simulalion environmenls are nol 
prq>.lf<•d to modc•I nwlli OS sy,I,•nis, so tlw p1·rforrn,rnr<· <'v,1/u,1tion of tlw difí,•rent SW domains is nol possible. This pap<'r proposes a new emliedded 
sy,l<'rn rnod,•lin¡: solution, onsidc•ring du.,I RTOS/(;l'OS sy,tc•111s. A rc·.il I.inux-h,,sPd infrastruclure h,1s /icen modclc,d an intcgr,llrd into a sIate-of-1he-art 
co-sicm,l,1tion c•nvironrm•nl. llH• n·suiling solulion is c,1p,1bll' o( 111odc·li11g ,md cv;ilu,1ting all I IW ancl SW system componcnls providing Ihe designer with 
v.ilu,,bl,, i11íom1,11io11 for ,.,,rly syst<•m oplimiz,1tio11 ,rnd dPsi¡¡n ,p,1ce <•xplor,,lion.

Kc•ywonb: Co-simul.1Iion, TI M, Approxim.itdy-tin"�I, R,•,il-tinJC' linux 

l. INTRODUCTION

lncn.:asingly cn1hcddcd syslcm complcxily has allow1.:d integral• 
ing hard n:al-tinw tasks and rid1 non-RT arrlication together. 
The comhination ol' 1hese h1.:1erngc11cous concurrcnl componenls 
intcracling among thcmsclvcs makcs the sys1e111 more difficull 
to prcdic1 ami control. /\s a consequencc, more complex in­
l"rastruclurcs are required ano 1his is spcdally imponant when 
considcring opernling sysIe111s. Complcx cmhedded SW usually 
requires considering n:use ami inIcgra1ion or lhin.J party compo­
nenls, and thus, sophisticated operating systems (OS) are rc­
quin;d 11 J. /\mong complcx OSi.:s, Linux-hased <>Ses ar1.: sorne 
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or thc mosl commnnly used in emheddcd systcms. Linux is a 
free, opcn-source OS providing a POSIX-hased API. Linux of­
fcrs powcrful ano sophis1ica1cd systcrn manag1.:mcnt facili1ics, 
a rich cadre of <levice support, rcputation for rcliahility and ro­
hustncss, and exlensive documenlalion. 

Al the samc time, ekctronic dcsigns have to deal wi1h time 
conslrains. Response times, or input and oulpul ratcs make sys­
lerns lo includc rcal-Iimc charactcristics [2,3 J. As a consequem:c, 
holh design tools and platform infrastructures havc 10 hc pre­
pared f"or handling real-lime dcsigns. Howevcr, a standard gen­
eral purpose operating syslem (GPOS) as a Linux kernel cannot 
suppon haro real-lime tasks. Hard real-time tasks rcquire fa. 
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cilitics to guarantce dcadlines are always, in thc same way as 
real-time operating systcrns (RTOS) do. The use of thesc RT 
facilities result in a complete modification in the ordcr tasks are 
cxecutcd and in general in thc overall system execution. 

In onlcr to combine all requircd system capahilitics togcther 
with high el'ficien9. sorne clcctronic systerns integrate GPOS 
and RTOS in the samc proccssor. This solution allows rcducing 
the numher of processors rcyuired in the systcm, which mini­
mizcs arca, powcr consumption and pricc. Howevcr, the opti­
mization of such cornplex and flexible platíorms rcquires early 
system evaluations in order to guarantee that the resulting sys­
tcm has cnough cornputational powcr to support ali thc rcquircd 

functionality accomplishing thc spl!cilied times. 
In traditional HW/SW co-design ílows, the software devclop­

ment tcam had lo wait to thc firsl hardw,tre protolypes in order 
to verify and validate the codc. As a consequcnce, evaluation 
of th<.: wholc design was donc latc in the d..:sign proccss, requir­
ing costly re-dcsign processes whcn certain catastrophic design 
errors wcre dctcctcd (i.e. CPU utilization rcquired to he higher 
than JOO<'k). 

To oven:ome this prohlem, analytical and simulation tech­
niques havc bccn proposcd. Analytical teehniques are hased on 
static analysis or software code, considering ali possihle paths in 
the CFG (Control Flow Graph). They are usually employed to 
calculate thc WCET (Worst Case Execution Time) f'or rc:al-timc 
systcms. However, cstimations ohtaincd using WCET [281 are 
usually too pcssimistic and have to he eomplemcntcd hy simu­
lation techniqucs. 

Simulation techniques are widely useJ for hoth l'unetional ver­
ification and performance estimation. For such purpose, a large 
varicty of hardware componcnt modcls and software moJcling 
tcchniques have hccn developcd. The abstraction levcl of these 
modcls is usually a tnide-olT hctwcen requin:d speed and accu­
racy. 

Onc of thc most cmployed simulation techniyucs is the use 
of an lnstruction Set Simulator (!SS) [291. An !SS rcads the 
hinary code compilcd for !argel platform and exccutes the in­
struetions using a larget proecssor modd. However, simulation 
times are too long for cfficicnt carly estimations or design spaee 
exploration. Furthcrmore, ISS systems rcquirc the final SW in­
fras1ruc1urc, so large enginecring effort in porting the OScs is 
also required. 

A first solution proposed to reduce these drawhads it to use 
interpreters or as a hinary code translators [101. These tedmiques 
achieve shorter simulation times than modcling the ful! processor 
internally, hut at thc cost of providing less accurate results. This 
is caused hy thc rcduction of i111crnal details considcred in the 
pr0<.:essor modds. Ncvcrthelcss. 1his solution is still slow l'or 
clfü.:ient early estirnations, specially when hig Jesign spm.:es have 
to he covcred. Atlditionally. thcse solutions also rcquire high 
poning clTon. 

To speed up simulation times. approximate 1i111eeo-si111ulation 
techniques hascd on nativc execution havc hccn employcd. HW 
deseription and thc C /C + + codcs of thc cmhcdded SW are 
simulated togethcr using the facilities provided hy thc Sysll.:mC 
languagc, a C + + lihrary for systcm modcling. Using this so­
lution cmhcdded software can he direetly executed ovcr the host 
machi ne, without rcquiring ISSs or any too! eapahle of cxccuting 
target hinary codc in the hosl. To ohtain pcrformanccestimations 
of SW componcnts, application SW code rnust he instru,rn:nted 

hefore the executinn, aduing infonnation of the perfor111anee it 

is expected thc code will have in the !argel platfDrm. The infor­
malion re4uircd to make thc instrumentation can he ohtained al 
source, inlcrmcdiate or assemhly level. The SW infrastructure is 
hased on high-lcvcl modcls of the involvcd OSs, so porting effort 
is minimal ii' the OS models are availahlc. The resulting nalive 
exccution aehievt:s very fast simulation times, without rcquiring 
delaikd mndds of platform components. 

In that context. ahstract OS modcls have hccn prnposl.!d for 
fast time-approximate co-simulalion [ 18, 19, 21, 241. Thesc OS 
modcls provide hasie sc.:heduling and conununication eapahil­
ities for Systl.!lll and HW Jevcloprncnt oricnted environrncnts. 

However. thc cffocts of harJ RT facilities, which have a grcat 
impact in SW execution, are not considen.:J in tite rcsulting 
timeapproximate co-simulations. As a conscqucnee, functional 
exl.!cutions and performance estimations ohtained without them 
are potcntially wrong. 

To sol ve the previously descrihed prnhlems, the papcr prcsents 
a rnmpletl.! RT/GP OS modcl integrated in a SystemCrrLM co­
simulation envinmment. The devclopcd modcl covers the rnost 
import,rnl fi.:atures proposcd as RT extcnsions for Linux, improv­
ing performance cstimatinn, system modcling and eo-simulation 
al timc-approximate lt:vel. 

Thc paper is structuri.:d as follows. Thc ncxl section presents 
thc state of the art in two ways: OS 1111,dcling in high-lcvel 
frameworks, and hard RTirnprovcments in Linux-hascd systcms. 
Section 1 descrihcs a list of hard-RT improvemcnts n.:quiri.:d for 
cmhedded systems. Section 4 proposcs solutions to integrate 
thcse foatun:s in a SystemC modcl. Finally an cxampl.:, results 
and conclusions are prescnted. 

2. RELATED WORK

2.1 REAL-TIME ANI> MlJl:rI OSES 

St.:veral resean.:h works have enhanced tht.: real-time performance 
of Linux. f'irstly. lngo Molnar dcvelopcd thi.: real-time pre­
emption patch [41. This patch adds three main tcchnologics 
to enhance the rt.:al-timc performance of Linux, which arc IRQ 
threads, RT mutexes. and high resolution timers 151. The IRQ 
thread is a kernel lhn:ad handling top-halves of interrupts, which 
is wokcn up hy ISRs when intcrrupts oecur. In 16 l. interrupts are 
also hanJleJ hy in1crrupt servic.:e tasks whose rolc is thc same as 
thi.: IRQ threads. 

ktimers [91 and UTIME [ 101 provides opti111ized implcmcn­
lations for timcr rt.:solution in thc Linux Kernel. Suhsequently 
GcorgcAnzingcr introtlUl:cd the High-Resolution Timers (HRT) 
patch 1151. Rohust mutex implcmentali<HlS has hccn proposcd 
in f'USYN l 11 I ,mu f'utex f 121. 

Ali thesc prnposals havc inspircd the creation of dual Oss in 
orJer 111 handh: propcrly hoth real-time and gencral-purpose ap­
plications. For cxamplc, Adt.:os 171 provides a flexible cnvirnn­
rrn:nt for sharing hardware rcsources among multiplc operating 
systems. or anmng multiplc instani:cs ol' a singlc ( )S. To this end. 
/\deos cnahlcs multiplc kcrnt.:I t:llmponcnts. called drnnains. to 
cxist simultani.:ously on the samc hardware. 

The most wi.:11-known approach for adding hanJ ri.:al-1i111e ca­
pahilitics to Linux consists in t.:mht.:dding a dedicated schi.:lfuler 
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a imc<l al managing l i mc-cri t i cal tasks i nsidc t he kerne l .  Severa! 
cxampk:s can he rou nd. 

TirncSys 1 1 4 1 .  Rcd l l awk 1 1 <1 I ,  RTLinux and i ts cvo lu t ion .  En­
lcrprisc Rea l -Time Man;1gL' 1 1 tcnt Systc1 1 1  ( lffMS )  1 1 7 1  prov i <le 
Linux-hasc<l opcra t i ng systL' l l l s  rnnt ai n i ng  hoth general purposc 
an<l rca l - t i 1 1 11; d1un; 1 ins .  Rli\ 1 1  X I  startcd rn ,111 thc s,m11; .ipproad1 
as RTl . inux ,  hut uses a d i lfrrcn t i n tcrrnpt v i rt ua l izat ion tcch­
n i4uc, hasc<l on thc /\deos !ayer. 

I n  t h i s  contcxt .  t he II Y/\ DES 1 1 :\ 1  system is hu i l t  ovcr t hc 
/\deos ! ayer i n  ordcr to priori t i ze hardware intL·rrupl proccssing. 
an<l impk111c1 1 t t i te 1 1 1ea 1 1 s  of crn,pcra t ion hctween t ite RT< )S con­
l rol ler ami the Linux kernel .  Thc eorc or  the H Y/\DES rca l t i 1 1 11; 
systcm is i 1 1 1pk1 1 tcn1ed in ;111 /\deos donwin cal led DIC ( i .c .  Dc­
tcrm i n is t ic  l nlcrru pl Co11 1pu 1 ing ). c 1 1 1hod ied in a regu lar modu le 
i nsidc thc Linux kerne l .  S ince it is hased on Rl i\ 1/fusion · s  corc 
implc11 1cn1a1 io11, lhc l > IC co11 1 rol ler i 1 1 1 ple 11 1cn 1s  the prirnary and 
sccondary opcra t ion .  

2.2 I I IG II -LEVEL CO-S I M tJLATION 

/\dcquatc pc 1forn1ance cs1 i 1 11at ions are cr i t ica! whL·n des ign ing a 
lar¡;c systcm. Severa! sol u t i ons hav..: hccn proposcd. i nc l ud i ng 
WCET sol ut i 1 >n s  l 2X. 1 1  l. ISS-hascd s i  1 1 1u la 1  ions 1 29 I .i nd v i rt u ­
a l ua l i zat ion 1 10 1 ,  caeh ( l llC wi th  d i ffen:nt qua l i t ics for d i ffcn:nt 
<lcs ign sh:ps and pu rposcs. 

Ohta in ing fast. n:a l i st ic SW sys1e1 1 1 - lcvcl rn-s imulal ion has 
hccn an import. int devc lopna:111 arca in  n:cenl ycars 1 1 8-25 1 .  
Thcsc co-s imu lat ions are hu i h  o n  top o f  systcm- lcwl languagcs 
(SU.) as SystcrnC 1 2<1 1 - In thesc h igh - lcvcl s imulat ions, thc 
HW pla1 J' or1 1 1  i s  composed of approx i matc-t i mc SystemC modc ls 
of l hc I I W  rn11 1ponc11ts. Tite SW is s imulatcú though nat i vc 
cxecu t ion of prc-annolaled SW rndc 1 27 1  ( hg.u rc 1 ) . 

Thcsc work s usual ly apply surt ic il'lltly m:curatc t ime cst ima­
t ions togcthcr w i t l t  < >S modcls .  1 h >Wl'Vcr, OS modcls oricntcd 
lo HW-SW co-s imu lat ion cnv i ronments. are usua l ly  ;ihstrael or 
parl i a l  1 1 1 1 1dc ls .  Most of t hcse models are focused on schedu l i ng  
and  p rovidc a 1 1 1 i n i 1 1 1al se l  ol' l'al' i l i t ies I I X, 1 9, 23 .  2-1 1 .  Thcse 
ahs1 rac1 OS 1 11odc ls  al low lhc tasks' exernt ion order 10 he takcn 
in to account w i t l t i n  the systcm s imu lat ion, prov id ing 1 1 1uch mon: 
accu ralc resu l ls t i tan only us ing t he s tandard SystcmC fac i l i t ies. 

Thcsc OS 1 1 1odc ls do 1101 support a rea l .  crn11plc1e /\P I .  Thus, 
tite appl ica t ion code cannot he re l i ncd co111plctc ly. Thc rcsu l t i ng 
code co11 1 a ins  ahsl racl sys1e 1 1 1  cal l s, wh it:11 are nol i 1 1 1plcmen 1ed 
in t i te real OS. so addi t iunal n: l i nc 11 1enl is n:q u i rcd to run t i te 
SW i n  lhe targe l pla 1 forn1. · 1 ; ,  avoid t hcse prohlcms. JK'W models 
hascd on rea l  RTOS havc hccn proposcd 1 20 .  n l .  With t hcse 
OS modcls. SW rd in i ng hccomcs 1 1 11,rc cflicicn l .  Tite use of real 
/\P i s  makcs lhe ,1pp l i ca 1 ion code crcated d i rcc1 ly cxccu lahlc on 
the !a rgel p la 1 fon1 1 .  reducing l hL' design cffort . 

·ni dc 1 1 1011 s1rale t i te 1 1 1;1t 1 1 r i 1y ol' l i te arca. in 1 2:'í I a co11 1parison
of somc ol' lhL· 1 1 1odl'ls prcscntcd prcvious ly  is ¡wrfonned . 

Thosc n1odc l s  prcsen l  a f i na l  l im i tat ion .  /\ l though appl icat ion 
code rc l i ncmcnt i s  1 1 1os1 ly .�upportcd . l lardwarc dq1c 111k11 1 Soft­
ware ( l l dS ) . such as dr iv<.:rs. is 11 0 1 .  /\ more complclc 1 1 1odc l .  ca­
pahlc of 1 1 1anag in¡!. in lcrrupl ion hand lcrs and d rivers. i s  rc4u i red. 
/\t1e1 1 1p1s al I IW/SW intcrfoce modcl i ng havc hecn madc at the 
h igh leve ! 1 2 1 .  22 ¡. l lowcver. nonc of the previous modc ls rnn­
la ins  hard RT eXll' l lsions. 
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Summariz ing, therc is a lack of h igh-lcvel simulators capaolc 
of modcl i ng a l i  thc HW platform components i n  detail togethcr
wi th  OS modcls contain i ng harú rea l - t ime cxtcns ions. In  th is
work a solu l ion to ovcrcornc th is  l imilat ion is prescnted.

To implcmcnt thc RT modcl ing i n fraslructure in SyslemC. the 
so lu t ion proposcd i n  t h i s  papcr i s  lo dcvelop a dual GP/RT OS 
modc l ,  consi<lering thc fcaturcs from thc Hyaúcs projcct. To do 
so, thc Linux-hascd w-sirnulat ion cnv ironment proposcd in [22) 
has hccn cx tcnúed. 

Whcrevcr Times is spec i fic<l, Times Roman or Times N!.!w Ro­
man may he u sed. lf nc i ther is avai lah lc on your word processor, 
plcasc use the fon l  c loscsl in appcarance 10 Times. Avoid using 
bi t-mappc<l fonls if poss ih le .  Truc-Type I or Open Typc fonls 
are prcfcrred. Picase emhcd symhol fon ts, as wel l , for math , e le.  

REQUIREMENTS FOR REAL-TIME 

MODELING 

Soft Real - t ime tasks a re supponcd in Linux applying d i fferen t  
prior i t ics and schc<l u l i ng modes. Howevcr, 1 h i s  so lu t ion i s  not 
va l id for hard RT lasks. For cxarnp lc, dctcrmin istic In tcnsive 
Cornpu t i ng (D IC) tasks rcqu irc boundcd latcncies, re l i ab lc cx­
ccution detcrmin ism, an<l a s1ric1 priority managemcnt .  The i r  
cxecut ion quantum must no t  he sign i ficant ly pcrtu rhe<l hy  non 
rea l- t ime acl iv i ties, which cannot he ensured in that way. Time­
cri t ical data acqu is i t ion tasks requ ire a complete sel of hard real­
t ime fcaturcs. Guaran1eed low i n tcrrup t  and d ispateh la tencics 
;irc required for thl:sc l ii gh-priori ty tasks. Thus, addi t ional hard 
rea l - t ime support is requ i re<l. 

A plat l'orm capahle of mo<lc l ing rea l- t ime systcms, must pro­
v ide sol u t ions for mo<le l ing  thc performance of thc app l icat ion 
SW, the cffcct of the opcra t i ng systcms and thc HW platform. 
Modcls of the H W  platforrn at mu l t ip l c  lcvds of ahst raction 
can he f'ound in lhc l i tcraturc, so th i s  work is ccntcred on SW 
rn<le modc l i ng ami OS modcl i ng. SW codc model i ng rcqu i rcs 
cons iúcri ng thc cxccut ion t imes o f  thc cross-compilcd co<le i n  
thc targct p la1 1'or111 an<l thc dclays produced h y  cache m iss-:s. 
Al  thc samc t ime ,  OS rnodcls must inc lude general-purpose and 
rea l - t ime add i t ional support. Thc RTOS modc l i ng  i n frast rucwrc 
dev..: loped i n  th i s  paper ex lcnds a prcv ious Li nux  OS modcl w i th  
a ncw RT supporl .  a l low ing lhc  coex istcncc of hot h OScs. Thus, 
it is possi hlc 10 contro l  thc i n tcrrupl managcmcn t  i n  a RT way 
an<l l hen lo m in im ize the latencies (Figure 1 ) .  

To prov idc adequalc har<l-RT add i t ional support. t he  fol low ing 
points must he cons idcrcd :  

• /\ hard RT suhsystcm must cocxi sl on  thc same hardware to­
gcthcr w i th  l he general purposc OS kernel and appl icat ions.
Thc cocxistence must also a l low casy migrat ion of cx is t i ng
rea l- t ime appl icat ions ovcr thc new hard-RT kernel .

• Low-prior i ty in lerrupl hand lers can orig i na l l y  preempl
h igh-priority t imc-cri t ical lasks, i n t roduci ng unhou ndc<l la­
tcn¡;ics. Thus. a ncw in lerrupl con t rol musl be crcated to
i nterccpl, mask and priori l izc thesc i n terrupts propcrly.

• Sorne non RT cx i st ing OS scrvices nced 10 he rc­
imple111c11 1e<l to ensurc houn<lc<l latcncics and m in i  mal j i t­
ter.
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Annotated 
B

SystemC models 
1 

A nnotatcd A pplicat ion S W 

1 application 
1 Peripheral 1SW (C/C++) model RTAPI 1 POSD< API 

1 1Bus rnodel RT OS 

1 Original non-RT OS 

. . j Memory j j Peripheral 1 model model lnrcrrupr Con1rol 

Host computer �, 
HanJwar.: pl;11for111 

1 

Fi¡.:urc 1 SyslcrnC-hascd high-lcvcl co-simula1ion and archi1.:c1urc uf 1hc OS mod.:I rmposcd. 

• System tima precision must he upgra<le<l for ti111e-<.:ritical
tasks.

• Additionally, new system <.:alis ar1.: required lo access the
new services.

An cxampk of such a scrvice is thc standard nanoslccp() l'ca­
ture. Its timing precision depends on the pcriod or lhc systc111 
tick. Sincc lhc system tick period is usually or lhe ordcr of 
milliseconds, exact real-time sleeps cannol he ensurcd. 

As the original OS modcls a son. hul not a hard real-time 
systern, iL wi 11 he rel'em;d 10 as "non-RT" inl'rastructun; in the 
following 10 simplify the texl. The new RT extension will ht: 
cullcd the "RT" infrastructure. 

4. CODE CHARACTERIZATION

In ordcr to model the performance ol' the application SW. execu­
tion times and cache operalion details are added lo the original 
SW coc.k, to transform lhe fum:tional host execution in an ac­
curate native simulation modcl. To do so, instrumentation has 
hccn used. Ins1ru111cn1a1ion is a well-known tcchni4ue whid1 
is usually employe<l to provic.Je extra functionality to a certain 
upplieation code. This annotated software is communicated in 
runtime with 1he cache modd and the simulation time manager, 
so SW exccution limes an<l hit/miss rates are eslimatcd. 

To accomplish this l,tsk, it is nccessary lo pcrform a previous 
chaructcrization ol' hasit: hlocks in h:rms of timing and t:achc 
hchavior. Basic hlocks are ic.Jcntitiec.J an<l the number of instruc­
tions and cache lint:s pcr hlock are t:ak:ulated and annotaled. 
Differcnt works at assemhly level, intermediate level or sourt·c 
kvd have heen proposed over the tasi years for oht:.tining that 
inl'ormation. Among them, assemhly leve! proviues the most re­
liahle characterizatinn an<l thus, it has hccn used in lhis work. In 
fact, a hyhrid lechnique is proposed: while hasic hlock iuenlili­
ca1ion is perl'ormed at source leve!, t:haracterization is ohtained 
frorn assemhly code. This str:itegy simplifies thc characleriza­
tion process and spccds up the analysis lime. f-igure 2 shows an 
ovcrview or the t:ache cstimation process, including hasit: hlock 
characterization. 

Due to the rich syntax oi' source cmks, a C / C + + code parser 
has h..:en dcvcloped. so 1he c.liffcrcnt clt:rnenls ofthe language arc 
easily identilied: declarations, stalemenls. exprcssions. etc. Thc 
parser is based in a C/C++ grammar ror Bison. The key concept 
in hasic hlock identilication at source lcvel is inscrting specilic 

:.J,h..; •_; • lo. 

j• .. r•,•., ¡',,V 

I 
' , ry-•! ,, •• ,,.,11.,, ' 

\ C,,.10 / 
'--·- ·· --__.• 

------ - ---

1/? �.�-;�;�:] 

( ,, .... ,;,-1.. ) 
-...... -----··-·/ 

r; ,.:i-.,•,1<,! .. 111·,1 
1 h ·.r, 1rw,.,o,, ,,,�, 

,---

( ,,,.., ·1o�ri':'"'1 ) 
\ l.,l'lt· 
' �-·· ----· __ ,, 

r�:..,_.,._ �
7

.::j· í ' 1 
.•. - - .,· . ., ... , •• <:,,., ... , 
r. .. •h•,-.'¡)',!,•I 

···--·---· 

Figure 2 Complt:rc cs1i111arion pnx.:c."'is. 

PJ for (init: cond; step) 
¡ P2 

body: 

P3 } P4 

mark _Pl: 
init 

.L2: 
cond 

bcond .L3 
mark_P2: 

body 

1114rk P3: 

. L3: 

step 
b .L2 

mark P4: 

Fi�un, ] Markcd c•Klc and cquivalcnl assc111hlc. 

marks al the hcginning anú thc cnú of each hasic hlm:k. This 
marked c.:oúe is thcn cross-co111pilecl. so lhe marks in!roduced 
are prescrvcd in the targel a,scmhly 1:ode. This proccc.lure guar­
anlces tlwt thcr..: is always a dircct corrclalion helween source 
and ass1:111hly hlods. Thus, lhc main queslions are: whal lypc 
of marks should he inscrled, and where should they he insened 
within sourcc code'! The adopted solution is lo lak1: advan­
tage or C/C ++facilities to mix asscmhly instruclions within 
sourcc code wi1h the asm se111en1:e. /\sm volatilc sen1e11ces are 
pr..:serveu after cornpilation. so 1hey are easily identified in the 
targct asscmhly codc. /\dditionally, lo kcep the hehavior of the 
original codc. the asm ins1rue1ions insertcd consist simply of 
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lahels. Thus, inserted marks looks as: 

'asm volatile(' 'mark_xx: '')' 

/\ second oecision to he taken is wlu.:re the marks must he 

placcd. As stated hcforc, niarks should Jcli1nit cm.:h hasic block 
at sourcc lcvcl. Thus. cach C/ C + + statcmcnt rcquires a custom 
analysis. i\s an exampk, the · for' st.llcmcnt nceds four marks, 
which are inscrtcd al the kcy points P 1, P2. P] ano P4. n.:pre­

sented in Figure]. Markcd codc is then cross-compi!l.'.J for thc 

target rroccssor. Thc «..:ross-compilation process considers ali 
possihle opti111iza1ions. The n:sullanl optimizcd assrnihly codc 
with equivalcnt lahcls is also shown in Figure '.l. 

The numhcr of instructions of each hasic hlock is easily oh­
lained fron1 !he assemhly «..:ode. L2 and L] are system lahels 
inserteo hy the rnmpiler 10 itcratc aml exil 1he loop. rcspec­
tively. /\llhough crnnpikr optimizations may alter the Control 

Flow Graph (CHi), lahels are preserved in thc same on.Jcr since 
lhcy have hecn declared as volatilc. The outpul of this process 
is a tahk with hlo.::k/instruction p,1irs. This tahlc is uscd later to 

d1ara«..:1eri1.e cach hasic hlod in terms of times and cache lines. 
lnslructions and data cache modeling n.:quin.:s also slatie in­

strumental ion, annotaling the cache lines requin.:d on ea«..:h hasic 
hlock, ami the corresponding accesses to lhe cache model ror 
diccking if thc lincs are already in cache or acccsscs to the main 
memory arc requireJ. More infornwtion ahoul cad1c mo<lcling 
can he found in 1]21 ,tnJ 1331. 

Comrilcr opt imizations may alleet hoth inlra-hlm;k and inh.:r­
hlock hchavior. lntra-hlock o¡iti111i1.a1ions arc rnnsidercJ in the 
charactcri1.ation of the hloeks rrnm assemhly codc. This asscrn­
hly eode ¡¡(rc,1dy includcs hoth front-cn<l anti hack-cnd or1i111iza­
tions. lnter-hlock optí111i1.ations are considere<.! hy dcli111iting the 
hasie hlocks at source lcvcl. Ncverthclcss. thcrc are somc com­
piler optin1i1.ations whid1 eannol hc accura1cly considcreJ with 
this techniquc. Loop unrolling replicatcs thc hody of a loop 
slatement in thc asscn1hly eode, hut frolll source ¡mini of view it 
is a unique hlock. 

Ncvcrthcless. wc think that this is a vcry fost. easy anJ portahle 
way or ohlaining sunicicntly aernratc estimations for !he first 
stcrs of the desig.n proccss. whcn the platform. the HW/SW par­
til ion, resourcc alloealion. cte. are hcing explored anJ deeideJ. 
/\t lhc heginning of thc dcsign process. thc HW ami SW codes 
arc usually not the colllplctcly optimi1.cd final ones. Thus, iflhe 
codc use for thc modcling is not the final one. il can he consiJ­
ereJ lhat thc cllecl or thesc optimíza1ions will rcsult in an error 
similar or larg.cr 1han 1he crror prnvoked hy !he use or volatilc 
murks. Su1111llari1.ing. for carly mmli..:ling. speed ami llexihility 
are 11111ch more illlportant al this level than 100',1, or aecuraey. 

5. GPOS MOl>ELING

The modcling of a gcneral-purpose operating. systcm n.:quircs 
modcling parallelism. eoncurrency anti other serviccs for com­
munication. synchronization and timc managcmenl. For imple­
menting thcm. the l'OSlX standard has heen followcd. 

5.1 MODELING PARALLELISM OF SW 

TASKS 

Parallclism is modelc<l by using the SC_THREAD process of 
SystemC. Thercforc, hoth POSIX processcs and threads are 
modeled in thc same way. Thus, thc lihrary implcmcnls the 
rcquired actions thal givc cach elcment its own characlerislics. 
The characterislics or processes anJ threads are Ioaded in a list 
when they are crcated and these paramctcrs can be mooificd dur­
ing simulation using thc methods the POSIX standard Jcfincs. 
However, modcling thc capahilities dcrivcd hy thc use of scpa­
rate memory spaccs in SystcmC is not straightforward. 

In ordcr to enicicntly support dynamic thread creation, a 
thread-pool is initializcd when thc simulation starts. This pool 

has a preddined numhcr of SC_THREADS (thc numher can he 
moditieo in the souree coJc) whieh are maintained in a hlocked 
statc. During simulation, when a ncw thread is declared, a thread 

from the pool is resumed, and stope<l again whcn its functionulity 
is over. Thcn. !he threads can he rcuscd. 

5.2 MODELING THE SCHEDULER 

Although SystemC provides concurrcncy support, scheduling 
is not considercd. The SystemC undcrlying kernel activates in 
ead1 cyclc ali thc threads that are not hloeked, without any cun­
sideration ahout prioritics or policics. Thus, a schcduler has 
hecn plaecd on top of 1he Sys1cmC kernel to ensure that only 
eme thread is cxccuted in each processor al a time. This sched­
uler cnsures that ali threads n:main hlocked, cxccpt the onc with 
thc grcatcst priority, which is unhlocke<l. In fact, one thread is 
unhlocked per proccssor descrihcd in thc system. The threaJ 
exccutes thcn until a servicc from the operating system, such as 

a semaphorc or a mutex, makes it to he hlocked again. At this 
time the schcdulcr unhlocks thc next task to exccutc. 

Each cxccution has two parts. The íirst one is the functional 
exceution, and the sccond onc is the temporal cxccution. That is, 
1he code is cxecutcd in zero time (in thc simulatinn) and thcn thc 
thread is slepl to take up the corresponJing time in the proccssor, 

thc time annotated in the sourcc codl!. This time is applicd just 

when a systcm call is pcrformed. As a conscquenee. this place­
menl in time is produccd hcrore inter-proccssor communicalion 
and synd1roni1,ations are madc. lf Juring thc timc the thread is 
skpt. another proecss with higher priority is awokcn. it is exe­
euled. to the other process is informeJ ahout that precmption. 
Thus it has to wait to hc scheJulcJ again hcfon.: entering the sys­
tem eall. As a rcsult. whcn a communic..:ation is madc, thc stalc 
of hoth processcs is corrcct. 

Howcver this approach docs not mmlcl prl!cmption correctly 
as a SC_THREAD is cxecutcd unlil a wait statement is rcaehed. 
In orc.ler to modcl prcemption aocquatcly, thc "wait" function 

uscJ to sleep thc thrcaJ anc.1 modcl thc cxecution timc auto­
matically returns when another proccss is aw¡¡ken. Thcn, thc 
remaining time is savcd anJ thc process waits for the scheduler. 
Whcn it is resumcd. the rcmaining time is waited ano then thc 
process can continuc. In Figurc 4. an cxample is used to show 
the resull whcn using thc proposcd solution. 

In this example, lask I executes !he SW co<le until the ncxt 
system calls. At the enJ, the timc accumulated dueto executiun 
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Figure 4 Prcc111p1ion 111odcli11g. 

of severa! hasic hlocks is 75us. Then, a "wuit" function is calleo 
for that time. Howcver, at T=25 us, 1ask 2 is awaken, and task 
1 has to he prcempted. To model thal, Lask I is resumed, it 
calculates tha15Ous remains 10 he wai1ed and moves lO a hlocking 
slatc. Task 2 cxecules, anJ when i1 finishcs, task l is schcdule<l 
again, and it waits for the 50 us. But, again il is preempted. 
rcmaining 20 us. Thus, the process is repeated again, until all 
tht: time is expected, and thcn thc system e,dl can he performed. 

This modcling solution docs not modify the SystemC kernel. 
l1 is hase<l on the use of "wuit()" and "notify" SystemC primi­
tivcs. 

5.3 POSIX Interface modeling 

POSIX servi<.:es are provided hy the GPOS modcl in thrce dif­
fcrcnt ways. Sorne of thcm use the underlying host functions, 
others are complctely new, anti 1hose Lhat dercnd slrongly on 
the hardwarc platform havc 10 he adartcd LO modcl corrcclly its 
pla1fúrm-dcrcndcn1 functionality. 

lfthe OS of the host comru1er is POSIX hased, such as UNIX 

or Linux rlatforms, sorne of thc host POSIX fu11ctions can he 
rcused. These funclions are hasically 1hose thal are platfonn 
independenl. Malhemalical functions, string munagcmcnt, ele., 
maintain thcir functionality in every pla1form and they do not 
interforc with Lhc schcdulcr or Lhe parallelism capahilities of thc 
system. Thus, Lhcy can he used to rnodcl, al lcasl, Lhc platl'orm 
functionality. To indude thc timing co.�l, these funclions are 
wrapped inlo ncw functions 1ha1 take in10 accounl thc Lime 1hc 
function will take in thc final processor. 

The sccond group of the API fonctions is composed of lhosc 

facilities thal allow lhc <lcsigncr lo inlcract witlt tite clemcnl8 
Lhal have hccn implc111en1eJ in Lite software cxeculion support 
dcscriheJ. l\1rallclism, schcduling, com111unica1ion, synchro­
nization and liming lcaturcs are co111plc1cly platform depcnden1, 
so new implemcntations on 1or or thc SystemC services has hecn 
devcloped. 

The lusl group of POSIX API functions is composcd of those 
functions whose implementation is strongly dcrcndcnl on the 
har<lware platform. Thus, a general platl'orm execution support 
111odel is not possihle. Sorne cxamples are th<.: 1/0 functions, 
which strongly dcpcnd on Lhe systclll drivers, so the implcmen­
lalion cannol he r<.:usahlc on differenl pl:11forms. lnstead of Lhal, 
modcls 1ha1 allow !he designcr 10 simulate thc functionality are 
providcd. 

Ad<litionally, as n.:4uireJ hy the POSIX standard, docks for 
each pro<.:ess and 1hrcad, and l'or thc wholc simulation have heen 
implc1rn.:n1cd. Timers. :-.Jeep facilities and alarms are <ldined hy 
using these docks. The values of 1he clocks are updalcd and the 
cxecution Lime es1in1a1ed for each ende segllll'lll. The a<.:tions 
of Lhe clemenls dcclarcd over the111, are executed hy udding the 
lime cad1 evcnl will take lo the evcnts lisl of lhc schedulcr. 

The de111en1s 1hat dercnd on Lhe real-lime doek of lh<.: systcm 
havc hccn i111plcmcnted in a diffcrenl way. Wi1h 1his purrose, a 
SC_ THREAD has hcen JcfineJ 1ha1 is slert 11n1il Lhe next evcnt 
of thal dock is rcquin:d. 

Finally signals havc heen modelcd as dclined hy lhe POSIX 
standard. Thc signa! manager can ac<.:ess the scheduler lo allow 
ali hlocking co111111uniG1Lions Lo i111ple111en1 signals 1ha1 mean 1ha1 
a 1hrcad can he stopped or unhloekcd indepen<lently of lhc cause 
that rrodu<.:c<l 1his hlockagc. /\n addilional SystemC lhread is 
used hy thc signa! man,1gcr lo cxcculc the at.:lions related lo 
dclivcrcd signuls. since no 01hcr prm:css can exccute them. 
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6. HARD RT OS EXTENSION MODELING

IN SYSTEMC

Once modeled the POSIX standard in order to provide an GPOS 
modcl, thc extension devcloped to support RT characteristics 
hused on the Hyades implementalion cun he presented. In the 
real i111plemenlatio11, the twD operating systems un: placed to run 
in the same computer over an Adeos infraslruclure. Iloth OSes 
are mainly independent, with memory separatiDn and difláent 
task anti resource control. Thus, if a task needs to migralc rrom 
Dne OS domain tD the olhcr, it is necessary 10 have two lask 
control iníraslruclurcs, one on each OS, synchroni1ed in some 
way. 

To create an efficient OS nmdcl, a dillercnt approach is used. 
Both OS dornains are execuled within the samc mcmory arca 
in thc sarne host executahle program. /\s therc is no physical 
separalion hctwecn thc OS domains most or the resources and 
inl"orrnation can he sharcd hetween the two domains. 

To creatc the new OS modd, thc original OS modcl has hccn 
maintained, ;1dding a new hard RT OS infrastructure. TD allow 
easy use oJ' hoth environmcnts. modilications are hiddcn to the 
uscr as much as possihle. Thc uscr can program the SW code 
in thc sarne way, indcpcndently of which OS domain thc task 
is in cach time. Only the runctions for moving tasks from onc 
domain to the other must he explicit in the code. 

To changc lhe domain the application mus! makc a system 
call. The function namc in the mrn.Jel h;is maintaincd thc corrc­
sponJing Hyadcs namc: pthrcaJ_migrate_rt (Jomain). 

RegarJing the original OS modcl, threc interna) moJilie:itions 
havc heen arplicJ: 

• Schcduling inl"rastructun::s h;1vc heen intcrlcaved creating
;i single sche<luler. Whcn ;i prrn.:essor is rclcascJ ora task
is awokcn, lasks of lhc harJ-RT domain are sclec1ed firsl.
ami lasks of thc other domain later. This cnsurcs cor-recl
selcction ordcr.

• lntcrrurts are shielded ¡11HI launchcd hy thc schcduling sys­
te111. 'li> do su, intcrrupts have associateJ prioritics. Wh..:n
a task of the RT domain with high..:r priurity is running.
intcrrupts are dclayeJ.

• Original systcm cal Is havcs hcen wrappcd. Thc OS modcl
that 111us1 providc lhc scrvice is sclccteJ in thc wrappcr.

The new hard RT cxtcnsion covcrs most of thc hard RT im­
provc111cn1s prescntcd in scction 11. In fact ali the extcnsions 
considcred in the I lyacks ( JS havc hcen implcml'nlcd. 

Thc requircd mechanisms used to allow thc cxecution of hoth 
OS Jrnnains can he su111111arizcd in thn:c arcas: thc modl'ling or 
the lwo ( >S do111ains and their intt.:ractions. thc ink�rrupt 111odcl­
ing. and th..: additional rcatures for RTsupport. espL'cially latency 
and jitter rcduetion. 

6.1 OS DOMAIN MODELING 

To allow hard RT tasks to he i ncl udcJ whi le 111:ii 111:iining the prc­
vious opcration mode intact, two OS domains have hcen mod­
elcJ, following the real Hyades implcmcntation. Howevcr, the 
overhead causcd in the real syste111 hy running two compktcly 

different OS domains has heen minimized in the moJel. Using 
separate OS models implics that the act of moving tasks from one 
10 the other is very complex and time consuming. Ali the task 
information must he duplicated and the copies must he stoppcd 
and resumcd depending on whieh domain the task is eurrently 
rn. 

Thus, Lhe proposed solution is to crcatc a ncw infrastructure for 
lask schcduling and intcrruption control, maintaining the original 
OS motlel infrastruclurc as far as possihle. Thus. the extended 
OS has two scparate infrastructures containing the implcmenta­
tion or the system calls. Howcvcr, thc clemenls for task man­
agcmcnt, such as task crcation and des1ruc1ion, schcduling and 
preemplion mcchanisms, are shared. Ali tasks are created and 
destrnycd as non RT t:isks. RT operation modc is only rcachcd 
when calling thc migration systcm cal) al run-time. 

Thc schcduler considers two lists of tasks, eme for the tasks in 
the RT domain and thc other for the tasks in the 11011-RT domain. 
When a ncw task is required, the first list is accessed. lf thcre 
is no lask rcady, the second lisl is used. Thus, migration only 
requires changing the list where the task is and modifying the 
internal task status value whcre thc current domain is indicatcd. 

To control rn:emptions, intcrrurt handlers are not launchcd 
automatically. Handlers are motlcled as high priority tasks and 
aJJ..:d 10 thc scheduler. When an interrupt is received, a pre­
cmption evcnt is always raiscd, making the currcnt task call the 
seheduler. However, when the curren! task is a RT one and has 
highcr priority than lhc interrupt, it is sclccted by the schcduler 
and it can continuc. Thus, pn.:cmption <loes not really occur. 
Furthermorc, in this case thc time cosl associated with schc<luler 
cxecution is not addcd to thc simula1ion time. As a conscqucnce, 
no traces of prcemption are included in thc model. 

This solution cnahles hoth rnodcls to he handlcd together, in 
a simrlcr way than in the real implementation. 

The cxccution ílow of a l.ask is as follows: 

• AII tasks start as 11011-RT lasks, running under the original
OS domain.

• Wh..:n il is neccssary to entcr a real-time section, the task is
moved to the RTOS domain, ch;inging the list whcre it is.

• Finally, when the RT scction tinishes, the task rnust rcturn

to thc non-RT domain.

• When a task is destroyed in a RT section, il is automatically
moved to thc non-RT domain and thcn destroyed.

As a conscquence, the schedulcr has heen extended 10 cover 
the ncw tasks' states. New states for the RT tasks have heen 
addcd to thc original non-RT scheduler slates (Figure 5). The 
original non-RT OS rnodcl eonsidcrs 7 statcs: Crcated. Rcady. 
SupcrUser, W:iiting, Uscr, Blocked & Zomhic. The new RTOS 
domain only considcrs 3 states: Exccuting. Blocked and Ready 
(Figure J). Thus, a RT task has two states, one for thc RT dornain 
and onc for the non-RT domain. 

When a task is moved from thc 11011-RT to the RT domain. the 
task is moved to Blocked in the non-RT dornain, and moved to 
Exc..:uting in the RT domain. 

When moving from thc RT to the non-RT domain, thc opcr­
ation is similar: the task status in thc RT domain is moved to 
rnocked. and its status in the non-RT domain 10 Rcady. In that 
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Figure 5 Sy�1cmC-hasi;<l high-lcvcl co-si111ula1ion. 

if( (11ext_task = RT_scheduler()) == NULL)( //New code 
next_task = mmRT_sclteduler(): 

JI/ Newrnde 
res11111e ( next_wsl.: ); 

Figure 6 Sys1cmC-hascd high-lcvcl co-sirnulation. 

way, ali tasks are at !casi hlockeJ in one ofthe Jomain lists. This 
avoids hoth domains considcring thc samc task to he exccutahle 
at the same tim..:, thus ensuring corree! task scheduling. 

To model the execution of hoth schedulers, the scheduling 
control in thc original OS modd has heen minimally moJifieJ. 
Thl.! cal! to the scheduling runction has hccn rcpl,1cetl hy a two­
step process (Figure 6). In thc ncw co<lc thc sche<lulcr first 
search..:s for a task in the RT list. Jf a RT task is scheduleJ, thc 
task is resumed ami the non-RT list is not used; otherwise. the 
non-RT list is called. 

6.2 DUAL INTERRUPT SUPPORT 

lnterrupts are one or the most importan! risks ror hard real-time 
systems. In a common OS, interrupts are unpre<lictahlc. They 
pre-empt the currcnt task withoul considering i1s priority and can 
provokc priority invcrsions. Thus, thcir m.kquate managemenl 
is critica! for a RT OS. To solw this prohle111, a douhlc inlerrupt 
management 1..:vcl has hecn integratcJ in the new OS model. 
First. the interrupl is proccsscd hy thc RT in1crrupt control. lf a 
RT handlcr has been associate<l lo this intcrrupl, il is launchcd 
cunsidering the handlcr priority and the priority of the lasks in 
the RT domain. lf a task with highcr priori1y is running, the 
interrupl is JclaycJ until no tasks with higher priority are rea<ly. 
lf thcrc is no RT han<llcr for thc receiveJ intcrruption, thc IRQ 
is dclivered to thc original non-RT infraslructure, an<l manageú 
as usual. Sinci; ali RT tasks are manage<l in the RT úomain. the 
original non-RT inlerrupt management can he maintaincJ. 

To impkment thc douhle-levcl int1.:rrupt control. the original 
OS function in charge of the interrupl reception has heen 111od­
ificd (Figure 7). Firsl, thc presence or not of a RT handlcr is 
verificd. Ir not, a non-RT handler is cal leJ. 

To control systcm latcncy and jiller. thrce main si;rvices are 
providcd: high-prccision syslcm ticks. systcm call imperson­
ation ami ncw scrviccs. 

ij( 11w1wge_rt_irq ( irq_11u111her) == 0)/ //New code 
11w11age_irq ( irq_1111111her ); 

JI/Newcode 

Fi¡:urc 7 Sys1c111C-lx1,c<l hi!!h-lcvd co-si111ula1ion. 

When any tima fcalurc, such as a timcr. limeoul, ,darm or 
sb:p, is us..:J. ils accuracy <lepenJs on lhc systelll tick period. 
Timcr fcalures are 111anagcJ <lepending on the tick inlerrupts. 
Thc OS is nol capahlc of considcring continuous 1i111c aJvancc. 
ll only im:r..:ascs thc clocks each time 1hc twrtlwarc timcr indi­
cates a n..:w p..:rio<l has clapscJ. Considcring 1ha1 con1111on ticks 
have a p..:rioJ of millisccon<ls, time a<lvanccs of 111icroseco11Js 

or nanoscconJs cannol he acc.:ura1cly managcJ. The system tick 
perioJ cannot he casily rcduceJ. hecausc lhe managcmcnl of ali 
the timi; fcatures lca<ls to the interrupl handling requiring a sig­
nifican! time. Thus. a m.:w tick stric1ly for real-time opcrations 
is require<l. /\s fcw real-time fca1urcs are exp-:ucJ to he use<l 
simultan..:ously. the intcrrupl managcmenl l.1lcncy is very low. 
Thus, 1hc RT tick imcrruption c,tn have a vcry low period with­
out dramati..:ally increasing the syste111 overhea<l. Thc tick 1i111er 
implcmentcJ is an a-pcriodic one. Th..: frequency is sel with a 
uscr function. Each tinw the interruplion is raiscd. 1hc interrupt 
hanJkr mus! he n.:anneJ. 

The seconJ roinl to he considcre<l is system call i111person­
¡11ion. Some of the POSIX funclions 111anagcJ hy thc non-RT 
infraslructure can ret¡uire spedal 111anagcment when useJ within 
thc RT Jomain. Thcsc functions covcr task stalc changcs and ac­
curatc tirm: managcmenl. Acccsses lo mutcx, fifos, semaphorl.!s 
ami othcr cornnrnnic,llion channcls usually hlock and unhlock 
1asks. Whcn a task unlocks a mu1cx, anolher task hlockeJ in 1his 
mulcx is unhlockcJ. This produces inconsislencies whcn using 
the douhlc Jo111ain. Whcn unhlocking lhc muh.:x, the function 

in thc original OS modcl movcs thc lask slalc frorn Blocked 10 
ReaJy (in the non-RT domain). However, if lhe mulcx cal! is 
done whcn thc task is in RT domain, thc orcration is incorrecl. 
Instea<l of moving lo the RcaJy �late in !he non-RT Jomain, the 
stale must he mowJ in 1he RT Jomain (Figure 3). 

To sol ve this pmhlcm, 1hc function cal! musl dciccl 1hc dom.tin 
from whid1 il is calleJ anJ pcrform the corree! operalion. In 
thc proposed mo<lel. the solu1ion applicd is 10 modify the OS 
function in charge of modifying lhe lask stale. This function 
dctecls the domain whcre thc lask is anJ modifies thc sl,1le in !he 
corresponJing schedult.:r. This is easier than 111odifying ;ill the 
functions Jircl·tly. 

Furthermon:. !he nanoskcp() funclion has hcen modified. 
Whcn callcd from thc RT dornain. it uses 1he RT syslem tick 
instcad of thc common �ys1cm 1ick. Thus. !he accuracy of thc 
function is automalically increased. 

Finally. to rnanage ali this fealun:s and lo provide some ad­
di1ional HT fca1urcs, a ncw /\PI hascJ on lile l lyades DIC API 
has hcen imph.:mentcJ. Functions have hccn consiJcred for RT 
inlcrrupl managcment. RT task 111anagemcnt, RT li1ning anJ RT 
synchronizat ion d1anncls. 
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l•i¡:urc 8 Lalcnc-y and c,.:cu1ion ji11cr oí a Sys1c111C-t>a.sed high lcvt!I co-simula1ion. 

1:ahlc I Nu111hcr of c-ydcs mcasurcd and cs1imatcd. 

Numher of cydes 
Wi1hout op1i111izations (-o0) With oplimizations (-02) 

Skyeye SCoPE Error(<¼,) Skyeye SCoPE Error(%) 
Buhhle 1000 30504511 30504511 o 4010006 4510501 12,4812 

Buhhlc 10000 5200180007 5200180007 o 400120008 4001:mo11 0,0025 
Voi.:odcr 13466069 140(16581 4.45945 6599JJ0 8'.B8713 26,357 
Fa<.:torial 2747041 2996535 9.08228 1498521 1498518 0.0()02 

Hanoi 18481575 17695142 4.25523 13107284 11141209 14.9999 

Tahlc 2 Simulation 1i111cs with <.lifli:rclll conligurations. 

Skycye Proposcd technique 
Time Time 

U uhhlc 1000 01112.186s 01110.028s 
Buhhle 10000 41116.5(Xls 0m3.486s 

l'auorial 01111.07 Is ·om0.014s
Hanoi 0m9.426s 01110.043s

Yrn.:o<lcr 10 0m48.79Js 0m0.262s

7. EXPERIMENTAL RESULTS

Spce<l-up 
x78 
x71 
x76 

x219 
xl87 

To dc111ons1ra1c tite hcnclits or 1hc HT cx tcnsion propose<l thc 
original OS modd ami thc ncw cx1cndcd OS havc hccn com­
pared. This will show how !he proposcd cx1cnsions reduce the 
systc111 ji11er in onlcr to cnsun: HT capahilitics. 

Tite OS modcls have hcen tcsle<l using the f'ollowing programs 
on an ARM92<ll pla1for111: 

• La1eni.:y: Thc la1cncy lcsl 111casurcs the latcncy of thc a­
pcriodic ti111cr set al I 0kl-l:1. f'rcquency.

• Crund1cr: Measurcs thc cxccution jillcr ora co111p111a1ion­
i111cnsivc loop running wi1h or without thc RTcnvironmcnt.

Thc lcsts were run tog.cllwr wi1h some tasks modelini.t in1en-
sivc co111pu1i11g tasks ami a nctwork intcrrnpl llood. 

� 

In figure 8. wc i.:an sec 1he jillcr. Applying suitahh; cxcculion 
times lo the inlcrruptions, OS intcrnal opcrations ami consid­
ering lhc HW platfonn infrastructure cffccls. a RT 1imcr wi1h 
<lclays lcss titan 5 khz has hccn oh1aincd. This is 111ud1 more 
acrnra1c !han lhe s1andard 1i1m:r 1110dcled in 1he standard POSIX 
nwdcl, which is ;1 100 llz limcr. Thus. this cxlension cnahlcs 
thc 111odcling or more time-dcpcndent applications. 

Figure Xh also shows lhal RT cxtensions outpcrfonn Linux hy 
rcducing lhe cxerntion jillcr of an intcnsivc <law computation. 
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Without data cache Without cachcs 
Time Spcc<l-up Time Speed-up 

0m0.028s x78 0m0.025s x80 
0m2.792s x88 0ml.92s X IJQ 

01110.014s x76 0m0.012s x90 
0m0.032s x294 0mü.020s x479 
0m0.185s x26J 0m0.105s x464 

When running thc application, the cxccution lime required by 
the mo<lcl f'or this data computalion is im:rcasc<l hy ahout J.5% 
w.r.t the ideal computation time, with a maximum incremenl of
10% (Non-RT linc).

Whcn applying the RT infrastructurc, thc mean ovcrhca<l 
a<lded hy lhe OS is rcduee<l to a 1 %, hui some exccutions arc 
incrcased hy 8% (RTOS linc). This ovcrhcad is cause<l hy thc 
nctwork interruptions. Thus, whcn applying the IRQ shicl<l, 
considering that the data compulation has a high RT priority. 8% 
ini.:rcments are diminatcd, limi1ing 1hc inen:mcn1 to 2%. 

To cheá the simulation specd an<l thc cs1ima1ion accuracy of 
thc tedrniqm: proposc<l, soma.: small cxamplcs and C implcmcn­
talion of 12.2 Khps GSM Yocodcr haw hccn simulatcd. Rcsults 
ohtained with thc proposcd technique havc hcen contrastcd with 
ISS simukllion (Skycye) (Tahlcs 1, 2). 

As can he shown. thc proposcd tc<.:hniquc a<.:hicves high spcc<l 
up when compare<l with typi<.::il ISS-hast.!<l co-simulation tcch­
niqucs. 

Finally, thc rc<luetion of cnginccring cost for checking thc 
systcm in <liffcrent platforms has to hc considercd. As thc OSs 
usc<l in the tci.:hniquc are Systc111C modcls 1ha1 run on thc hosl 
co111puter. not dirci.:tly on a targcl platl'orm, minimal porting is 
rcquire<l when exploring <.lillcrcnl platforms. 
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8. CONCLUSIONS

A largc rcscarch cf
f

on in real-time extcnsions for common op­
erating systcms, espccially Linux, can be found in thc litcraturc. 
As embcddcd systems are usually RT systems, thcsc cxtcnsions 
may havc an important i n llucncc on system performance and 
must he moJcled. Currcnt high-level s imulat ion i n f'ras tructure 
consiJers modding thc OS w i th sufficient ly accurate est imation 
t imes. Thus, thesc modcls  can he extemk:d with ncw RT fcatu res. 
Thcse RT extcnsions, a l t hough affcct i ng low-l cvcl fcatures of the 
RTOS, are appl icd al thc sou rcc-co<lc lcvc l .  Thus, thc resu l t i ng 
tcchniquc improves the  simulation ti me. Thc work shows how 
nativc s irnulat ion can he accuratc cnough to model RT f'eaturcs 
of a RTOS. 

Us i ng thesc ex tended modcls, performance estimations or RT 
systems can be improvcd in  tcrms of  accuracy/spced . As a con­
sequence, the rcsul ts of des ign spacc cxplorat ion anJ systcm 
re fi nemcnt processcs, which use the proposed RT model ing i n ­
frastructun:,  cciu l d  be  o pt imi1.ed. Thc proposcd sol u tion l'or i n ­
tcgra t ing thc  RT extcnsions, is to  implcmcn t a sccond i n tcrrupt  
contro l ,  second RT schedul ing and a new set  of  user spacc func­
t ions. These ex tensions are placed togethcr w i 1h  a common OS 
modcl in order to ohtain a complete system with hoth real and 
non-real time capah i l i t ies. Nativc s imulation is a powcrfu l tcch­
nology to erticicnt ly model mul t i-OS, L inux p latforms. 

As the impleme111a1ion i s  main ly separate from the original OS 
mo<lcl and the connec t ion points have hecn c learly iden ti !ied, i t  
is possihle to app ly  thc solu t ions proposetl in this papcr to other 
s imu lat ion i n frastructures. As a fu ture work, el'fic ient modcl ing 
of platforrns execul i ng completely <l i ffc renl OSs l i kc L i nux an<l 
Win:12 are heing invest igate<l. 
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