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ABSTRACT   

Color perception in real conditions is determined by the spectral and spatial properties of objects and illumination. These 
properties are best evaluated by spectral imaging, a technique that records the reflecting spectral profile for each point of 
the scene.  Using this technique on a set of natural scenes it was found that the color gamut expressed in the CIELAB 
color space is much smaller than the theoretical limits defined for the object colors.  Moreover, the colors more frequent 
are those around the white point and their frequency of occurrence can be well described by a power law. Spatial 
variations of the spectral composition of the illumination across natural scenes were also quantified by placing small 
reflecting spheres in different locations of the scenes. The extent of these variations across scenes was found to be large 
and of the same order of magnitude as the variations of daylight along the day. These findings show that colors in nature 
are considerable constrained and that constancy mechanisms must be efficient over a wide range of stimuli variations to 
compensate for large natural variations of illumination. 
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1. INTRODUCTION  

 
The evolution of the visual system was constrained by the properties of the visual environment. Understanding how 

vision encodes these properties implies their precise quantification. For color vision the relevant data concerns spectral 
information and the way it is related with the spatial structure of natural scenes. What is the gamut of natural colors and 
how does it compare with the theoretical maximum? What are the colors that occur more often in nature? These and 
other related questions can be studied by empirical measurements in natural scenes. Spectral imaging is a technique that 
records spectral information for different points of a scene and, therefore, is the best technique to characterize natural 
stimuli to address these questions.  

Spectral imaging requires an imaging device, usually a CCD camera, coupled with a spectral filter, usually a tunable 
filter1. Figure 1 shows the spectral imaging system used to obtain the data described in this paper. The system was 
composed with a low-noise Peltier-cooled digital camera capable of a spatial resolution of 1344 x 1024 pixels 
(Hamamatsu, model C4742-95-12ER, Hamamatsu Photonics K. K., Japan), and a fast tunable liquid-crystal filter 
(Varispec, model VS-VIS2-10-HC-35-SQ, Cambridge Research & Instrumentation, Inc., Massachusetts) mounted in 
from of a lens. Each image was acquired from 400-720 nm in 10 nm steps. The spatial resolution of the system was at 
least as good as the human eye at the same distance. The spectral radiance for each pixel was estimated using the 
radiance acquired from a known gray reference presented in the scene at the time of acquisition, measured with a 
telespectroradiometer (SpectraColorimeter, PR-650, PhotoResearch Inc., Chatsworth, CA), calibrated in the National 
Physical Laboratory. The system was used to acquired spectral data from natural scenes classified in rural and urban (for 
more details on the system see 2). 

The theoretical limits for the object colors in nature are the optimal colors which enclose the object-color solid 
representing all colors arising only by reflection or transmittion 3. Colors arising from other processes, e.g. highlights, 
fluorescence, Rayleigh or Mie scattering, are not considered as object colors and may be represented outside the object-
color solid. The theory underlining the spectral properties of optimal colors was developed early in the 20th century 4 and 
the corresponding loci were computed later by David L. MacAdam 5 to obtain the MacAdam limits. Figure 2 shows the 
representation of the object-color solid for the CIE standard illuminant D65. 
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Figure 4 shows the number of discernible colors obtained with the two methodologies expressed as a function of the 
number of scenes of the database analyzed. The smooth curve represents an exponential fit to the data and the numbers 
on the graphs indicate the asymptotic values. For the methodology based on cubes the number obtained was about 
670,000. This value is less than half that obtained for the complete object color volume 9. 

 

3. DISTRIBUTION OF NATURAL COLORS 

 
The distribution of natural colors was analyzed in the coordinate L* and in CIELAB the (a*, b*) plane. Figure 5 
represents these two distributions.  The mean for L* the distribution is 40 and for the distribution in the plane a*b* was 
(0, 12), that is very close to the white point.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5. Distribution of colors in L* (left) and in the CIELAB (a*, b*) plane (centre). On the right is represented the 
fraction of discernible colors as a function of the number of times of occurrence in the natural scenes. 

 

By counting how often a particular color appears it is possible to estimate a frequency of occurrence for each color. 
Figure 5 shows on the right the fraction of discernible colors expressed as a function of the number of times of 
occurrence in the natural scenes. These data show that most colors are rare colors, that is, they can be seen only a very 
limited number of times. The form of the variation shows that it can be described by a power function. 
 

4. SPATIAL VARIATIONS OF ILLUMINATION 

 
During the day the colour of daylight changes from bluish to reddish. These chromatic changes are large and correspond 
to correlated colour temperature (CCT) changes within the approximate range of 40,000 K – 4000 K 11,12. The spectral 
distribution of the illumination also varies in space due to phenomena like occlusions and mutual reflections 13,14. Yet, 
the visual system does not seem to perceive these variations 15 due to mechanisms of compensation.  To characterize 
these variations across natural scenes spectral imaging data was obtained from the scenes of the database. Before image 
acquisition a set of grey spheres was positioned in different locations of the scenes as illustrated in Figure 6. These 
spheres were painted with a matte grey paint with known spectral reflectance. This methodology allows the derivation of 
the angular and spatial variations in each location. Figure 7 shows, as an example, the colors represented in CIE (x, y) 
diagram of the illuminant in the different locations of the scene represented. The analysis of the data from several scenes 
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shows that the extent of these chromatic variations of the illuminant across scenes is of the same order as the variations 
along the day 16.  

 

 
 

Figure 6. Examples of several scenes containing grey spheres to derive the spatial variation of the illumination. 

 

 

 
 

Figure 7. The colors of illumination represented in CIE (x, y) measured for the different spheres located in the scenes to 
the right. 

5. SUMMARY AND CONCLUSIONS 
The data described here concerning the gamut of natural colors show that a considerable part of the theoretical 

object-color volume is not filled with natural colors and therefore natural stimuli seem less demanding to the visual 
system than might have been anticipated from the analysis of the theoretical limits. To what extent is the database 
analyzed representative of the colors of the natural world? The number of scenes is limited and they were acquired all in 
one region thus it is expected to contain some bias.  However, the graph shown in Figure 4 suggests that as the number 
of scenes analyzed increases an asymptotic behavior seems to be obtained. This may mean that the scenes of the database 
represent a considerable part of natural colors. The data regarding the frequency of occurrence of colors show that 
unsaturated colors are the colors more frequent and that more saturated colors are rare. Also, it was found that most 
colors in natural scenes are rare a fact that can be described by a power law. Color gamut and frequency of occurrence 
suggest that different regions of the theoretical object-color space have different importance and meaning to the visual 
system which may imply that color vision has also equivalent non-uniform performance in some tasks.    
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