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Abstract: Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by the positivity
of autoantibodies against different aminoacyl transfer RNA (tRNA) synthetases. Morbidity and
mortality of this disease are highly affected by interstitial lung disease (ILD) which is present in about
80% of patients. In this study, we investigated possible differences in 84 immune-related circulating
miRNAs between ASSD patients with and without ILD; we enrolled 15 ASSD patients, 11 with
ILD (ILD+) and 4 without ILD (ILD-), and 5 patients with idiopathic pulmonary fibrosis (IPF) as an
additional control group. All patients were at disease onset and not on therapy at the time of inclusion.
Differentially expressed miRNAs were identified in plasma-derived exosomes, using an miRNA
PCR array (MIHS-111ZG, Qiagen, Hilden, Germany); miR-30a-5p and miR-29c-3p were upregulated
in ASSD-ILD patients compared to patients without lung involvement (adjusted p-value < 0.05).
IPF patients showed higher miR-29c-3p expression levels with respect to both ASSD and ASSD-
ILD (p = 0.0005), whereas levels of miR-30a-5p were not different. miR-29c-3p and miR-30a-5p are
overexpressed in ASSD-ILD+ patients compared with ILD−. These miRNAs are involved in the
regulation of inflammation and fibrosis through their action on NF-κB and TGF-β1. Although the
mechanistic role of these miRNAs in ASSD-ILD development has to be elucidated, we suggest that
their exosome levels could be useful in identifying patients at risk of ILD.

Keywords: microRNAs; antisynthetase syndrome; interstitial lung disease

1. Introduction

Antisynthetase syndrome (ASSD) is a systemic autoimmune disease referring to idio-
pathic inflammatory myopathies (IIMs) characterized by the positivity of specific autoanti-
bodies addressed to various aminoacyl tRNA synthetases (ARS) [1], and by the occurrence
of the classic clinical triad arthritis, myositis and interstitial lung disease (ILD) [2]. Of the
different ARS, the most common is the anti-Jo1, reported in about 70% of cases, whereas
the anti-EJ, anti-OJ, anti-PL7, anti-PL12, anti-KS, anti-Zo, and anti-YRS/Ha antibodies are
less commonly detected [3]. Diagnosis is often challenging, due to the lack of established
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and shared classification criteria [4], and the occurrence of incomplete forms of the dis-
ease [5]. ILD is the most common and most prognosis-influencing manifestation of ASSD,
reported in up to 80% of cases [3]. The treatment of ASSD-ILD relies on corticosteroids
and immunosuppressants such as cyclosporine, tacrolimus, rituximab, and mycophenolate
mofetil [6].

By considering the complexity and centrality of ILD in ASSD, the identification of
biomarkers for lung involvement is crucial for the optimal follow-up of these patients and
the possible identification of relevant involved pathways. Hence, in this study, we assessed
for the first time, a panel of exosome-derived microRNAs, selected from the literature
search because of their involvement in immune regulation, in a cohort of ASSD patients to
analyze possible associations with the occurrence of ILD in these patients. Dysregulated
miRNAs were also evaluated in a group of newly diagnosed patients with idiopathic
pulmonary fibrosis (IPF) that has different pathogenic pathways.

2. Results
2.1. Demographic and Clinical Features of Patients

During the study period, we enrolled 15 ASSD patients: 11 with ILD and 4 without ILD.
The clinical characteristics and ARS specificities of the included patients have been reported
in Table 1. The median age of patients with ILD was 64 years (IQR 60–70 years) and of those
without ILD, 62 years (IQR 52–71 years) (p = 0.948). All ASSD-ILD patients were females
(100%), whereas two out of the four ASSD without ILD were males (50%) (p = 0.039). The
most common ILD pattern we observed was non-specific interstitial pneumonia (NSIP)
(91%), without (67%), or with (33%) areas of organizing pneumonia (OP).

Table 1. Demographic and clinical data of study subjects.

Patients Sex Age ARS Myositis Arthritis ILD Type of ILD

1 Female 76 years Anti-Jo1 − + + NSIP
2 Female 81 years Anti-PL7 − + + NSIP
3 Female 70 years Anti-Jo1 + + + NSIP + OP
4 Female 36 years Anti-Jo1 + + + NSIP
5 Male 47 years Anti-Jo1 + + − -
6 Male 54 years Anti-PL7 + − − -
7 Female 70 years Anti-Jo1 − + + NSIP + OP
8 Female 61 years Anti-PL7 + − + NSIP
9 Female 64 years Anti-Jo1 + − + NSIP
10 Female 61 years Anti-Jo1 + + + OP
11 Female 59 years Anti-Jo1 − − + NSIP + OP
12 Female 39 years Anti-Jo1 − − + NSIP
13 Female 66 years Anti-Jo1 + − + NSIP
14 Female 70 years Anti-Jo1 + + − -
15 Female 74 years Anti-Jo1 + + − -

2.2. miRNAs Expression Levels in Plasma-Derived Exosomes

We profiled the expression of 84 miRNAs (see Supplementary Table S1) involved
in the activation and differentiation of T cells and B cells and potentially related to the
pathogenesis of the disease. The data indicated that 59 of the 84 miRNAs (70%) were
detectable (assay giving Ct values < 35 in at least one patient). Because no standard reference
miRNA has been established for the normalization of exosome-derived miRNAs in plasma,
we had to first determine the normalization references. Although the miScript PCR Array
provides SNORD61, SNORD68, SNORD72, SNORD95, SNORD96A, and RNU6-6P as
internal controls, which are often used for the normalization of cellular miRNAs, these
internal controls were not useful for normalizing the levels of circulating miRNAs, since
the levels of these miRNAs were very low or exhibited a high degree of sample-to-sample
variation. To investigate the relative abundance of exosome miRNAs detected, the Ct
values were, therefore, normalized using cel-miR-39 as an external spike-in control.
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Only circulating levels of exosomal miR-29c-3p and miR-30a-5p were upregulated in
ASSD-ILD patients compared to patients without lung involvement (Bonferroni adjusted
p-value = 0.0358 and 0.0127, respectively, Figure 1).
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Figure 1. Quantitative expression of (a) hsa-miR-29c-3p, and (b) hsa-miR-30a-5p in the plasma-
derived exosomes of ASSD patients with and without ILD. Log2 transformed values. p-value
Bonferroni-corrected * < 0.05.

We reported the overall result of the 54 detectable miRNAs in Supplementary Table S2.
To evaluate the effectiveness of these miRNAs in predicting ILD in ASSD patients,

ROC curve analysis was performed for the two upregulated miRNAs in ILD patients. The
results indicated that levels of miR-29c-3p and miR-30a-5p discriminate ILD patients from
patients without lung involvement with an area under the curve (AUC) of 0.89 and 0.86,
respectively (Figure 2).
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Figure 2. ROC curves analysis of circulating miR-29c-3p, (a) and miR-30a-5p, and (b) among ASSD
patients with and without ILD. AUC: area under the curve. CI: confidence interval.

2.3. Signaling Pathway Prediction and Targets Analyses

DIANA-miRPath analysis was applied to predict the biologic targets and pathways
as well as cellular processes that miR-30a-5p and miR-29c-3p affected [7]. Eight KEGG
biological processes were significantly enriched (p < 0.05) among dysregulated miRNAs
from plasma exosomes in ILD patients (Table 2).



Int. J. Mol. Sci. 2022, 23, 14579 4 of 8

Table 2. Biological pathways enriched by differentially expressed serum miRNAs in ASSD-ILD
patients compared to no-ILD patients.

KEGG Pathway p-Value Genes

Fatty acid biosynthesis <1 × 10−5 5
Fatty acid metabolism 1.39 × 10−4 11
Viral carcinogenesis 3.52 × 10−3 52
Lysine degradation 2.19 × 10−3 18
Proteoglycans in cancer 2.94 × 10−2 56
Colorectal cancer 2.18 25
p53 signaling pathway 6.48 × 10 25
Hippo signaling pathway 0.001118592 36

2.4. Dysregulated miRNAs in IPF Patients

The levels of deregulated miRNAs were then reassessed in the 11 patients with
ASSD-ILD, 4 with ASSD no-ILD, and 5 patients de novo diagnosed with IPF. We included
IPF patients in the study in order to focus our attention on the pulmonary involvement of
ASSD patients and to possibly identify a correlation with miRNAs. IPF patients showed
higher miR-29c-3p expression levels with respect to both ASSD no-ILD and ASSD-ILD
(p = 0.0159 and p = 0.0005, respectively), whereas levels of miR-30a-5p displayed a great vari-
ability and did not differ significantly between ASSD (with or without ILD) and IPF (Figure 3).
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Figure 3. Quantitative expression of (a) hsa-miR-29c-3p, and (b) hsa-miR-30a-5p in the plasma-
derived exosomes of ASSD patients (with and without ILD) and IPF patients. Log2 transformed
values. *** p < 0.001.

3. Discussion

In this proof-of-concept study, we showed that the levels of two exosome circulating
miRNAs among the 84 that we had initially screened were associated with the occurrence
of ILD in ASSD. MicroRNAs are short, noncoding, single-stranded RNAs that target
complementary sequences of mRNA and finely regulate gene expression through post-
transcriptional RNA silencing. MiRNAs control a wide variety of cellular processes and
pathways such as cellular growth, proliferation, differentiation, regulation of the cell
cycle, apoptosis, inflammation, and immune responses. Their dysregulation is involved
in the development of a variety of autoimmune diseases, including dermatomyositis [8,9].
However, no evidence is available on the role of miRNAs in ASSD pathogenesis or clinical
expression thus far. Furthermore, besides an inflammatory response, miR-30a-5p and
miR-29c-3p also have a clear involvement in fibrogenesis. We identified miR-30a-5p and
miR-29c-3p as significantly upregulated in ASSD with ILD compared to ASSD without ILD
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with a very good discrimination power according to ROC curves. MiRNAs were reported
to play an important role in the regulation of the pathogenesis of IIM [10,11], however,
being involved in numerous processes, the precise mechanisms in which they act are not
entirely clear and will need to be better elucidated.

miR-29c has been proven to be a crucial regulator of B-cell maturation through direct
interaction with RAG-1 (Recombination Activating 1) [12], and its expression is required
for the survival of B cells. miR-29c is also implicated in the positive regulation of NK
cells cytotoxicity [13], and, through the negative regulation of tumor necrosis factor alpha-
induced protein 3 (TNFAIP3), it also modulates the activity of NF-kappa B in T cells [14].
Interestingly, miR-29c is upregulated in experimental models of sepsis [15] and ulcerative
colitis [16], thus confirming its proinflammatory activity. Moreover, miR-29c seems to also
display an antifibrotic action [17] through different mechanisms, such as the modulation of
the Fer expression [18], and the blockade of the macrophage migration inhibitory factor [19].
Both the proinflammatory and the antifibrotic action of this miRNA might justify its
upregulation in ASSD-ILD in the context of a high inflammatory response, and intense
B cell activation, possibly associated with an attempt to limit the fibrotic evolution of
the disease, but future, further mechanistic studies will be necessary to address its real
biological significance.

On the other hand, miR-30a-5p has been described as being involved in a greater
number of biological processes, sometimes with conflicting results. It inhibits the prolif-
eration and diffusion of many tumors, regulates the autophagy in chronic myelogenous
leukemia, and reduces the epithelial-mesenchymal transition induced by TGF-β1 [20]. Fur-
thermore, miR-30a-5p seems to play a double-edged role in inflammation, as shown in two
experimental models [21,22]. The proinflammatory action is supported by the observation
that miR-30a-5p was overexpressed in the noninfectious systemic inflammatory response
syndrome, and correlated with the severity of the systemic inflammation [21]. Conversely,
the anti-inflammatory action has been suggested in an experimental mouse model of acute
lung injury, in which miR-30a-5p reduced the extent of Lipopolysaccharides (LPS)-induced
damage through the increase in cell viability and cell cycle progression, the reduction in
cell apoptosis, the influence on NF-Kb pathway, and the increase in IκBα degradation [22].
Moreover, miR-30a-5p could also display an antifibrotic action by reducing Smad2 levels
in an experimental model of diabetic cardiomyopathy [23]. However, data on this matter
are ambiguous. In fact, in an experimental model of viral myocarditis, the miR-30a-5p
downregulation was linked to better cardiac outcomes, due to the reduction in the degree
of myocardial fibrosis [24]. Zhang S et al., evaluated miR-30a expression in IPF patients,
showing tha6 miR-30a could inhibit the Ten-Eleven Translocation 1 gene (TET1) [25], related
to the pathophysiology of diffuse lung disease. Another study also showed that miR-30a-5p
expression is downregulated in the bronchoalveolar lavage fluid in patients with IPF [26],
which is not in line with our current data on plasma exosome levels. However, these results
may indicate that miR-30a-5p can undergo organ-specific and disease-specific variations in
its expression, possibly due to the local balance between proinflammatory and antifibrotic
triggers. Thus, further studies are also necessary to unravel the exact biological activity of
miR-30a-5p in the context of the pathogenesis of ASSD-ILD.

4. Materials and Methods
4.1. Study Population

Newly ASSD-diagnosed patients referring to participating centers (Pavia, Italy and
Santander, Spain) from June 2019 to December 2020 were asked to participate in this cross-
sectional and prospective study. For inclusion in the study, patients needed to have been
free from immunosuppressive therapy (except for hydroxychloroquine up to 400 mg/day
for no more than 2 months, and prednisone up to a maximum dose of 12.5 mg/day
for no more than one month). All patients performed a full clinical and instrumental
characterization that included the assessment of arthritis (clinical examination with joint
count, joint X-rays, US assessment), myositis (creatine phosphokinase and aldolase testing,
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lower limbs muscle MRI, proximal electromyography), and ILD (pulmonary function tests
and diffusing capacity of the lungs for carbon monoxide (DLCO), chest high resolution
computed tomography). ASSD was defined as previously reported [2]. The Euroline
autoimmune inflammatory myopathies 16 Ag kit (Euroimmun, Luebeck, Germany) was
used in both centers for ARS determination. The patients were stratified according to
ILD presence or absence. Before definitive inclusion, ASSD without ILD should have
been followed for at least 12 months without the clinical and instrumental evidence of
ILD occurrence. In all cases, peripheral blood samples were collected during the first
local assessment. Blood samples were centrifuged at 2000 rpm for 15 min to separate
plasma/serum and erythrocytes. Aliquots of plasma (at least two) were collected into
RNase/DNase-free tubes and frozen at −80 ◦C until exosome isolation. The samples
from Santander were shipped to Pavia in dry ice. Biological samples were then centrally
evaluated for miRNA analysis.

4.2. Exosomes and RNA Isolation

Plasma was centrifuged at 2000× g for 20 min to remove cells and debris and then
the supernatant was centrifugated at 10,000× g for 20 min at room temperature to obtain
the clarified plasma. Total exosomes were isolated from clarified plasma using a total
exosome isolation kit (Invitrogen, Waltham, MA, USA), according to the manufacturer’s
instructions. miRNeasy kit (Qiagen) was used to extract total RNA, following the manufac-
turer’s protocols. The concentration and purity of the total RNA were measured using a
spectrophotometer (Nanodrop 2000, Thermo Scientific, Waltham, MA, USA).

4.3. Quantitative Real-Time Reverse Transcription PCR

Differentially expressed miRNAs in ASSD groups were identified using an miRNA
PCR array (MIHS-111ZG. Qiagen) including 84 miRNAs involved in the activation and dif-
ferentiation of T cells and B cells (see Supplementary Table S1). Firstly, reverse transcription
for the total RNA sample was performed with the miScript II RT Kit (Qiagen) following
the manufacturer’s protocol. Next, quantitative real-time PCR (qRT-PCR) was performed
using LC480 Instruments (Roche, Basel, Switzerland) in 10 µL volume. Thermal cycling
conditions consisted of initial denaturation at 95 ◦C for 15 min, followed by 45 cycles of
94 ◦C for 15 s, 55 ◦C for 30 s, and 70 ◦C for 30 s.

The deregulated miRNAs were then reassessed in the ASSD and ASSD-ILD and evalu-
ated in patients newly diagnosed with IPF by real-time PCR analysis using miRCURY LNA
miRNA PCR-specific Detection Probe and miRCURY LNA SYBR Green PCR Kit (Qiagen).

4.4. miRNAs Target Prediction and Pathway Analysis

DIANA-miRPath v.2.0 was used to predict target genes and pathways common to
deregulated miRNAs in the known KEGG (Kyoto Encyclopedia of Gene and Genome)
pathway [7]. The graphical output of the program provides an overview of the parts of the
pathways modulated by miRNAs. The statistical significance value associated with the
identified signaling pathways and the biological process was calculated by the program.

4.5. Statistical Analysis

Continuous variables were presented as mean and standard deviation, or median
and interquartile range (IQR); categorical variables were presented as frequency and
proportions. Comparisons of continuous data were made using the Mann–Whitney U
test for two independent samples of data, and with the Kruskal–Wallis test for multiple
comparisons, followed by post hoc tests. When necessary, the Bonferroni correction was
applied. Categorical data were analyzed using Fisher’s exact test. All Ct values obtained
from RT-qPCR greater than 35 were considered below the detection levels of reaction. The
fold-change for each miRNA was calculated as 2−∆Ct. Receiver–operator characteristic
(ROC) curves and the area under the ROC curve (AUC) were used to assess the performance
of the selected miRNAs to serve as diagnostic tools/biomarkers for detecting the early-
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stage ILD presence in ASSD patients. Statistical analyses were performed using GraphPad
Prism (GraphPad Software, Inc., San Diego, CA, USA), All statistical tests were two-sided,
and a p-value < 0.05 was considered statistically significant.

5. Conclusions

Data on plasma exosomal expression in IIMs are interesting but scanty and mainly
addressed to dermatomyositis [8,9]. In this context, miRNA dysregulation seems to be
potentially useful as a marker of ILD involvement in ASSD. Until now, information on
circulating miR-29c-3p and miR-30a-5p has been completely lacking in both ASSD and IPF.
Moreover, despite their action on inflammation and fibrosis being well documented in the
literature, the results are sometimes conflicting and mostly pertain to clinical conditions
not entirely similar to ASSD, such as IIMs or IPF.

It should be demonstrated if miR-29c-3p and miR-30a-5p are merely markers of ASSD-
ILD or if they are involved in its pathogenesis. To this purpose, further studies are planned
to define whether the production of the identified miRNAs originates from the lungs or
peripheral immune cells. However, independently of the possible pathogenic role of these
miRNAs that will be defined in the subsequent studies, with this current study, we first
suggested that their peripheral exosomal expression could be useful in identifying those
more prone to developing ILD.
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