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ABSTRACT 

AADL has been proposed for designing and analyzing 

SW and HW architectures for real-time mission-critical 

embedded systems. Although the Behavioral Annex 

improves its simulation semantics, AADL is a language 

for analyzing architectures and not for simulating them. 

AADS-T is an AADL simulation tool that supports the 

performance analysis of the AADL specification 

throughout the refinement process from the initial system 

architecture until the complete, detailed application and 

execution platform are developed. In this way, AADS-T 

enables the verification of the initial timing constraints 

during the complete design process. In this paper we 

focus on the compatibility of AADS-T with the 

Ravenscar Computational Model (RCM) as part of the 

TASTE toolset. Its flexibility enables AADS-T to support 

different processors. In this work we have focused on 

performing the simulation on a LEON2 processor. 

Keywords: AADL, simulation, Ravenscar, LEON2, 

SystemC. 

1.  INTRODUCTION 

Architecture Analysis and Design Language (AADL) [1-
4] was developed as a Society of Automotive Engineers 
(SAE) standard to enable the description of task and 
communication architectures of real-time, embedded, 
fault-tolerant, secure, safety-critical, SW-intensive 
systems. It is used to describe the software and hardware 
components of a system and the interfaces among them. 
The Automated proof-based System and Software 
Engineering for Real-Time systems (ASSERT) project [5] 
led to a new development process for distributed 
embedded real-time software, and a set of methods and 
tools for supporting the process. The process is based on 
separation of concerns, automatic code generation and 
property preservation. An important feature of the 
ASSERT process is the adherence of the concurrency 
model to the RCM [6], a restricted tasking model that 
enables static response time analysis of real-time systems. 

The model restricts the concurrency model to a static set 
of periodic and sporadic threads communicated by means 
of a static set of shared data objects, protected by mutual 
exclusion synchronization mechanisms. There are two 
variants of the ASSERT software process: Hard Real-
Time Unified Modeling Language (HRT-UML) and 
AADL tracks. The ASSERT Set of Tools for Engineering 
(TASTE) [7] toolset is an open source toolset supporting 
the latter. 
The LEON2 [8] processor was designed by the European 
Space Agency (ESA) as a 32-bit synthesizable processor 
core based on the SPARC V8 architecture. The core is 
highly configurable, and particularly suitable for System 
on Chip (SOC) designs. 
There is a commonly recognized need for new 
development frameworks that enable designers to perform 
efficient exploration of design alternatives and analyze 
system properties throughout the design cycle. Some 
system properties can be obtained by static analysis. Many 
other properties can only be obtained through simulation. 
In most complex cases, system simulation is necessary for 
performance analysis under real execution conditions. 
System simulation validates the correct dimensioning of 
the system, detection of locks, missed deadlines and other 
potential problems caused by the complex interaction 
among components that can be found in a real system. The 
earlier all those problems are detected, the less is the 
associated cost of correcting them [9]. 
Evolutionary prototyping is becoming a well-accepted 
development approach in Model-Driven Engineering 
(MDE) [10]. The design flow is based on a central model 
that is iteratively refined until it is satisfactory. Programs 
can be generated from this model and constitute 
intermediate versions of the product. The last model 
refined corresponds to the final system. A prototyping-
based design process is of interest to verify, as early as 
possible, the impact of deployment decisions, or the use of 
a particular HW/SW component in the system. 
In this paper, an AADL simulation methodology, now 
compatible with the RCM, is recalled. This methodology 
has been implemented in the tool AADS-T [11]. AADS is 
a simulation framework that can support prototype-based 
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design allowing the functional and non-functional 
(execution times, power consumption, etc.) verification of 
the system while it is being refined right through to the 
final implementation. AADS is based on SystemC, which 
has become a relevant standard language for modeling and 
simulation of HW/SW embedded systems [12]. The 
SystemC framework supports the seamless integration of 
HW components and an easy optimization of the 
executive platform. 
The contents of the paper are as follows. The following 
section reviews the state of the art. In Section 3, the 
previous work carried out with AADS is summarized. 
Section 4 describes how support is provided to perform 
the simulation on a LEON2 processor. Then, we explain 
the main part of this paper, which is the compatibility of 
AADS-T with the RCM. Next, a case study is presented 
and finally conclusions are stated. 

 

2.  STATE OF THE ART 

Several authors have considered ASSERT and the RCM 
in their research. Some of their papers deal with the 
ASSERT Virtual Machine (VM), the execution platform 
on which ASSERT applications run, based on the RCM. J. 
A. de la Puente et al. [13] and J. Zamorano et al. [14] are 
good examples of this. 
M. Bordin et al. [15] propose some guidelines to generate 
RCM-compliant Ada code from HRT-UML. S. Mazzini et 
al. [16] explain a MDE methodology for the development 
of high-integrity real-time systems. However using UML 
does not facilitate the low-level description of the system. 
Besides, the different views of the system use different 
formalisms, so one must modify all views on each change 
of the system to get a coherent model, hindering rapid 
prototyping. 
J. Kwon et al. [17] propose Ravenscar-Java, a high-
integrity profile for real-time Java. However we think that 
Java is not a good high integrity programming language 
due to its object-oriented programming features, its 
automatic garbage collection, and the proposed limitations 
to the extension of real-time multi-threading that cause 
confusion. 
Ocarina [10] is a tool suite that uses code generation 
facilities in Ada and C to analyze AADL models. The 
code generated is compatible with the RCM. 
After analyzing the state of the art, it follows that no 
approach uses SystemC [18], which is a recognized 
standard for modeling HW/SW platforms, with its great 
potential for integration of processors, buses, memories 
and specific platform HW. Our solution makes HW/SW 
co-design easier because of the use of SystemC. 
SCoPE [19-20] is a C++ library that extends the standard 
language SystemC without modifying it. It simulates 
C/C++ SW code based on two different operating system 
interfaces (POSIX [21-22] and MicroC/OS [23]). 
Moreover, it co-simulates these pieces of code with HW 
described in SystemC. SCoPE generates a file with this 
SystemC description of the model. 
In previous works [24-25], preliminary versions of AADS 
supporting a part of the AADL standard and its Behavioral 
Annex were developed. Now we have improved AADS to 
make it compatible with the RCM and to take into account 

the LEON2 processor. AADS-T supports RCM-compliant 
AADL simulation in SystemC, thus enabling the HW 
platform to be modeled and permitting HW/SW co-
design. The AADL model is based on Portable Operating 
System Interface for UNIX (POSIX), so it supports many 
different Real Time Operating Systems (RTOS). 

 
3.  PREVIOUS WORK 

This work is an extension of AADS, an AADL simulation 
tool written in Java, which was developed as a plug-in 
[26] of Eclipse [27]. 
AADS enables the modeling of a subset of AADL 
including the Behavioral Annex for purposes of 
implementation and simulation. The starting point of the 
simulator is a functional AADL specification without 
detailed code. For each component, the corresponding 
timing constraints are defined. This initial AADL 
specification supports the verification of the global 
performance constraints of the system based on the 
specific timing constraints of the different components. 
The AADL model is parsed using AADS and a model 
suitable for simulation with SCoPE is produced, in order 
to check whether the AADL constraints are fulfilled. 
As the design process advances and, on the one hand, the 
actual functionality is attached to the SW components 
using the corresponding source code and, on the other, the 
functionality is mapped onto specific platform resources, a 
more accurate performance estimation is performed. 
These refined properties can be added to the AADL model 
and a new model can be generated by AADS. By 
comparing the initial timing constraints with these refined, 
timing estimations, it is possible to verify the non-
functional correctness of the design process at any 
refinement step. 
AADL enables the specification of both the architecture 
and functionality of an embedded real-time system. 
AADS translates both to SystemC (see Fig. 1). It parses 
the AADL model including the Behavioural Annex so the 
functionality is translated to an equivalent POSIX model 
and the architecture is represented in eXtensible Mark-up 
Language (XML) [28]. AADS supports multiple HW 
components (processors, memories, devices and buses). 
 

 
Figure 1.   Translation process. 

4.  LEON2 MODELING 

In previous works, SCoPE admitted only some of the 
Advanced RISC Machines (ARM) family processors. The 
LEON2 processor was designed by the ESA as a 32-bit 
synthesizable processor core based on the SPARC V8 
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architecture. The core is highly configurable, and 
particularly suitable for SOC designs. SCoPE has been 
modified to include the LEON2 processor at 50 Mhz, 15.4 
Million instructions per second (MIPS) and 30.64 nJ of 
energy consumed per instruction in its processors.xml 
configuration file. It was necessary to specify the data and 
instruction cache sizes too. A size of 8192, a size of line of 
8 and an associativity of 1, considering an instruction size 
of 4 (32 bits), was considered for both. Another 
configuration file of SCoPE, meminst.xml, was modified 
to include the operation codes of the LEON2. 
The GNU cross-compiler for LEON2 used is the GNAT 
for the LEON 2.1.0 C compiler so, to be compiled, the 
source code produced by AADS-T has to comply with 
certain characteristics of little importance. 
 

5.  COMPATIBILITY WITH THE RCM 

The real-time behavior specification of ASSERT models 
is based on the RCM, a model of concurrency for high-
integrity systems that enables formal analysis of the 
temporal properties of a system using response-time 
analysis techniques. The model includes a static set of 
concurrent threads of execution, communicating by means 
of shared protected data with mutually exclusive read and 
write access, and a restricted form of conditional 
synchronization. The model is simple enough to be 
implemented by a simple, small-size real-time kernel, thus 
easing the way to the eventual certification of real-time 
systems based on it. 
Twelve properties must be fulfilled to be RCM-compliant; 
the source code generated by AADS-T obeys all of them. 
These properties are stated in an internal document of the 
HW-SW CODESIGN project [29] titled R1-4 Evaluation 
of Compliance with the ASSERT Process, written by Juan 
Antonio de la Puente and Juan Zamorano. 

Basic Elements 

There are two main elements in the RCM: threads and 
protected objects. A thread is the basic unit of execution, 
which can be executed concurrently with other threads on 
a single processor. Protected objects are an abstraction of 
shared data, synchronization, and interrupt handling. 
There are a static number of threads and protected objects. 
Therefore, threads and protected objects can only be 
created at system initialization time. 

RCM 1: A real-time system consists of:  

• A static set of N threads, =Τ { i τ }, i ∈  1..N. 

• A static set of M protected objects,          

=Ο { i θ }, i ∈  1..M.  

The set Ο  may be empty (M = 0), in which case the 

system is said to have only independent threads. 

In the source code generated by AADS-T all the threads 

and protected objects are created calling pthread_create 

and as objects of the corresponding classes respectively at 

system initialization time. 

Properties of Threads 

A thread is a concurrent unit of execution with the 
following properties: 

RCM 2: Threads are non-terminating. They exhibit 
an endless repetitive behavior alternating between the 
following states (see Fig. 2):  

• Suspended: a suspended thread is not eligible for 
execution. 

• Ready: a ready task can be executed when the 
processor is allocated to it. 

 

Figure 2.  States of RCM threads. 

RCM 3: Threads have a single activation point. An 
activation point is a point in the executable code of a 
thread at which its state changes from Suspended to 
Ready. 
When activated, a thread becomes ready and then executes 
a piece of sequential code (thread activity), after which it 
becomes suspended awaiting the next activation. 
Threads of the source code generated by AADS-T use 
while(true) to be non-terminating. They are suspended 
after executing the sequential code in a clock_nanosleep 
and when sleeping time has passed they become ready at 
their single activation point. 

RCM 4: The activity of a thread is a sequence of 
code with a bounded and known worst-case execution 
time (WCET).  

The WCET of thread 
i τ  is 

i C . 

AADS-T utilizes the AADL property 
Compute_Execution_Time to know the WCET of a thread. 
The source code generated checks that this WCET is not 
exceeded. 
This property implies that a thread does not execute any 
operation that could result in its becoming suspended 
other than the suspension immediately before the 
activation point. So do the threads created by AADS-T. 

RCM 5: A thread can be activated only by one of the 
following two kinds of events: 

• One is by a timing event which is issued 
periodically by the environment. In this case the 

thread 
i τ is said to be periodic or time-driven 

with period 
i T . 

• The other is a synchronization event issued when 
the barrier of a synchronization protected object 
is opened (see RCM 8 below). In this case, the 

thread i τ is said to be sporadic. The 

synchronization event must have a minimum 
inter-arrival time associated to it, i.e. a minimum 
elapsed time interval between two consecutive 

occurrences of the event, i T . 

AADS-T uses the AADL properties Period, 
Dispatch_Protocol and Device_Dispatch_Protocol to 
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know the period and the type of a thread respectively. It 
accepts only periodic and sporadic threads and not 
aperiodic or background threads. The difference between 
the codes generated is that a sporadic thread waits for an 
event from an event or eventdata port connection after 
invoking a synchronization operation in the activation 

point. In both cases clock_nanosleep waits a time i T . 

Properties of Protected Objects 

A protected object is an object which encapsulates a set of 
data and a set of associated operations (protected 
operations). The value of the data makes up the state of 
the object. The state can only be read or changed by 
invoking one of the operations of the protected object.  

If θ  is a protected object: 

• θ .S denotes its state, θ .S ∈S, where S is an 
appropriate data domain. 

• θ . kP  denotes the k -th operation of θ . 

Notice that a protected object must have at least one 
operation; otherwise its state is inaccessible. 

The notation θτ →  will be used to denote that τ  

invokes one or more operations of θ . Similarly, 

θτ → . P  means that τ  calls the operation θ . P . 

AADS-T generates an object of the corresponding class 
which is a protected object in the source code for each 
AADL data, event and eventdata port connection. Classes 
generated by AADS-T have the appropriate data members 
to achieve the communication of data and/or events 
between threads. Each class has a constructor and member 
functions read and write to initialize and access data 
members. 
Protected objects have the following properties: 

RCM 6: Only one thread can be executing an 
operation of a given protected object at any given time, 
i.e. protected operations are mutually exclusive.  
Consequently, if a thread invokes a protected operation at 
a time when another thread is already executing an 
operation of the same object, it has to wait. When the 
protected operation that was being executed is completed, 
the waiting thread is allowed to execute the operation it 
had invoked. Notice that a thread that is waiting to begin a 
protected operation is not considered to be suspended. In 
consequence, a thread activity can invoke protected 
operations without violating RCM 4. 
Each class produced by AADS-T defines a mutex that is 
locked when a member function is called and unlocked 
when it ends, ensuring compliance with mutual exclusion. 

RCM 7: All protected operations have a bounded and 
known WCET. 

The WCET of the protected operation iθ . kP  is kiC , . 

Again, this property implies that no operations that could 
result in a thread being suspended can be invoked from a 
protected operation. 
AADS-T uses the ad hoc defined AADL properties 
(newly defined properties in the property set UC) 
PO_read_WCET and PO_write_WCET for each port 
connection to know the WCET of each member function. 
The source code generated checks if these WCETs are 

exceeded. Moreover, no member function calls any 
suspending operation. 

RCM 8: A protected object can have at most one 
synchronization operation that has an associated barrier, 
which is a Boolean variable that is part of the object state. 
When the value of the barrier is true, the barrier is said to 
be open, and otherwise it is said to be closed. 
The behaviour associated with synchronized operations is 
as follows: 

• When a thread invokes a synchronization 
operation, if the barrier is open the execution 
proceeds as with an ordinary protected operation; 
but if the barrier is closed, the thread is blocked. 

• At most one thread can be blocked at a barrier at 
any given time. 

• A thread that is blocked at a barrier is unblocked 
whenever the barrier becomes true (as the result 
of the execution of another protected operation 
by some other thread). 

Invoking a synchronization operation is a potentially 
blocking operation, and thus cannot be done within a 
thread activity; this can only be used to implement the 
activation events of sporadic threads. 
In the source code produced by AADS-T only the objects 
corresponding to event and eventdata port connections 
have a synchronization member function because a 
sporadic thread is dispatched by an event as stated above. 
Only sporadic threads invoke the synchronization. The 
classes corresponding to event and eventdata port 
connections have a POSIX condition variable as a datum 
member that is initialized at system initialization time. 
The barrier is initialized as false in the constructor, then 
set to true in the write member function (besides 
signalling the condition variable to unblock the sporadic 
thread), then checked to see whether it is false in the 
synchronization to block the sporadic thread on the 
condition variable, and finally set to false after unblocking 
it. 

Scheduling 

The RCM is associated with an instance of the fixed-
priority pre-emptive scheduling (FPPS) method, together 
with the immediate ceiling priority inheritance protocol 
(ICPP). 
The scheduling model is defined by the following 
properties: 

RCM 9: Each thread 
i τ  has a basic priority, 

∈iP P Z⊂ , where Z  is the set of the integer numbers. 

The basic priority of a thread is fixed, i.e. it is never 
changed. 
AADS-T uses the ad hoc AADL property Priority to 
create a thread at system initialization time with 
sched_priority at that priority, which is never changed. 

RCM 10: Each protected object iθ  has a ceiling 

priority iCP  which is the maximum of the basic priorities 

of all the threads invoking any of its operations:  

iCP =max ijjP θτ →, . 
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As basic priorities of all threads are fixed so too are the 
ceiling priorities of all protected objects. 

RCM 11: At every instant of time, each thread has an 
active priority. The active priority of a thread is the 
maximum of: 

• The basic priority of the thread, and  

• The ceiling priority of all protected objects that 

contain an operation that is currently being 

executed by the thread. 

Therefore, whenever a thread invokes a protected 
operation, it immediately inherits the ceiling priority of 
the enclosing protected object. 
In the source code generated by AADS-T the function 
pthread_mutexattr_setprotocol is used with the value 
PTHREAD_PRIO_PROTECT and the function 
pthread_mutexattr_setprioceiling with the maximum of 
the priorities of the two threads communicating through a 
port connection. This is done when initializing the mutex 
of the object corresponding to that connection at system 
initialization time guaranteeing the fulfillment of RCM 10 
and RCM 11. 

RCM 12: Ready threads are conceptually grouped 
into ready queues. There is a ready queue for each priority 
level in P. 
Threads are added to and removed from priority queues 
according to the following rules: 

• When a suspended thread becomes ready, it is 

added at the tail of the priority queue for its 

active priority. 

• When the processor is idle, the thread which is 

at the head of the non-empty ready queue with 

the highest priority is dispatched for execution 

and removed from the queue. 

• Whenever there is a non-empty ready queue 

with a higher priority than the priority of the 

currently running thread, the thread is pre-

empted from the processor and it is added at the 

head of the ready queue for its active priority.  

Notice that according to the previous rule, the 

thread at the head of the ready queue that caused 

the pre-emption is dispatched for execution 

immediately afterwards. 

AADS-T admits only SCHED_FIFO for the ad hoc 
AADL property POSIX_Scheduling_Policy of a thread, to 
set so sched_policy in the source code. 
The above model specifies a concurrent system with a 
predictable, analyzable temporal behaviour. Since the 
execution time of threads is bounded (RCM 4, RCM 7) 
and the scheduling method is FPPS with ICPP, well-
known response-time analysis techniques can be applied 
to statically guarantee that the system satisfies its temporal 
requirements. 
 

6.  CASE STUDY 

AADS-T has been tested in the case study shown in Fig. 
3, to assure the feasibility of the translation and its 
compatibility with RCM. It is a space application of 
digital image processing that consists of different modules 
for image processing, science data reporting, control, 
LEON target on board SW and payload data handling 
unit. The files produced by AADS-T are compiled with 
SCoPE to simulate the model and the results obtained are 
used to refine the model as needed. The simulation 
executed the source code of the threads and the protected 
objects enabled the communication among the threads. 
During the simulation we have observed that all the 
threads and protected objects were created at the 
beginning and their number remained static during the 
simulation.  
We have also observed that the threads do not terminate 
till the simulation time ends as stated in a parameter for 
SCoPE. The threads alternate their execution as they 
become suspended or ready. 
The trace of the simulation shows that each thread activity 
is executed from the corresponding activation point. 
We have been able to distinguish clearly between periodic 
threads and threads activated by an event. 
Various protected objects corresponding to different port 
connections (data, event and eventdata) between threads 
have been tested to assure a suitable communication 
between the threads. 
 

Figure 3.  Case Study functional description. 
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It has been proven that if the WCET of a thread or a 
protected operation is exceeded, a warning message 
appears in the trace of the simulation. 
Synchronization operations have been tested on sporadic 
threads dispatched by event or eventdata. 
We have applied different priorities of threads and 
protected objects to test the scheduling method FPPS with 
ICPP. 
Simulation on a LEON2 processor differs notably after 
applying AADS+ [25] or AADS-T (see Table I). The 
AADL model requires more lines to apply AADS-T but 
there are not as many C++ code lines generated as one 
might fear. As this code is RCM-compliant, it does not 
use POSIX signals or message queues (sending and 
receiving signals and messages are more time consuming 
than read and write protected operations), so SCoPE can 
execute many more instructions and threads and load the 
bus more. For this reason, the cost in terms of core 
energy/power, misses, etc is certainly greater. 

TABLE I.  COMPARISON BETWEEN THE TWO SIMULATIONS' 
METRICS 

 
 

7.  CONCLUSIONS AND FURTHER WORK 

This paper describes the compatibility with RCM of the 
AADS-T simulation tool. AADS-T supports the 
refinement of AADL models, including the Behavioral 
Annex, through performance analysis done with SCoPE, 
after translating those models. 
The generation of the SystemC model from the Ravenscar 
Computational Model compliant AADL specification is 
not straightforward. Nevertheless, the SystemC model 
generated by AADS-T is able to capture the fundamental 
dynamic properties of the initial system specification. In 
this way, AADS-T supports design space exploration by 
refinement of the AADL functionality and its 
implementation on an optimized platform. 
Future work includes incorporation of AADS-T features 
that appear in V2.0 of the AADL standard. 
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