
Ravenscar Computational Model compliant AADL Simulation on LEON2

Roberto VARONA-GÓMEZ, Eugenio VILLAR
TEISA, GIM, Universidad de Cantabria

39005 Santander, Spain
{roberto, villar}@teisa.unican.es

Ana-Isabel RODRÍGUEZ-RODRÍGUEZ
OSV, GMV Aerospace and Defence S.A.U.

28760 Tres Cantos, Spain
airodriguez@gmv.com

ABSTRACT

AADL has been proposed for designing and analyzing

SW and HW architectures for real-time mission-critical

embedded systems. Although the Behavioral Annex

improves its simulation semantics, AADL is a language

for analyzing architectures and not for simulating them.

AADS-T is an AADL simulation tool that supports the

performance analysis of the AADL specification

throughout the refinement process from the initial system

architecture until the complete, detailed application and

execution platform are developed. In this way, AADS-T

enables the verification of the initial timing constraints

during the complete design process. In this paper we

focus on the compatibility of AADS-T with the

Ravenscar Computational Model (RCM) as part of the

TASTE toolset. Its flexibility enables AADS-T to support

different processors. In this work we have focused on

performing the simulation on a LEON2 processor.

Keywords: AADL, simulation, Ravenscar, LEON2,

SystemC.

1. INTRODUCTION

Architecture Analysis and Design Language (AADL) [1-
4] was developed as a Society of Automotive Engineers
(SAE) standard to enable the description of task and
communication architectures of real-time, embedded,
fault-tolerant, secure, safety-critical, SW-intensive
systems. It is used to describe the software and hardware
components of a system and the interfaces among them.
The Automated proof-based System and Software
Engineering for Real-Time systems (ASSERT) project [5]
led to a new development process for distributed
embedded real-time software, and a set of methods and
tools for supporting the process. The process is based on
separation of concerns, automatic code generation and
property preservation. An important feature of the
ASSERT process is the adherence of the concurrency
model to the RCM [6], a restricted tasking model that
enables static response time analysis of real-time systems.

The model restricts the concurrency model to a static set
of periodic and sporadic threads communicated by means
of a static set of shared data objects, protected by mutual
exclusion synchronization mechanisms. There are two
variants of the ASSERT software process: Hard Real-
Time Unified Modeling Language (HRT-UML) and
AADL tracks. The ASSERT Set of Tools for Engineering
(TASTE) [7] toolset is an open source toolset supporting
the latter.
The LEON2 [8] processor was designed by the European
Space Agency (ESA) as a 32-bit synthesizable processor
core based on the SPARC V8 architecture. The core is
highly configurable, and particularly suitable for System
on Chip (SOC) designs.
There is a commonly recognized need for new
development frameworks that enable designers to perform
efficient exploration of design alternatives and analyze
system properties throughout the design cycle. Some
system properties can be obtained by static analysis. Many
other properties can only be obtained through simulation.
In most complex cases, system simulation is necessary for
performance analysis under real execution conditions.
System simulation validates the correct dimensioning of
the system, detection of locks, missed deadlines and other
potential problems caused by the complex interaction
among components that can be found in a real system. The
earlier all those problems are detected, the less is the
associated cost of correcting them [9].
Evolutionary prototyping is becoming a well-accepted
development approach in Model-Driven Engineering
(MDE) [10]. The design flow is based on a central model
that is iteratively refined until it is satisfactory. Programs
can be generated from this model and constitute
intermediate versions of the product. The last model
refined corresponds to the final system. A prototyping-
based design process is of interest to verify, as early as
possible, the impact of deployment decisions, or the use of
a particular HW/SW component in the system.
In this paper, an AADL simulation methodology, now
compatible with the RCM, is recalled. This methodology
has been implemented in the tool AADS-T [11]. AADS is
a simulation framework that can support prototype-based

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 1 - YEAR 2013 37ISSN: 1690-4524

design allowing the functional and non-functional
(execution times, power consumption, etc.) verification of
the system while it is being refined right through to the
final implementation. AADS is based on SystemC, which
has become a relevant standard language for modeling and
simulation of HW/SW embedded systems [12]. The
SystemC framework supports the seamless integration of
HW components and an easy optimization of the
executive platform.
The contents of the paper are as follows. The following
section reviews the state of the art. In Section 3, the
previous work carried out with AADS is summarized.
Section 4 describes how support is provided to perform
the simulation on a LEON2 processor. Then, we explain
the main part of this paper, which is the compatibility of
AADS-T with the RCM. Next, a case study is presented
and finally conclusions are stated.

2. STATE OF THE ART

Several authors have considered ASSERT and the RCM
in their research. Some of their papers deal with the
ASSERT Virtual Machine (VM), the execution platform
on which ASSERT applications run, based on the RCM. J.
A. de la Puente et al. [13] and J. Zamorano et al. [14] are
good examples of this.
M. Bordin et al. [15] propose some guidelines to generate
RCM-compliant Ada code from HRT-UML. S. Mazzini et
al. [16] explain a MDE methodology for the development
of high-integrity real-time systems. However using UML
does not facilitate the low-level description of the system.
Besides, the different views of the system use different
formalisms, so one must modify all views on each change
of the system to get a coherent model, hindering rapid
prototyping.
J. Kwon et al. [17] propose Ravenscar-Java, a high-
integrity profile for real-time Java. However we think that
Java is not a good high integrity programming language
due to its object-oriented programming features, its
automatic garbage collection, and the proposed limitations
to the extension of real-time multi-threading that cause
confusion.
Ocarina [10] is a tool suite that uses code generation
facilities in Ada and C to analyze AADL models. The
code generated is compatible with the RCM.
After analyzing the state of the art, it follows that no
approach uses SystemC [18], which is a recognized
standard for modeling HW/SW platforms, with its great
potential for integration of processors, buses, memories
and specific platform HW. Our solution makes HW/SW
co-design easier because of the use of SystemC.
SCoPE [19-20] is a C++ library that extends the standard
language SystemC without modifying it. It simulates
C/C++ SW code based on two different operating system
interfaces (POSIX [21-22] and MicroC/OS [23]).
Moreover, it co-simulates these pieces of code with HW
described in SystemC. SCoPE generates a file with this
SystemC description of the model.
In previous works [24-25], preliminary versions of AADS
supporting a part of the AADL standard and its Behavioral
Annex were developed. Now we have improved AADS to
make it compatible with the RCM and to take into account

the LEON2 processor. AADS-T supports RCM-compliant
AADL simulation in SystemC, thus enabling the HW
platform to be modeled and permitting HW/SW co-
design. The AADL model is based on Portable Operating
System Interface for UNIX (POSIX), so it supports many
different Real Time Operating Systems (RTOS).

3. PREVIOUS WORK

This work is an extension of AADS, an AADL simulation
tool written in Java, which was developed as a plug-in
[26] of Eclipse [27].
AADS enables the modeling of a subset of AADL
including the Behavioral Annex for purposes of
implementation and simulation. The starting point of the
simulator is a functional AADL specification without
detailed code. For each component, the corresponding
timing constraints are defined. This initial AADL
specification supports the verification of the global
performance constraints of the system based on the
specific timing constraints of the different components.
The AADL model is parsed using AADS and a model
suitable for simulation with SCoPE is produced, in order
to check whether the AADL constraints are fulfilled.
As the design process advances and, on the one hand, the
actual functionality is attached to the SW components
using the corresponding source code and, on the other, the
functionality is mapped onto specific platform resources, a
more accurate performance estimation is performed.
These refined properties can be added to the AADL model
and a new model can be generated by AADS. By
comparing the initial timing constraints with these refined,
timing estimations, it is possible to verify the non-
functional correctness of the design process at any
refinement step.
AADL enables the specification of both the architecture
and functionality of an embedded real-time system.
AADS translates both to SystemC (see Fig. 1). It parses
the AADL model including the Behavioural Annex so the
functionality is translated to an equivalent POSIX model
and the architecture is represented in eXtensible Mark-up
Language (XML) [28]. AADS supports multiple HW
components (processors, memories, devices and buses).

Figure 1. Translation process.

4. LEON2 MODELING

In previous works, SCoPE admitted only some of the
Advanced RISC Machines (ARM) family processors. The
LEON2 processor was designed by the ESA as a 32-bit
synthesizable processor core based on the SPARC V8

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 1 - YEAR 201338 ISSN: 1690-4524

architecture. The core is highly configurable, and
particularly suitable for SOC designs. SCoPE has been
modified to include the LEON2 processor at 50 Mhz, 15.4
Million instructions per second (MIPS) and 30.64 nJ of
energy consumed per instruction in its processors.xml
configuration file. It was necessary to specify the data and
instruction cache sizes too. A size of 8192, a size of line of
8 and an associativity of 1, considering an instruction size
of 4 (32 bits), was considered for both. Another
configuration file of SCoPE, meminst.xml, was modified
to include the operation codes of the LEON2.
The GNU cross-compiler for LEON2 used is the GNAT
for the LEON 2.1.0 C compiler so, to be compiled, the
source code produced by AADS-T has to comply with
certain characteristics of little importance.

5. COMPATIBILITY WITH THE RCM

The real-time behavior specification of ASSERT models
is based on the RCM, a model of concurrency for high-
integrity systems that enables formal analysis of the
temporal properties of a system using response-time
analysis techniques. The model includes a static set of
concurrent threads of execution, communicating by means
of shared protected data with mutually exclusive read and
write access, and a restricted form of conditional
synchronization. The model is simple enough to be
implemented by a simple, small-size real-time kernel, thus
easing the way to the eventual certification of real-time
systems based on it.
Twelve properties must be fulfilled to be RCM-compliant;
the source code generated by AADS-T obeys all of them.
These properties are stated in an internal document of the
HW-SW CODESIGN project [29] titled R1-4 Evaluation
of Compliance with the ASSERT Process, written by Juan
Antonio de la Puente and Juan Zamorano.

Basic Elements

There are two main elements in the RCM: threads and
protected objects. A thread is the basic unit of execution,
which can be executed concurrently with other threads on
a single processor. Protected objects are an abstraction of
shared data, synchronization, and interrupt handling.
There are a static number of threads and protected objects.
Therefore, threads and protected objects can only be
created at system initialization time.

RCM 1: A real-time system consists of:

• A static set of N threads, =Τ { i τ }, i ∈ 1..N.

• A static set of M protected objects,

=Ο { i θ }, i ∈ 1..M.

The set Ο may be empty (M = 0), in which case the

system is said to have only independent threads.

In the source code generated by AADS-T all the threads

and protected objects are created calling pthread_create

and as objects of the corresponding classes respectively at

system initialization time.

Properties of Threads

A thread is a concurrent unit of execution with the
following properties:

RCM 2: Threads are non-terminating. They exhibit
an endless repetitive behavior alternating between the
following states (see Fig. 2):

• Suspended: a suspended thread is not eligible for
execution.

• Ready: a ready task can be executed when the
processor is allocated to it.

Figure 2. States of RCM threads.

RCM 3: Threads have a single activation point. An
activation point is a point in the executable code of a
thread at which its state changes from Suspended to
Ready.
When activated, a thread becomes ready and then executes
a piece of sequential code (thread activity), after which it
becomes suspended awaiting the next activation.
Threads of the source code generated by AADS-T use
while(true) to be non-terminating. They are suspended
after executing the sequential code in a clock_nanosleep
and when sleeping time has passed they become ready at
their single activation point.

RCM 4: The activity of a thread is a sequence of
code with a bounded and known worst-case execution
time (WCET).

The WCET of thread
i τ is

i C .

AADS-T utilizes the AADL property
Compute_Execution_Time to know the WCET of a thread.
The source code generated checks that this WCET is not
exceeded.
This property implies that a thread does not execute any
operation that could result in its becoming suspended
other than the suspension immediately before the
activation point. So do the threads created by AADS-T.

RCM 5: A thread can be activated only by one of the
following two kinds of events:

• One is by a timing event which is issued
periodically by the environment. In this case the

thread
i τ is said to be periodic or time-driven

with period
i T .

• The other is a synchronization event issued when
the barrier of a synchronization protected object
is opened (see RCM 8 below). In this case, the

thread i τ is said to be sporadic. The

synchronization event must have a minimum
inter-arrival time associated to it, i.e. a minimum
elapsed time interval between two consecutive

occurrences of the event, i T .

AADS-T uses the AADL properties Period,
Dispatch_Protocol and Device_Dispatch_Protocol to

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 1 - YEAR 2013 39ISSN: 1690-4524

know the period and the type of a thread respectively. It
accepts only periodic and sporadic threads and not
aperiodic or background threads. The difference between
the codes generated is that a sporadic thread waits for an
event from an event or eventdata port connection after
invoking a synchronization operation in the activation

point. In both cases clock_nanosleep waits a time i T .

Properties of Protected Objects

A protected object is an object which encapsulates a set of
data and a set of associated operations (protected
operations). The value of the data makes up the state of
the object. The state can only be read or changed by
invoking one of the operations of the protected object.

If θ is a protected object:

• θ .S denotes its state, θ .S ∈S, where S is an
appropriate data domain.

• θ . kP denotes the k -th operation of θ .

Notice that a protected object must have at least one
operation; otherwise its state is inaccessible.

The notation θτ → will be used to denote that τ

invokes one or more operations of θ . Similarly,

θτ → . P means that τ calls the operation θ . P .

AADS-T generates an object of the corresponding class
which is a protected object in the source code for each
AADL data, event and eventdata port connection. Classes
generated by AADS-T have the appropriate data members
to achieve the communication of data and/or events
between threads. Each class has a constructor and member
functions read and write to initialize and access data
members.
Protected objects have the following properties:

RCM 6: Only one thread can be executing an
operation of a given protected object at any given time,
i.e. protected operations are mutually exclusive.
Consequently, if a thread invokes a protected operation at
a time when another thread is already executing an
operation of the same object, it has to wait. When the
protected operation that was being executed is completed,
the waiting thread is allowed to execute the operation it
had invoked. Notice that a thread that is waiting to begin a
protected operation is not considered to be suspended. In
consequence, a thread activity can invoke protected
operations without violating RCM 4.
Each class produced by AADS-T defines a mutex that is
locked when a member function is called and unlocked
when it ends, ensuring compliance with mutual exclusion.

RCM 7: All protected operations have a bounded and
known WCET.

The WCET of the protected operation iθ . kP is kiC , .

Again, this property implies that no operations that could
result in a thread being suspended can be invoked from a
protected operation.
AADS-T uses the ad hoc defined AADL properties
(newly defined properties in the property set UC)
PO_read_WCET and PO_write_WCET for each port
connection to know the WCET of each member function.
The source code generated checks if these WCETs are

exceeded. Moreover, no member function calls any
suspending operation.

RCM 8: A protected object can have at most one
synchronization operation that has an associated barrier,
which is a Boolean variable that is part of the object state.
When the value of the barrier is true, the barrier is said to
be open, and otherwise it is said to be closed.
The behaviour associated with synchronized operations is
as follows:

• When a thread invokes a synchronization
operation, if the barrier is open the execution
proceeds as with an ordinary protected operation;
but if the barrier is closed, the thread is blocked.

• At most one thread can be blocked at a barrier at
any given time.

• A thread that is blocked at a barrier is unblocked
whenever the barrier becomes true (as the result
of the execution of another protected operation
by some other thread).

Invoking a synchronization operation is a potentially
blocking operation, and thus cannot be done within a
thread activity; this can only be used to implement the
activation events of sporadic threads.
In the source code produced by AADS-T only the objects
corresponding to event and eventdata port connections
have a synchronization member function because a
sporadic thread is dispatched by an event as stated above.
Only sporadic threads invoke the synchronization. The
classes corresponding to event and eventdata port
connections have a POSIX condition variable as a datum
member that is initialized at system initialization time.
The barrier is initialized as false in the constructor, then
set to true in the write member function (besides
signalling the condition variable to unblock the sporadic
thread), then checked to see whether it is false in the
synchronization to block the sporadic thread on the
condition variable, and finally set to false after unblocking
it.

Scheduling

The RCM is associated with an instance of the fixed-
priority pre-emptive scheduling (FPPS) method, together
with the immediate ceiling priority inheritance protocol
(ICPP).
The scheduling model is defined by the following
properties:

RCM 9: Each thread
i τ has a basic priority,

∈iP P Z⊂ , where Z is the set of the integer numbers.

The basic priority of a thread is fixed, i.e. it is never
changed.
AADS-T uses the ad hoc AADL property Priority to
create a thread at system initialization time with
sched_priority at that priority, which is never changed.

RCM 10: Each protected object iθ has a ceiling

priority iCP which is the maximum of the basic priorities

of all the threads invoking any of its operations:

iCP =max ijjP θτ →, .

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 1 - YEAR 201340 ISSN: 1690-4524

As basic priorities of all threads are fixed so too are the
ceiling priorities of all protected objects.

RCM 11: At every instant of time, each thread has an
active priority. The active priority of a thread is the
maximum of:

• The basic priority of the thread, and

• The ceiling priority of all protected objects that

contain an operation that is currently being

executed by the thread.

Therefore, whenever a thread invokes a protected
operation, it immediately inherits the ceiling priority of
the enclosing protected object.
In the source code generated by AADS-T the function
pthread_mutexattr_setprotocol is used with the value
PTHREAD_PRIO_PROTECT and the function
pthread_mutexattr_setprioceiling with the maximum of
the priorities of the two threads communicating through a
port connection. This is done when initializing the mutex
of the object corresponding to that connection at system
initialization time guaranteeing the fulfillment of RCM 10
and RCM 11.

RCM 12: Ready threads are conceptually grouped
into ready queues. There is a ready queue for each priority
level in P.
Threads are added to and removed from priority queues
according to the following rules:

• When a suspended thread becomes ready, it is

added at the tail of the priority queue for its

active priority.

• When the processor is idle, the thread which is

at the head of the non-empty ready queue with

the highest priority is dispatched for execution

and removed from the queue.

• Whenever there is a non-empty ready queue

with a higher priority than the priority of the

currently running thread, the thread is pre-

empted from the processor and it is added at the

head of the ready queue for its active priority.

Notice that according to the previous rule, the

thread at the head of the ready queue that caused

the pre-emption is dispatched for execution

immediately afterwards.

AADS-T admits only SCHED_FIFO for the ad hoc
AADL property POSIX_Scheduling_Policy of a thread, to
set so sched_policy in the source code.
The above model specifies a concurrent system with a
predictable, analyzable temporal behaviour. Since the
execution time of threads is bounded (RCM 4, RCM 7)
and the scheduling method is FPPS with ICPP, well-
known response-time analysis techniques can be applied
to statically guarantee that the system satisfies its temporal
requirements.

6. CASE STUDY

AADS-T has been tested in the case study shown in Fig.
3, to assure the feasibility of the translation and its
compatibility with RCM. It is a space application of
digital image processing that consists of different modules
for image processing, science data reporting, control,
LEON target on board SW and payload data handling
unit. The files produced by AADS-T are compiled with
SCoPE to simulate the model and the results obtained are
used to refine the model as needed. The simulation
executed the source code of the threads and the protected
objects enabled the communication among the threads.
During the simulation we have observed that all the
threads and protected objects were created at the
beginning and their number remained static during the
simulation.
We have also observed that the threads do not terminate
till the simulation time ends as stated in a parameter for
SCoPE. The threads alternate their execution as they
become suspended or ready.
The trace of the simulation shows that each thread activity
is executed from the corresponding activation point.
We have been able to distinguish clearly between periodic
threads and threads activated by an event.
Various protected objects corresponding to different port
connections (data, event and eventdata) between threads
have been tested to assure a suitable communication
between the threads.

Figure 3. Case Study functional description.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 1 - YEAR 2013 41ISSN: 1690-4524

It has been proven that if the WCET of a thread or a
protected operation is exceeded, a warning message
appears in the trace of the simulation.
Synchronization operations have been tested on sporadic
threads dispatched by event or eventdata.
We have applied different priorities of threads and
protected objects to test the scheduling method FPPS with
ICPP.
Simulation on a LEON2 processor differs notably after
applying AADS+ [25] or AADS-T (see Table I). The
AADL model requires more lines to apply AADS-T but
there are not as many C++ code lines generated as one
might fear. As this code is RCM-compliant, it does not
use POSIX signals or message queues (sending and
receiving signals and messages are more time consuming
than read and write protected operations), so SCoPE can
execute many more instructions and threads and load the
bus more. For this reason, the cost in terms of core
energy/power, misses, etc is certainly greater.

TABLE I. COMPARISON BETWEEN THE TWO SIMULATIONS'
METRICS

7. CONCLUSIONS AND FURTHER WORK

This paper describes the compatibility with RCM of the
AADS-T simulation tool. AADS-T supports the
refinement of AADL models, including the Behavioral
Annex, through performance analysis done with SCoPE,
after translating those models.
The generation of the SystemC model from the Ravenscar
Computational Model compliant AADL specification is
not straightforward. Nevertheless, the SystemC model
generated by AADS-T is able to capture the fundamental
dynamic properties of the initial system specification. In
this way, AADS-T supports design space exploration by
refinement of the AADL functionality and its
implementation on an optimized platform.
Future work includes incorporation of AADS-T features
that appear in V2.0 of the AADL standard.

8. ACKNOWLEDGEMENT

This work has been supported by ESTEC
22810/09/NL/JK HW-SW CODESIGN Project contracted
to GMV Aerospace and Defence S.A.U.

The authors would like to acknowledge the aid received in
this work from Francisco Ferrero Mateos and Elena Alaña
Salazar of GMV, as well as from Juan Antonio de la
Puente and Juan Zamorano.

9. REFERENCES

[1] SAE: AADL. June 2006, document AS5506/1.
www.sae.org/technical/standards/AS5506/1.

[2] P. H. Feiler, D. P. Gluch, J. J. Hudak: The AADL: An
Introduction. CMU. Pittsburgh. (2006).

[3] P. H. Feiler, J. J. Hudak: Developing AADL Models for
Control Systems: Practitioner’s Guide. CMU. 2006.

[4] SAE. Annex Behavior V2.0 AS5506, 2007.

[5] www.assert-project.net 2008 ESA/ESTEC.

[6] A. Burns et al.: The Ravenscar tasking profile for high
integrity RT programs. Ada-Europe’98. Springer-Verlag.

[7] M. Perrotin et al.: The TASTE toolset: Turning human
designed heterogeneous systems into computer built
homogeneous software. ERTS2 2010, Toulouse, France.

[8] LEON2-FT ESA Microelectronics 2009 www.esa.int/
TEC/Microelectronics/SEMUD70CYTE_0.html

[9] A.D. Pimentel et al.: A systematic approach to exploring
embedded system architectures at multiple abstraction
levels. IEEE Transactions on Computers, 2006.

[10] J. Hugues, B. Zalila, L. Pautet, F. Kordon: From the
prototype to the final embedded system using the Ocarina
AADL tool suite. ACM TECS, 2008. NY, USA.

[11] AADS V3.1 UC 2011. www.teisa.unican.es/AADS

[12] H. Posadas et al.: RTOS modeling in SystemC for real-
time embedded SW simulation: A POSIX model. Design
Automation for Embedded Systems. Springer. 2005.

[13] J. A. de la Puente et al.: The ASSERT VM: A Predictable
Platform for Real-Time Systems. IFAC08. Korea.

[14] J. Zamorano et al.: The ASSERT VM kernel: Support for
preservation of temporal properties. DASIA 2008. Spain.

[15] M. Bordin et al.: Automated Model-based Generation of
Ravenscar-compliant Source Code. ECRTS05. Spain.

[16] S. Mazzini et al.: An MDE Methodology for the
Development of High-Integrity RT Systems. DATE09.

[17] J. Kwon et al.: Ravenscar-Java: a High-Integrity Profile for
Real-Time Java. ACM-ISCOPE, 2002. Washington.

[18] David C. Black, Jack Donovan: SystemC: From the ground
up. Kluwer Academic Publishers. Boston (2004).

[19] SCoPE V1.1.0 UC 2009. www.teisa.unican.es/scope

[20] H. Posadas et al.: SystemC Platform Modeling for
Behavioral Simulation and Performance Estimation of
Embedded Systems. 2009. IGI Global. 978-1-60566750-8

[21] M. González: POSIX tiempo real. UC, Santander 2004.

[22] The Open Group: The Single UNIX Specification, V. 2,
1997. www.opengroup.org/onlinepubs/007908799.

[23] J. J. Labrosse: µC/OS RT Kernel. ISBN 0-87930-444-8.

[24] R. Varona Gómez, E. Villar: AADL Simulation and
Performance Analysis in SystemC. ICECCS 2009.
Germany.

[25] R. Varona Gómez, E. Villar: AADS+: AADL Simulation
including the Behavioral Annex. ICECCS 2010. Oxford.

[26] P. H. Feiler, A. Greenhouse: OSATE Plug-in Development
Guide. CMU. Pittsburgh. (2006).

[27] The Eclipse Foundation 2009. www.eclipse.org

[28] W3C: Extensible Markup Language (XML) W3C
Recommendation (2006). www.w3.org/TR/REC-xml/

[29] http://hwswcodesign.gmv.com

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 1 - YEAR 201342 ISSN: 1690-4524

