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Abstract— In this paper, we present a novel method to extract
the breast skin-line based on dynamic programming. Skin-line
extraction is an important preprocessing step in CAD systems;
however, it is a challenging problem due to the presence of noise,
underexposed regions, which results in a low contrast area near
the skin-air interface, and artifacts such as labels. Our proposal
utilizes the stroma edge to constrain searching for the border. In
order to cope with noise, we consider several candidate points
for the border interface which are obtained by the Laplace
operator applied in pre-defined directions in the mammogram.
The breast contour is obtained from the candidate points using
a dynamic programming algorithm. This utilizes a criterion of
optimality to obtain the optimum contour by minimization of
a cost function.

The method was evaluated using 82 mammograms whose
contour were manually extracted by a radiologist from the mini-
MIAS database. The Polyline Distance Measure was evaluated
for each contour selected with the proposed method, obtaining
a mean error of 2.05 pixels and a standard deviation of 0.80.

I. INTRODUCTION

According to the American Cancer Society, breast cancer
is the second leading cause of cancer death in women, being
exceeded only by lung cancer.

Although mammograms can miss some cancers, they
remain a very effective tool for early breast cancer diagnosis.
The sensitivity of mammography can be improved between
15% – 30% by an independent second reading of mammo-
grams [1]. Some researchers [2], [3] have even envisaged that
computerized analysis of mammograms can provide an em-
ulated secondary opinion, improving consistency. This have
driven research in techniques to automatically analyze and
interpret mammograms. When developing new techniques
to analyze and interpret breast images in CAD systems,
an essential preprocessing step is the precise demarcation
of the breast region in mammograms. Information on the
breast border is used in several stages: for instance, in
restricting the region where the algorithms are applied, for
density correction of peripheral breast tissue [4] or in locating
the nipple, which is used in registering the mammogram
[5]. These utilizations of the breast contour require that
it should properly model the soft-tissue/air interface and
preserve the nipple. However, the presence of noise, regions
underexposed near the top and bottom of the mammogram,
low contrast in the breast border whose intensities are
near the background and the presence of artifacts, such as
labels, challenge the precise extraction of the breast skin-
line, making it a difficult task. Most of these limitations are
absent in digital mammography and the breast border is also
easier to detect; however, screen-film mammography is still
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commonly used and may continue to be competitive since
the digital mammography systems are much more expensive.
Also digital mammography have not been found superior
to screen-film mammography in all type of breast tissues
[6]; therefore, improvement for CAD systems for screen-
film mammographys continue to be an important research
area [7].

Several approaches to the demarcation of the breast border
in mammograms are proposed in the literature. Mendez [8]
utilizes a gradient based method to delineate the breast
contour by splitting the image in regions and scanning it
in different directions according to its location. Lou [9]
assumes that the intensity values from the breast region near
the skin-air interface is a monotonic decreasing function;
he exploits this observation to extract an initial boundary
point that is refined until he obtains the final border point.
These points are then linked to obtain the breast contour.
Ferrari [10] obtained an initial contour by thresholding an
image enhanced with the logarithm operator, whose noise
was reduced with morphological opening. This was then
refined by the adaptive active deformable model. Sun [11]
used an adaptive thresholding to obtain an initial contour
which was refined by a curve extrapolation method. This
consisted in using the Euclidean distance as constraint that
was propagated to the upper and lower breast regions to
obtain the complete skin-line estimate. Thiruvenkadan [12]
obtained an initial contour using a fuzzy segmentation which
was refined by a region-based active contour segmentation
method. Wu [7] applied a dynamically adaptive thresholding
to the gray level range in local regions of the breast periphery
to obtain the initial contour. This was improved by using
gradient information from Sobel filtering to obtain the final
boundary.

In this paper we present a new method for extracting
the breast skin-line contour from mammograms based on
dynamic programming. This consists in searching among
several possible contours for the optimum contour according
to a cost function. The algorithm pipeline comprehends three
main stages: i) extraction of an initial contour region; ii)
selection of contour candidate points and iii) selection of
the best candidates such that a smooth path is obtained that
minimizes a cost function.

II. METHODOLOGY

Several researchers [13], [11], [9] have identified im-
portant properties about mammograms which we utilize in
designing our method for the extraction of the breast contour:
a) the breast air interface is a region of low gradient and may
be masked by noise or other artifacts such as labels; b) the
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uncompressed fat near the breast-air interface has a gradient
that increases as the fat tissue approaches the centre of the
breast; c) the intensity values from the breast region near the
skin-air interface is a monotonic decreasing function; and
finally, d) the distance between the breast skin-line and the
smoothed edge of the stroma is usually regular.

The almost regular distance between the stroma edge and
the breast skin-line (d) permits to define a region where we
have a high degree of confidence on the detection of the
breast skin-line edge; however, property a) warns us that
the edge may masked by noise and by the proximity of
artifacts. Therefore, departing from the proposal by Sun [11],
we enlarge the region where the edge may be found and
consider several near by candidates. Based on properties b)
and c), we apply the Laplace operator in the region near the
stroma edge in pre-defined directions; the positive values of
the Laplacian indicate the position of candidate edge points.
The selection of the final contour is obtained by casting
the problem into a dynamic programming framework which,
based on a criterion of optimality, will obtain the optimal
breast skin-line contour.

In the next section we develop on the main components
of our method.

A. Components of the detection method

The main components of our method are the following:
1) Image preprocessing: According to property a), the

effect of the noise will be specially adverse in the soft-
tissue/air interface due to the low pixel intensity; therefore,
we filter the image with a gaussian filter (σ = 4) and enhance
the contrast near the border with the logarithm operator. The
image is then linearly scaled to the range 0 – 255.

2) Extraction of the initial contour region: The stroma
edge area and other internal regions has a bright intensity,
while the fatty periphery area has a low intensity near the
background intensities. This bimodal characteristic of the
mammogram indicates that we may obtain the initial contour
region by thresholding the image using Otsu’s threshold [14],
TOTSU . We used a threshold of 0.5TOTSU to reduce the
searching space for breast border candidate points.

Three landmark points are extracted from the segmented
image, fig. 1. The landmark points A and B indicate the
extremity of the edge top contour region. This is regularly
sampled and the sampling points are interpolated using linear
interpolation. The landmark point C split the initial top edge
contour in two sub-regions. These sub-regions define how
the image is analyzed: in sub-region I, the image is scanned
horizontally line by line, while in region II, the scanning is
performed vertically column by column.

3) Selection of contour candidate points: At each scan-
ning iteration, we obtain a slice of the image (top plot, fig.
2). Starting at point B, we define an interval where we have
a high confidence that the breast edge is localized (top plot
– region delimited by the gray balls, fig. 2). Since the edge
point may be masked by noise or by the proximity of a label,
we consider several candidates based on the assumption that
if the true edge is masked, then another point may be found

Fig. 1. Landmark control points (green) and initial top edge contour (red).

that is closer enough to the true one. These edge candidates
are obtained by calculating each component of the Laplacian
according to the scanning direction (∂2f/∂x2, ∂2f/∂y2).
The position of positive values of the Laplacian indicate edge
candidates. Fig. 2 presents a region in the mammogram and
a cut (middle plot) indicated by the yellow line, where the
bottom plot presents the Laplacian on the region of interest.

Fig. 2. Boundary candidate points.

4) Selection of the best candidates using dynamic pro-
gramming: Given the edge candidate points, fig. 2, we
may cast the problem of determining the skin-line border
into a dynamic programming framework as follows: we are
given a sequence of vectors, Vm (m ∈ {1, . . . ,M}), whose
element Vm(i) (i ∈ {1, . . . , N}) is a pair of coordinates
in the mammogram of a possible border point. We have



that N represents the number of candidates1 and M the
total number of points of the breast contour. The solution
to our problem consists in finding a sequence of integers
j(m) (m ∈ {1, . . . ,M}) that represents the selections from
the vectors Vm. This sequence is optimum according to a
given criterion. This criterion of optimality is specified as the
minimization of a cost function associated to every possible
sequence.

This formulation of the problem may be described by a
N ×M matrix of nodes. The nodes in the mth column rep-
resent the N possible candidates from the neighborhood of
the border contour. A selected sequence may be represented
by a connected path along the columns.

A point in the border of the breast should have a low in-
tensity value, so our optimal sequence j(m) should minimize
the total cost along the border. We define the total cost of
the sequence terminating at candidate point j as

C(j(M),M) = αI[V1(j(1))] +

M∑
m=2

{αI[Vm(j(m))]

+ βdE (Vm−1(j(m− 1)), Vm(j(m)))

+ γdnei (Vm(j(m)))} ,

where I is the intensity value of a candidate point. We
define dE as the Euclidean distance between two successive
candidates and dnei as the distance between a candidate and
the candidate at its right. The weights α, β and γ define the
contribution of each term to the total cost function.

The dynamic programming algorithm may be written as
follows: Suppose that we have determined the optimum
path to every node in the column (m − 1). The total cost
accumulated for these paths is C(j,m−1), for j = 1, . . . , N ,
respectively. By inspecting the expression of the accumulated
cost, we have that the optimum path that ends at node (k,m)
is the one coming from the node (j∗,m − 1), where j∗ is
given by

j∗ = argminj∈[1,N ][C(j,m− 1)

+ βdE (Vm−1(j(m− 1)), Vm(j(m)))].

The total accumulated cost for this path is

C(k,m) = C(j∗,m− 1)

+ βdE (Vm−1(j(m− 1)), Vm(k))

+ γdnei (Vm(k)) .

The optimum paths up to m − 1 may be extended to m
by repeating the previous equation for each value of k.
At position M , we select the path ending in the node for
which C(k,M) is minimum. The complete optimum path
(the final breast contour) is recovered by backtracking, since
the previous node from which the optimum path arrives is
known.

1For the sake of the argument, we assume that N is the same for the
entire sequence of vectors.

5) Post-processing: Having the optimum contour, we
apply a median filter followed by a linear interpolator to
close the path, since due to the process of scanning by lines
and columns, we obtain sometimes small gaps in the other
direction.

III. RESULTS AND DISCUSSION

A fair evaluation of our method would require comparing
it with other published methods with a common data set.
This could be accomplished by implementing and testing
them with our method in a common data set; however,
given the lack of detail found in some of these methods,
it would be very difficult to correctly implement them. Also
Padayachee [15] found variations between the radiologists’
borders for clear breast edges and significant variations for
unclear breast edges. For these reasons, we have adopted a
publicly available data set whose ground-truth (GT) contours
were previously used in other works ([10], [11]), in order
to have a common base for a fair comparison. The GT set
consists of 82 breast contours of the mini-MIAS data set [16]
drawn by a radiologist.

In order to have a common error measure, we adopted
the Polyline Distance Measure (PDM) [17] that was used in
those previous works. The PDM is defined as the closest dis-
tance of each estimated boundary point to the GT boundary.
It is a symmetric mean error measure.

Fig. 3 shows the comparison of the estimated skin-line
boundary obtained with dynamic programming and with the
adaptive active deformable model [10]. Table I compares
the mean error and standard deviation using the dynamic
programming, the adaptive active deformable model [10]
and the dependency approach [11]. The weights of each
term of the cost function used in the tests were α = 0.5,
β = 6.5 and γ = 5.0. Considering the table, we verify that
the dynamic programming approach presents a mean error of
2.05 which corresponds to an improvement of 37.5 % over
the dependency approach and 58.3 % over the deformable
model; also important, is the variance that is much lower
than the other two methods, indicating that the dispersion
of the error is also lower. Fig. 4 presents the results for a
mammogram.

The method was implemented using the scripting language
Python and tested in a MacBook Pro 2.8 GHz with 4 GB of
RAM. The execution time varied between 5 to 10s. This dif-
ference is due to the variable number of boundary candidate
points. The dynamic programming algorithm is sometimes
avoided because an exhaustive search of a large space of
solutions can result in a very slow execution; however, by
defining a restricted searching region and considering only
certain candidates (those obtained by the Laplacian), we
could reduce our searching space, obtaining a fast imple-
mentation.

IV. CONCLUSIONS

We have proposed a novel method for the demarcation
of the breast border. Our approach utilizes physiological
features in the mammogram to define a narrow region



TABLE I
MODEL COMPARISON USING PDM

µ (Pixels) σ (Pixels)

Deformable model 4.92 1.91

Dependency approach 3.28 2.17

Dynamic programming approach 2.05 0.80

Fig. 3. PDM error curves.

near the breast skin-line border. By applying the Laplace
operator we could define several possible candidates on the
assumption that it permits to cope with noise and artifacts,
then using dynamic programming, we obtained a optimum
skin-line contour according to a cost function. The tests
performed showed a good agreement between the contour
obtained with our method and the ground-truth contours.
Although we showed improved mean error and standard de-
viation in comparison to the two methods compared, further
improvements must still account for a partial detection of the
nipple in some of the mammograms. Experiments performed
showed that this can be obtained by a proper selection of
the weights of the cost function which should be obtained
automatically.

Fig. 4. Mammogram ’mdb003’ from mini-MIAS.
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