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1. Introduction 

ABSTRACT 

A third-order perturbation theory is used to obtain the equilibrium properties of Ar, 
Kr and Xe over wide ranges of temperatures and densities. The theory belongs to 
the framework of the inverse temperature expansion of the Helmholtz free energy, 
with the perturbation terms determined from Monte Carlo simulation. The interactions 
are modeled by an effective two-body Lennard-Jones potential incorporating the main 
contribution of the three-body interactions. To this end, the ratio of three-body to two
body configuration energies have been determined also from Monte Carlo simulation. 
The results for the pressure and energy at supercritical temperatures are in quite good 
agreement with experimental data. The liquid-vapor coexistence is also reproduced 
fairly well, although for Ar and Kr the critical temperature is slightly overestimated as 
well as the liquid densities at low temperatures, and the coexistence densities of Xe are 
slightly overestimated for the vapor and underestimated for the liquid near the critical 
point. In any case, the calculations show a remarkable improvement in the predicted 
coexistence curve with including the three-body contribution. 
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC 

BY-NC-ND license (http:/ /creativecommons.org/licenses/by-nc-nd/4.0/). 

The thermodynamic properties of simple model fluids can be obtained from integral equation theory (!ET), from a 
combination of perturbation theory with integral equation theory (IEPT), or from conventional perturbation theory (PT) 
like the Barker-Henderson (BH) and related theories, as well as from computer simulation.1 However, !ET and IEPT 
theories generally are nonanalytical and computationally demanding, which is undesirable for practical applications, and 
PTs based on the high temperature expansion (HTE) of the Helmholtz free energy generally provide accurate results only 
for the first-order perturbation term, which may be insufficient at low temperatures where higher-order terms may play 
a nonnegligible role. 

Alternatively, a number of the lower order perturbation terms in the HTE can be obtained from computer simulation, 
using the procedure devised by Barker and Henderson [2,3]. This procedure is less computationally demanding and once 
the perturbation terms are obtained, the thermodynamic properties can be obtained for wide ranges of temperatures en 
densities with little computational effort. This is the approach used in this work for the heavy noble gases Ar, Kr and Xe. 

* Corresponding author. 
E-mail address: solanajr@unican.es Q.R. Solana). 

See Ref. [ 1] for a review on lET, lEPT, PT, and related theories for several potential models. 

https://doi.org/10.1016/j.physa.2022.128280 
0378-4371 /© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons. 
org/licenses/by-nc-nd/4.0/). 
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Simple two-body potential models are useful in the development of theories for the thermodynamic properties of 
fluids and solids. However, when going from model to real fluids, even in the case of a simple fluid such as argon, the 
contribution of three-body interactions cannot be neglected. Directly incorporating three-body interactions in theoretical 
models is unfeasible and in computer simulations is computationally very demanding. 

Averaged three-body interactions can be separately calculated either from approximate theories or from computer 
simulation and then their contribution to the thermodynamic properties added to those from the two-body interactions. 
Within the framework of perturbation theories a number of approximations along this line have been proposed. Thus, 
Barker et al. [4] developed a perturbation theory for Ar based on the second-order perturbation theory for two-body 
interactions modeled by the Barker-Pompe potential with an additional perturbation term to approximately account for 
the three-body interactions, with the latter determined from both theory and simulation and conveniently parametrized as 
a function of the density for practical applications. Another approximation of this kind has been very recently developed by 
Dridi et al. [ 5] for noble gases. In this case, a perturbation theory based on the first-order mean spherical approximation 
(FMSA) for the hard-core two Yukawa potential [6] was used for the two-body interactions together with the Barker 
et al. (4] parametrization for the contribution of the three-body interactions. It is to be noted that the latter was developed 
for the Barker-Bobetic potential for Ar and, therefore, there is not reason to think that it will be accurate for other dense 
noble gases. 

A different way of taking into account the effect of the three-body interactions in the thermodynamic properties 
consists in using effective two-body potentials that include the three-body contribution. To this end, del Rio et al. (7-
10) introduced a family of effective potentials, denoted as approximate non conformal (ANC) potentials, involving a 
number of parameters that are determined from the condition that certain thermodynamic properties, such as the 
second and third virial coefficients and the pressure at some selected states, determined from the effective potential, 
for example by computer simulation, fit the corresponding experimental data. The effective potential obtained in this 
way is state-dependent. 

The Axilrod-Teller [ 11 ] approximation gives accurate account of the main contribution to the three-body interactions. 
Stenschke [ 12 ], by averaging the Axilrod-Teller interaction, found that the result is of the form of a two-body potential 
that can be incorporated to the true two-body potential giving rise to an effective two-body potential linearly dependent 
on density. In a similar way, a simple density-dependent expression relating the three-body and two-body interactions, 
thus allowing to merge both kind of interactions into an effective two-body potential, has been developed by Sadus 
et al. (13- 16], on the basis of computer simulations for Ar, Kr and Xe in the liquid phase at subcritical temperatures 
considering pairwise interactions as given by the BFW potential [ 17] plus three-body interactions. 

However, the conclusions of the above-cited papers are limited to the BFW potential and to the relatively limited 
temperature and density ranges considered. Here we are interested in analyzing the relation between three-body (3B) 
and two-body (2B) contributions to the configurational energy of the heavy noble gases for much wider temperature 
and density ranges, covering a great part of the fluid phase for which there are available experimental data for the 
thermodynamic properties. In addition, we are interested in checking whether a similar relationship holds also for the 
Lennard-Jones potential, which has the advantage over the BFW potential that can be expressed exclusively in terms 
of reduced units, thus potentially allowing to develop a single 2B effective potential that includes the 3B interactions 
applicable to the three noble gases Ar, Kr and Xe. 

The aim of this work is to test the performance of a perturbation theory with and effective two-body Lennard
Jones potential to obtain the liquid-vapor coexistence densities as well as the pressure and energy at supercritical 
temperatures for the heavy noble gases. To this end, first we have carried out computer simulations to obtain the 2B 
and 3B contributions, E2 and E3 respectively, to the configurational energy over wide ranges of temperature and density 
for the BFW and LJ potentials for Ar. These potentials are presented in the next section in which also are described the 
simulations performed, the ratios E3 / E2 for both potential models are analyzed and, in the case of the LJ potential at 
supercritical temperatures, fitted to a temperature- and density-dependent expression suitable to incorporate the three
body interactions into an effective two-body LJ potential. Section 3 gives a short account about the Monte Carlo-based 
perturbation theory (MCPT) used in this work and the simulations performed to obtain the first three perturbation terms 
in the expansion. The results for the thermodynamic properties of Ar, Kr and Xe are compared in Section 4 with the NIST 
experimental data and the concluding remarks are presented in the last section. 

2. Two-body and three-body potentials for argon 

2.1. Two-body potential models for argon 

An accurate potential model for the heavy noble gases is the Barker-Fisher-Watts potential [ 17] 

UsFW(x) = BsFW {[Ao+ A1(x - 1) + A2(x - 1)2 + A3(x - 1)3 + A4(x - 1)4 

+ A5(x - 1)5] x Exp [a(x - 1)] - ( 0 : \ 6 + 8 : \s + 8 :
1: 10 )} , 

2 

(1) 
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Table 1 
Parameters in the BFW potential ( 1) for Ar from Ref. [ 17 ]. 

142.095 3.3605 3.7612 

Ao 

0.27783 

Cs 

1.10727 

Table 2 

At 

-4.50431 

Cs 

0.1697 

-8.331215 

Cw 

0.013611 

a 0 

12.5 0.01 

-25.2696 - 102.0195 

Lennard-Jones potential parameters and nonadditive coefficients for Ar, Kr and Xe. 

Argon 

3.403 119.7 This work" 
3.403 119.5 Ref. [20]-b 
3.408-3.42 119.49- 120.32 [22,23]·' 

Krypton 

3.64 168.7 This work" 
3.64 164.4 Ref. [20]-b 
3.591 - 3.68 166.67- 175.34 Refs. [22- 24]·' 

Xenon 

4.07 223.6 This work" 
3.96 231 .1 Ref. [20]·b 
4.06-4.08 224.5-226.51 Refs. [22,23,25 ]·' 

'From second virial coefficient data. 
bFrom the lattice constant and sublimation energy of the solid. 
' Range of values in the literature. 

7.35 

22.30 

79.05 
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As 

- 113.25 

with x = r / r m, where r m is the position of the minimum of the potential. The parameters of the BFW potential for Ar are 
listed in Table 1. 

However, here we are mainly focused on the Lennard-Jones potential model 

ulj(r) = 4eLJ [ ( CY:J) 12 
- ( CY:J) 6] , (2) 

also frequently used for noble gases. The choice of the parameters c,LJ and eLJ is of crucial importance because they have 
a strong influence on the accuracy of the calculated thermodynamic properties. These parameters can be obtained from 
experimental equilibrium or transport properties. As we are concerned here with equilibrium properties, we must resort 
to the parameters determined from some of them. This is done most frequently from second virial coefficient data. The 
problem is that the values of the parameters determined in this way reported in the literature spam over considerable 
ranges, especially for Kr and Xe. Therefore, we have started with determining these parameters from the smoothed data 
recommended in Ref. [18). To this end, we have fitted the data to the series expansion of the second virial coefficient 
for the LJ fluid [19). We have considered only the second virial coefficient data for supercritical temperatures, because at 
lower temperatures they are subjected to considerable experimental errors. The results are listed in Table 2, where we 
have included also for reference the values determined from solid state properties [20) and the ranges of the parameter 
values, determined from measured second virial coefficients, collected from the literature in a non-exhaustive search. 
It is to be noted that for Ar the values of CYLJ and eLJ determined here are nearly equal to those determined from solid 
state properties [20 ), for Kr the values of CYLJ are also equal and those of eLJ are close to each other, whereas for Xe the 
differences between the two sources for the parameters are remarkable. 

As seen in Fig. 1-(a) both potentials for Ar are quite similar in shape. The resemblance is still greater if we adopt for 
the LJ potential the same value of e as for the BFW potential, as seen in Fig. 1-(b). A similar situation arises for Kr and Xe. 

2.2. Three-body interactions 

There are different contributions to the three-body dispersion interactions, arising from combinations of multipole 
moments [26). The leading contribution is that from the triple-dipole interactions which are accurately given by the 
Axilrod-Teller (AT) [11 ) expression 

(3) 

3 
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Fig. 1. Lennard-Jones potential (solid curves) compared with the BFW potential (dashed curves) for Ar, (a) with eLJ/k 
eLJ/k = 142.095. 

b) 

3.0 

119.7, (b) with 

where v is the nonadditive coefficient for argon. Other third-order multipole interactions largely cancel out with fourth
order triple-dipole interactions [27 ], so that only the AT contribution to the three-body dispersion interactions needs to 
be considered as a good approximation. 

Marcelli and Sadus [13, 15] performed computer simulations to obtain the relative contribution of two-body (£2 ) and 
three-body (E3 ) interactions to the configurational energy of argon, krypton and xenon in the liquid phase with the BFW 
potential for the 2B interactions and the AT approximation for the 3B interactions. They considered a temperature range 
covering the coexistence region2 and density ranges covering the liquid phase near coexisence.3 They found a simple 
relationship for all these fluids, namely 

E3 vp 
- =)..-, 
E2 sa 6 

(4) 

where p = N/ V is the number density and ).. - 2/ 3. Later, Wang and Sadus [16) from new computer simulations 
for T* ~ 1 and 0.4 :'.:: p* :':: -0.8, with p* = pa 3 , found ).. = -0.85. These authors, advised against the use of that 
relationship with an effective potential like that of Lennard-Jones. However, as we have seen in Fig. 1 both, the LJ and 
BFW potentials, have a quite similar shape for argon, and so it is expected that the ratio E3 / E2 will behave in a similar 
way for the two potentials. Similar considerations apply to Kr and Xe. In any case, considering larger temperature and 
density ranges, including liquid and gas phases, it seems likely that such a simple relationship will no longer be valid. 
This question will be analyzed in the next section. 

2.3. Monte Carlo simulations for the two-body and three-body contributions to the configurational energy of argon 

In order to check whether the simple relationship ( 4) between three-body and two-body contributions to the 
configurational energy holds also for the Lennard-Jones fluid, we have performed NVT Monte Carlo simulations for both, 
the BFW and LJ potentials for argon. We used a system consisting in N = 864 particles initially placed in an FCC 
configuration within a box with volume V = L3 with periodic boundary conditions. The systems was equilibrated for 
N, = 2 x 104 cycles, each of them consisting in N attempted particle moves, after which the contributions E2 and E3 were 
measured for the next Ne = 5 x 104 cycles. In the calculation of E2 the cut off distance of the potential was settled to 
r; = 3.0, where r* = r /a, and the usual correction for the truncation of the potential was applied. In the calculation of E3 

the cut off distance was settled to L/ 4 because for larger distances the three-body interactions are negligible [27 ). First, we 
considered a temperature T = 140 K, which is equivalent to a reduced temperature T* = 1. 17 for the LJ potential and to 
T* = 0.985 for the BFW potential, and a reduced density range 0.5 :'.:: p* :':: 0.7, belonging to the liquid region. The results 
are plotted in Fig. 2. We can see that the roughly constant value for ).. in Eq. ( 4), as reported by Sadus et al. [ 13, 15, 16) for 
the liquid phase at subcritical temperatures is supported by our results. From our simulations we obtain).. = -0.77 for 
LJ and ).. = -0.88 for BFW. 

However, when we consider also supercritical temperatures and a wider range of densities, the situation is quite 
different, as shown in Fig. 3. From the figure, it is clear that the above-mentioned ratio is both temperature and density 
dependent. 

2 For argon the experimental coexistence temperatures lie in the range 0.6 ;s T' ;s 1, with T' = kT / s for the BFW value of s quoted in Table 1. 
3 Rougly 0.4 ;5 p' ;5 0.8 for the BFW value of a quoted in Table 1. 

4 
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Fig. 2. Ratio of the three-body to two-body energies for argon at r = 140 K with the LJ (circles) and BFW (squares ) potentials as a function of the 
reduced density p*. The solid lines are linear fittings . 
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Fig. 3. Ratio of the three-body to two-body energies for argon with the LJ (left) and BFW (right) potentials as a function of the reduced density 
p* for different reduced temperatures T* = 0.7, 1.0, 1.5 , 2.0, 3.0, and 5.0, respectively, from top down. (Note that the reduced temperatures and 
densities are not equivalent for both potentials because the values of s and a are different). The curves are guides for the eye. 

2.4. Effective temperature- and density-dependent potential for argon including the contribution of three-body interactions 

We have fitted the simulation data analyzed in the previous section of the ratio 

ea 9E 
__ 3 =A 
vp*E2 

for the LJ potential to a function of the reduced density and temperature in the form 

The corresponding parameters aii are listed in Table 3. 

(5) 

(6) 

Following Marcelli et al. [15 ], this will allow us to include the three-body interactions into an effective two-body 
potential of the form 

Uerr(r)= u2(r{1+ 8; 9A(p*,T*)l (7) 

where u2(r) accounts for the two-body LJ potential. 

5 
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Table 3 
Parameters a ij in eq. (6 ) for the LJ potential. 

1 
2 
3 
4 

0 

- 0.231135 
- 10.339254 
25.007885 
- 21.304910 

- 1.363491 
52.489802 
- 134.069029 
112.411477 

2 

0.332008 
- 95.522035 
261.136087 
- 220.968616 

3 

1.522619 
77.252201 
- 217.350307 
183.328674 

3. Monte Carlo-based perturbation theory for the effective two-body Lennard-Jones fluid 

3.1. The reference system 

Physica A 608 (2022) 128280 

4 

- 0.570183 
- 22.792761 
64.170784 
- 53.498016 

In perturbation theory for fluids with spherically-symmetric interactions, the potential is considered as the sum of 
two contributions: a reference potential u0(r), and a perturbation u1(r). Usually the reference potential accounts for the 
repulsive forces and is approximated by a hard-sphere (HS) potential. Therefore, for soft-core potentials, as is the LJ 
one, a suitable criterion must be used to determine and effective HS diameter. To this end, several prescriptions have 
been proposed in the literature. We will focus here on the Weeks-Chandler-Andersen (WCA) [28,29] and Lado [30] 
approximations. In the WCA perturbation theory, the reference and perturbation potentials are defined by 

and 

uo(r) = { u(r) + e, 
0, 

(8) 

(9) 

respectively, where Tm = 2116a is the position of the minimum of the LJ potential. In addition, the reference fluid with 
potential u0(r) is approximated by a fluid of hard spheres with diameter determined from the condition 

1°" YHs(r; dwCA )Lle(r ; dwcA )r2dr = 0, (10) 

where 

Lle(r ; dwCA ) = e- tluo(r) - e-ll uHs( r;dwCA) 

is the so-called "blip function", 

YHs(r ; dwCA ) = gHs(r)ell"Hs(r;dwCA) 

(11) 

(12) 

is the background correlation function of a fluid of hard spheres with diameter dwcA and uH5(r ; dwcA ) is the corresponding 
potential. The above condition is based on the assumption that the long-wavelength part of the Fourier transforms of the 
pair correlation functions of both fluids, the reference fluid with the potential u0(r) of Eq. (8) and the HS fluid , with 
potential uHs(r; dwcA ), will be equal, that is, h0(k) ~ hdwcA (k), which is accurately fulfilled at high densities [29]. Although 
the effective diameter dwcA was defined within the context of the WCA perturbation theory, condition (10) is a reasonable 
approximation for any perturbation theory that uses a HS reference fluid, not only from a conceptual point of view, as 
seems clear from the preceding explanation, but also from mathematical considerations [31 ]. 

Closely related to the WCA is the Lado (30] proposal 

(13) 

which enforces thermodynamic consistency between the energy and virial routes to the equation of state. 
In the WCA and Lado approximations the effective diameter is temperature- and density-dependent and is somewhat 

cumbersome to obtain. In Ref. [32 ] were reported expressions, fitted to the numerically calculated values, for the effective 
diameters in these two approximations. 

3.2. Monte Carlo calculation of the perturbation terms in the HTE 

In the high-temperature expansion (HTE), the Helmholtz free energy is expressed in the form 

F 00 Fn 1 
NksT = L NksT T*"' 

n=O 

(14) 

6 



B.P. Akhouri and ].R Solana Physica A 608 (2022) 128280 

where T* = k8T /t: is the reduced temperature and Fn is the nth perturbation term of the Helmholtz free energy. Other 
thermodynamic properties are readily obtained from the above expansion. 

The zero-order term in expansion (14) is the Helmholtz free energy of the reference fluid. If the latter is the HS fluid, 
F0 can be readily obtained from integration of the accurate Carnahan-Starling equation [33], with the result 

~ = 1n(A3p) + (4- 377)77 ' (15) 
NKsT e (1 - 77)2 

where A is the thermal wavelength and 77 = (rr / 6)pd3 is the packing fraction for hard spheres with diameter d at number 
density p = N / V. 

The first-order term f 1 in the HTE (14) can be obtained accurately from the HS radial distribution function and higher
order terms can be obtained with quite good accuracy from the numerical solution of the so-called coupling parameter 
series expansion [34- 37 ], based on a combination of perturbation theory with integral equation theory. Alternatively, 
several of the first terms in the series can be obtained from computer simulation, as done in the present work. The 
first three terms can be obtained from averages performed by computer simulations in the HS reference system from the 
expressions [3] 

f 1 1 L *() -- - - N· u r Nk T - N ( ,)o 1 ' ' 
B i 

(16) 

(17) 

(18) 

respectively, where N; is the number of molecular distances in the interval r;, r;+1, with Llr = r;+1 - r; « a , i = 1, 2, . .. , 
angular brackets mean averages, and subscript O means that the averages are performed in the HS reference system. 

We have performed Monte Carlo NVT computer simulations to obtain the perturbation terms f 1 - F3 of the LJ fluid with 
the dwcA and dL approximations for the HS effective diameter. For practical use, these data have been fitted to polynomials 
of the form 

Fn - '°' '°' .. y•i •i NkT - L L a ny p , (19) 
i j 

where p* = NaJ/V is the reduced density of the Lennard-Jones fluid. 

4. Results and discussion 

Eq. (14), with Eqs. (15) and (19) constitute a third-order Monte Carlo based perturbation theory (MCPT). The 
perturbation terms Fn are different for the dwcA and dL effective diameters. However, with the D"LJ and ELJ parameters 
determined in this work (see Table 2) we have found that the results obtained with dL are much better, on the whole, than 
those obtained with dwCA, and so the following analysis will restrict to the former and, for completeness, the corresponding 
parameters in Eq. (19) are listed in Table 4. 

4.0.1. Argon 
In Fig. 4 the liquid-vapor coexistence densities of Ar, obtained from the MCPT, are compared with the experimental 

data taken from the NIST compilation [38 ]. 
As we can see, the theory provides fairly good agreement with experimental data, although slightly overestimates the 

liquid densities at low temperatures, up to ~ 4%, as well the critical temperature, by an amount of ~ 2.5% for the latter. 
Fig. 5 compares the MCPT results for the energy and the pressure of argon as a function of the density with the NIST 

compilation [38 ] at different supercritical temperatures and up to very high temperatures and pressures. In both cases, 
the agreement between theory and experiment is very good, although at high temperatures and densities the predicted 
values of the energy are slightly low and those for the pressure slightly high. 

4.0.2. Krypton 
For the predicted liquid-vapor coexistence of Kr similar conclusions as for Ar can be drawn, as seen in Fig. 6. Again the 

coexistence densities for the liquid phase are slightly overestimated at low temperatures, up to ~ 3%, and the calculated 
critical temperature is ~ 2.7% higher than the experimental one. 

Concerning energy and pressure, Fig. 7 shows that both quantities are predicted with excellent accuracy. 

7 
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Table 4 
Parameters a nij in Eq. {19) with the dL approximation for the effective diameter. 

j 

2 3 

n = 1 

0 -5.977843 -2.019346 - 0.264093 
1 0.827712 - 2.337173 1.577166 
2 - 0.284087 0.974040 - 1.123063 

n=2 

0 - 1.543083 4.341932 - 4.157844 
1 0.342791 1.123952 - 3.603604 
2 - 0.193636 - 1.246914 3.353462 
3 0.042643 0.364380 - 0.931332 

n = 3 

0 - 0.568997 1.008044 0.316898 
0.472016 - 0.563359 0.346115 

2 - 0.369248 0.417766 - 0.178282 
3 0.095133 - 0.093651 - 0.011436 

... ' - ... 
160 

140 

g 
I- 120 

100 

80 
0 10 20 30 

p (mol/1) 

4 

0.711520 
- 0.843582 
0.662971 

1.315804 
2.208882 
- 1.962768 
0.536422 

- 1.324304 
- 1.195348 
0.674511 
- 0.078979 

40 
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5 

0.565868 
0.937934 
- 0.516596 
0.078465 

Fig. 4. Liquid-vapor coexistence for Ar. Points are the experimental data taken from the NIST compilation [38 ) and the continuous and dot-dashed 
curves are the present calculations from the MCPT with A = - 0.77 with and without the 3B contribution. respectively. 

4.0.3. Xenon 
The situation is quite different for Xe. As we can see in Fig. 8, the theory, with the values of aLJ and t:LJ determined in this 

work from second virial coefficient data, considerably underestimates the coexistence liquid densities at all temperatures 
and slightly underestimates the vapor coexistence densities at temperatures close to the critical point, although the critical 
temperature itself is predicted quite accurately. The situation much improves if we use for the LJ potential parameters 
those obtained from solid state properties (20], although still near the critical point the liquid/vapor densities are slightly 
overpredicted/underpredicted, while the critical temperature is estimated with high accuracy. 

The theoretical values for the energy of Xe, shown in Fig. 9, are in quite good agreement with experimental data, 
except at low temperatures and very high densities, for which the theory increasingly overestimates the magnitude of the 
energy with decreasing temperature. In this case both sets of potential parameters provide quite similar results, although 
slightly better those obtained from solid state properties. Instead, the theory strongly overestimates the pressures obtained 
from the potential parameters determined in this work, as is clearly seen in Fig. 9, at all temperatures and densities, 
whereas with the parameters obtained from solid state properties the predicted pressures are in quite good agreement 
with experiment. 

It is somewhat surprising the fact that, within the context of the present theory, for Xe the LJ potential parameters 
determined from the lattice constant and the sublimation energy (20] provide better agreement with experiment for the 
thermodynamic properties of the fluid than those determined here from second virial coefficient data. However, we must 

8 
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Fig. 5. Energy (left) and pressure (right ) of Ar at T = 160, 200, 250, 300, 400, 500 and 600 K, respectively. from down up. Points are the experimental 
data from the NIST compilation [38] and the curves are the present calculations from the MCPT with ),, given by Eq. (6) . 

. ... . . ... . 

220 
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g 180 

I-
160 
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p (mol/1) 

Fig. 6. Liquid-vapor coexistence for Kr. Points are the experimental data taken from the NIST compilation [38 ] and the continuous and dot-dashed 
curves are the present calculations from the MCPT with ),, = - 0.77 with and without the 3B contribution, respectively. 

return to the comments previously made in Section 2 in relation with the potential parameters quoted in Table 2. There 
we noted that for Ar the LJ potential parameters determined from the two procedures are nearly equal and for Kr the 
distance parameters are also equal and the energy parameter are quite close to each other, and so the thermodynamic 
properties are accurately predicted by any of the two sets of parameters. In contrast, for Xe the potential parameters 
obtained in this work, and those reported in the literature, from second virial coefficient data, are quite different of those 
obtained from solid state properties. It is to be noted that the parameters obtained from the first of these procedures are 
subject to considerable uncertainty, whereas this seems not to be the case for those obtained from the second method. 
The fact is that the calculated thermodynamic properties are sensitive to the potential parameters. More specifically, the 
energy is particularly sensitive to the energy parameter s and the pressure is strongly sensitive to the distance parameter 
G'. 

The sensitivity of our theory to the potential parameters is its main weakness, although it cannot be attributed 
in advance to the theory itself but to the uncertainty in the values of the parameters. In any case, this sensitivity is 
shared in general with most other theories, unless the potential parameters are determined from the fitting of certain 
thermodynamic properties to experimental data. 

On the opposite side, one of the main strengths of the present theory is its generality because, as already pointed out, 
it can be applied to any fluid whose two-body interactions are satisfactorily described by the Lennard-Jones potential, in 
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Fig. 7. Energy (left) and pressure (right) of Kr at r = 210, 250, 300, 350, 400, 450,500, 600 and 700 K. respectively, from down up. Points are the 
experimental data from the NIST compilation [38] and the curves are the present calculations from the MCPT with .l. given by Eq. (6). 
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Fig. 8. Liquid-vapor coexistence for Xe. Points are the experimental data taken from the NIST compilation [38 ] and the curves are the present 
calculations with .l. = - 0.77. Continuous and dot-dashed curves correspond to D'LJ = 4.07 A. eLJ/k = 223.6 K with and without the 38 contribution, 
respectively. Dashed and dotted curves correspond to aLJ = 3.96A. eLJ/k = 231.1 K with and without the 38 contribution. respectively. 

contrast with most other approximations proposed in the literature that are system dependent, as is the case of those 
reported in Refs. [ 4,5,8, 10). Another remarkable fact is that, although it was not expected in advance for a theory that does 
not account specifically for critical phenomena, our theory provides fairly good predictions for the coexistence curves. 

On the other hand, the theory should not be used for reduced effective densities p* = pd3 > 0.9, because the 
simulations performed to obtain the perturbation terms Fn were carried out in the range p* = 0.1 - 0.9. 

One may wonder about the relative importance o using a perturbation theory of first, second, third, or even higher 
order. Of course, at strongly supercritical temperatures, a first-order perturbation theory would be enough accurate. The 
situation is different at temperatures close to the critical point or lower. For instance, the present theory with the three
body contribution overestimates the predicted critical temperatures for Ar by an amount of 9.7%, 4, 3%, and 2.5%, at first, 
second and third order, respectively, and similar results are obtained for Kr and Xe. From the relative magnitude of the 
first three terms it seems likely that considering still higher order terms will not improve significantly the results, apart 
from the fact that accurately calculating these terms by simulation would require a strong simulation effort. 
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Fig. 9. Energy (left) and pressure (right) of Xe at T = 300, 400, 500, 600 and 700 K, respectively, from down up. Points are the experimental data 
taken from the NIST compilation [38]; the curves are the present calculations from the MCPT with 1' given by Eq. (6), and with a LJ = 4.07 A. 
sLJfk = 223.6 (continuous), and OLJ = 3.96A. SLJ/ k = 231 .1 (dashed). 

5. Concluding remarks 

In the preceding sections we have developed a perturbation theory, within the framework of the high temperature 
expansion with the perturbation terms up to third order obtained by Monte Carlo simulation, with and effective two
body Lennard-Jones potential with the contribution of three-body interactions included following the procedures devised 
by Sadus et al. (13- 16]. We have shown that the theory can provide accurate predictions for the coexistence densities 
and equilibrium properties of the heavy noble gases, provided that the LJ potential parameters are suitably chosen. In 
particular, the deviation in the predicted critical temperatures of Ar and Kr is less than 3% and still lower for Xe. The liquid 
coexistence densities of Ar and Kr at low temperatures are slightly overestimated, although by less than 3%, whereas the 
relative deviations in the predicted liquid and vapor coexistence densities of Xe near the critical point are greater, partially 
because these densities are relatively low. In any case, there is a strong improvement in the predicted coexistence curves 
by including the three-body contributions as compared with the situation where they are neglected. Surprisingly enough, 
we have found that the best results, on the whole, are obtained by using the LJ potential parameters obtained (20] from 
the lattice constant and sublimation energy of the solid, instead of those obtained from second virial coefficient data, as 
one might have expected. 

The accuracy of the theory seems to be enough to be suitable for predictive and interpolation purposes, perhaps by 
using some optimization procedure to obtain the potential parameters, such as those used in Refs. (39,40]. For the latter 
purposes, generally resort is made to empirical correlations specific for each fluid. The advantage of our theory is that a 
single analytical expression can be applied to any fluid with pair interactions satisfactorily described by the Lennard-Jones 
potential, such as is the case of the noble gases considered here. Certainly, there are potential models more accurate for 
these substances, such as the BFW potential [ 17 ], but this has the disadvantage that they cannot be expressed in reduced 
units, so that the expression for the Helmholtz free energy, and any derived thermodynamic property, must be specific 
for each fluid. 
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