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ABSTRACT 

Currently, a great deal of the automotive industry’s R&D effort is focused on improving overall vehicle environmental and energy 

efficiency [1]. For instance, one of the things that Electric Vehicles (EVs) and Hybrid cars (HEV) have in common is the recovery of 

waste energy, namely during braking. But, when an I.C. engine is operating (e. g. as a range extender in an EV), a large amount of 

energy is also wasted within the exhaust gases and with engine cooling, energy that could otherwise be recovered by different 

methods. This paper reports on the recovery of waste thermal energy using thermoelectric generators (TEG) for application in hybrid, 

extended range electric vehicles and more generally in any vehicle that could benefit from the generation of a small amount of electric 

current that would reduce the alternator operation time. 

Although some manufacturers are trying to develop TEGs to use at exhaust temperatures, there are still no commercially available 

TEG modules capable of withstanding these extreme temperatures. The present work assesses the potential of the use of heat pipes 

(HP) as a means of transferring energy from the hot exhaust gases to the TEG modules at a compatible temperature level while 

minimizing the loss of efficiency due to temperature downgrading. The type of HP used in this study is called Variable Conductance 

Heat Pipe (VCHP), and its deployment has the advantage of inducing good temperature control. 

Various types of HPs were designed, manufactured, tested and improved with the aim of enhancing the overall heat transfer process, 

enabling an optimal level of electric energy recovery from the referred TEG modules. This was accomplished by the testing of 

different fluids inside the HP and by regulating the pressure of the gas chamber. Although the system is still under improvement, the 

results indicate that the use of VCHPs in conjunction with thermoelectric generators is a convincing technique for recovering 

otherwise wasted energy from the exhaust gases. 

 

1. INTRODUCTION 

The automotive world is on the verge of a major shift in paradigm, essaying a revival of the end of the 19th century, where electric 

vehicles were the rule rather than the exception. Full Electric and Extended Range Electric Vehicles (EREV, previously designated as 

Series Hybrid) are being made ready for customer acceptance, while Hybrids (HEV) have been sold by the million [2, 3]. 

1.1. WASTE ENERGY REGENERATION 

Currently, the major automotive OEMs are investing a considerable portion of their R&D budget on the so-called "Green 

technologies". Particularly, there seems to be a strong trend towards technologies that improve energy efficiency [1]. The 

hybridization of the vehicle is part of this shift in paradigm, in which thermal and mechanical energies being recovered into electricity 

take a major part. While a strong effort on the recovery of kinetic energy through regenerative braking is being made by most 

approaches [4], less attention has been put until recently on the recovery of waste thermal energy in the vehicle. In fact, the energy 

released through the exhaust of a vehicle, for instance, is of the same order of magnitude of the mechanical power supplied by the 

engine, although the former is not as readily usable as the latter [5,6]. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55616825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Page 2 of 19 

 

Several strategies should be implemented in order to improve engine efficiency [6] such as lean burn, supercharging and the use of 

over-expanded cycles. The latter subject was thoroughly studied by the authors [8]. The use of turbocompounds and turbochargers is 

also a way of recovering a portion of the exhaust gases' energy, although the deployment of such equipments may be problematic, 

especially for petrol engines [5,6]. 

When an internal combustion engine is running at part load, the energy released by the fuel in the combustion is converted into useful 

work, directed to the cooling system and released in the form of exhaust gas enthalpy in, more or less, equal parts [5,6]. Therefore, the 

total power available at the exhaust and cooling systems (including water and oil) is roughly twice the mechanical power used for 

traction (Figure 1). Even if a small percentage of this waste energy could be regenerated into electric power and used to charge the 

battery pack of a Hybrid or EREV vehicle, or even be used solely to prevent the actuation of a conventional vehicle's alternator, the 

gains in efficiency for the vehicle could be important. The high temperature of the exhaust gases (up to 1000ºC) makes them 

potentially more apt for energy recovery than the lower temperature heat dissipated through the water cooling system of the vehicle. 

Nevertheless, these high temperature levels pose additional challenges that have not been easy to deal with until now [9]. 

 

Figure 1 - Engine heat balance 

 

1.2. THERMOELECTRIC GENERATORS (TEGs) 

There are several ongoing studies focusing on thermoelectric recovery of waste exhaust heat, some rather  recent and audacious, such 

as the use of Shape Memory Alloys (SMAs) to generate electricity [10] but this project is still on an early stage of development. 

One way of regenerating exhaust waste heat that has been under development for some years is the use of thermoelectric generators 

(TEGs) based on the Seebeck effect (see Figure 2). 

 

Figure 2 - Thermoelectric module 

The Seebeck effect is also used for the thermocouple operation (but at a much higher scale), in which a temperature difference 

between the junctions of two different materials produces an electric voltage and an electric current flows when the electric circuit is 

closed. This effect is quantified by the Seebeck coefficient, α, as represented in eq. 1: 
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A good thermoelectric generator device [11,12] should have a high Seebeck coefficient, and at the same time a low electrical 

resistance – Ri (thus allowing higher currents) and a low thermal conductance KP (thus reducing heat loss through the generator). The 

figure-of-merit (ZT) is used to quantify the performance of a thermoelectric module [10], or a single thermoelectric material, at a 

specific temperature T: 
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where α is the Seebeck coefficient, ρ is the mean electric resistivity, k is the mean thermal conductivity and T the temperature (K). 

These coefficients are temperature dependent. Figure 3 shows the Seebeck coeficient (S), the electrical resistance (R) and the thermal 

conductance (K) as function of the hot face temperature from a commercial thermoelectric module (40 mm x 40 mm x 3.6 mm, 127 

junctions, 7A, 15V) when the cold face is keep at constant temperature (27 ºC). Despite the reduction of figure-of-merit (ZT) with 

temperature, higher efficiency of the TEG is obtained when a high temperature difference is present between both faces of the module.  

 

Figure 3 - Seebeck coefficient (S), electrical resistance (R) and thermal conductance (K) as function of the hot face temperature 

from a commercial thermoelectric module  (cold face is at 27 ºC) 

Figure 4 plots the output voltage, electrical power and efficiency of a thermoelectric generator, as function of hot side temperature, 

when the cold side is fixed at 27 ºC. For temperatures above 230 ºC, current TEG's are not suitable. High ZT thermoelectric materials 

for high temperature are still under development [13]. 
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Figure 4 - Output voltage, electrical power and efficiency of a thermoelectric generator, as function of hot side temperature, (cold 

side is at 27 ºC) 

 

1.3. AUTOMOTIVE APPLICATION OF TEGS 

TEG technology was first tested in automotive waste heat recovery by Neild [14], followed by tests on modified cars/engines such as a 

Porsche 944 [15], a 14 litre Cummins Turbo-diesel engine truck [15,16] a GM Sierra Pickup Truck [17] and other, more recent works 

[18, 19, 20, 21], but in most cases the potential for power recovery is just enough to meet the electric demands of the various electrical 

accessories. However, reputable studies indicate that, if the system is properly designed, it should be possible to recover a significantly 

higher amount of energy [22, 23], when adding the combined potential of the cooling system, lubrication system and exhaust system. 

A major OEM (BMW) is testing this technology and is making plans to commercialize in the near future a car with TEGs generating 

up to 1kW (currently 200W), with the aim of 5% fuel savings [24]. 

In fact, work such as Matsubara [25] refer an efficiency of heat recovery (to electricity) using advanced thermoelectric generators of  

5%, which would translate into an extra 6% (1% from coolant, 5% from exhaust) of available (electric) energy in a hybrid car. 

Consequently, an engine with 33% efficiency could earn 3% extra mechanical power, translated into 5% in fuel savings. 

One of the reasons for the small thermal efficiency of TEG modules has to do with the limitations in the maximum temperature that 

current modules are able to withstand (normally, up to 230ºC). Rather than the core materials of the module, it is normally the 

solderings between parts that are currently limiting their ability to work at higher temperatures [11]. This is one of the main obstacles 

when trying to regenerate exhaust heat by using TEGs. 

One rather crude way of protecting TEGs against the extreme temperatures found in exhaust systems would be to partially insulate 

them. This solution would be highly ineffective as only a small portion of the heat would be available for recovery, mainly at light 

loads. Some tried to minimize this problem with the help of several heat exchangers [15]. The ideal solution, however, would be to 

effectively control the maximum temperature at the modules without sacrificing the heat available for recovery, or, in other words, it 

would be to regulate the temperature reaching the modules to nearly their working limit [9]. This would be made, not by insulating 

them or deflecting the heat flux away from them but, by supplying the heat to a sufficiently low temperature while still maintaining a 

high heat transfer rate. As it will be shown in the present work (and also previous work by the group [9]), this can be achieved with the 

combined use of heat pipes (HP) and TEGs. 
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1.4. USE OF HEAT PIPES FOR TEMPERATURE CONTROL 

1.4.1. Working principle 

Although very simple in their working principle, HPs are of relatively recent use in industry [26]. Basically, a standard Heat Pipe 

consists of a sealed upright pipe containing a small portion of phase-changing fluid (typically water). The remainder of the inner 

volume of the pipe is occupied either by a mix of thermal fluid vapour and non-phase-changing gas (typically air) or solely by the 

former. Due to gravity, the fluid rests at the bottom of the pipe (the heat source region, or evaporator of the HP), where it will be 

heated and boiled under the action of the heat crossing the pipe walls through conduction. The vaporized fluid will eventually 

condense at the upper part of the pipe wall releasing its heat to the heat sink. Once condensed, the liquid droplets fall back to the 

bottom of the pipe, completing the cycle and being ready to vaporize and condense over and over again (see Figure 5). 

 

Figure 5 – Outline of a standard Heat Pipe 

The heat transfer rate obtained through a typical HP is exceptionally high exactly because it is based on a phase change phenomenon, 

known for its intense heat transfer rates [27, 28]. This will be true as long as there is enough heat to achieve boiling conditions and not 

too much to initiate the Leidenfrost phenomenon [29], which consists on the formation of a film of vapour interposed between the HP 

walls and the liquid phase, that dramatically reduces heat transfer. 

1.4.2. HP operating temperature 

A Heat Pipe only starts transferring heat from the hot source to the heat sink once the boiling temperature of the fluid has been 

achieved. This boiling temperature is not a static value but it depends on the actual pressure of the vapour inside the HP (that also 

changes during operation).  

There is a balance between the heat supplied to the evaporator, the heat removed from the condenser and the temperature-pressure 

equilibrium of the fluid inside it. Eventually, the working temperature of the HP (the boiling temperature) will stabilize. The main 

drawback of such system is when an excessive heat load increases the pressure (and the temperature) to dangerous levels. 

1.4.3. The influence of non-condensable gas inside a HP 

If a HP is sealed at ambient conditions, its void volume will be filled mostly with air. This air is at atmospheric pressure when at room 

temperature and prevents the boiling of the water below 100ºC. Another option is to remove the air with a vacuum pump prior to 

sealing the Heat Pipe. In this case, the starting boiling temperature will be much lower and therefore the HP will start transferring heat 

much earlier. On the other hand, the presence of air hampers the access of the vapour to the condenser area, therefore reducing heat 

transfer. 
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1.5. VARIABLE CONDUCTANCE HEAT PIPES (VCHPs) 

One way of controlling the phase changing temperature of a fluid would be to control its pressure. If the pressure could be kept 

constant at a specified value, then a certain HP operating temperature could be regulated. The use of a large volume tank attached to 

the top of the HP will enable this outcome. This way, pressure would not increase as it would in a standard HP and the boiling would 

not be hampered by an excessive increase of pressure. 

 

Figure 6 - Constant vs. Variable Conductance Heat Pipes 

Figure 6 outlines a comparison between the response standard HPs and VCHPs for low and high thermal loads. It is expected that with 

this system the HP will be able to work at a specified temperature. This will be made by adjusting the HP pressure to control the 

boiling temperature (the operating temperature of the VCHP) regulating it to the maximum allowable TEG temperature, thus 

optimizing the heat transfer rate of the system.   

 

1.6. SCOPE OF THE PRESENT WORK: COMBINED USE OF HPs/VCHPs AND TEGs 

As discussed, the main limitation for the application of current TEGs to the exhaust system of vehicles is the temperature excess at the 

hot source (exhaust pipe). An easy way to use this heat at a lower temperature level with strong heat transfer rates is to use a VCHP 

with the evaporator embedded in the exhaust gases and with TEG modules connected to its evaporator. Additionally, a cooling water 

circuit retrieves heat from the opposite side of the modules extending the ΔT across the modules.  

The objective of the present work is, therefore, to assess the potential and optimize the design features of a heat transfer device (based 

on a VCHP) capable of efficiently transfer heat from hot exhaust gases to temperature limited TEG modules for electric generation in 

automotive applications. 
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2 EXPERIMENTAL PROCEDURE 

2.1. PRELIMINARY TESTS 

Figure 7 shows the HP setup used in the first tests. A copper pipe (22 mm diameter, 200mm long) was soldered between a copper base 

plate and a copper top cylindrical container. The heat pipe volume was partially filled with a fixed amount of water (5 mL to 20 mL) 

and air. A pressure ranging from 0.1 mbar (obtained with a rotary vacuum pump and further referred to as vacuum in the article) to 

12.5 bar (using an air compressor) was set in the interior of the HP, during the various tests. The top cylindrical container was filled 

with 0.4 L of water, at room temperature (25-30ºC). Heat was transferred to the base using an electric hot plate. Three thermocouples 

were used for measuring the temperature of the base plate, of the inner vapour of the HP and of the water of the cylindrical container, 

respectively. A thermal grease was applied at this interface in order to enhance the heat transfer. 

In each test, heat was transferred to the base plate, and temperatures were recorded each second, until the water in the cylindrical 

container reached the boiling point (100 ºC). The temperature increase of the water in the top cylinder was used to measure the power 

transmitted through the HP, considering the water mass (400 g) and its heat capacity (4.2 kJ/(kg.K). 

 

Figure 7 – Initial setup: Heat Pipe setup between a base plate and a cylinder filled with water. 

2.2. IMPROVED HP / VCHP SETUP 

In the second setup (Figure 8), the evaporator and condenser areas of the HP (respectively the contact area between the base and the 

water inside the HP and the contact between vapour and the cylindrical container) were substantially increased. Whereas in the initial 

configuration displayed in Figure 7 only the extremities of the HP were in contact with the heat source and the heat sink, in this new 

configuration the heat transfer areas are extended cylindrical surfaces. At the condenser region the pipe was extended well into the 

cylindrical container. For the HP base this was achieved by using a solid brass rod with a drilled hole, in which the tip of the HP was 

inserted and soldered. The lengths of the HP evaporator and condenser regions were extended to 50 mm and 60 mm, respectively. The 

total HP length was 200 mm, as in the previous setup. Moreover, an external connection (see Figure 8c) was added at the top end of 

the HP, in order to enable the addition of a 20 L closed cylinder tank, for pressure control of the HP. The same three thermocouples 

were used: base temperature, vapour temperature inside HP and water temperature. Several thermocouples were also placed along the 

pipe connecting the HP and the closed tank in order to evaluate to what extent the vapour has expanded out of the HP and into the 

pipe/cylinder region. If an increase of temperature along this pipe occurs it will mean that the vapour inside the HP has expanded 

sufficiently to reach this pipe or even the cylinder itself. This setup was used first without the closed tank and subsequently with it. 
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 (a) (b) (c) 

Figure 8 - (a) Outline and (b) photograph of the improved Heat Pipe setup, with optional 20 L cylinder tank for VCHP operation. 

(c) Detail of the bare HP without the tank attached. 

One/two blow torches that burned propane directly on the cylindrical base of the HP were applied (Figure 9). The maximum flame 

temperatures were around 800ºC and 1000ºC for one and two blow torches, respectively. These temperatures are comparable to those 

found in automotive exhaust systems (typically 700ºC). The cylindrical base of the HP zone has a thick wall of brass in order to 

protect the tube and produce some damping of the heat transferred to the HP. 

 

Figure 9 – Heating of the HP by 2 blow torches 

With the setups of Figure 7 and Figure 8, the tests were carried out only until the moment where the cylinder water temperature 

reached 100 ºC. At this temperature, the water in the cylinder would start boiling and power transmitted by the HP could no longer be 

calculated. In these designs no thermoelectric modules for electric energy generation were added.  
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2.3 SOLID TOP VCHP PREPARED FOR TEG INCORPORATION AND COOLING 

The last design was built to allow the attachment of TEG modules. Instead of the cylindrical water container, a solid brass block was 

added at the condenser region (see Figure 10) This block has a drilled hole acting as the condenser region, to which the tip of the pipe 

has been soldered. Four thermoelectric modules were attached to two of the faces of the block, while two water ducts were used to 

cool the outer surface of the modules, as seen in Figure 10a). The heat is transmitted from the vapour to the copper block, and from 

there to the cooling water, across the TEG modules. A water flow from 40 to 115 L/s was imposed. The 20L cylinder tank was used 

for all the tests using this configuration. 4 High-temperature thermoelectric modules were used. The model was the TEC1-12707 from 

Thermoelectric Supplier. They have 127 pairs of junctions, in a 40 mm x 40 mm x 3.9 mm package and can withstand temperatures up 

to 238 ºC. Some tests were made prior to TEG attachment just to evaluate the heat transfer potential of the system. 

        

Figure 10 - (a) Outline and (b) photograph of Heat Pipe setup, with 20 L cylinder tank for VCHP operation and thermoelectric 

modules. (c) Detail of the bare HP without the tank nor the TEGs attached 

3. RESULTS 

3.1. PRELIMINARY TESTS 

As noted above, the initial tests were done with the Heat Pipe displayed in Figure 7, simply placed over a thermal plate at 200ºC. In 

these tests the power never exceeded 180W, limited by the small heat transfer area (the interface between the hot plate and the lower 

tip of the Heat Pipe). As a consequence, a blow torch was used in order to increase the power supplied to the HP. Nevertheless, the 

restriction of the heat transfer caused by the small areas for vaporization and for condensation (restricted to the extremities of the HP, 

that is, their bottom and top surfaces) was too limitative to provide acceptable results. 

3.2. IMPROVED HP SETUP 

In order to overcome the limitation in heat transfer area mentioned above, another design, where the areas for vaporization and 

condensation inside the HP were much more extended, was consequently chosen (recall section 2.2). The power delivery was 
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significantly improved to more than twice the previous values, with tests displaying heat transfer powers in excess of 300W (Figure 

11). 

For these tests with the improved HP various quantities of water were used, either in the presence of air or in its absence. As predicted, 

for the tests where air was present (at atmospheric pressure) the heat transfer occurred only for temperatures above 100ºC, where full 

boiling would take place inside the HP (Figure 11a). Similar tests without air (Figure 11b) showed that the heat transfer was already 

possible with temperatures up from 40ºC, as the pressure inside the HP allowed for the water to boil at very low temperatures. 

   

 (a) (b) 

Figure 11 - HP with 10 mL of water (a) in the presence of air and (b) with no air (vacuum). 

 

The amount of water inside the HP (5 mL, 10 mL and 20 mL) did not seem to interfere with the results (Figure 12), as the main 

difference had to do with the onset of heat transfer. 

 

Figure 12 - Heat transfer across the HP as a function of base temperature. HP in vacuum and filled with air, respectively on the 

left and right graphs. Water volume of 10 mL and 20mL in the evaporator of HP. 

Obviously, if more heat is supplied to the evaporator than the amount that could be removed through the condenser, the pressure 

inside the HP (along with temperature) would increase to dangerous levels. This could happen in situations where an HP would be 

used for harvesting the heat from a very hot exhaust manifold. 
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3.3. VARIABLE CONDUCTANCE HEAT PIPE TESTS 

With the valuable experience on the operation characteristics of standard Heat Pipes, it was decided to try to control the HP phase 

exchange temperature, by using the so-called Variable Conductance Heat Pipe (VCHP). For these tests the HP described previously 

was used, but the top of it was connected to a large (20 L) tank (recall Figure 8b), so that the pressure inside the HP could be specified 

and would not change during the HP operation. As explained above, this would enable the setting of a specified constant temperature 

for the heat pipe operation. 

The first tests with the VCHP were very encouraging, as it was possible to further enhance heat transfer to values above 500W (see 

Figure 13). However, it was found that the heat transfer limitation was still on the side of the supply of heat to the vaporization zone. 

In fact, the temperature difference between the HP walls and the thermal fluid was rather small (<5ºC, see Figure 13), indicating that 

more heat could be transferred across the evaporator. 

 

Figure 13 - VCHP with 20 mL of water and air at 2 bar 

For the subsequent tests two blow torches were used (recall Figure 9), doubling the available power. For the lowest pressure of 1 bar 

absolute (atmospheric) it was possible to get a peak power exceeding 1 kW, with a temperature difference between the wall and the 

fluid of about 20ºC (Figure 14a). Increasing the pressure to 10 bar (fluid temperature of 180ºC) the power was increased to more than 

1.4 kW (Figure 14b), proving that these HP were capable of dealing with very large power inputs. These were good news, proving that 

these devices would be suitable for the ultimate objective of the present work: to find a safe and efficient way of transferring heat from 

the exhaust system of a vehicle to a cluster of thermoelectric modules. 

 

 

 (a) (b) 

Figure 14 - VCHP with 2 blow torches: a) 1 bar; b) 10 bar 
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Figure 15 displays the correlation between the recorded heat transfer rate and the corresponding operating temperature of the HP 

(which is connected to pressure). These values are all above 1kW. Although the maximum allowable operating temperature of the 

modules (around 230ºC) has not been achieved, it seems likely that the system’s available heat transfer rate will be more than enough 

for the pretended application. 

But before implementing a VCHP+TEG exhaust heat recovery prototype, additional tests were carried out, in order to evaluate the 

potential of the upper part of the HP, including heat removal and the use of the Seebeck modules. 

 

 

Figure 15 – Maximum transferred thermal power vs. HP temperature for VCHP 

If the system would operate near the temperature limit of the Seebeck modules (~230ºC) with water as the thermal fluid for the HP, a 

pressure of 23 bar (corresponding to the liquid-vapour equilibrium) would be required. As this is a very high pressure, the use of other 

fluids for the phase transition heat transfer in the heat pipes was tested. For some tests Dowtherm A was used, a fluid with a boiling 

temperature of 257ºC at atmospheric pressure, falling to 220ºC at 0.3 bar. 

Initial tests with the standard HP (Figure 16) showed the lower heat transfer potential of Dowtherm A, when compared to water, as the 

heat transfer power was reduced to almost half of that obtained with water. Subsequent tests with the VCHP confirmed these results 

(Figure 17), with the power falling from 1400W to less than 800W. However, this power range is still enough for the needs of the 

thermoelectric application under study. 
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 (a) (b) 

Figure 16 - Use of (a) water vs. (b) Dowtherm A 

 

 (a) (b) 

Figure 17 - Use of (a) water vs (b) Dowtherm A in a VCHP. 

 

3.4 SOLID TOP VCHP TESTS BEFORE TEG ATTACHMENT 

The last geometry tested (recall Figure 10) allowed the attachment of the TEG modules and water cooling ducts to their outer surfaces. 

Initial tests with this design were done for a constant flow rate of cooling water, without the modules, just to evaluate the potential of 

this design in terms of heat transfer at steady-state conditions, with the thermal power being removed by the cooling water (Figure 

10b). Tests showed a heat retrieving potential of over 900W at steady-state when two blow torches were used, and over 600W when 

only one was in operation (Figure 18). 
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Figure 18 - Test of the VCHP for constant cooling flow rate (one/two blow torches) 

 

3.5. PRELIMINARY VCHP TESTS WITH 4 TEGs ATTACHED 

Finally, TEG modules were placed between the top block and the water cooling ducts. As only 4 modules were to be used, a low 

power setting (only one blow torch at part power) was used for these tests. The HP was operated with water at different pressures, 

corresponding to different temperatures at the top plate. 

With the modules in place the power level was much lower (less than 300W), as a result of the lower power setting of the single blow 

torch and the added thermal resistance imposed by the modules. Figure 19 shows the power levels removed by the cooling water as a 

function of top block temperature (average water temperature of 25ºC). The temperature of the top block was only slightly lower than 

that of the HP.  
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Figure 19 – Thermal power across the 4 modules. 

The electric voltage and electric power generated by the 4 Seebeck modules, along with the efficiency of thermal energy recovery are 

plotted against the temperature difference between the top block and the cooling water in Figure 20. 

 

Figure 20 – Electric power, Voltage and Efficiency of the 4 modules as function of the temperature differential between the HP 

and the liquid cooling. 

The trends are as expected (see Figure 4), with the data for electric power as a quadratic, and the curves for voltage and efficiency as 

nearly straight lines. The maximum efficiency (around 3%) was obtained at the high T range for T=128ºC, corresponding to a top 

block temperature of 153ºC. For higher temperatures the efficiency remained at this level. This efficiency is still lower than expected 

(recall Figure 4). So is the maximum electric power generated (8.2W) with 4 modules. Although no tests were performed with a 

temperature difference across the modules of more than 170 ºC, it is expected that both the power and the efficiency will keep 

increasing at the same rate, being expected that an efficiency around 4% can be obtained near the temperature limit of the modules.  

Nonetheless, it should be noted that the real temperature difference across the modules should be smaller than the values presented in 

the plot. These actually represent the temperature differences between the HP temperature and the average cooling system 

temperature. In reality, the temperature differential across the TEGs (which has not been measured) is smaller because there is still the 

thermal resistance of the brass block and that corresponding to the convective heat transfer at the cooling system. Therefore, the 

recorded values of electric power, voltage and efficiency actually correspond to a lower temperature difference and so the real curves 

should be actually located further left in the plot and the performance of the modules is actually better than aprehended in Figure 20. 
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Presently the group is modifying the installation in order to have this temperature information. A computer model is also under 

development in order to complement this analysis. 

The actual electric output capacity of an automotive prototype based on the solutions proposed in this work will depend on the exhaust 

heat retrieving capacity of the system and on its size (namely the number of modules). If, in the limit, all exhaust heat would be 

channelled through the system and there would be sufficient modules, a maximum of 4% of the exhaust heat would be recovered into 

electricity. Taking into account that the heat released by the exhaust of the engine is roughly the same as its mechanical work, in the 

limit, an improvement in vehicle efficiency of around 4% could be achieved. Of course, it is not possible to channel all the exhaust 

heat towards the TEG system and therefore this efficiency will actually be lower. Also, a huge amount of modules would be necessary 

to gather all the available energy potential. Nevertheless, the present work has illustrated a heat retrieving method with a good heat 

retrieving potential and still with room for improvement. As TEG technology improves over time and fuel prices rise, the use of these 

technologies in automotive applications will eventually gain attractiveness. 

 

3.6. IMPROVEMENT POTENTIAL, FUTURE WORK 

The results presented are still preliminary as the system is still in a relatively early stage of development and therefore the limits for 

electric power output and efficiency of the modules can still be further extended. This can be achieved by employing several 

concurrent strategies that will be carried out by the group in the near future, some of them being already under development such as 

tuning the operating temperature to the optimum value that is, increasing the operating temperature up to the maximum value that the 

TEGs can safely withstand. This can be done by using water at higher pressures or by using a different fluid, such as the Dowtherm A 

that has been already used for some tests. Another strategy will be to increase the temperature difference across the modules by 

improving the cooling of the outer TEG surface and by reducing the thermal resistance of the set. Also, the lower part of the HP will 

be finned and immersed in a pipe with hot gas flow, in order to more accurately resemble an actual automotive exhaust system. 

Naturally, since TEG technology is constantly evolving, the use of more efficient TEG modules with less thermal resistance, higher 

ZT and higher operating temperature limit should be favoured as soon as they are available. 

The commercial success of a Thermoelectric system prototype for automotive applications such as the one under development will 

heavily depend on the ability to find a design that not only is energy efficient but is also compact and light. Further work on the 

optimization of the HP geometry, the number of modules per HP and the packaging of the system will have further development. The 

connection of the TEG-VCHP apparatus to an actual exhaust system of an ICE car has still to be implemented. 

 

4. CONCLUSIONS 

An extensive study was carried out to assess the potential of the combined use of Heat Pipes and commercially available 

thermoelectric modules for energy recovery of waste heat from the exhaust gases of automotive IC engines. The heat pipes were used 

as a means of efficiently transferring the heat from the hot exhaust gases to the TEGs at a temperature level that does not damage the 

TEGs, which are temperature limited. Several successive HP designs were tested with a clear improvement of the latter designs over 

the initial ones, both in terms of temperature and pressure control as well as heat transfer rate. Namely, it was possible to achieve a 

control over the pressure and temperature of the HP under operation, while the heat transfer rate channelled through the HP also 

improved significantly, sometimes exceeding 1.4 kW. 

One of the limitations of these commercial modules is that they display a maximum allowable temperature which is much lower than 

the typical temperature level of the exhaust gases. A new HP design was developed so that its working temperature could be 

controlled. This was achieved by using the so-called Variable Conductance Heat Pipe (VCHP) design in which a large tank with 

adjustable pressure is connected to the HP.  

Two different fluids were used, water and Dowtherm A. The latter showed a significant lower potential for HP use, with power levels 

reduced to less than half of those achievable with water. However, Dowtherm A works at a lower pressure when compared with water, 

thus recommended mainly for working temperature above 200 ºC, where the high water pressure would otherwise require a special 

design. The VCHP design demonstrated the ability to control the working temperature of modules and keep it below the maximum 

allowable limit. The operating temperature of the HP was successfully controlled through the regulation of the pressure inside of the 

HP. The values ranged from 100 ºC to near 200 ºC, with pressures varying between 1 bar and 13.5 bar. 
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The last design, which is still under early development, included the preliminary evaluation of the potential for the combined use of 

HP and thermoelectric modules to produce electricity. Values of 3% efficiency (calculated based on the heat removed from the Heat 

Pipe through the cooling system) were recorded for temperature differences of 130ºC across the HP and the water cooling system (the 

actual temperature difference across the modules will be somewhat lower). While a linear increase of voltage and efficiency with 

temperature was observed, a second order increase was recorded in the electric power. This pilot solution, which has still a good 

potential for improvement, can be scalable (only four modules were used in the present work) and opens the door for a viable 

thermoelectric generator for exhaust gas systems, enabling some heat recovery from the engines of standard vehicles, Hybrids and 

Extended Range Electric Vehicles. 
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DEFINITIONS/ABBREVIATIONS 

  

BEV Battery Electric Vehicle 

EREV Extended Range Electric Vehicle 

EV Electric Vehicle 

HEV Hybrid Electric Vehicle 

HP Heat Pipe 

ICE Internal Combustion Engine 

OEM Original Equipment Manufacturer 

SI Spark Ignition 

TEG Thermoelectric Generator 

http://www.carmagazine.co.uk/News/Search-Results/Industry-News/BMW-reveals-plans-for-Efficient-Dynamics-Mk2/
http://www.carmagazine.co.uk/News/Search-Results/Industry-News/BMW-reveals-plans-for-Efficient-Dynamics-Mk2/
mailto:jmartins@dem.uminho.pt
mailto:francisco@dem.uminho.pt
mailto:lgoncalves@dei.uminho.pt


Page 19 of 19 

 

VCHP Variable Conductance Heat Pipe 

ZT Figure-of-merit of a thermoelectric 

module 
  


