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Abstract—Determining whether a subject has a gait impair-
ment due to a disease or to the loss of muscularity due to
advancing age is fundamental for an early diagnosis of mus-
culoskeletal diseases. Parkinson’s is the second most common
neurodegenerative disease. The disease’s most prevalent symptom
is slow movement or sluggish gait, which can adversely impact
the individual’s quality of life. Generally, the gait analysis is
carried out on long test sessions, which include for example
long periods of walking, that cause inconvenience when the
subjects under test have marked gait impairments. To help the
diagnosis of Parkinson’s disease, in this study we investigated
the classification of Parkinson’s disease by analysing only a few
seconds of walking data using smart insoles, statistical analysis
and machine learning techniques. The data from the smart insoles
was assessed using correlation analysis. By creating pressure
groups and analysing their values, it was found that the number
of sensors could be reduced from 16 to 7. Furthermore, a
feature vector representing the subject’s gait was created by
applying on the data a time windowing segmentation of 5 seconds
and extracting six statistical features (mean, variance, skewness,
kurtosis, energy and entropy). Four different models have been
compared in terms of classification performance, reaching an F1-
Score in the classification of patients with Parkinson’s against
healthy subjects, considering adult and elderly subjects as two
separate classes, of 97.04% using the Random Forest. Such
metric increased to 98.89%, using the K-Nearest Neighbours
when healthy subjects were considered as a single class. The
models’ performance for each experiment was determined to
be statistically equivalent, demonstrating the potential of this
approach to provide the groundwork for the rapid detection
of Parkinson’s disease. Although the performance obtained is
promising the number of subjects included in the study was fairly
low, with a high bias towards the number of healthy subjects.
Hence, in future work, the proposed solution will be tested on a
larger cohort to ascertain its robustness.

Index Terms—Gait Analysis, Parkinson’s Disease, Machine
Learning, Smart Insole
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I. INTRODUCTION

Human gait analysis is the study that assesses a person’s
locomotion, with the aim of understanding the effectiveness
of the mechanisms of movements in individuals. Lower-limb
muscles are activated during a person’s stride, coordinated
by the brain and neurons that allow the individual to main-
tain balance and move through space [1]. Gait analysis has
historically been limited in its range of applications since it
required a specialised laboratory and expensive equipment.
However, recent advancements in technology have led to
reliable, affordable, and compact sensors for gait analysis,
enabling its application outside of a laboratory setting. Gait
analysis has been applied in several sectors, including health-
care [2], security [3], and fitness [4] domains. According
to the type of sensors involved and the methodologies cho-
sen for assessing the gait, the available techniques can be
classified into three main categories: image processing-based
[5], floor sensors-based [6], and wearable sensors-based [7].
The image processing-based systems analyse the subject’s gait
using devices, such as cameras, infrared sensors and laser
scanners. The floor sensors-based systems exploit pressure
sensors placed on the floor or biomechanical devices, such
as force plates that measure the force generated by the subject
during a standing or a walking activity. The wearable sensors-
based systems involve the use of small sensors located on
the subject’s body, such as inertial sensors. The most diffused
solutions are the image processing based and the floor sensors-
based, since the former is non-invasive and provides the
expert a clear visualisation of events, and the latter provides
high fidelity data about pressure applied to each anatomical
region of the foot. However, these systems are generally very
expensive and bulky which makes it impossible to integrate
into real-time scenarios. Wearable sensors have been preferred
to overcome these problems, as they allow high performance
with a minimum cost and footprint, becoming the first choice
in everyday life applications [8].

The locomotion of an individual can be influenced by
accidents, ageing and neurological impairments. Pathological
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gait can significantly reduce the quality of life in terms
of mobility and other psychological factors, especially in
neurodegenerative disorders, which affect the motor neuron
and lead to a loss of balance and movement ability [9].

Parkinson’s disease (PD) is the second most common
neurodegenerative disease after Alzheimer’s Disease [10]. It
causes a loss of the neuronal cell in the mid-brain substantia
nigra pars compacta region and dopamine depletion in the
striatum. It is characterised by hypokinetic movement, tremor,
bradykinesia, and freezing, resulting in a decreased walking
speed, stride length, and swing time, whereas, an increase in
stride cadence and double support time [11].

As they age, people tend to develop problems related to
walking, leading them to a lower level of quality of life
with a consequent predisposition to falls. The main cause
can be traced back to the loss of muscle mass and reduction
of perception, such as vision and skin receptors. Reduced
mobility mainly manifests itself in slow movements, swaying
walking, and reduced stance phases and stride lengths [12].

The relationship between PD and ageing has been highly
studied over the years, as the number of patients with PD
grows exponentially with increasing age. There is currently
no cure for PD and although a loss of neural cells in the
substantia nigra has been identified for both PD and elderly
patients, there is still no clear relationship between the two
[13]. In terms of gait analysis, both according to the severity,
present similar disorders. Therefore it is necessary to identify
a baseline to distinguish the two pathologies starting from the
gait impairments, in order to provide a correct classification.

Identifying a gait-related disease is a time-consuming prac-
tice. A doctor must analyse the patient’s medical history,
determine the tests to undergo and assess him/her visually.
Gait-related disorders are more widespread as a result of an
increase in life expectancy, which has led to a high workload
for doctors [14]. Therefore, the goal of this research is to find
automatic solutions that might make the diagnosing process
easier for the doctor. In this regard, the introduction of machine
learning for the analysis of patient data has rapidly gained
research attention, because it can process large amounts of
information, and it can determine patterns between similar
patients by creating a baseline of the disease [15].

In this paper, we propose a machine learning and statistical
approach for the differentiation of abnormal gait patterns from
normal gait. Three groups of subjects have been included:
Parkinson’s patients (PD), Elderly subjects (ES) and Adult
subjects (AS). Although PD and ES individuals, as well as
ES and AS individuals, may occasionally overlap in terms
of gait, the objective is to establish a baseline that enables
them to be distinguished. A pair of smart insoles have been
used for collecting data, which consists of sixteen pressure
sensors, a tri-axis accelerometer and a tri-axis gyroscope. With
the objective of identifying a fast and cost-effective solution,
that can simplify the workload of a doctor, statistical analysis
and machine learning have been employed to classify those
conditions only by taking into account a few seconds of gait
data. The following questions are addressed: Can machine

learning-based classifiers accurately discriminate Parkinson’s
patients among healthy subjects? Can gait abnormalities be
rapidly detected during a short walk, such as a few seconds?
Can statistical features perform as well as gait parameters or
perhaps better while taking much less time?

The remainder of the paper is organised as follows: the
existing solutions in literature have been examined in Section
II, which is followed by the strategy employed in this study
in Section III. The findings are presented in Section IV. The
paper concludes with a discussion of results and future work.

II. RELATED WORK

The analysis of gait patterns for the recognition and treat-
ment of neurodegenerative diseases has received a great deal
of attention in recent years.

Alkhatib et al. [16] presented an approach to the early detec-
tion of Parkinson’s disease. They extracted the ground vertical
ground reaction forces (VGRFs) from 16 pressure sensors
underneath the feet, eight per foot. Combining VGRFs with the
age and speed of participants spatial and time analysed of data
were analysed to distinguish gaits as balanced and unbalanced
by using a linear decision boundary. The unbalanced gaits
were referred to the subjects with Parkinson’s disease and the
balanced gaits were classified, in turn, into normal and disease
subjects. A total of 47 participants were included in the study,
18 normal subjects and 29 Parkinson-affected patients. The
overall accuracy achieved was 95%, stating that the proposed
solution could provide the basis for designing real-time early
detection of Parkinson’s disease.

Açıcı et al. [17] exhibited an algorithm for the diagnosis of
Parkinson’s by exploiting ground reaction force sensors worn
under the foot. Sixteen time-domain features were extracted
from each sensor and 7 frequency-domain features. A Random
Forest algorithm was employed to classify the data. Walking
on a flat surface for two minutes was defined as the test set,
and 166 participants were included in the study, including 93
Parkinson’s disease patients and 73 healthy control subjects.
The accuracy obtained by the proposed solution was 98.04%.

Mehra and Mittal [18] proposed an algorithm for the di-
agnosis of Parkinson’s by utilising gait data generated from
IoT-based wearable sensors. Three datasets were involved in-
dividually for the identification of healthy against Parkinson’s
patients, one consisting of recordings about subjects walking
on level ground, one about subjects walking on a treadmill
and one about moving at a comfortable place with RAS.
A total of 73 healthy subjects and 93 subjects affected by
Parkinson’s have been evaluated. Eight pressure sensors have
been included in a shoe as the only device for gait analysis.
From each gait cycle, time, length, frequency temporal and
force features were extracted and selected by applying a
correlation analysis using the Spearman correlation coefficient
and a reduction in data dispersion utilising the 95% confidence
level. Random Forest has been used for classification. A
five-fold cross-validation method was applied to achieve an
Accuracy for each dataset of 95.54%, 98.80% and 94.52%,
respectively, using the feature selection approach.



Li and Li [19] analysed the use of baseline machine
learning models for the classification of Parkinson’s patients.
Including 306 participants, 214 Parkinson’s disease patients
and 92 healthy control subjects, they extracted the ground
reaction forces (GRFs) from a two-minute level ground walk-
ing. The GRFs were extracted from eight pressure sensors
placed underneath each foot. The data from the walking
test were segmented using a window size of 80 seconds.
Two machine learning models were developed, including a
Logistic Regression model and a Support Vector Machine with
radial basis function kernel, using the coefficients of variation
extracted from the data collected. The accuracy achieved by
the proposed solutions was 85% for the SVM and 81% for
LR.

Carvajal-Castaño et al. [20] developed a novel framework
to evaluate Parkinson’s gait patterns using state-of-the-art deep
learning algorithms. Three groups of subjects were involved
in the study, for a total of 134 participants, including 45
Parkinson’s disease patients (PD), 44 Young Healthy Controls
(YHC), and 45 Elderly Healthy Controls (EHC). Three deep
learning architectures were developed for the comparison
analysis, a Convolutional Neural Network (CNN), a Gate
Recurrent Unit (GRU) and a combination of them in which
energy information are processed by the CNN and the tempo-
ral information by the GRU. The system was developed using
only IMU Sensors, which involved a 3-axis accelerometer and
a 3-axis gyroscope. Considering the pairs of groups, the CNN
best accuracy achieved in classifying PD versus YHC was
82.7% and EHC was 82.4%. The GRU achieved an accuracy
of 82.7% in classifying PD versus EHC, and 92.7% with YHC.
The combination of both architectures provided almost the
same performance with an accuracy of 83.7% and 92.7%, in
the classification of PD versus EHC and YHC, respectively.

Despite these solutions producing excellent results, they
demand extensive data collection, which may be impractical
for individuals with severe mobility issues who cannot carry
out a long-session test. This research aims to develop a
classification method that only requires a smaller sample of
data. Furthermore, these solutions heavily rely on the usage
of pressure sensors, which are susceptible to errors when
the surfaces or dynamics of data collection change. For this
reason, inertial sensors were included in this study together
with pressure sensors to produce more reliable results.

III. METHODOLOGY

A. Dataset

The dataset included in this study is the ”Smart Insole
v1.0 Dataset” provided by Chatzaki et al. [21]. The dataset
comprised data collected from 29 participants from three
separate groups, including Parkinson’s disease patients, elderly
people, and adult subjects. A smart insole was the only
wearable device included for the collection of data, which
was composed of 16 pressure sensors, a 3-axis accelerometer
and a 3-axis gyroscope. Each participant had to complete two
types of tests for data collection purposes: a Walking Straight
and Turn test, and a modified version of the Timed Up and

Go test [22]. Each session was recorded and evaluated by a
neurologist specialised in movement disorders. The neurolo-
gist rated the performance of the participants using four items
of the MDS-Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) [23]. The four items were arising from a chair, gait,
freezing of gait and global spontaneity of movement.

To analyse and distinguish the various patterns that represent
the unique conditions of the participants, in this study the
attention was focused only on the walking activity. The walk-
ing data was taken from the Walking Straight and Turn test,
but the different walking speeds (slow, normal, and fast) were
treated as a single activity to offer a categorisation that did not
take into account the user’s walking speed. Two PD subjects
were excluded from this study because they did not complete
the Walking Straight and Turn Test. Table I summarises the
number of participants, their demographic information, and
their evaluated UPDRS gait score. which were reduced from
the original dataset to 27 participants.

B. Dataset Analysis

The dataset used is made up of 44 different sensors, of
which 22 per foot, divided into 16 pressure sensors and
6 inertia sensors. Selecting only the independent features
that provide useful information for the classification of the
conditions of the subjects, is a vitally important operation
as it allows to eliminate those redundant features that can
compromise the correct functioning of the algorithm. To meet
this need, a statistical analysis of the correlation between
the various features was defined. The analysis was carried
out involving the Pearson correlation coefficient [24] which
is a measure of linear correlation between two sets of data.
Given a pair of samples generated by the sensors, the Pearson
correlation coefficient (ρ) can be expressed as:

ρX,Y =
cov(X,Y )

σXσY
(1)

where cov(X,Y ) is the covariance between the samples
X and Y, and σX , σY the standard deviations of X and Y,
respectively. The value of ρ, can range between 1 and −1. If
ρ is close to 1 then X and Y are positively correlated (high
values of X are associated with high values of Y), instead, if
ρ is close to −1 then X and Y are negatively correlated (high
values of X are associated with low values of Y, and low values
of X are associated with high values of Y). An evaluation
criterion of ±0.8 was set to assess the features that showed
a strong correlation. By combining the various correlations, it
was possible to discover the groups of features that had a high
degree of similarity, and an approach based on the arithmetic
mean between the samples of each group was used to reduce
the number of features and eliminate the redundant ones.

Considering the objective of developing a rapid, cost-
effective system and preserving the temporal spatiality of the
data, a time window-based segmentation technique was used
with a time window of 5 seconds.

This decision was made with the assumption that a com-
pleted gait cycle would be sufficient to reveal the subject’s con-



TABLE I
PARTICIPANT DEMOGRAPHY

Group No. Person Age Height (cm) Weight (Kg) Shoe Size (EU) ”MDS-UPDRS-3.10” Gait
Elderly (ES) 9 74± 12 172± 6 80± 8 42± 1 0.22± 0.42
Adult (AS) 13 38± 12 176± 6 81± 10 42± 1 0.15± 0.36

Parkinson (PD) 5 71± 6 175± 5 80± 6 42± 1 1.83± 0.90
∗All the values are expressed as mean (µ) ± standard deviation (σ).

dition. Additionally, this decision was made after a thorough
review of the literature on similar subjects, such as activity
recognition, where data segmentation is frequently utilised.
In order to lower the cost of the system and improve the
classification rate while preserving the necessary amount of
information for the classification, the size of the window is
typically lowered to a smaller size, such as 2 seconds, while
processing data from wearable sensors [25]. Aware of this,
and that a person can complete a gait cycle in about 2.5
seconds, we concluded that 5 seconds was the ideal window
size for including data from patients with disabilities who need
additional time to perform such a task. In support of this hy-
pothesis, different window sizes have been compared ranging
from 3 to 7 seconds, finding that no statistical differences can
be identified between them (pvalue > 0.05 using the ANOVA
analysis).

Generally, in literature, when a gait signal has to be flattened
in a vectorise form the gait parameters are extracted (such as
stride length, stride cadence, and single support percentage).
Although these parameters have shown high reliability and
performance [26], their use requires long data collection ses-
sions and only with multiple strides can have valuable insights.
Set the time window for this study to 5 seconds, we chose
to use statistical features which, according to our hypothesis,
can reach the same level of reliability as gait parameters. The
statistical features are widely used for the analysis of data
coming from the lower limbs and have allowed obtaining high
performance in related research such as in human activity
recognition applications [27]. Two kinds of features have
been extracted, time-domain features and frequency-domain
features. Time-domain features included mean, variance, skew-
ness, and kurtosis, whereas, the frequency-domain features
included energy and entropy which are extracted by converting
the time-domain signal into frequency-domain by the use of
the Fourier Transform.

Defined X as the independent variable vector, N as the
number of samples in X , and Fi as the i-th Fourier transform
coefficient, the statistical features can be described as follows:

• Mean: it represents the average of the samples; it is
expressed as:

µ(X) =
1

N

N∑
i=1

xi (2)

• Variance: it is a measure of the dispersion of how far
the samples are spread out from their average value; it is

expressed as:

σ2(x) =
1

N

N∑
i=1

(xi − µ)2 (3)

• Skewness: it is a measure of the asymmetry of a distri-
bution around its mean; it is expressed as:

s(x) =
1

Nσ3

N∑
i=1

(xi − µ)3 (4)

• Kurtosis: it is a measure of how different a distribution’s
tails are from the tails of a normal distribution; it is
expressed as:

k(x) =
1

Nσ4

N∑
i=1

(xi − µ)4 (5)

• Energy: it is a measure of the strength of the sample; it
is expressed as:

energy(x) =

N/2∑
i=1

F 2
i (6)

• Entropy: it is a measure of the average level of uncer-
tainty; it is expressed as:

entropy(x) = −
N/2∑
i=1

Fi log2 Fi (7)

C. Machine Learning Model

Machine learning and deep learning solutions for gait anal-
ysis in patients suffering from neurodegenerative diseases are
the preferred ones in recent years as they allow to achieve,
especially in classification, very high performance with very
reliable results. However, by analysing the state-of-the-art
solutions available, simple machine learning models produce
better results than deep learning ones, as also stated by Tăuţan
et al. in [28].

In this study, a total of four machine learning models (K-
Nearest Neighbours, Linear Discriminant Analysis, Random
Forest, and Support Vector Machine) have been evaluated to
identify the optimal model for the classification of Parkinson’s
disease patients among healthy individuals, including elderly
and adult subjects. The K-Nearest Neighbours (KNN) uses
feature similarity to predict the values of new data points.
The Euclidean Distance was used as the similarity function
and the number of neighbours used was set to five. The
Linear Discriminant Analysis (LDA) is a linear model used
for classification and dimensionality reduction. It projects the
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Fig. 1. Analysis results for the reduction of the number of redundant sensors using the Pearson correlation coefficient. (a) Correlation matrix (b) Pressure
sensors groups. The original pressure sensors map figure has been extracted from [21].

input data into a lower-dimensional vector space in a way to
maximise the variability between the classes and reduces the
variability within the classes. The Random Forest (RF) is an
ensemble learning algorithm that classifies entities based on
the majority votes across all the trees in the forest. The number
of trees in the forest was set to 100 with no limitation on the
depth of trees and the Gini function was used to measure the
quality of the split. The Support Vector Machine (SVM) is
a kernel-based algorithm that is remarkable for its ability to
deal with high dimensional data making it suitable for pattern
recognition. The kernel used in this study was the radial basis
function (RBF).

To evaluate the performance of the classifiers and their
robustness a stratified 10-fold cross-validation [29] has been
used, which partitions the data into ten parts while maintaining
the proportion of the samples belonging to the respective
classes in the original dataset. One part is reserved for testing,
while, the others are used for training. In addition, a set of
metrics were identified to evaluate the solutions, including
Accuracy (Acc), Precision (Pr), Sensitivity (Se), F1-Score (F1)
and Area Under the Receiver Operating Characteristic Curve
(AUC).

IV. RESULTS AND DISCUSSION

This study proposed an effective and cost-effective solution
for the early detection of Parkinson’s disease patients along
with adult and elderly people by using smart insoles.

Initially, 16 pressure sensors and 6 inertial sensors per foot
were included to collect data and provide gait information.
However using an analysis based on the Pearson correlation
coefficient several sensors were found to be redundant with
each other, as reported in Fig. 1a, and different groups were
formed in which the values were more correlated. The results
showed that the most correlated sensors are pressure sensors,
so the analysis on reducing the number of sensors is mainly
focused on the latter. Four areas of the foot have been
identified: the front, the mid-high and mid-low and the back, as
shown in Fig. 1b. The data coming from these areas have been
merged using an average between them, except for the one
belonging to the medium-low group which had low correlation
values and therefore it was considered appropriate to leave
them unchanged. In summary, the number of pressure sensors
has been reduced from 16 to 7 for each foot, however, as
regards the inertia sensors, no changes have been made.

Once the sensor redundancy analysis has been completed,
the data in the dataset have been divided into segments of five
seconds to preserve the spatio-temporal structure of the data
and the statistical features have been extracted. Each segment
and therefore each sample created using the statistical features
included both the left and right foot, favouring a simultaneous
analysis of both feet. The total number of features extracted
was 156, which is given by the number of features (6) for
each pressure sensor (7) and inertial sensor (6), for both feet.

Four machine learning models have been trained and tested



TABLE II
PREDICTION RESULTS FOR THE CONDITION CLASSIFICATION PROBLEM INCLUDING THREE COHORTS OF PARTICIPANTS: ELDERLY (ES), PARKINSON’S

PATIENTS (PD), AND ADULT SUBJECTS (AS)

Model Acc (%) F1 (%) ES PD AS
Pr (%) Se (%) AUC (%) Pr (%) Se (%) AUC (%) Pr (%) Se (%) AUC (%)

KNN 95.04 95.03 96.14 91.81 98.83 97.18 95.78 99.91 93.86 97.50 99.25
LDA 94.66 94.65 95.07 92.79 97.53 95.50 93.89 96.65 94.49 96.67 98.74
RF 97.05 97.04 96.89 95.71 99.31 99.00 96.89 99.93 96.90 98.33 99.64

SVM 96.69 96.63 96.49 96.14 99.57 97.33 91.67 99.93 97.24 99.17 99.78
*The performance metrics have been extracted from a stratified 10-fold cross-validation and averaged.
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Fig. 2. Cumulative confusion matrix (expressed in percentage) obtained from
the evaluation of Random Forest algorithm employing the stratified 10-fold
cross-validation.

employing the stratified 10-fold cross-validation.
The performance of each model is reported in Table II. The

Random Forest has been identified as the best model, with
an accuracy of 97.05% and an F1-Score of 97.04%. Although
RF is raised above other models, the models’ performance
is not statistically significant (pvalue > 0.05 using ANOVA
analysis), and their variations are solely dependent on random
probabilities. These findings highlight the dependability of the
dataset created and lay the groundwork for the definition of
a rapid algorithm for the recognition of Parkinson’s disease
based on machine learning and smart insoles, which requires
only 5 seconds of measurements.

A closer examination of the results presented in Table II and
of the cumulative confusion matrix obtained from the Random
Forest evaluation (shown in Fig. 2), reveals that the Parkin-
son’s patients were correctly classified in nearly all the cases
with a limited number of type I and type II errors reflected by
the high values of Precision, 97.18%, and Sensitivity, 95.78%.
Analysing the misclassifications of Parkinson’s patients, the
incorrect predictions mainly concern two patients whose ages
are 76 and 79, respectively, whose severity grade when as-
sessing the gait was identified as 1 on the UPDRS scale by
neurologists specialised in movement disorders. Although both
subjects are comparable to elderly subjects in both age and
gait impairments, the proposed solution was able to correctly
classify these patients, whose number of total samples for each

one was on average 15, except for a sample which requires
further investigation to ascertain the causes. The proposed
solution encountered challenges while distinguishing the data
from elderly individuals and adult subjects. The challenge
was discovered, in particular, in elderly people who did not
have gait impairment symptoms. However, for both the classes
elderly and adult subjects, the precision and sensitivity were
above 91%.

Taking into account these considerations, a new experiment
has been carried out to assess the validity of the proposed
solution for the classification of Parkinson’s subjects against
healthy subjects. Since the elderly and adult people can
be considered as the same group that differ only in their
age, they were treated as a single class for the sake of
this experiment, the control subjects (CS). The findings of
the experiment have been reported in Table III. The KNN
model, which had an F1 score of 98.89% and an accuracy
of 98.90%, turned out to be the best model, nevertheless, as
in the previous experiment, the performance of the models
is not statistically different (pvalue > 0.05 using ANOVA
analysis), reaffirming what was previously defined, namely
that the dataset is robust and lays the groundwork for the
creation of a rapid algorithm for the detection of Parkinson’s
disease. In this experiment, the separation between the classes
has been increased, reducing the number of errors, however,
there are still some misclassifications between PD and CS, that
tracked refer to patients with Parkinson’s disease whose gait
disturbances were assessed in a range between 1 and 2 using
the UPDRS scale by neurologists. Only one sample belonging
to a control subject was misidentified as having Parkinson’s,
which had been determined to have a gait impairment grade of
1 on the UPDRS scale by neurologists. Overall, the proposed
solution’s error rate is low when compared to the number
of samples per user, which require further investigation to
determine the reasons.

In the original dataset paper [21], the results highlighted
that with the use of the walking ratio parameter, namely the
relationship between stride length and stride frequency, it is
possible to distinguish between the various classes. The proper
usage of this parameter, however, necessitates a prolonged
data collection session; as a result, it cannot be employed
in this study because it would violate the study’s guiding
principle, which is to minimise the amount of data required
for classification.

The proposed solution has therefore proved to be reliable in



TABLE III
PREDICTION RESULTS FOR THE CONDITION CLASSIFICATION PROBLEM INCLUDING TWO COHORTS OF PARTICIPANTS: CONTROL SUBJECTS (CS), AND

PARKINSON’S PATIENTS (PD)

Model Acc (%) F1 (%) AUC (%) CS PD
Pr (%) Se (%) Pr (%) Se (%)

KNN 98.90 98.89 99.86 99.13 99.56 97.98 95.78
LDA 97.05 97.07 98.33 98.23 98.21 92.34 91.89
RF 96.49 96.30 99.71 96.61 99.33 96.66 82.78

SVM 97.06 96.90 99.90 96.81 99.78 98.75 84.56
*The performance metrics have been extracted from a stratified 10-fold cross-validation and averaged.

recognising Parkinson’s patients, and in differentiating them
from both adult and elderly subjects. However, it is worth
highlighting the limitations encountered during the study. First
of all, the number of subjects included was low, with an
imbalance towards adult and elderly subjects, since there were
five patients with Parkinson’s disease compared to thirteen
adults and nine elderly subjects. The initial hypothesis of
limiting the segment length to 5 seconds, so that at least
a completed gait cycle was considered, has been proven
to be effective and provided accurate results, however, the
study could be extended to recognise a full gait cycle early
and extract the statistical characteristics from that segment,
which would favour the analysis of subjects that take longer
to complete a gait cycle. Cases of misclassification were
discovered to be related to elderly people and Parkinson’s
patients whose gait characteristics overlapped and had minor
impairments. This emphasises the need to take into account
in a future study the severity of the included subjects in the
algorithm definition, in order to reduce errors. The number
of statistical features extracted was the same for each signal
produced by the smart insoles, however, a detailed analysis of
the impact each feature has on the classifier will be carried
out in future work to improve its performance.

V. CONCLUSION

Determining impairments in the normal locomotion of in-
dividuals provides objective insights from which a medical
expert can design a treatment plan in situations such as
neuromusculoskeletal diseases, traumas or ageing. In this
research, a machine learning and statistical approach have
been proposed to support gait analysis in the classification
of Parkinson’s patients against healthy subjects, by using data
from a short walking session. Four machine learning models
have been compared for the classification of Parkinson’s
disease. The Random Forest resulted to be optimal in the
classification of the three subject groups (Parkinson’s patients,
elderly subjects and adult subjects) achieving an F1-Score
of 97.04%. Considering the elderly and adult subjects as a
single class, the performance obtained increased, identifying
the K-Nearest Neighbours as the best one with an F1-Score of
98.89%. In conclusion, the presented solution is comparable
and in some cases surpasses existing state-of-the-art solutions
with the advantage of requiring only 5 seconds of data for
classification. From the statistical analysis of the performance
of machine learning models, it was possible to identify that

their performances are comparable and that they differ only
in terms of random fluctuations, which lays the foundation
for the creation of a rapid and inexpensive Parkinson’s dis-
ease recognition algorithm by means of smart insoles. Future
research will make an effort to build a newer dataset with
a large participant population while maintaining a balance
between the cohorts. To evaluate each participant only on a
completed gait cycle without concern for their length, dynamic
estimation of the gait cycle length will be added. Eventually,
a feature importance analysis will be performed to determine
the influencing factors in the classification.
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