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Abstract

Background: Training and testing Deep Neural Net-
works (DNNs) for automated electrocardiogram (ECG)
interpretation requires large datasets. These datasets
are commonly extracted at scale from Electronic Health
Records (EHRs). Typically, a single physician over-reads
the machine generated interpretation as part of standard
care. Incorrect interpretation of the ECG occurs fre-
quently, reducing the quality of the labels.

Method: We trained a DNN to identify seven ECG
rhythms based on morphology; Sinus Rhythm, Junctional
Rhythm, Ectopic Atrial Rhythm, Atrial Flutter, Atrial Fib-
rillation, Ventricular Rhythm and Pacemaker. The DNN
was trained on a dataset of 368,202 ECGs taken from a
proprietary database. We then applied confident learning
techniques using the DNN to identify label errors in the
Physionet PTB-XL database, which is publicly available.

Results: The confident learning algorithm identified 515
potential rhythm label errors in the 21,837 ECGs in PTB-
XL database (2.36%). The labels were sorted by the likeli-
hood of label error based on the self-confidence score, and
the top 200 ECGs were manually reviewed. Of these 200
ECGs, 158 were found to be incorrectly labelled (79%).
Confident learning successfully corrected the label in 156
cases (78%). The estimated labelling error rate for ECG
rhythm in the PTB-XL database is 1.86%.

1. Introduction

Large labelled datasets are critical to the success of all
supervised machine learning techniques, regardless of the
field of study. However, the process used to extract and
construct these datasets often includes some form of au-
tomated labelling, which are inherently error-prone [1]. It
has been shown that across the 10 most commonly-used
computer vision, natural language and audio datasets, that
label errors are numerous and widespread, with an average
label error rate of at least 3.3% [2].

Large electrocardiogram (ECG) databases are com-
monly extracted from Electronic Health Records (EHRs).
The primary source of ECG interpretation is often pro-

vided by automated algorithms, which are then over-read
by a physician before being stored. However, these auto-
mated algorithms perform poorly, with overall classifica-
tion accuracy reported as low as 58.9% [3].

We hypothesized that this poor automated interpreta-
tion performance is not always corrected by the over-
reading physician, which leads to errors in ECG diagnoses
recorded in the EHRs. These misdiagnoses subsequently
become label errors in datasets which are used to train and
test supervised classification models.

In this paper, we analyse the PhysioNet PTB-XL
dataset [4, 5] to identify labelling errors in 12-lead ECG
rhythm.

2. Materials and Methods

2.1. Datasets

To train our Deep Convolutional Neural Network
(DCNN) we extracted 368,202 electrocardiograms (ECGs)
from the proprietary PulseAl worldwide ECG database.
This database contains labelled ECGs from over 1 million
patients from 7 countries. The ECGs were labelled as part
of standard clinical care, with a cardiologist or emergency
medicine physician over-reading the automated ECG ma-
chine interpretation. This dataset was split into training
(75%) and validation (25%) sets with stratification. The
distribution of class labels is shown in Table 1.

During training, the majority class (Sinus Rhythm)
was blind undersampled without replacement to contain

Label Training Validation
Sinus Rhythm 253,590 84,577
Junctional Rhythm 955 298
Ectopic Atrial Rhythm 1,200 392
Atrial Flutter 2,507 844
Atrial Fibrillation 12,633 4,154
Ventricular Rhythm 149 52
Pacemaker 5,117 1,734

Table 1. Class distribution in training and validation sets.



149,000 ECGs, which is 1000 times the number of exam-
ples in the lowest prevalence class. All the minor classes
were then blind oversampled with replacement to create a
balanced training dataset containing 149,000 ECGs in each
class.

The PhysioNet PTB-XL dataset [4, 5] was downloaded
from the PhysioNet/Computing in Cardiology Challenge
2021 [6] and the provided SNOMED-CT diagnostic codes
were mapped to the classes shown in Table 1. All non-
rhythm classes were discarded. No other modifications
were made to the labelling of this dataset.

2.2. Deep Convolutional Neural Network

Our DCNN architecture is similar to the 13 layer archi-
tecture described by Goodfellow et al. [7] but adapted for
12-lead ECG input, rather than single lead as described.
Each block is composed of 1D convolution, batch nor-
malization, ReLU activation, 1D max pooling (excluding
blocks 2, 4, 5, 7, 8, 10), and dropout (30% rate). The final
layers of the network were composed of two dense layers
with ReLU activation, followed by a dense layer with soft-
max activation for classification. The final network con-
tained 5,476,103 parameters.

The network takes 12-lead ECG recordings of 10 sec-
onds in length as input, sampled at 250Hz. All ECGs were
resampled to 250Hz prior to training. The network was
trained with binary cross entropy loss using an Adam op-
timizer with an initial learning rate of 0.0001. The learn-
ing rate was reduced by a factor of 0.1 on validation loss
plateau until the network was fully converged.

2.3. Confident Learning

To identify label errors in the Physionet PTB-XL
dataset, we utilize confident learning tools provided by the
cleanlab python package [8]. Confident learning is based
on the principles of pruning noisy data, counting to esti-
mate noise, and ranking examples to train with confidence.

We computed the class probabilities for every ECG in
the PTB-XL dataset using our DCNN and then provided
these probabilities, along with the dataset labels, to clean-
lab. These probabilities are all out-of-sample, as this data
was held-out during training. Confident learning esti-
mates the joint distribution of given, noisy labels and latent
(unknown) uncorrupted labels to fully characterize class-
conditional label noise. We then used this to find and ex-
tract the noisy examples with label issues.

Identified label issues were reviewed internally by two
experienced ECG interpreters, reviewing the reference and
cleanlab identified labels. Any ECGs where consensus
could not be reached were subsequently reviewed by an
external cardiologist.

3. Results

Confident learning identified 515 potential rhythm la-
bel errors from the 21,837 ECGs in the PTB-XL dataset
(2.36%). The top 200 ECGs sorted by label self-
confidence score were selected for manual review. Of
these 200, an internal consensus was reached on 190 cases
(95%), with 10 sent to an external cardiologist for review
(5%).

There are two areas of interest in the results of this study.
The main focus is quantifying the degree of label error in
the PTB-XL dataset. However, we also assess the perfor-
mance of the confident learning tools to automatically re-
classify incorrectly labelled examples in the dataset. The
results are shown in Table 2 and Table 3.

Confident Learning

Reference Correct Incorrect Total
Correct 8 34 42
Incorrect 118 4 122
No Rhythm 30 6 36
Total 156 44 200

Table 2. Confusion matrix showing the breakdown of ref-
erence and confident learning labels after human review.
Correct-correct occurs when PTB-XL contains more than
one rhythm label, the second of which is incorrect.

Label PTBXL LUMaN oy onge
Review

Sinus Rhythm 56 59 +3
Junctional Rhythm 0 2 +2
Ectopic Atrial Rhythm 0 0 0
Other SVT * 0 4 +4
Atrial Flutter 2 90 +88
Atrial Fibrillation 124 40 -84
Ventricular Rhythm 0 0 0
Pacemaker 18 5 -13

Table 3. Distribution of class label changes in the 200 re-
viewed ECGs. *Other SVT refers to other supraventricular
tachycardias that were not present in the DNN classifica-
tion.

4. Discussion

The principal findings of this study are that: 1) Label
errors are as prevalent in ECG datasets as those reported in
other fields; 2) Confident learning tools can be successfully
used to find label errors in large ECG datasets; 3) We can
use those same tools to automatically correct the majority
of label errors.



ID: HROS613 Atrial Fibrillatien Atrial Flutter PulseAl
V1
Total| time: 10.0 s Sample freq: 500 Hz 25.0 mm/s 10 mm/mV 0.05-40 Hz

Figure 1. An ECG rhythm strip (V1) from PTB-XL HRO05613 showing clearly defined atrial flutter waves and variable
ventricular conduction rather than atrial fibrillation as labelled.

ID: HR17774 Nermal-Sinus—Rhythm Accelerated Junctional Rhythm PulseAI
WMMMJM
Total| time: 10.0 s Sample freq: 500 Hz 25.0 mm/s 10 mm/mV 0.05-40 Hz

Figure 2.  An ECG rhythm strip (I) from PTB-XL HR17774 showing inverted retrograde p-waves prior to the QRS
complex, indicating accelerated junctional rthythm rather than normal sinus rhythm as labelled.

ID: HR18777 Atrial-Fibrillation Sinus Tachycardia PulseAl
V1
Total| time: 10.0 s Sample freq: 500 Hz 25.0 mm/s 10 mm/mV 0.05-40 Hz

Figure 3. An ECG rhythm strip (V1) from PTB-XL HR 18777 showing normal p-wave and AV node conduction, indicating
this is not atrial fibrillation but instead is sinus tachycardia with left bundle branch block.

ID: HR16361 Atrial-Fibriltation Normal Sinus Rhythm PUlseAI
II
Total| time: 10.0 s Sample freq: 500 Hz 25.0 mm/s 10 mm/mV 0.05-40 Hz

Figure 4. An ECG rhythm strip (I) from PTB-XL HR16361 showing normal sinus rhythm with ventricular bigeminy
which is mislabelled as atrial fibrillation.

ID: HR13548 Pacemaker Normal Sinus Rhythm PulseAl
WWAMW
Total| time: 10.0 s Sample freq: 500 Hz 25.0 mm/s 10 mm/mV 0.05-40 Hz

Figure 5. An ECG rhythm strip (IT) from PTB-XL HR13548 showing no signs of any pacemaker activity despite containing
a pacemaker label.



In this study, we applied confident learning techniques
to the Physionet PTB-XL dataset in order to find la-
belling errors. We found that 158 out of 200 reviewed
ECGs (79%) were labelled incorrectly or did not contain a
rhythm label at all. This shows that the applied method is
capable of identifying labelling errors with a high degree
of accuracy. If we assume the same performance across
all 515 potential labelling errors, then the estimated label
error in rhythm interpretation alone is 1.86%. We would
expect this to increase significantly if other, more subtle,
ECG abnormalities were included.

The results also show that the same tool was able to se-
lect the correct label in 156 out of 200 cases (78%). This
gives a high degree of confidence that even though not per-
fect, applying such methods automatically, without review,
would still likely improve overall label quality.

We also reported in Table 3 the total count of each
rhythm label in the 200 reviewed ECGs before and after
human review. Although this crude measure only shows
net changes, it is clear that the largest mislabelled groups
are atrial flutter and atrial fibrillation. Misclassifications
between these two groups are commonly reported in the
literature [9].

It might be assumed by a naive reader that this mis-
labelling must be caused by difficult to interpret ECGs.
However, that is not the case. To demonstrate this, we
present Figures 1-5 which show a single lead rhythm strip
extracted from five ECGs in the reviewed set. The figures
each show the original dataset label, as well as the auto-
matically corrected label. None of these examples required
manual human correction and would be easily classified by
anyone with ECG training.

5. Conclusion

Correctly labelled ECG data is important for DNN de-
velopment and performance reporting, especially for low
prevalence classes, which can be significantly impacted
by noisy labels. In this study, we demonstrated confident
learning techniques can be applied to automatically iden-
tify and correct labelling errors in ECG datasets. We also
estimated the overall labelling error rate for rhythm classi-
fication in the PTB-XL dataset at 1.86%. In future studies,
we plan to extend these techniques to full 12-lead ECG in-
terpretation classes in order to get a better picture of overall
label quality in this and other publicly available data.
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