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Abstract. This paper presents a pattern search algorithm and its hybridization
with a random descent search for solving bound constrained minimax problems.
The herein proposed heuristic pattern search method combines the Hooke and
Jeeves (HJ) pattern and exploratory moves with a randomly generated approxi-
mate descent direction. Two versions of the heuristic algorithm have been applied
to several benchmark minimax problems and compared with the original HJ pat-
tern search algorithm.
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1 Minimax problems

In general, a bound constrained finite minimax problem can be defined as

minimize
x∈Ω⊂Rn

f (x), where f (x) = max
j=1,...,m

Fj(x), (1)

Fj : Rn→ R, j = 1, . . . ,m are continuously differentiable functions and Ω = {x ∈ Rn :
l ≤ x ≤ u}. These problems have been difficult to solve through traditional gradient
based algorithms, since the first derivatives of f (x) are discontinuous at points where
f (x) = Fj(x) for two or more values of j in the set {1, . . . ,m}, even if all the func-
tions Fj(x) have continuous first derivatives. This type of problems appears in many
engineering areas, such as, optimal control, engineering design, discrete optimization,
Chebyshev approximation and game theory applications. For a more thorough review of
applications the reader is referred to [7, 17] and to the references therein listed. To solve
a problem like (1), a common strategy adapts a smoothing technique which consists of
solving a sequence of smooth problems that approximate the minimax problem in the
limit [10, 14, 17]. Choosing an updating rule for the smoothing parameter may be prob-
lematic. The algorithms based on these smooth techniques aim to generate a sequence
of approximations that converges to a Kuhn-Tucker point of the minimax problem (1),
for a decreasing sequence of positive smoothing parameters. However, these parame-
ters may become rather small too fast and the smooth problems become significantly
ill-conditioned. A different approach to obtain a solution to (1) considers solving an
equivalent differentiable nonlinear programming problem

minimize
x∈Ω⊂Rn,z∈R

z, s.t. Fj(x)− z≤ 0, j = 1, . . . ,m. (2)
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Several techniques have been proposed to solve (2). In [2] a continuously differentiable
exact penalty function is constructed for problem (2) and a gradient based method is
applied to the penalty function. More recently, [18] and [19] use a similar approach. In
the former, a trust-region Newton conjugate gradient algorithm is proposed. In the latter
paper, an improved SQP algorithm is presented.

Other popular derivative-free numerical methods for solving problem (1) are stochas-
tic-type algorithms. A swarm intelligence algorithm that has been extensively used in
this context is the particle swarm optimization (PSO), see for example [7, 12, 13]. There
is however a well-known problem regarding the accuracy of the solutions found by this
type of algorithms. They can detect the region of attraction of the global minimizers
fast but they are not capable of reaching the solution with high precision. Further, being
population-based methods, they are computationally expensive. Recently, hybrid algo-
rithms use stochastic methods, for global search, and popular gradient techniques as a
local search method [15]. However, gradient-based strategies are not as appropriate as
derivative-free methods for solving problems like (1). The hybridization of PSO with a
random walk for local search is proposed in [13].

Derivative-free methods like the generalized pattern search approach [16] and the
Hooke and Jeeves search [6] have been used for solving nonsmooth optimization prob-
lems. However, they may not be able to reach the solution in some particular prob-
lems. In this paper we aim to present a deterministic method with a local random
search hybridization. The adopted approach for solving problem (1) relies on a pop-
ular derivative-free method, known as the Hooke and Jeeves pattern search method for
bound constrained minimization [6, 8], and a simple heuristic that generates a random
descent direction. Two different schemata are proposed and tested. Good accuracy solu-
tions and reductions on the number of objective function evaluations are obtained when
compared with the original Hooke and Jeeves search.

The remainder of the paper is organized as follows. Section 2 briefly introduces the
original Hooke and Jeeves pattern search method for bound constrained optimization,
Section 3 is devoted to describe our main ideas behind the pattern search hybridization
with a descent search and Section 4 contains the numerical results. Section 5 presents
some conclusions and future work.

2 Pattern search for bound constrained optimization

This section contains the details concerning our implementation of the Hooke and
Jeeves pattern search method, in particular, the scheme used to maintain the iterates
in the set Ω , the initialization of the process, and the stopping criterion. In the sequel,
the following notation is used: xk ∈ Rn denotes the approximation to the solution at the
iteration k; (xk)i ∈ R is the i th (i = 1, . . . ,n) component of the point xk; sk is the step;
∆k is the step length; and dk represents a descent direction.

The Hooke and Jeeves (HJ) pattern search method has been widely used in the
nonlinear programming context, emerging as an efficient algorithm for solving uncon-
strained, bound constrained, as well as linearly or nonlinearly nonsmooth constrained
problems. It performs two types of moves: the exploratory and the pattern moves. The
exploratory move carries out a coordinate search - a search along the coordinate axes -



around a selected iterate, with a step length of ∆k. If a new iterate with a better function
value is encountered, the iteration is successful. Otherwise, the iteration is unsuccessful
and the step length ∆k is reduced.

When the previous iteration was successful, the vector xk− xk−1 defines a promis-
ing direction and a pattern move generates a new trial iterate xk +(xk− xk−1). An ex-
ploratory move is then carried out about this trial iterate rather than about the current
iterate xk. Then, if the search along the coordinates is successful, the new iterate is ac-
cepted as xk+1 However, if the exploratory move is unsuccessful, the pattern move is
rejected and the method reduces to coordinate search around xk [6]. To maintain feasi-
bility in the pattern search algorithm, when xk in not in Ω , the iterate is projected into
the boundary of feasible region componentwise.

To be able to cope with variables with different scaling, our implementation of the
HJ algorithm uses a vector as a step length ∆ . Given an adequate initial approximation
x1 ∈ Rn, each component of ∆ will depend on the corresponding component of x1, i.e.,
if (x1)i ̸= 0 then (∆1)i = γ∆ (x1)i; otherwise (∆1)i = γ∆ for i = 1, . . . ,n, where γ∆ is a
positive parameter.

A stopping criterion is defined to find a solution that has objective function value
within a certain percentage of the optimal objective value known in the literature, f ∗.
For a proper termination of the algorithm when solving problems with zero optimal
function values, the following conditions are used:

if | f ∗| ≤ machε then | f (xk)− f ∗| ≤ ε2 |1+ f (xk)| else | f (xk)− f ∗| ≤ ε | f (xk)|,
where ε is a small positive constant and machε represents the machine zero. The algo-
rithm also terminates if the number of objective function evaluations exceeds a max-
imum target n f evalmax. The HJ pattern search algorithm can be reported through an
abstract description as shown below in Algorithm 1.

Algorithm 1 Bound Constrained Pattern Search
Given x1 ∈Ω ; compute f (x1); set k = 1 and f (x0) = f (x1)
while stopping criterion is not satisfied do
if f (xk−1)> f (xk) then

pattern move
sk ← exploratory move(xk +(xk− xk−1))
xk+1 ← constrain xk + sk in Ω
xk−1 ← xk
xk ← xk+1

end if
if f (xk−1)≤ f (xk) then

sk ← exploratory move(xk)
xk+1 ← constrain xk + sk in Ω

end if
set k = k+1
end while

In the first iteration of the process and whenever f (xk−1) ≤ f (xk) an exploratory
move is carried out around xk. If this move is succeeded, a pattern move follows; other-



wise an exploratory move is again carried out with a reduced step length. All the iterates
generated by the algorithm should be maintained feasible.

3 Heuristic pattern search algorithms

In this section, a heuristic pattern search method is proposed for solving bound con-
strained optimization problems. It combines the usual pattern and exploratory moves of
the HJ method with a random approximate descent search. No derivative information is
required for randomly generating the descent direction, and a reduction on the number
of function evaluations is expected, since some exploratory moves are replaced by a
descent move. We now show how an approximate descent search can be evaluated.

Here, we describe a strategy to generate an approximate descent direction, dk, for
the objective function f , at the current iterate xk. This is important since experience
shows that search directions that are parallel to the coordinate axes may be uphill at
points of the search region. Based on two points y1 and y2 randomly generated in the
neighborhood of xk, in such a way that ∥xk− yi∥ ≤ ς , (i = 1,2) for a sufficiently small
positive value of ς , a vector with a high probability of being a descent direction for the
objective function at xk is generated by

dk =−
1

∑2
j=1

∣∣∆ f j
∣∣ 2

∑
i=1

(∆ fi)
xk− yi

∥xk− yi∥
, (3)

where ∆ f j = f (xk)− f (y j). Theoretical properties related to this direction vector are
described in [5].

Recall that when the previous iteration was successful in the HJ moves, the pat-
tern move defines the trial iterate xk +(xk− xk−1). We now propose a heuristic pattern
search algorithm that carries out an approximate descent search about that trial iterate.
If f (xk+1) < f (xk), for xk+1 = xk +(xk − xk−1)+ λdk and λ ∈ (0,1], the new iterate
is accepted as xk+1. However, if the descent move is unsuccessful, the pattern move is
rejected and the method reduces to the classical coordinate search around xk. The selec-
tion of an adequate value for the step length λ is based on the well-known backtracking
line search strategy. Initially, λ is set to 1, and it is halved for at most five iterations un-
til f is reduced. If no reduction in f is obtained, the move is considered unsuccessful.
Algorithm 2 is the abstract description of the proposed framework and is denoted by
heuristic pattern search (version 1).

Algorithm 3 below is an alternative implementation of the random descent search,
denoted by heuristic pattern search (version 2). The procedure works as follows. After a
pattern move has been carried out, the random descent move is implemented in order to
find an iterate xk+1 = xk +(xk−xk−1)+λdk that forces a reduction in f . If f is reduced,
then the new iterate is accepted; otherwise, the algorithm tries an exploratory move
around xk+(xk−xk−1). However, if none of these moves is successful, the pattern move
is rejected and the search returns to xk. Both random descent move and exploratory
move are sequentially repeated around xk.



Algorithm 2 Bound Constrained Heuristic Pattern Search (version 1)
Given x1 ∈Ω ; compute f (x1); set k = 1 and f (x0) = f (x1)
while stopping criterion is not satisfied do
if f (xk−1)> f (xk) then

pattern move
dk ← random descent move(xk +(xk− xk−1))
xk+1 ← constrain xk +(xk− xk−1)+λdk in Ω
xk−1 ← xk
xk ← xk+1

end if
if f (xk−1)≤ f (xk) then

sk ← exploratory move(xk)
xk+1 ← constrain xk + sk in Ω

end if
set k = k+1
end while

Algorithm 3 Bound Constrained Heuristic Pattern Search (version 2)
Given x1 ∈Ω ; compute f (x1); set k = 1 and f (x0) = f (x1)
while stopping criterion is not satisfied do
if f (xk−1)> f (xk) then

pattern move
dk ← random descent move(xk +(xk− xk−1))
xk+1 ← constrain xk +(xk− xk−1)+λdk in Ω
if f (xk)≤ f (xk+1) then

sk ← exploratory move(xk +(xk− xk−1))
xk+1 ← constrain xk + sk in Ω

end if
xk−1 ← xk
xk ← xk+1

end if
if f (xk−1)≤ f (xk) then

dk ← random descent move(xk)
xk+1 ← constrain xk +λdk in Ω
if f (xk)≤ f (xk+1) then

sk ← exploratory move(xk)
xk+1 ← constrain xk + sk in Ω

end if
xk−1 ← xk
xk ← xk+1

end if
set k = k+1
end while



4 Numerical experiments

To evaluate the performance of the herein proposed heuristic pattern search algorithms
for bound constrained minimax problems, a set of 22 benchmark problems, some de-
scribed in full detail in [11], and others in [13], is used. The algorithms are coded in
the C programming language and contain an interface to connect to AMPL so that the
problems coded in AMPL could be easily read and solved [4]. AMPL is a mathemat-
ical programming language that allows the codification of optimization problems in
a powerful and easy to learn language. The set of coded problems may be obtained
from the first author upon request. The list of the parameters used in the algorithms is:
machε = 10−20, ε = 10−4, ς = 10−3, n f evalmax = 20000.

Due to the stochastic nature of the heuristic pattern search algorithms, each problem
was solved 100 times. For each run, we record the solution as well as the number of
iterations and the number of (objective) function evaluations. Then, favg, the average of
the solutions obtained after the 100 runs, is reported. To compare the performance of the
pattern search type algorithms we use the performance profiles as described in Dolan
and Moré’s paper [3]. The profiles are based on the metric favg. For each algorithm in
comparison, the plot shows the proportion of problems in the set, denoted by ρ(τ), that
has the best value of the metric, for each value of τ ∈ R. To see which algorithm gives
the least value of the metric mostly, then the values of ρ(1) for all the algorithms should
be compared. The higher the ρ the better the solver is. On the other hand, ρ(τ) for large
values of τ measures the solver robustness. We refer to [3] for details. First, we aim to
analyze the effect of the parameters in the step length initialization, namely ∆ and γ∆ , on
both heuristic pattern search algorithms – Algorithm 2, heuristic pattern search (version
1), and Algorithm 3, heuristic pattern search (version 2) – when compared with the
original pattern search based on Hooke and Jeeves moves. When the algorithms did not
find a solution with the desired accuracy, they were allowed to run for 20000 function
evaluations. All problems were solved for three different values of γ∆ : 0.01,1,100. The
other case in comparison sets ∆ to one.

Figure 1 presents the performance profiles of the Hooke and Jeeves algorithm, for
the four cases previously described. The profiles of the two proposed heuristic pattern
search algorithms are shown in Figure 2 and Figure 3. We observe that the most efficient
and robust initialization of the step length in the HJ algorithm is obtained when γ∆ =
0.01. See Figure 1. On the other hand, Algorithm 2 is more effective in reaching the
most consistent results when the initial step length depends on the initial values of
the variables and γ∆ = 100. See Figure 2. Finally, we conclude from Figure 3 that the
heuristic pattern search defined by the Algorithm 3 attains the best performance mostly
when γ∆ = 100 (observing the plot for τ = 1).

We now compare the results obtained by the original pattern search method based on
HJ exploratory moves with the two herein proposed heuristic pattern search algorithms.
In Figure 4, a comparison based on the f value, for the deterministic pattern search, and
on the favg, for the two heuristic algorithms, is presented. Clearly, the heuristic pattern
search (version 2) wins over the others.

Finally, for comparative purposes, we summarize in Table 1 the average number
(‘average’) and the standard deviation (‘SD’) of function evaluations (n f eval), obtained
in [12] and [13], when solving some of the problems in our set. A unified particle
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Fig. 1. Performance profile on f for the pattern search based on Hooke and Jeeves moves

1 1.1 1.2 1.3 1.4 1.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ(
τ)

 

 

200 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

(constant) initial ∆=1
γ∆=0.01

γ∆=1

γ∆=100

Fig. 2. Performance profile on favg for the heuristic pattern search (version 1)
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swarm optimization that combines the global and local variants of the standard PSO
and incorporates a stochastic parameter to imitate mutation in evolutionary algorithms
is implemented in [12]. Another promising variant of the PSO, called memetic PSO, is
presented in [13]. It is a hybrid algorithm that combines PSO with local search tech-
niques. In Table 1, we report the results of its global variant. For simplicity, we report
our results from the heuristic pattern search (version 2) algorithm under HPS2. The table
also reports the percentage of runs that were successful, i.e., that reached the solution
within an error of 10−4 before the 20000 function evaluations were reached. The runs
that are considered unsuccessful are not used to compute the ‘average’ and ‘SD’. De-
spite the problems TP17 [13], Wong 1 [11] and TP18 [13] where HPS2 reached 20000
function evaluations in some runs, the computational effort, measured by the number
of function evaluations, and the % suc. (percentage of successful runs) for solving the
other problems are comparable with the other methods.

Table 1. Comparison with other stochastic algorithms.

n f eval in HPS2 n f eval in [12] n f eval in [13]
Problem average SD % suc. average SD % suc. average SD % suc.
CB2 [11] 1848.7 2619.4 99 1993.8 853.7 100 2415.3 1244.2 100
QL [11] 1809.1 2750.3 94 18294.5 2389.4 100 18520.1 776.9 100
CB3 [11] 635.8 114.3 99 1775.6 241.9 100 - - -
TP17 [13] 141.2 28.4 37 1670.4 530.6 100 3991.3 2545.2 100
Wong 1 [11] 283.0 123.9 64 2128.5 597.4 100 - - -
TP18 [13] 8948.4 5365.2 7 12801.5 5072.1 100 7021.3 1241.4 100
TP19 [13] 772.0 60.8 100 1701.6 184.9 100 2947.8 257.0 100
SPIRAL [11] 4114.7 1150.2 100 3435.5 1487.6 100 1308.8 505.5 100
OET6 [11] 324.1 173.1 100 3332.5 1775.4 100 4404.0 3308.9 100

5 Conclusions

This paper proposes and tests two algorithms that incorporate a randomly generated ap-
proximate descent search into the Hooke and Jeeves pattern search method to improve
accuracy, for solving non-differentiable bound constrained optimization problems. We
show that the two hybrid algorithms are able to solve bound constrained minimax prob-
lems through experiments on a set of benchmark test problems. Compared with the
original Hooke and Jeeves pattern search method, the proposed hybridizations reach
the solutions with higher accuracy at a reasonable computational cost. From the com-
parisons with other stochastic methods we observe that the proposed heuristic pattern
search algorithm is competitive.

Future developments will consider the extension of these heuristic pattern search
methods to solving equality and inequality constrained minimax problems, using the



test set described in [11], through the implementation of the augmented Lagrangian
function described in [1] and already used in [9] in a pattern search (with equality
constraints) context.
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