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This paper presents a numerical study of two augmented Lagrangian algorithms to solve
continuous constrained global optimization problems. The algorithms approximately solve
a sequence of bound constrained subproblems whose objective function penalizes equality
and inequality constraints violation and depends on the Lagrange multiplier vectors and
a penalty parameter. Each subproblem is solved by a population-based method that uses
an electromagnetism-like mechanism to move points towards optimality. Three local search
procedures are tested to enhance the EM algorithm. Benchmark problems are solved in a
performance evaluation of the proposed augmented Lagrangian methodologies. A comparison
with other techniques presented in the literature is also reported.
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1. Introduction

This paper aims at analyzing the practical behavior of two augmented Lagrangian
methodologies for continuous constrained global optimization, where the subprob-
lems have bound constraints only and are solved by the electromagnetism-like
mechanism, a stochastic population-based algorithm. The problem to be addressed
has the form:

min f(x) subject to g(x) ≤ 0 , h(x) = 0 , x ∈ Ω, (1)

where f : Rn → R, g : Rn → R
p and h : Rn → R

m are nonlinear continuous
functions and Ω = {x ∈ R

n : lb ≤ x ≤ ub}. We do not assume that the objective
function f is convex. There may be many local minima in the feasible region. This
class of global optimization problems arises frequently in engineering applications.
Specially for large scale problems, derivative-free and stochastic methods are the
most well-known and used methods. When equality and inequality constraints are
present in the optimization problem, one of the following categories of methods
can be used. In the methods based on penalty functions, the constraints violation
is combined with the objective function to define a penalty function. This function
aims at penalizing infeasible solutions by increasing their fitness values propor-
tionally to their level of constraints violation. Penalty functions require the use
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of a positive penalty parameter that aims to balance function and constraint vio-
lation values. The most popular penalty functions use static, dynamic, annealing
or adaptive penalty updating schemes [2, 4, 8, 17, 19, 22]. An augmented La-
grangian function is a penalty function that depends on a penalty parameter, as
well as on the Lagrange multiplier vectors associated with the constraints of the
problem. Augmented Lagrangians are common in deterministic type methods for
global optimization [6, 7, 18], but rare when combined with heuristics that rely on
a population of points to converge to the solution [1, 25, 27, 28]. The other category
defines methods based on biasing feasible over infeasible solutions. They seem to be
nowadays an interesting alternative to penalty methods for handling constraints.
In this type of methods, constraints violation and the objective function are used
separately and optimized by some sort of order, being the constraints violation the
most important. See, for example, [9, 13, 20, 21, 23, 24, 29].
In this paper, we are interested in a penalty-type method that uses augmented

Lagrangian methodologies to handle the equality and inequality constraints of the
problem (1), where the subproblems are approximately solved by a stochastic global
population-based algorithm. Due to its simplicity, the electromagnetism-like (EM)
algorithm proposed in [4, 5] is used to obtain the solution of each subproblem.
The EM algorithm simulates the electromagnetism theory of physics by considering
each point in the population as an electrical charge. The method uses an attraction-
repulsion mechanism to move a population of points towards optimality. Since the
EM algorithm has been designed to find a minimizer which satisfies x ∈ Ω, our
subproblem is defined as a bound constrained optimization problem.
The herein proposed implementation of an augmented Lagrangian methodology

follows two paradigms. First, we apply the augmented Lagrangian function of
Powell-Hestenes-Rockafellar (PHR) directly to the problem (1), and use the EM al-
gorithm to solve the bound constrained subproblems. The EM algorithm has been
used within a classical penalty technique [4], but has not been used with an aug-
mented Lagrangian function so far. Second, we reformulate problem (1) converting
each equality constraint into an inequality as herein shown: |hj(x)| ≤ ε, where ε
is a positive relaxation parameter. This is an usual procedure in stochastic based
methods [9, 14, 21, 22]. In general, the relaxation parameter is fixed over the entire
iterative process. Typically, 10−3, 10−4 and 10−5 are common values in the litera-
ture. Our proposal defines a sequence {εk} of decreasing nonnegative numbers such
that limk→∞ εk = ε∗ > 0. The idea is to tighten the equality constraints relaxation
scheme as iterations proceed. Further, a different updating scheme for the penalty
parameter is also proposed. When the level of constraints violation is under a
specified tolerance, even if the infeasibility did not improve, the penalty is allowed
to decrease instead of increasing (see Algorithm 2.2). In both cases, the bound
constrained subproblems are approximately solved by the EM algorithm. This al-
gorithm has been enhanced by a random local search procedure [5]. However, in
practical terms, the therein proposed local search may require a large number of
function evaluations since the local search is carried out along the coordinates.
Attempting to reduce computational requirements while improving accuracy, two
new local search procedures are herein proposed and tested to enhance the EM
algorithm. One is based on the computation of a descent direction and the other
relies on a unit-length randomly generated direction. We remark that there is no
theoretical analysis yet for this algorithm.
The paper is organized as follows. Section 2 describes the two augmented La-

grangian paradigms and Section 3 reviews the EM algorithm and presents the three
local search procedures in comparison. Section 4 contains the results of all the nu-
merical experiments, performance assessments based on Dolan and Moré’s profiles
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[10], and a comparison with other methods in the literature. Finally, the remarks
are included in Section 5.

2. Augmented Lagrangian methodologies

Most stochastic methods for global optimization are developed primarily for un-
constrained or simple bound constrained problems. Then they are extended to
constrained optimization problems using, for example, a penalty technique. This
type of technique transforms the constrained problem into a sequence of uncon-
strained subproblems by penalizing the objective function when constraints are vi-
olated. The objective penalty function, in the unconstrained subproblem, consists
of the objective function f(x) plus a positive penalty parameter times a measure
of the aggregate constraint violation. The choice of the penalty parameter may be
problematic. In general, the penalty parameter is updated throughout the iterative
process. With most penalty functions, the solution of the constrained problem is
reached for an infinite value of the penalty parameter. An augmented Lagrangian
is a more sophisticated penalty function for which a finite penalty parameter value
is sufficient to yield convergence to the solution of the constrained problem [3].
Two augmented Lagrangian functions for solving constrained global optimization

problems are now presented. Practical and theoretical issues from the augmented
Lagrangian methodology are used with a stochastic population based algorithm,
the EM algorithm [5], to compute approximate solutions of the sequence of bound
constrained subproblems.

2.1. Handling equalities and inequalities separately

Our first proposal uses the original formulation (1) and makes use of the augmented
Lagrangian function of Powell-Hestenes-Rockafellar (PHR):

LEI
ρ (x, λ, µ) = f(x)+

ρ

2







m
∑

i=1

[

hi(x) +
λi

ρ

]2

+

p
∑

j=1

[

max

(

0, gj(x) +
µj

ρ

)]2






(2)

where λ ∈ R
m, µ ∈ R

p are the vectors of Lagrange multipliers associated with
h(x) = 0 and g(x) ≤ 0 respectively, and ρ is a positive penalty parameter. For the
sake of completeness we present in the Algorithm 2.1 the ideas presented in [7]. In
this cited paper, the subproblems, at each iteration k,

min
x
LEI
ρk (x, λk, µk) subject to x ∈ Ω (3)

are approximately solved using a deterministic global optimization method known
as αBB method.
According to recent works with the function (2) [6, 7], the penalty parameter is

increased whenever the infeasibility is not reduced; otherwise it is not changed (see
lines 7-11 in Algorithm 2.1). The initial value for the parameter is

ρ1 = max
{

10−6,min
{

10, 2|f(x0)|/(‖max(0, g(x0))‖2 + ‖h(x0)‖2)
}}

for an arbitrary initial approximation x0. The algorithm also updates the Lagrange
multipliers using first order estimates and safeguarded schemes (lines 12-13 in Al-
gorithm 2.1). This is a crucial issue to maintain the sequences {λk}, {µk} bounded.
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Algorithm 2.1 (Augmented Lagrangian algorithm)

1: Given: µ+ > 0, λ− < λ+, ǫ∗ > 0, 0 < τc < 1, γ > 1, kmax, µ
1 ∈ [0, µ+], λ1 ∈ [λ−, λ+]

2: choose arbitrary x0 in Ω; compute ρ1; set k = 1
3: while max{‖vk−1‖, ‖h(xk−1)‖} > ǫ∗ and k ≤ kmax do

4: ǫk = max
{

ǫ∗, 10−k
}

;

5: compute xk, an ǫk-global solution of minx L
EI
ρk (x, λ

k, µk) subject to x ∈ Ω

6: compute vkj = max

{

gj(x
k),−

µk
j

ρk

}

, j = 1, . . . , p

7: if k = 1 or max{‖vk‖, ‖h(xk)‖} ≤ τc max{‖vk−1‖, ‖h(xk−1)‖} then
8: ρk+1 = ρk

9: else
10: ρk+1 = γρk

11: end if
12: update µk+1

j = min
{

max
(

0, µk
j + ρkgj(x

k)
)

, µ+
}

, j = 1, . . . , p

13: update λk+1
i = min

{

max
(

λ−, λk
i + ρkhi(x

k)
)

, λ+
}

, i = 1, . . . ,m
14: k = k + 1
15: end while

This paper aims at providing a different augmented Lagrangian algorithm that
can be also implemented with the augmented Lagrangian function LEI

ρ . The main
differences can be summarized as follows:

i) the initial approximation x0 is a randomly generated point;
ii) the subproblems (3) are solved by the EM algorithm, a stochastic algorithm

based on a population of points, which uses the best solution found so far as the
initial approximation to the subproblem of the next iteration;

iii) the penalty parameter ρ, besides being increased, is also reduced whenever the
constraints violation is under a specified tolerance ǫk, even if the level of infea-
sibility has increased.

Further, the penalty updating scheme herein used integrates a safeguarded
scheme. This is motivated by the need to keep the penalty parameters bounded and
the subproblems well conditioned. This procedure is reported in the lines 12–20 of
the new Algorithm 2.2. With this algorithm, we aim to show the above mentioned
differences, as well as the differences between using the formulation based on the
Lagrangian (2) (translated in the Algorithm 2.1) and that based only on inequality
constraints, as shown in (6). Issues related with the equality constraint relaxation
parameter, εk, and details concerning the solving of subproblem (3) using the EM
algorithm are described in the next subsection.

2.2. Formulation based on inequality constraints

Since equality constraints are the most difficult to be satisfied, the other augmented
Lagrangian methodology considers problems only with inequality constraints, using
a common procedure in stochastic methods for global optimization to convert the
equality constraints of the problem into inequality constraints, as follows: |hj | ≤ ε,
j = 1, . . . ,m for a fixed ε > 0. For simplicity, the problem (1) is rewritten as

min f(x) subject to G(x) ≤ 0 , x ∈ Ω, (4)

where the vector of the inequality constraints is now defined by G(x) =
(g1(x), . . . , gp(x), |h1(x)| − ε, . . . , |hm(x)| − ε). We now define t = p+m. Our pro-
posal concerning the relaxed equality constraints aims at tightening the relaxation
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scheme as iterations proceed, using variable relaxation parameter values. Thus, a
sequence of decreasing nonnegative values bounded by ε∗ > 0 is defined as:

εk+1 = max

{

ε∗,
1

γ
εk
}

, γ > 1. (5)

The PHR formula that corresponds to the inequality constraints in the converted
problem (4) yields the augmented Lagrangian:

LIρ(x, µ) = f(x) +
ρ

2

t
∑

i=1

[

max

(

0, Gi(x) +
µi

ρ

)]2

(6)

where the Lagrange multiplier vector associated with the constraints G(x) ≤ 0, µ,
has now t elements.

Algorithm 2.2 (Proposed augmented Lagrangian algorithm)

1: Given: µ+ > 0, ǫ∗ > 0, 0 < τc < 1, γ > 1, kmax, lmax, ε
∗ > 0, 0 < ρ− < ρ+, µ1 ∈ [0, µ+]

2: randomly generate x0 in Ω; compute ρ1; set k = 1
3: while ‖vk−1‖ > ǫ∗ and k ≤ kmax do

4: ǫk = max
{

ǫ∗, 10−k
}

; update εk using (5); set l = 1

5: while
(

LI
avg − L

I
ρk(x(best), µ

k)
)

> ǫk and l ≤ lmax do

6: use xk−1 and randomly initialize a population of psize − 1 points in Ω
7: run EM to compute a population of solutions to minx L

I
ρk(x, µ

k) subject to x ∈ Ω

8: l = l + 1
9: end while

10: xk = x(best)

11: compute vki = max

{

Gi(x
k),−

µk
i

ρk

}

, i = 1, . . . , t

12: if k = 1 or ‖vk‖ ≤ τc‖v
k−1‖ then

13: ρk+1 = ρk

14: else
15: if ‖vk‖ ≤ ǫk then

16: ρk+1 = max{ρ−,
1

γ
ρk}

17: else
18: ρk+1 = min{ρ+, γρk}
19: end if
20: end if
21: update µk+1

i = min
{

max
(

0, µk
i + ρkGi(x

k)
)

, µ+
}

, i = 1, . . . , t
22: k = k + 1
23: end while

The herein proposed augmented Lagrangian algorithm adapted to the reformula-
tion (4), of the original problem (1), and based on the Lagrangian (6) is presented
in Algorithm 2.2. Lines 5-9 of the algorithm show details of the inner iterative pro-
cess to compute an approximation to the solution of subproblem (3). Since the EM
algorithm is based on a population of points, with size psize, the point which yields
the least objective function value, denoted by the best point of the population,
x(best), after stopping, is taken as the next approximation to the problem (1). We
also note that the stochastic EM algorithm uses the approximation xk−1 as one of
the points of the population to initialize the EM algorithm. The remaining psize−1
points are randomly generated.
The inner iteration counter is represented by l. This process terminates when the

difference between the function value at the best point, LIρk(x(best), µk), and the
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average of the function values of the population, LIavg, is under a specified tolerance

ǫk. This tolerance decreases as outer iterations proceed. A limit of lmax iterations
is also imposed.

3. The electromagnetism-like mechanism

This section reviews the electromagnetism-like mechanism, proposed in [5], for
solving the subproblems in the Algorithm 2.2. In this algorithm context, an
approximate minimizer of the augmented Lagrangian function, Lρk(x, µk), for

fixed values of the parameters ρk and µk is required. To simplify the notation,
Lk(x) = Lρk(x, µk) will be used throughout the remainder of the paper. Because
EM is a population-based algorithm, the inner iterative process begins with a pop-
ulation of psize solutions (line 6 in Algorithm 2.2). The best solution found so far,
denoted by x(best), and the average of the objective function values, are defined
by

x(best) = argmin
{

Lk(x(s)) : s = 1, . . . , psize

}

and Lkavg =

psize
∑

s=1

Lk(x(s))/psize,

(7)
respectively, where x(s), s = 1, . . . , psize represent the points of the population. The
main steps of the EM mechanism are shown in Algorithm 3.1. Details of each step
follow.

Algorithm 3.1 (EM algorithm)

1: Given: x(s), s = 1, . . . , psize
2: evaluate the population and select x(best)
3: compute the charges c(s), s = 1, . . . , psize
4: compute the total forces F (s), s = 1, . . . , psize
5: move the points except x(best)
6: evaluate the new population and select x(best)
7: apply a local search to x(best)
8: compute Lk(x(best)) and Lk

avg.

The EM mechanism starts by identifying the best point, x(best), of the popula-
tion using the augmented Lagrangian Lk for point assessment, see (7). According
to the electromagnetism theory, the total force exerted on each point x(s) by the
other psize−1 points is inversely proportional to the square of the distance between
the points and directly proportional to the product of their charges:

F (s) =

psize
∑

r 6=s

F s
r ≡















(x(r)− x(s))
c(s)c(r)

‖x(r)− x(s)‖2
, if Lk(x(r)) < Lk(x(s))

(x(s)− x(r))
c(s)c(r)

‖x(r)− x(s)‖2
, otherwise

,

for s = 1, . . . , psize, where the charge c(s) of point x(s) determines the magnitude
of attraction of that point over the others through

c(s) = exp

(

−n
(

Lk(x(s))− Lk(x(best))
)

∑psize

r=1 (L
k(x(r))− Lk(x(best)))

)

.
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Then, the normalized total force vector exerted on each point x(s) is used to
move the point in the direction of the force by a random step size ι ∼ U [0, 1],
maintaining the point inside the set Ω. Thus for s = 1, . . . , psize (s 6= best) and for
each component i = 1, . . . , n

xi(s) =















xi(s) + ι
Fi(s)

‖F (s)‖
(ubi − xi(s)), if Fi(s) > 0

xi(s) + ι
Fi(s)

‖F (s)‖
(xi(s)− lbi), otherwise

.

3.1. A random local search

Step 7 of Algorithm 3.1 aims at refining the search around the best point of the
population only. A simple local search procedure proposed in [5], in the context of
the EM algorithm, is described in Algorithm 3.2. This is a coordinatewise search
applied to x(best). For each component i, x(best) is assigned to a temporary point
y. Then a random movement of maximum length ∆ = δmaxj(ubj − lbj), δ > 0, is
carried out and if a better position is obtained within maxlocal iterations, x(best)
is replaced by y, the search ends for that component and proceeds to another one.
When y /∈ Ω, the trial point is rejected and another random movement is tried for
that component.
Although this local search is based on a simple random procedure, it has shown

that improves accuracy of the EM algorithm although at a cost of function eval-
uations. See the numerical study presented in Subsection 4.3 and the results in
Table 1. To avoid the search along the coordinates, two other local search pro-
cedures to enhance the EM algorithm in the augmented Lagrangian context are
presented in the next subsections. One uses a descent direction for the augmented
Lagrangian function and the other is based on a random direction.

Algorithm 3.2 (Local search algorithm)

1: Given: x(best), maxlocal, δ
2: ∆ = δmaxj(ubj − lbj)
3: for i = 1 to n do
4: set it = 1
5: while it < maxlocal do
6: y ← x(best)
7: yi = yi + ι∆, ι ∼ U [−1, 1] (reject if not feasible)
8: if Lk(y) < Lk(x(best)) then
9: x(best)← y, it = maxlocal−1

10: it = it+ 1
11: end while
12: end for

3.2. A descent local search

Here, a detailed description of a derivative-free heuristic method that produces an
approximate descent direction and aims to generate a new trial point around the
best point of the population is presented. In [12], a descent direction is proposed
in a point-to-point search context, a simulated annealing method. It is shown that
for a set of l exploring points close to x(best), an approximate descent direction
may be produced if:
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i) the points are randomly generated in a small neighborhood of x(best) and l = 2,
or

ii) the points are in equal distance to x(best), define with x(best) a set of orthogonal
directions, and l = n.

For simplicity, case i) is implemented, and to produce a descent direction, two
points in a neighborhood of ray δ > 0, of the best point, x(best), are randomly
generated as follow:

xji (rand) = xi(best) + ι δ (i = 1, . . . , n), for j = 1, 2 (8)

where ι ∼ U [−1, 1] and δ is a sufficiently small positive value. The approximate
descent direction d for the augmented Lagrangian function Lk, at x(best), is defined
by

d = −
1

∑2
l=1 |∆l|

2
∑

j=1

∆j
x(best)− xj(rand)

‖x(best)− xj(rand)‖
, (9)

where ∆j = L
k(x(best))−Lk(xj(rand)). A trial point is generated along the descent

direction with a prescribed step size,

y = x(best) + αd, (10)

where α ∈ (0, 1] represents the step size. We remark that if y /∈ Ω, the point y
is projected onto the set Ω. When selecting a step size to detect a trial point y
that leads to an improvement in Lk, when compared with the best point, the herein
proposed algorithm uses a classical backtracking strategy. Algorithm 3.3 presents a
formal description of the descent local search. First, two random exploring points
and a descent direction are generated. These two steps (lines 5-6) in the Algo-
rithm 3.3 are executed whenever flag is set to 1. Then, a trial point y is calculated
and, according to the augmented Lagrangian function values, either y or x(best)
is selected. If x(best) still is the best point, then y is discarded, the step size is
halved (i.e., α ← α/2) and a new point is evaluated along that descent direction
(flag is set to 0 in the Algorithm 3.3). However, when y is the best, another ap-
proximate descent direction is computed (flag is set to 1, and α is reset to 1) and
the process is repeated. The search for a better point is implemented for at most
maxlocal iterations. Practical performance of this descent search, when compared
with the other two local search procedures, is shown in Subsection 4.4.

3.3. A random walk

The random walk with direction exploitation method can be used as a local search
procedure to refine the search around a particular point in the population. It has
been applied as a local search operator to enhance a particle swarm optimization
algorithm [19] and recently a differential evolution algorithm [16]. This random
walk generates a random vector, as a search direction, and when applied to the
best point x(best) gives

y = x(best) + α z, (11)

where α ∈ (0, 1] represents the step size and z is a unit-length random vector.
The components of z are randomly generated in the interval [−1, 1]. The algorithm
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Algorithm 3.3 (Descent local search algorithm)

1: Given: x(best), maxlocal, δ
2: set flag = 1, α = 1, it = 0
3: while it ≤ maxlocal do
4: if flag = 1 then
5: generate two random points using (8)
6: compute descent direction d using (9)
7: end if
8: compute trial point y using (10) (project if not feasible)
9: if Lk(y) < Lk(x(best)) then

10: x(best)← y, α = 1, flag = 1
11: else
12: α = α/2, flag = 0
13: end if
14: it = it+ 1
15: end while

herein implemented projects the point y onto the set Ω, when the point falls outside
the bounds. Experiments have shown that this projection scheme is more efficient
than the feasibility repair proposed in [16].
The random walk exploitation search can be summarized as the Algorithm 3.4

below. A backtracking strategy is also implemented. If y does not improve over
x(best), the step size is halved, and the random walk is tried again; otherwise, y
replaces x(best), α is reset to 1, and a new random walk is tried. Random walks
can be tried for at most maxlocal iterations.

Algorithm 3.4 (Random walk algorithm)

1: Given: x(best), maxlocal
2: set α = 1, it = 0
3: while it ≤ maxlocal do
4: generate the random vector and compute point y using (11) (project if not feasible)
5: if Lk(y) < Lk(x(best)) then
6: x(best)← y, α = 1
7: else
8: α = α/2
9: end if

10: it = it+ 1
11: end while

4. Numerical experiments

In this section, we report the results of our numerical study, after running a set
of 24 benchmark constrained global problems, described in full detail in [15]. The
problems are known as g01-g24 (the ‘g’ suit, where six problems only have equality
constraints, thirteen have inequality constraints, five have both equalities and in-
equalities and all have simple bounds). Not all problems have multi-modal objective
functions, although some are difficult to solve. The best known solution for problem
g20 is slightly infeasible. We remark that g02, g03, g08 and g12 are maximization
problems that were transformed and solved as minimization ones. The C program-
ming language is used in this real-coded algorithm that contains an interface to
connect to AMPL and read the problems coded in AMPL [11]. The computational
tests were performed on a PC with a 3GHz Pentium IV microprocessor and 1Gb
of memory.
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Since the algorithm relies on some random parameters and variables, we solve
each problem 30 times and take average of the obtained solutions, herein denoted
by favg. The best of the solutions found after all runs is denoted by fbest. The size
of the population depends on n, and since some problems have large dimension,
n > 20, we choose psize = min{200, 10n}. The fixed parameters are set in this
study as follows: λ+ = µ+ = ρ+ = 1012, ǫ∗ = 10−6, τc = 0.5, γ = 2, λ− = −1012,
ε∗ = ρ− = 10−12, ε1 = 10−3. We define kmax = 50 and lmax = 30 so that a
maximum of 1500 iterations are allowed. We remark that the other conditions
in the stopping criteria of the Algorithm 2.2 (in the outer and inner iterative
processes) may cause the termination of the algorithm before reaching the 1500
iterations. The initial multiplier vectors are set to the null vectors.
The values for the two parameters in the local search procedures are set as

proposed in [5]: maxlocal = 10, δ = 0.001.
Overall, the algorithm with LI has nine parameters and with LEI has eleven

(including the two from the local search algorithm). The population size and the
maximum number of allowed iterations are not counted as parameters since they
are common to most population based techniques that we may use for comparison.
Several tests were performed and some comparisons were carried out to choose
appropriate values for some of the listed parameters.

4.1. Comparisons based on performance profiles

To compare the performance of the two augmented Lagrangian methodologies,
and to analyze the effect of some parameters in the algorithm, we use performance
profiles as described in Dolan and Moré’s paper [10]. Our profiles are based on the
metrics: favg, the average of the solutions obtained at the end of each one of the
30 runs, and fbest, the best solution found in the 30 runs. Based on the chosen
metric, these profiles compare the performance of a set of solvers, denoted by S,
when solving a set of problems, here denoted by P. Let mp,s be the value of the
metric when solving problem p ∈ P by solver s ∈ S. The comparison is based on
the performance ratios defined by

rp,s =

{

1 +mp,s −min{mp,s : s ∈ S}, if min{mp,s : s ∈ S} < β
mp,s

min{mp,s:s∈S}
, otherwise ,

where β is a positive small parameter [26]. We use β = 0.00001. The
overall assessment of the performance of the solver s is given by ρs(τ) =
(no. of problems where rp,s ≤ τ)/(total no. of problems). Thus, ρs(τ) gives the
probability (for s ∈ S) that rp,s is within a factor τ ∈ R of the best possible
ratio. The value of ρs(1) gives the probability that a particular solver, s, will win
over the others in comparison. Thus, to just see which solver is the best, i.e., which
solver has the least value of the metric mostly, then ρs(1) should be compared for
all the solvers. The higher the ρs the better the solver is. On the other hand, ρs(τ)
for large values of τ measures the solver robustness.
First, we carried out some tests to analyze the effect of the relaxation parameter

choices in the context of the augmented Lagrangian LIρ(x, µ). Besides the usual

setting of a fixed value, for example ε = 10−5, we implemented a variable update,
as previously described in (5). The two penalty parameter updating schemes are
also compared. The Figure 1 contains two plots. The plot (a) shows the performance
profiles on the average performance, favg, of the four cases in comparison, herein
denoted for convenience as:

• ρ (orig) + ε fixed – ρ update according to [7] and ε = 10−5;
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Figure 1. Comparison of penalty and relaxation parameter updates based on: (a) favg and (b) fbest.
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Figure 2. Sensitivity analysis for: (a) the parameter γ; (b) different combinations of kmax and lmax.

• ρ (new) + ε fixed – ρ update according to Algorithm 2.2 and ε = 10−5;

• ρ (orig) + ε variable – ρ update according to [7] and ε update according to (5);

• ρ (new) + ε variable – ρ update according to Algorithm 2.2 and ε update ac-
cording to (5).

Plot (b) shows the profiles on the best obtained solution over the 30 runs, fbest.
We can conclude that the new proposed ρ updating scheme, combined with fixed
ε, outperforms the other combinations. Thus, this is the combination used in the
remaining numerical tests.
To analyze the effect of parameter γ, from the penalty parameter updating, as

well as the effect of using less outer iterations and more inner iterations, while
maintaining a maximum of 1500 iterations, on the performance of the algorithm,
we use the augmented Lagrangian LI , and solve the ‘g’ suit. For the first set of
experiments, we test γ = 2 and γ = 10. From the plot on the left of Figure 2 we
may conclude that the choice γ = 2 is slightly preferable. The profiles are based
on the best performance of the algorithm, although a similar conclusion could be
drawn from the average performance. The other plot, on the right, displays the
profiles of the two cases in comparison: kmax = 50 and lmax = 30 versus kmax = 30
and lmax = 50. Based on the best performance, the algorithm with the former
choice is more effective in reaching the solution. (The same is true for the average
performance.)
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Table 1. EM without and with random local search defined by the pair (δ,maxlocal) .

Prob. n function p m f∗ variant fbest favg Nfeavg

without -9.2716 -7.9919 81181
g01 13 quadratic 9 0 -15.0000 (0.001, 10) -14.9993 -14.9981 140384

(0.00001, 5) -14.9999 -12.9932 149216

without 5138.835 5270.772 60451
g05 4 polynomial 2 3 5126.497 (0.001, 10) 5126.962 5139.517 67352

(0.00001, 5) 5130.838 5203.950 70953

without -0.09581 -0.08355 16670
g08 2 nonlinear 2 0 -0.09583 (0.001, 10) -0.09583 -0.09582 19988

(0.00001, 5) -0.09575 -0.07794 20689

without 694.277 723.444 35865
g09 7 polynomial 4 0 680.630 (0.001, 10) 681.325 682.973 90063

(0.00001, 5) 682.737 710.918 57616

without 961.720 964.791 44951
g15 3 quadratic 0 2 961.715 (0.001, 10) 961.715 961.930 31717

(0.00001, 5) 961.715 961.845 34844

without -1.82091 -1.65362 43647
g16 5 nonlinear 38 0 -1.90516 (0.001, 10) -1.90511 -1.85746 71832

(0.00001, 5) -1.84184 -1.66073 63246

without -0.58326 -0.04607 137951
g18 9 quadratic 13 0 -0.86603 (0.001, 10) -0.86598 -0.85909 150500

(0.00001, 5) -0.62815 -0.20088 176436

4.2. Algorithm complexity

For completeness, the algorithm complexity, according to [15] is reported, using

T1 =
1

N

N
∑

i=1

cpi, T2 =
1

N

N
∑

i=1

ccpi, (12)

where cpi and ccpi represent the computing time (in seconds) of 10000 evaluations
of the basic functions (f , g and h) for problem i, and the complete computing time
for the algorithm when 10000 evaluations of the functions are allowed, for problem
i, respectively, and N is the number of problems used in this computation. Using
the ‘g’ suit (N = 24) and the augmented Lagrangian LI , we obtain:

T1 = 0.0723, T2 = 0.8239 and (T2 − T1)/T1 = 10.3956.

We remark that the displayed values are the average values over three runs and
that the code was not yet optimized. We may conclude that the computational
effort of the operations involved in the algorithm is about ten times the effort of
evaluating the basic functions.

4.3. Random local search effect

Here, the effect of the random local search procedure (Algorithm 3.2) in the EM
algorithm, is analyzed. Seven problems with different dimensions are selected: g01
with n = 13, g05 with n = 4, g08 with n = 2, g09 with n = 7, g15 with n = 3,
g16 with n = 5 and g18 with n = 9. Each problem was solved 30 times. We
run Algorithm 2.2 and selected the augmented Lagrangian LI for this comparison.
Table 1 displays the problem (Prob.), the number of variables (n), the type of
objective function (function), the number of inequality constraints (p), the number
of equality constraints (m), the best known solution as reported in [15] (f∗), the
variant, fbest, favg and Nfeavg (this represents the average number of function
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evaluations after the 30 runs). The three variants in comparison include one without
local search and two with local search, each defined by the pair of parameters
(δ,maxlocal). The accuracy of the obtained solutions is improved when the local
search is incorporated into the EM algorithm, although, as expected, at a cost of
function evaluations. The choice (0.001, 10) for the pair of parameters is also better
than the other in comparison. In all tables of the paper, the best results for fbest
and favg, in each table, are in boldface.

4.4. Comparing local search procedures

The random local search of Subsection 3.1 has an important limitation. Using
it as described in Step 7 of Algorithm 3.1 can be time-consuming. It may require
n maxlocal extra function evaluations, at each iteration. Its use seems impracticable
for moderate dimension problems. The proposals in Subsections 3.2 and 3.3 are
more attractive since they look less expensive to implement and computational
requirements do not depend on the problem dimension, as opposed to the case of
random local search.
We run Algorithm 2.2 with both augmented Lagrangian functions, LEI and
LI , and tested the three local search procedures. In this study, the algorithm is
terminated when 100000 function evaluations are reached. Table 2 contains the
results for the problems of the ‘g’ suit. The local search procedures are identified
in the table by: ‘coordinate’ (Algorithm 3.2), ‘descent’ (Algorithm 3.3) and ‘rand.
walk’ (Algorithm 3.4). The character ‘–’ means that the solution is infeasible. From
the table we may conclude that Algorithm 3.2 slightly outperforms the other two
in comparison, and the augmented Lagrangian LI attains, in general, the most
accurate results.

4.5. Comparison with other algorithms

To compare the performance of the herein proposed augmented Lagrangian al-
gorithm with other penalty techniques in the literature [2, 17, 19], we report in
Tables 3, 4 and 5 our results and those of the cited papers. In [2], a genetic algo-
rithm (GA) combined with an adaptive penalty function (APF) is implemented.
Five variants are tested. These are mainly concerned with the frequency of penalty
parameters updating and constraints violation computation. The authors in [17]
propose a momentum-type particle swarm optimization (PSO) algorithm combined
with a dynamic penalty function (DPF) for solving constrained problems.
The method in [19] is a memetic particle swarm optimization (MPSO) algorithm,

with a local search based on a random walk with direction exploitation (RW), and
a dynamic penalty function. Both local and global variants are therein tested. To
compare our results with the three chosen techniques, the problems were solved
using the conditions described in the paper in comparison. These conditions are
displayed in each table. They differ from one case to another and are concerned
with psize, number of runs, and maximum number of iterations/generations or
function evaluations allowed. To identify the problem (‘Prob.’) we use the notation
of the paper, except when the problem is of the ‘g’ suit or it has been used in a
previous table. We report the results obtained with both augmented Lagrangians.
The random local search procedure was chosen for these tests since it performed
well in previous experiments.
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Table 2. Comparison of local search procedures and augmented Lagrangians.

LEI LI

Prob. n coordinate descent rand. walk coordinate descent rand. walk

g01 13 fbest -14.9999 -14.9999 -14.9905 -14.9994 -15.0000 -14.9919
favg -14.9991 -14.9998 -14.9709 -14.9988 -14.9994 -14.9707

g02 20 fbest -0.46412 -0.53511 -0.54800 -0.55100 -0.52706 -0.61182
favg -0.43477 -0.43894 -0.44931 -0.44935 -0.44155 -0.45506

g03 10 fbest -0.99889 -0.99801 -0.99985 -0.99628 -0.99034 -0.99274
favg -0.99649 -0.99488 -0.99926 -0.98333 -0.97917 -0.97583

g04 5 fbest -30665.53 -30665.52 -30665.53 -30665.54 -30665.54 -30665.53
favg -30665.52 -30665.50 -30665.52 -30665.53 -30665.52 -30665.52

g05 4 fbest 5126.600 5128.881 5133.819 5126.517 5130.504 5126.884
favg 5129.494 5247.374 5255.988 5128.023 5268.96 5169.594

g06 2 fbest -6958.508 -6961.699 -6961.759 -6961.002 -6961.717 -6961.801
favg -6951.732 -6961.472 -6961.599 -6953.515 -6961.511 -6961.642

g07 10 fbest 24.3079 24.3115 24.3191 24.3076 24.3141 24.3162
favg 24.3137 24.3246 24.3279 24.3112 24.3243 24.3289

g08 2 fbest -0.09583 -0.09583 -0.09583 -0.09583 -0.09583 -0.09583
favg -0.09583 -0.09583 -0.09583 -0.09582 -0.09583 -0.09582

g09 7 fbest 680.630 680.633 680.631 680.630 680.632 680.631
favg 680.630 680.641 680.634 685.195 680.638 680.633

g10 8 fbest 7062.69 7059.47 7246.59 7070.14 7057.88 7152.41
favg 7156.16 7212.84 8078.80 7256.98 7867.54 7639.34

g11 2 fbest 0.75088 0.81034 0.75082 0.74999 0.74999 0.74999
favg 0.87873 0.97309 0.96779 0.74999 0.75000 0.74999

g12 3 fbest -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000
favg -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000

g13 5 fbest 0.05394 0.05394 0.05394 0.05395 0.05396 0.05394
favg 0.05396 0.05397 0.05401 0.05632 0.06563 0.05398

g14 10 fbest -47.7649 -47.7648 -47.7647 -47.7570 -47.7603 -47.7647
favg -47.7637 -47.7466 -47.7625 -47.4253 -47.7457 -47.7565

g15 3 fbest 961.715 961.715 961.715 961.715 961.715 961.715
favg 961.715 961.716 961.716 961.719 961.779 961.728

g16 5 fbest -1.90514 -1.90489 -1.90496 -1.90514 -1.90490 -1.90507
favg -1.90506 -1.84890 -1.87424 -1.90512 -1.85303 -1.86282

g17 6 fbest 8856.65 8874.67 8967.28 8855.57 9011.92 9011.90
favg 8890.55 8962.38 9005.49 8868.11 9018.28 9049.12

g18 9 fbest -0.86598 -0.86597 -0.86551 -0.86600 -0.86595 -0.86568
favg -0.86579 -0.86561 -0.86507 -0.86591 -0.86544 -0.86511

g19 15 fbest 34.2133 45.1205 48.0194 33.7640 44.0871 47.8128
favg 38.5755 54.2540 63.3142 35.5095 52.9676 61.1339

g20 24 fbest (0.328)† – – (0.433)‡ – –
favg – – – – – –

g21 7 fbest 199.803 251.604 196.864 318.207 229.648 201.318
favg 302.791 515.192 264.104 320.119 234.261 506.068

g22 22 fbest 236.816 263.643 260.929 241.089 544.381 378.238
favg 283.712 1322.5 1602.1 316.427 4756.6 1906.0

g23 9 fbest -396.830 -399.851 -396.040 -398.955 -395.357 -399.810
favg -377.815 -375.862 -370.603 -375.397 -356.822 -360.810

g24 2 fbest -5.50801 -5.50799 -5.50800 -5.50801 -5.50801 -5.50786
favg -5.50800 -5.50790 -5.50793 -5.50801 -5.50799 -5.50710

† least constraints violation obtained with LEI .
‡ least constraints violation obtained with LI .

Table 3 shows fbest and favg obtained by our study and those of [2] for the
eleven problems therein reported (g01-g11). In [2] each variable was encoded with
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Table 3. Comparison of our results with the best of 5 variants in [2].

Prob. f∗ our study [2]
Aug. Lagrangian fbest favg fbest favg

g01 -15.0000 LEI -14.9994 -14.9983 -14.9998 -14.9989

LI -14.9993 -14.9985

g02 -0.80362 LEI -0.57604 -0.43129 -0.79252 -0.72555

LI -0.49211 -0.33695

g03 -1.00050 LEI -0.99684 -0.99524 -0.99725 -0.77797
LI -0.99470 -0.97080

g04 -30665.54 LEI -30665.52 -30665.44 -30665.32 -30578.55
LI -30665.54 -30665.26

g05 5126.497 LEI 5128.380 5135.457 5126.779 5323.866
LI 5126.738 5130.937

g06 -6961.814 LEI -6950.783 -6896.591 -6961.448 -6805.229
LI -6954.896 -6910.745

g07 24.3062 LEI 24.3078 24.4817 24.5450 27.8486
LI 24.3070 24.3579

g08 -0.09583 LEI -0.09583 -0.09583 -0.09583 -0.08769
LI -0.09583 -0.09583

g09 680.630 LEI 680.630 680.645 680.681 681.470
LI 680.630 680.736

g10 7049.25 LEI 7098.94 8844.95 7070.56 8063.29
LI 7058.56 7147.76

g11 0.74990 LEI 0.74993 0.74998 0.75217 0.88793
LI 0.74999 0.75002

Conditions in [2]: psize = 100, runs = 25, maximum number of generations = 1000, leading
to 100000 fitness function evaluations.

25 bits in a binary-coded GA. From the description of the algorithm in the paper,
it is possible to identify three parameters in GA plus two in the procedure related
with APF. We have better performance (both in fbest and favg) than the adaptive
penalty algorithm of [2] in six problems.
Table 4 contains the results of our study to compare with the results reported

in [17]. In the technique therein presented it is possible to identify four parameters
in the PSO plus five in DPF. Since the algorithm was allowed to run for 5000
iterations, the solutions presented in this table may be better than those of the
other tables. We have better performance (both in fbest and favg) than [17] in two
problems.
Finally, to compare with the dynamic penalty algorithm of [19], we register in

Table 5 our results of favg and the corresponding standard deviation (Stand. Dev.),
for the six problems listed in [19]. From the paper it is possible to identify three
parameters in MPSO, plus two in RW and at least two in DPF. We obtain better
favg values in two problems and the other results are competitive.
A comparison based on the algorithms’ complexity cannot be carried out since

the computing times T1 and T2, see (12), are not provided in the papers [2, 17, 19].

5. Final remarks

From our preliminary numerical tests, we may conclude that the proposed aug-
mented Lagrangian algorithm is able to effectively solve constrained problems till
optimality. In particular, the augmented Lagrangian paradigm that uses relaxed
equality constraints produces solutions with good accuracy. The augmented La-
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Table 4. Comparison of our results with the results in [17].

Prob. f∗ our study [17]
Aug. Lagrangian fbest favg fbest favg

g02 -0.80362 LEI -0.46286 -0.42938 -0.80360 -0.746

LI -0.58645 -0.43610

g06 -6961.814 LEI -6959.716 -6948.447 -6961.814 -6961.781

LI -6957.870 -6933.025

g14 -47.7649 LEI -47.7616 -47.7600 -47.562 -46.604
LI -47.7544 -47.5938

P2 -31026.44 LEI -31026.42 -31026.40 -31025.56 -31025.56
LI -31026.42 -31026.38

P3 -11.0000 LEI -11.0000 -10.9535 -11.0000 -11.0000

LI -10.9999 -10.9998

P4 -213.000 LEI -213.000 -212.997 -213.000 -213.000

LI -213.000 -212.998

Conditions in [17]: psize = 50, runs = 20, maximum number of iterations = 5000.

Table 5. Comparison of our results with the best of the 2 variants in [19].

Prob. f∗ our study [19]
Aug. Lagrangian favg Stand. Dev. favg Stand. Dev.

g04 -30665.54 LEI -30665.41 0.091 -30665.55 0.000
LI -30665.39 0.153

g06 -6961.814 LEI -6926.984 18.75 -6961.283 0.380
LI -6936.535 6.25

g09 680.630 LEI 680.631 0.0008 680.784 0.062
LI 680.631 0.0007

TP10 1.39347 LEI 1.40640 0.011 1.427 0.061
LI 1.39982 0.004

P2 † -31026.44 LEI -31026.30 0.144 -31026.44 0.000
LI -31026.36 0.067

P4 ‡ -213.000 LEI -212.995 0.003 -213.047 0.002
LI -212.995 0.002

Conditions in [19]: psize = 100, runs = 30, maximum number of function evaluations = 100000.
† TP14 in [19]; ‡ TP15 in [19].

grangian framework, coupled with the random local search procedure to enhance
the EM algorithm, has shown to be competitive with other penalty based algo-
rithms. The other two tested local search procedures did not improve significantly
the final results. The convergence of the proposed algorithm will be carried out in
the future. Other important issues, like the conditions for stopping the algorithm,
will be analyzed.
Practical engineering problems, for example, those reported in [2], will be solved

in the near future. We also aim to test our algorithms with a point-to-point search
yet stochastic method, when solving the bound constrained subproblems.
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