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a b s t r a c t 

Over the past few years, there has been a noticeable advancement in environmental models and in- 

formation fusion systems taking advantage of the recent developments in sensor and mobile technolo- 

gies. However, little attention has been paid so far to quantifying the relationship between environment 

changes and their impact on our bodies in real-life settings. 

In this paper, we identify a data driven approach based on direct and continuous sensor data to assess 

the impact of the surrounding environment and physiological changes and emotion. 

We aim at investigating the potential of fusing on-body physiological signals, environmental sensory 

data and on-line self-report emotion measures in order to achieve the following objectives: (1) model 

the short term impact of the ambient environment on human body, (2) predict emotions based on-body 

sensors and environmental data. 

To achieve this, we have conducted a real-world study ‘in the wild’ with on-body and mobile sen- 

sors. Data was collected from participants walking around Nottingham city centre, in order to develop 

analytical and predictive models. 

Multiple regression, after allowing for possible confounders, showed a noticeable correlation between 

noise exposure and heart rate. Similarly, UV and environmental noise have been shown to have a no- 

ticeable effect on changes in ElectroDermal Activity (EDA ). Air pressure demonstrated the greatest contri- 

bution towards the detected changes in body temperature and motion. Also, significant correlation was 

found between air pressure and heart rate . 

Finally, decision fusion of the classification results from different modalities is performed. To the best 

of our knowledge this work presents the first attempt at fusing and modelling data from environmental 

and physiological sources collected from sensors in a real-world setting. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Repeated exposures to environmental stressors (such as pol-

lution, noise and crowded areas) cause physical illnesses (e.g.,

headaches, fatigue, sleeping disorder, and heart diseases) and be-

havioural issues (e.g., stress, attention deficit, anger, and depres-

sion) [1–3] . 

The effect of these stressors on health has been a focal point

in health research. Models have been widely used as indispens-

able tools to assess effects of environmental factors on human and

health. In particular, modelling the level of exposures to environ-

mental pollutants such as [4,5] . 
∗ Corresponding author. 

E-mail addresses: eiman.kanjo@ntu.ac.uk (E. Kanjo), eman.younas@mu.edu.eg 

(E.M.G. Younis), Nasser.Sherkat@ntu.ac.uk (N. Sherkat). 

s  

t  

b  

http://dx.doi.org/10.1016/j.inffus.2017.05.005 

1566-2535/© 2017 The Authors. Published by Elsevier B.V. This is an open access article u
A decade-long study of 6.6 million people, published in the

ancet recently, found that one in 10 dementia related deaths in

eople living within 50 m of a busy road was attributable to fumes

nd noise. There was a linear decline in deaths the further people

ived away from heavy traffic [6] . 

Additionally, Chen’s group [6] noted that because air pollution

xposure was estimated at the postal-code level, it may not ac-

ount accurately for each individual’s exposure. The study sug-

ested that more research to understand this link is needed, par-

icularly into the effects of different aspects of traffic, such as air

ollutants and noise at a higher granular levels. 

In general, epidemiological and statistical analysis are usually

tudied based on observed environmental data, which have tradi-

ionally been obtained from governmental sources or from a num-

er of sporadically distributed sensing nodes. In both cases, the
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Fig. 1. The relationship between different modalities, the environment, human 

body, Motion and emotions data. 
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erformance of these studies is evaluated against relatively few di-

ectly measured data points [7] . 

Conversely, the capabilities and availability of cheaper, more

ensitive and sophisticated sensors for gases, particulates, water

uality, noise and other environmental measurements have im-

roved and are enabling researchers to collect data in unprece-

ented spatial, temporal and contextual detail [7,8] . 

These sensors range from bespoke devices designed for specific

pplications, to those found on more mainstream personal devices,

uch as smartphones. In some cases, people may act as environ-

ental sensors by reporting what they see, hear and feel by par-

icipating in the citizen science of environmental conditions [9] . By

everaging widely available wearable devices, communication and

ensor technologies many new sensor systems are relatively low-

ost compared with technologies used in established monitoring

tations [10,11] . 

Advances in data science and fusion techniques are critical to

nable researchers to make best use of the vast amounts of addi-

ional, heterogeneous sensor data sources. 

Despite the popularity of using wearable sensors for emotion

ecognition, the problem of quantifying the relation between envi-

onmental variables and physiological body reactions and emotions

as been overlooked. In addition, the relationship between emo-

ions and all the other environmental and body factors have been

tudied qualitatively. 

In this paper, we incorporate a sensor-data driven approach

o understand the relationship of various environmental measures

ith wellbeing and emotion. By unobtrusively collecting data from

n-Body and environmental sensors we can get better understand-

ng of the association and causality of the environmental bases for

uman health including psychological changes. 

This leads us to investigate the following research questions: 

1. How can we model and fuse the relationship between on-body

and environmental variables? 

2. Can the multi heterogeneous sensors integration improve our

understanding of the associations and environmental impact on

human health? 

3. How can information fusion best make use of the ‘on-body and

environmental Sensor Data’ to infer emotion? 

Our approach to answer these questions is based on two phase

ramework in information fusion, which utilizes the new available

eterogeneous sensors of multiple modalities as mobile interfaces

y studying the relationship between these data sources in spatial-

emporal context. Moreover, by studying its relationship with emo-

ion based on decision fusion. 

In order to follow our approach, we collected data from forty

ubjects using on-body sensors ‘in the wild’ around Nottingham

ity centre environment. The data collected include on-body data

uch as body movement, heart rate ( HR ), Electrodermal activities

 EDA ) and body temperature and, environmental data including

oise level (Env-noise), air pressure and ambient light levels ( UV ),

s shown in Fig. 1 . 

In addition, collected GPS data record the user locations while

athering data. The different data channels are collected, cleaned,

ggregated and smoothed for different users and user emotions

abels are collected using self-report input, based on 5-step SAM

cale for Valence taken in [12] . 

The selection of sensors and data analysis techniques is opti-

ized from the ground up with the emotion inference application

n mind for outdoor environments. 

We have adopted an information fusion approach to analyse

nd model the data since this method offers an effective solution

o many of the issues found in analysing data from individual sen-

ors. Information fusion allows integration of independent features

nd prior knowledge and, provides a better means of identifying
pecific aspects of the target application domain and improve ro-

ustness against interferences of data sources [13] . 

For examples physiological data, such as heart rate reveal the

hysical effort of an activity but they may be influenced by exter-

al factors such as environmental conditions or social interaction.

ll of these sources provide only partial information related to the

ctual individuals’ activity. 

In this work we utilise, multi-sensor fusion to demonstrate the

easibility of capturing diverse and multi-model derived features

n order to identify relationships, associations and causality and,

ormalize models describing people’s reaction and emotions. 

Our data fusion approach is in three folds: (1) Data fusion by

ollecting data from multiple sources including HR, EDA , body tem-

erature, movement and activity, environmental noise, location,

ir pressure and UV . (2) Feature fusion by examining relationship

etween our environmental variables and physiological variables

ased on exploratory statistics and Multivariate Regression mod-

lling, also by looking at the variable importance and variation

3) Decision fusion by combining multiple classifiers from differ-

nt modalities for emotion prediction. 

The rest of the paper is structured as follows. Section 2 dis-

usses related work focusing on previous effort s in quantifying en-

ironmental health impact along with a brief review of on-Body

ensors and related information fusion techniques. Section 3 covers

he methodology including the user study, system architecture of

he proposed method, initial data processing and descriptive statis-

ics. Also Section 4 introduces multivariate regression and its math

uotation. Section 5 reports the results of the multimodel analy-

is and emotion prediction based on decision fusion. Followed by

iscussion and conclusion sections respectively. 

. Related work 

.1. Quantitative assessment of environmental health impacts 

Human exposure to environmental pollutants such as noise, air

ollution, traffic or even crowded areas can cause severe health

roblems ranging from headaches and sleep disturbance and heart

iseases [1,2] . 

The relationship between human body and the environmen-

al factors has been extensively studied in social and environ-

ental sciences, psychology and environmental health literature

3,14] . WHO, defines “Environmental Burden of Disease” [15] as

ne methodology for quantitatively assessing environmental health

mpacts at the population level in terms of deaths, Disability Ad-

usted Life Years (DALYs), or occasionally the number of cases.

ther indirect measures can be used to estimate health impacts,

or example the number of hospital admissions. 

According to WHO quantitative assessments of health impacts

re based on combining exposure data with exposure-response in-
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formation. Such assessments require (i) the compilation of expo-

sure data, (ii) a systematic review of evidence from epidemiology

and other scientific disciplines concerning the association between

environmental factors and human health, and (iii) the combination

of exposure. 

For examples, very recently a study has found that in large

population-based cohort living close to heavy traffic was associ-

ated with a higher incidence of dementia but not with Parkinson’s

disease or multiple sclerosis [6] . 

In addition, the negative effect of noise on human health are

discussed extensively in the literature including health issues re-

lated to sleep disorders, heart problems, vision problems and many

more [14] . 

Similarly, many previously medical studies have confirmed that

changes in temperature, humidity, weather events such as storms

can trigger asthma attacks [18] . 

A criticism of statistical epidemiologic models is their focus on

identifying association, while causality remains difficult to assess,

despite the fact that many information theoretical and physical

based models have been developed recently for dissecting spatial-

temporal correlation time series more deeply than with traditional

statistical models [7] . 

For examples, the average environmental exposure across re-

gions rarely reveals the specific health problems people face in any

given location. Most people live around urban areas. They go down

and walk about on city streets and get around by cars, trains or

buses. Therefore, in order to know more about the impact of their

surrounding and current environment there is a need to monitor

people while carrying their daily activities. 

For example, cyclists might get exposed to a high level of pol-

lution in half an hour when riding their bikes behind buses than

other people get in an entire month. There is a need to monitor

and assess people’s exposure and health impact in short term and

at high granular spatial scale. 

Most of the related traditional statistical models do not take ad-

vantage of the availability and affordability of modern sensors for

on-body and environmental data collection that can make it possi-

ble to collect accurate environmental and health data for analytics

and modelling. 

The increasing pervasiveness of wearable and sensor devices

has created new opportunities for sensing people’s activities

around physical spaces. These new data sources at high level of

granularities enables higher level of estimation of human expo-

sures to environmental conditions and quantifying health-related

responses that may be associated with such exposures. 

Some attempts have been made to use data driven approaches

to characterise the impact of environment on health. For exam-

ples, mobile phone data have been used to parameterize popula-

tion movement networks to the spread of malaria [16,17] . 

Recently, marrying data from personal monitoring devices with

air pollution models has improved the characterizations of air pol-

lution exposures [19–21] , and in other cases, has employed en-

ergy expenditure sensors to improve exposure prediction [22] . Be-

side health impact, emotions and physiological changes have also

started to grab attention as a direct influence on wellbeing. Kööts

et al. [23] studied the relationship between positive and nega-

tive emotions and the environmental changes such as tempera-

ture. Park and Farr [24] studied the relationship between lighting

and emotions in a business retail environment. In response to this,

we have added the following to the related work section: Gravina

and Fortino have developed a novel algorithm designed to detect

the (Cardiac Defense Response) CDR by analysing the electrocar-

diogram (ECG) signal [13] . This approach helps in detecting pre-

ceding negative emotional states including fear, chronic worry and

panic. This approach helps in detecting preceding negative emo-

tional states including: fear, chronic worry, and Panic. 
In addition, many research projects have studied emotion and

ts relationship with health and physiological changes [25–36,52,

5–66] , however none of them have considered integrating phys-

ological and health sensors along with environmental sensors, in

rder to model and predict emotions. 

In this work, we present an emotional analytical model where

he environmental and the physiological measures have been com-

ined. Also, we study the relationship between environmental and

ealth variables based on sensor data collected from forty partic-

pants walking along the same urban route in Nottingham. Both

nvironmental and physiological data are collected simultaneously

long with spatial and temporal information in order to under-

tand at a small scale the relationship between these parameters

long with emotion. 

.2. On-body sensors 

Body physiological signals require sensors for their measure-

ents. In the past wearable sensors were intrusive and uncomfort-

ble to be used in the real world experiments. However, nowadays

ith the advancement of the wearable sensors and mobile tech-

ologies these sensors have become non-invasive and comfortable

or the users, with the availability of wrist-bands, equipped with

any built-in sensors. Table 1 presents a list of on-body sensors

hat have been used for emotion detection: 

In addition to the above sensors, currently many wristbands

nd wearable devices offer a wide range of sensors that are not

estricted to health or body statistics. For examples, pollution sen-

ors along with weather stations and other environmental sensors

uch as light and colours are widely available in different shapes

nd styles [8,9,19] . 

Many researchers have started to look at different ways of pro-

ramming and managing these sensors And, to fuse the data using

arious computational methods such information fusion [13] . 

.3. Information fusion 

Information Fusion is the merging of information from hetero-

eneous sources with differing conceptual, contextual and typo-

raphical representations. It can be performed on three levels: 

• First, “Data Level ” fusion aims at collecting different data ele-

ments from different sensors to complement each other. It can

be done during data collection to fuse external data sources

such as user self-reporting of emotions [13,42] . 
• Second, “Feature Level ” fusion is performed during data analy-

sis to find the best set of features for the classification. Feature

level fusion has been done in [36] , to find the best combina-

tion of features using EMG, RSP, SC and ECG signals for emotion

recognition. 
• Third, “Decision Level ” fusion, which aims to combine the re-

sults of multiple techniques to improve decision making. A re-

cent review of various data fusion techniques and applications

in body sensor networks can be found in [13] . Granero et al.

[42] , used feature level fusion to classify emotions and proved

that the ECG and EDA signals are the most significant signals in

emotion classification. 

. Methodology 

.1. Data collection 

The data collection setup is depicted in Fig. 2 . In this process,

e gather various sensor and self-report data from a smart phone

pplication named “EnvBodySens”, and Microsoft wristband 2. Col-

ected data is then logged and stamped with the time and date.

he application also records the data shown in Table 2 . 
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Table 1 

List of physiological sensors and signals used widely for emotion detection. 

Sensor Signals and characteristics 

Heart Rate The produced signal is showing the changes in the heartbeats over time. The distance between two consecutive pulse peaks is 

called the RR interval. It has been widely used in many emotion recognition studies such as [37–42] to measure health and 

emotions. 

Body Temperature Although, the temperature signal is very simple, it could be used as an indicator of the person’s emotions and mood changes 

[37,33] . Chung et al. [40] proved that the nervous system activity can be detected by changes in skin temperature called 

Temperature Variability (TV). 

Breathing It has been used widely to measure how fast the person is breathing and patterns of breath. It has proved to be correlated with 

the heart rate and person’s emotions [28,30,36] . 

Motion Modern accelerometers include tri-axial micro-electro-mechanical systems (MEMS) for three-dimensional acceleration 

measurement with sub-second time resolution. However, for analysis, these measurements are usually converted into a uni-axial 

representation, measuring cumulative activity for a certain period of time. For simplicity, the motion can be represented as the 

root mean square of all the three components such as 
√ 

X 2 + Y 2 + Z 2 . The accelerometer is now embedded in almost all mobile 

phones and recently used for emotion recognition in [35] . 

Electrodermal Activity Also known as Galvanic Skin Resistance (GSR) has shown high correlation with the emotions and stress detection 

[29,30,33,34,37,39,42] . 

EEG Headsets EEG devices are normally used to measure the electrical activity of the brain. It has been used to measure the emotions and 

attention [25,41,42] . 

Muscle contraction (EMG) EMG measures the electrical pulsed resulted from muscle contraction. It has proved effective in detecting arousal in 

[30,34,36,38,39,41,42] . 

Blood Volume pulse (BVP) PVP has been used for emotion recognition always combined with one or more of the previous sensors [30,39,36] . 

Fig. 2. (left) Screenshot of EnvBodySens application, (right) Data Collecting process. 

Table 2 

List of the collected data. 

Microsoft band 2 Android phone 6 

Heart Rate ( HR ) Environmental Noise ( Env-Noise ) 

Electro Dermal Activities ( EDA ) GPS Location 

Body Temperature ( Body-Temp ) Self-Report of Emotion (1–5) 

Hand Acceleration (Motion) 

Air Pressure 

Light ( UV ) 
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In the EnvBodySens application, an interface is implemented for

ontinuous and quick labelling of user emotions while walking and

ollecting data. When the user launches the application, mobile

nterface appears with five iconic facial expressions ranging from

ery negative to very positive. A screen capture is presented in

ig. 2 (left) showing the five emotion buttons. 

Users are asked to constantly select one of the affective cate-

ories (in the form of buttons) as they walk around the city centre.

e disabled the screen auto sleep mode on our mobile devices,

o the screen was kept on during the data collection process. We

dopted the 5-step SAM Scale for Valence taken from [10] to sim-

lify the continuous labelling process. 

The dimension valence fits well into our experimental setup

ince it describes the positive or negative feeling caused by a situ-

tion, an object or an event. 
The study was launched in July 2016. A call for participation

n the study was advertised in various mailing lists. Forty partici-

ants took part in the study all female with an average age of 28.

he study was approved by Nottingham Trent University’s Ethics

ommittee. We have chosen to recruit female participants only in

rder to rule out other factors (i.e. confounders) related to gender. 

Participants were scheduled to take part in the study in or-

er to collect data around Nottingham city centre. The partici-

ants have been asked to meet with a trained researcher in a low

tress environment (a café) where they were given light refresh-

ents while the experiment is set up. The researcher provided

hem with details of the study protocol, obtained informed con-

ent, and equipped them with the study equipment. The study

as carried out over a number of days in order to find convenient

imes for the participants and to allow for the limited number of

evices available. Information and study details were sent to the

articipants ahead of the data collection session. The participants

ere asked to spend no more than 45 min collecting data. 

The reasons for limiting the journeys to 45 min are as follows:

1) the shopping route is relatively narrow and can be walked

long during this time frame. (2) users from previous experiments

ound it hard to walk longer. 

Based on the previous experience we have found it difficult to

otivate participants to walk longer [53,54] . Additionally, we plan
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Fig. 3. Overall block scheme of the proposed Information Fusion system (Two phase frame work). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

m  

[  

i  

(

 

p  

p  

e  

i  

a

 

A

3

 

v  

y  

c  

t  

t  

1  

m  

a  

d

 

b  

w  

b  

 

t  

b  

i  

t  

N  

T  

o

 

t  

v  
to carry out further analysis on the data that requires adopting

fixed route with pre-defined time frame. 

Data was collected in similar weather conditions (average 20 °),
at around 11am. During the data collection process 550,432 data

lines were collected as well as 5345 self-report responses. 

3.2. System architecture 

Our approach consists of real-time collection and off-line anal-

ysis of the sensor data using information fusion techniques at all

the three fusion levels. The architecture is composed of a number

of processing blocks as depicted in Fig. 3 . First, the data is collected

using on-body sensors and then fused with other contextual user

data such as location, noise and emotional state (self-report) which

is the data-level fusion. Second, the collected data is cleaned and

pre-processed. Third, Statistical correlation, covariance and multi-

ple regression analysis are performed. Fourth, the emotion predic-

tive model is created by extracting features from sensor data and

using feature selection for decision fusion. Then, stacking model

training is carried out using training examples and then testing the

model using unseen data for evaluation. 

3.3. Data pre-processing 

After the data acquisition the signals are pre-processed and

cleaned. Then, the first and the last 30 s were cut from the be-

ginning of the data collection process for each user dataset, the

reason for this step is that participants needed a few seconds to

fully get into the movement and also few seconds to stop the data

collection at the end of the experiment. 

Data from six users were excluded due to logging problem, for

examples one user was not able to collect data due to battery

problem with the mobile phone, another one switched the appli-

cation off accidently. 

We produced Lagged Poincare plots for each individual data

subset, in order to remove the ones with abnormal heart rate pat-

terns. The Poincare plot is a visual tool that uses the ratio between

standard descriptors for short-term correlation ( SD 1 ) and long-

term correlation ( SD 2 ) between RR intervals to assess the health of

the heart. It has been found that the peculiar shape of RR interval

is not an artefact or mere placement of point but a specific tem-

poral correlation between the successive RR intervals and hence
relates closely to the natural rhythm of heart as a response to

any different complex closed loop systems controlling the heart

43] . Given a time series of the form: x t , x t + 1 , x t + 2 ,…, a return map

n its simplest form first plots ( x t ,x t + 1 ), then plots ( x t + 1 ,x t + 2 ), then

 x t + 2 , x t + 3 ), and so on. 

The shape of the RR interval distribution shows an elliptical

attern and the ratio of SD 1 / SD 2 should be higher for a healthy

erson. Conversely, the shape of RR interval distribution is a non-

lliptical pattern and the ratio is much lower for a subject with

mpaired heart or reduced HRV [67] . The typical cases of normal

nd impaired subject are as shown in the right panels of Fig. 4 . 

HR data from our users have been checked using Poincare plots.

ll our pariticpants have noramal patterns similar to Fig. 4 (right). 

.4. Statistical analysis 

Various statistical methods including descriptive statistics, co-

ariance and correlation matrixes, and Principle Component Anal-

sis ( PCA ) map have been used to identify variables to be in-

luded in the multiple regression analyses. Table 3 shows descrip-

ive statistics of the data estimated for all subjects. This includes:

he mean ( μ), standard deviation ( std ), median, minimum (min),

st Quartile ( 25% ), 2nd Quartile (50%), 3rd Quartile (75%), maxi-

um (100%) and the skewness and kurtosis of the various body

nd environment sensor signals, where N = 472,904 samples (after

ata cleaning). 

The correlation matrix in Fig. 5 shows a low level of correlation

etween the independent variables which suggests that our model

ill not be affected by the Multi-collinearity problem, which is a

asic pre-condition for applying multiple linear regression analysis.

Fig. 6 shows the PCA map for all the variables indicating that

he first PCA component has positive coefficients for all the on-

ody measurements such as HR, EDA, Motion , and Body-Temp . That

s why the three vectors are directed into the right top-quarter of

he plot; while all the environmental measurements including Env-

oise, Air-Pressure, UV and Motion are on the lower half of the plot.

hus, we need to further understand the relationship between both

f them and their relation to human emotions. 

Based on the covariance matrix, if the covariance is positive,

his means that the two variables are mutually increasing. Con-

ersely, if the correlation is negative, this means that the two vari-
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Fig. 4. Abnormal (left) and normal (right) Poincare plots. 

Table 3 

Descriptive, summary statistics for the collected signals. 

M σ Median Min 1st Qu. 2nd Qu. 3rd Qu. Max skewness kurtosis 

Air-Pressure 1014 5.41 1014 1002 1012 1014.0 1019 1020 −0.882 2.81 

EDA 1454 348.9 343 15 185 347 952 2903 9.44 90.8 

Env-Noise 54.20 3.786 53 20 52 53 55 95 −0.33 14.4 

HR 80.24 11.75 77.00 49 73 77 83 189 2.91 18.02 

UV 795.9 2646.06 131.0 0.0 47 131 418 62,359 9.9 137.8 

X −0.15 0.662 −0.081 −4.27 −0.82 −0.08 0.28 2.27 0.09 2.16 

Y −0.01 0.625 0.018 −2.77 −0.61 0.018 0.515 3.93 −0.03 1.84 

Z 0.01 0.47 0.12744 −1.92 −0.39 0.127 0.348 3.86 −0.27 2.26 

Body-Temp 28.93 1.62 28.93 24.67 27.7 28.8 29.89 33.8 0.49 3.46 

Fig. 5. Correlation Matrix of the independent variables. 

Fig. 6. PCA plot for all the on-body and environmental measurements. 
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bles are mutually decreasing. If the covariance is zero, this means

hat there is no relationship between the two variables. It is no-

iced from Table 4 that the air pressure has negative relation with

ll the other factors. Whereas. The EDA is negatively related with

V and Body-Temp and positively related with Env-Noise, HR and

otion . In addition, HR is negatively related with UV and Body-

emp . In addition, the Body-Temp is negatively related to EDA and

ositively related with the Env-Noise, HR, UV and Motion. In addi-

ion, Motion is negatively related with positively related with all

he other variables. 

Based on the above analysis, we included all the independent

ariables for the Multivariate Regression analysis in the next sec-

ion. 

It should be noted that EDA and HR have the highest positive

orrelation with Affect labels as shown in Fig. 7 . 

. Results 

.1. Multi-variant regression analysis and variable importance 

Having examined our variables closely in order to provide an

nalytical model we employ multivariate (and multivariable) anal-

sis in order to study the variable dependency between two dif-

erent modalities using Multivariate Regression and Principle Com-

onent Analysis ( PCA ). Statistically speaking, multivariate analysis

efers to statistical models that have two or more dependent or

utcome variables [44] and multivariable analysis refers to statis-

ical models in which there are multiple independent or response

ariables. 

The analysis is performed in two main steps: First, study the re-

ationship between every dependent variable individually (i.e. the

ody responses) and all the other independent variables (i.e. the

nvironmental variables). Second, determine the relative impor-

ance of the independent variables (i.e. regressors) on each of the
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Table 4 

The covariance matrix for all the environmental and body measurements. 

Air Pressure EDA Env-Noise HR UV Motion Body-Temp 

Air pressure 28.784 −2.674 −4.073 −2.300 −133.653 −0.0165 −4.073 

EDA −267.481 8.239 319.497 3635.712 −1952.3 0.4607 −77.08 

Env-Noise −4.073 3.194 14.386 3.166 574.733 0.0214 0.869 

HR −2.300 3.635 3.166 138.587 414.358 0.0303 0.764 

UV −133.65 −1.952 574.73 −133.65 7070.60 0.0303 38.769 

Motion −0.0165 4.607 0.0214 −0.0165 37.143 37.143 0.0025 

Body-Temp −4.073 −7.708 0.869 −4.073 38.769 0.002 2.51 

Fig. 7. 3D scatter plot shows how both EDA and HR correlate positively with the label (affect state). 
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dependent variables using PCA based on the residuals for every de-

pendent variable in the regression model [45] . 

Multiple Linear Regression analysis was conducted separately

for each dependent variable representing body stats in relation to

all the independent variables which are represented by the envi-

ronmental stats. The aim of this step is to determine which body

variable can be best predicted using the environmental measure-

ments as independent variables. 

Let z 1 ; z 2 ;z 3 ;z 4 be a set of r independent variables ( Env-Noise ,

Air pressure and UV ) believed to be related to a dependent variable

Y. 

The linear regression model for the 4th sample unit has the

form: 

Y j = β0 + β1 z j1 + β2 z j2 + β3 z j3 + ε j , (1)

Where, ε is a random error and the β i = 0; 1; 2; 3 are unknown

(and fixed) regression coefficients. Y j = 0; 1; 2; 3, are the four de-

pendent variables ( HR, EDA, Body-Temp and Motion respectively) β0 

is the intercept and sometimes we write β0 z j 0 , where z j 0 = 1 for all

j . 

We assume that: 

E( ∈ j ) = 0 ; V ar( ∈ j ) = Q 

2 ; Cov ( ∈ j , ∈ k ) , = 0 0 ∀ j 6 � = j . (2)

Then we calculate the residual e of the model which is the dif-

ference between the observed value of the dependent variable ŷ

and the estimated value y . Each data point has one residual which
s expressed as follows: 

 = 

ˆ y − y (3)

.1.1. Multiple regression model for heart rate 

The following discussion presents the multiple linear regression

odel of HR using all the other independent variables – environ-

ental factors including ( Env-Noise, Air Pressure and UV ). Table 5

hows multiple regression results for HR : 

The multiple linear regression model for the heart rate is then

ormulated using the following equation: 

Y 
j 

= 211 − 0 . 0115 z j1 − 0 . 255 z j2 + 0 . 0 0 0 08 z j3 + ε j (4)

The comprehensive model above was evaluated using the di-

gnostic regression curves shown in Fig. 8 shows the relation be-

ween the fitted values against the model residual values (i.e.

oodness of fit). The model is statistically significant based on

 p < 0.001). 

The right Q-Q plot in Fig. 8 shows that data exhibits a pro-

ounced bimodal distribution, which may be seen clearly in the

eft residual plot. Normal Q-Q plots constructed from bimodal data

ypically exhibit a ‘twist’ like the one seen in this plot. To explain

his behaviour (of why the upper part of the plot looks deviated

rom the baseline) the lower portion of the Q-Q plot is almost lin-

ar, suggesting an approximate normal distribution, corresponding

o one mode of data distribution. Similarly, the upper portion of
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Table 5 

Multiple regression analysis between HR (dependent variable) and relevant independent vari- 

ables. 

Independent variable Regression coefficient ( β) Std. error t -value P -value 

Intercept 211 3.86 54.7 < 2e −16 ∗∗∗

Air-Pressure −0.0115 0.0037 −30.9 < 2e −16 ∗∗∗

Env-Noise −0.255 0.0053 −48.26 < 2e −16 ∗∗∗

UV 0.0 0 0 077 0.0 0 07 10.4 < 2e −16 ∗∗∗

Fig. 8. HR Diagnostic regression curves: (Left) represents residuals curve, and 

(Right) represents the Q-Q curve. 

Table 6 

Variable importance for HR. 

Aggressor/Metrics lmg Last First Pratt 

Air Pressure 0.2496 0.2818 0.0867178 0.2031 

Env-Noise 0.72066 0.6861 0.7700 0.73090 

UV 0.0489202 0.0526879 0.04 4 4603 0.0479666 
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Fig. 9. EDA Diagnostic regression curves: (Left) represents residuals curve, and 

(Right) represents the Q-Q curve. 
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he Q-Q plot is again roughly linear, but with a very different in-

ercept that corresponds to the larger mean of the data distribution

i.e. the duration of the small peaks in environmental changes). To

onnect these two ’roughly linear’ local segments, the curve must

xhibit a rapid transition region between them (i.e. the duration of

he large peaks in environmental changes). By the same reasoning

ore general multi-modal distributions will exhibit more than one

uch “twist” in their Q-Q plots. 

.1.2. Variable importance for HR 

The variable importance calculations measures produce a pre-

ictor ranking (also known as variable importance) based on the

ontribution predictors make to the construction and variability of

he model [46] . Table 6 shows the four HR variable importance

etrics for each of the independent variables. 

The metrics in bold font indicate that Air-Pressure and Env-Noise

ffect HR , whereas, the UV metrics has less effect on the HR . Fur-

hermore, adding the motion as an independent variable to the

R model does not make any visible changes to the model. The

NOVA test [45] applied on the two models indicates that there is

o difference between the two models in terms of the residuals. 

To conclude, the heart rate ( HR ) is affected by the Env-Noise

evel (the most important variable in our model), with the Air-

ressure in the second place. However, the UV and Motion, have

roven to have no significant effect on the heart rate. 

These initial findings are in agreement with Scientists who have

ow shown that exposure to noise during everyday life influences

eart rate variability. Many previous works which suggest a direct

mpact of high level of irregular noise levels on the regular rhythm

f the heart. For example recent studies have found that noise lev-

ls between < 55 and > 75 dB are linked to heart related diseases

uch as coronary heart disease [55] . Another study shows that HRV
as affected in association with increases of 5 dB in noise exposure

t both the higher and lower noise level ranges. The study showed

hat not only higher noise levels have a stressful effect and are

armful to health, but that lower noise levels can cause adverse

ealth effects too [56] . 

However, the impact of air pressure is still subject to debate.

or example a study published by the American Heart Associa-

ion showed that atmospheric pressures increased an individual’s

isk of heart attack [58] . While another study has examined the

inks between atmospheric conditions, temperature and air pres-

ure with the occurrence of various cardiovascular events, they

ave not found enough evidence to suggest a direct impact of air

ressure on cardiovascular events [57] . 

.1.3. Electrodermal activity (EDA) 

Table 7 shows multiple regression results for EDA : 

The multiple linear regression model for the EDA is then formu-

ated using the following equation: 

 j = 6771 . 45 − 6 . 37 z j1 + 21 . 58 z j2 − 0 . 029 z j3 + ε j , (5)

The comprehensive model above is evaluated using the diag-

ostic curves. The following is the Q-Q plot and the residuals

f the final linear equation. The model is statistically significant

 p < 0.001). 

Similar to the HR Q-Q plot, EDA Q-Q plot on the right of Fig. 9

hows, that data exhibit a pronounced bimodal distribution which

ay be seen clearly in the left residual plot. The lower portion

f the Q-Q plot is almost linear suggesting an approximate nor-

al distribution corresponding to one mode of data distribution.

imilarly, the upper portion of the Q-Q plot is again roughly linear

ut with a much different intercept that corresponds to the second

ode in the data distribution. 

.1.4. Variable importance for EDA 

Variable Importance metrics show that, the Env-Noise level and

he UV both have a similar effect on the EDA while the Air-Pressure

as a less significant effect on the EDA . Moreover, adding the mo-

ion as an independent variable to the previous model is statisti-

ally significant ( p < 2.2e − 1) ( Table 8 ). 
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Table 7 

Multiple regression analysis between EDA (dependent variable) and relevant independent vari- 

ables. 

Independent variable Regression coefficient ( β) Std. error t -value P -value 

Intercept 6771.45 944.77 7.16 7.66e −13 ∗∗∗

Air-Pressure −6.37 0.91 −6.96 3.34e −12 ∗∗∗

Env-Noise 21.58 1.29 16.63 < 2e −16 ∗∗∗

UV −0.029 −0.001 −16.26 < 2e −16 ∗∗∗

Table 8 

Variable importance for EDA. 

Aggressor/Metrics lmg Last First Pratt 

Air Pressure 0.1265742 0.082174 0.1659 0.11874 

Env-Noise 0.4712 0.4691 0.47382 0.48014 

UV 0.40220 0.448646 0.36019 0.4011 

Fig. 10. Body-Temp Diagnostic regression curve: (Left) represents residual curve, 

and (Right) represents the Q-Q curve. 
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Fig. 11. Motion Diagnostic regression curves: (Left) represents residual curve, and 

(Right) represents the Q-Q curve. 
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4.1.5. Body temperature 

Table 9 shows the results for the multiple regression for Body-

emp as dependent variable. 

The multiple linear regression model for the skin temperature

is then formulated using the following equation: 

Y j = 168 − 0 . 014 z j1 − 0 . 0211 z j2 − 0 . 0 0 0 0 0 01 z j3 + ε j , (6)

The model is statistically significant ( p < 0.001). Fig. 10 shows

the Q-Q plot for the residual and the residual against the fitted

values of the final linear equation. 

The Q-Q plot looks perfectly linear and matching the baseline.

This indicates that residuals are distributed approximately in a nor-

mal fashion. In particular, the residual tend to be larger in mag-

nitude than what we would expect from the normal distribution.

Body temperature scored much higher in terms of R 2 goodness of

fit measure 0.35 whereas HR and EDA were most difficult to predict

using the environmental factors only ( Tables 10 and 11 ). 

4.1.6. Variable importance for Body-Temp 

The variable importance for Body-Temp suggests that the air

pressure and the noise are the most effective measures in the

model. These values also reveal that the UV variable is not effective

in this model so it can be removed from the model. 

4.1.7. Body Motion 

The fourth dependent variable that will be examined here is the

motion. The following discussion presents the multiple linear re-

gression model of motion with all the other independent variables

(i.e. Env-Noise, Air pressure and UV ). 

The multiple linear regression model for the motion is then for-

mulated using the following equation: 

 j = 1 . 35 − 0 . 0 0 0 038 z j1 + 0 . 0 012 z j2 + 0 . 0 0 0 0 0 05 z j3 + ε j , (7)
The comprehensive model above is evaluated using the diag-

ostic curves. Fig. 11 shows the Q-Q plot for the residual and the

esiduals versus fitted values of the final linear equation. 

The Q-Q plot looks deviated from the baseline, on the right side,

ut on the left sides of the baseline, the actual data points are

learly linear, which suggests multi-modality in the data. In other

ords, the upper part Q-Q plot is again roughly linear but with

 much different intercept that corresponds to the larger mean of

he second peak in the distribution. 

.1.8. Variable importance for motion 

The variable importance for body Motion in Table 12 suggests

hat, the Air Pressure and the Env-Noise are the most effective mea-

ures in the Motion model. These values also reveal that the UV

ariable is not effective in this model. 

.1.9. PCA analysis 

The second step in the multivariable data analysis is computing

he PCA between all the independent variables residuals, to see if

here is any additional inter relationships. Our dependent variables

re the HR, EDA , Motion and the Body-Temp . The purpose of the

CA is to discover the inter-relationships between the residuals of

he models created for these variables previously. Table 13 shows

he principle components for the independent variable residuals. 

This first component represents almost 80% of data variabil-

ty indicates that, the HR and EDA could be used alone to repre-

ent the dataset variability. Whereas, the second component sug-

est that the body temperature alone can represent more than 90%

f the variability in the data. The first component is strongly cor-

elated with both the HR and EDA , whereas, the second compo-

ent is strongly correlated with the body temperature. The third

omponent suggests that the HR and motion are both sufficient to

escribe the variability in the dataset. The fourth component sug-

ests that the HR and EDA are the most important variables. Fig. 12

hows the relationship between the first and the second principle

omponents. 

.2. Emotion predictive model 

In this section, we will present our approach to model emotion

ased on our collected data along with performance evaluation. 
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Table 9 

Multiple regression analysis between Body-Temp (dependent variable) and relevant indepen- 

dent variables. 

Independent variable Regression coefficient ( β) Std. error t -value P - value 

Intercept 168 0.04577 367.3 < 2e-16 ∗∗∗

Air–Pressure −0.014 0.0 0 04 −312.2 < 2e-16 ∗∗∗

Env-Noise 0.0211 0.0 0 06 33.6 < 2e-16 ∗∗∗

UV 0.0 0 0 0 01 0.0 0 0 08 1.30 0.19207 

Table 10 

Variable importance for Body-Temp. 

Aggressor/Method lmg Last First Pratt 

Air Pressure 0.94 0.98 0.91 0.96 

Env-Noise 0.05 0.011 0.083 0.031 

UV 0.0 0 01 0.0 0 0 0 017 0.0 0 033 0.0 0 0 07 

Fig. 12. Biplot of the first two principal components of the PCA. 
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Table 12 

Variable importance for motion. 

Aggressor/Method lmg Last First Pratt 

Air Pressure 0.95 0.98 0.92 0.97 

Env-Noise 0.05 0.011 0.08 0.031 

UV 0.0 0 01 0.0 0 0 018 0.0 0 033 0.0 0 0 07 

Table 13 

Shows dependent variables’ residuals for PCA. 

Variable PC1 PC2 PC3 PC4 

HR _residuals 0.70725 −0.218 0.0603 0.6698 

EDA _residuals 0.69719 0.256 0.1012 −0.6621 

Body-Temp residuals 0.00918 −0.932 0.1539 −0.3268 

Motion residuals 0.11682 −0.133 −0.9810 −0.0784 
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.2.1. Feature extraction 

After thoroughly analysing the related literature about feature

xtraction from physiological signals, we also extracted statistical

eatures from the environmental sensors. In total, we extracted 87

eatures. Our extracted features are as follows: 

1. For HR, EDA and Body-Temp signals, common statistical fea-

tures were computed: mean, median, max, min, max-min,

and standard deviation and, quartiles [33,40] . 

2. Additionally, for the HR : 

Standard HR V analysis refers to the extraction of parameters

defined in the time and frequency domains [34,36] . In total

we extracted 17 HR V features. 

Concerning the time domain analysis, we calculated

the following: the maximum and minimum of Heart

Rate, the square root of the mean of the sum of the

squares of differences between subsequent NN intervals

RMSSD = 

√ 

1 
N−1 

∑ N−1 
j=1 ( R R j+1 − R R J ) 

2 
, pN N 50 = 

N N 50 
N−1 100%

and pN N 30 = 

N N 30 
N−1 100% (percentage of consecutive NN

intervals which differ by more than 50 and 30 ms respec-

tively), Standard Deviation of the NN interval SDNN. RMSSD

indicates the short-term variability; instead SDNN and HR V

triangular index are features of the entire HR V [43] . 
Table 11 

Multiple regression analysis between Motion (depend

ables. 

Independent variables Regression coefficient (

Intercept 1.35 

Air Pressure −0.0 0 0 038 

Env-Noise 0.0012 

UV 0.0 0 0 0 0 05 
We also derive frequency domain features which are indica-

tive of sympathetic and parasympathetic neural activity in-

cluding: the total spectral power of the successive difference

of NN intervals in power bands up to 0.04 Hz, between 0.04

and 0 .15 Hz, and between 0.15 and 0.50 Hz, and ratio of low

lf to high frequency power hf . 

4. For the EDA : 

Additionally, ten features were extracted from the EDA sig-

nal, including, the number of responses, the power of re-

sponses, the number of significant responses (responses

which have a value over some threshold) and the power of

significant responses and slope and intercept of signal were

calculated. 

5. For Motion : 

We abstracted the motion representation to be one compo-

nent and it is represented as in [37] : 

Motion = 

√ 

X 

2 + Y 2 + Z 2 (8) 

.2.2. Features fusion level 

Our system utilizes feature-level fusion, where feature sets

rom different modalities are concatenated to form two feature

paces, the environmental and on-Body modalities. As explained in

he previous section (section number) 84 features were extracted.

owever, many of these features do not have an important ex-

lanatory effect on the emotional outcomes. In addition, many of

he extracted features of the same signal are correlated with each

ther’s and hence can be removed to simplify the model by re-

ucing it to only include the most significant features necessary to

xplain the emotion response. 
ent variable) and relevant independent vari- 

 β) Std. error t -value P value 

0.0534 25.2 < 2e −16 ∗∗∗

0.0 0 0 0 05 −7.4 < 2e −16 ∗∗∗

0.0 0 0 0 0 07 16.07 < 2e −16 ∗∗∗

0.0 0 0 0 0 01 50.2 < 2e −16 ∗∗∗
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We developed a predictive model, to test whether it is possi-

ble to accurately predict individual’s affect state based on both a

combination of physiological and environmental features. 

Our labelled data has 5 classes ranging from Clas s very negative = 1

to Class very positive = 5 with 355,089 instances. 

To build the model, we tested the levels of significance of the

features in relation to the affect lables and checked the response

of the affect labels for any interdependency between the variables

based on the correlation matrix. 

We checked the pairwise correlations between features and the

label on the whole dataset. Based on the result of features evalu-

ation, we finally selected 21 features, which have strong correla-

tions with label to build the prediction model (i.e., feature selec-

tion step). 

4.2.3. Predictive model for emotion recognition based on multimodal 

fusion 

We opt to use a multi-learner approach based on Ensemble al-

gorithm called Stacking [47] . There are several reasons for prefer-

ring a multi-classifier system to a single classifier. It is mainly done

to improve the accuracy and efficiency of the classification system

and the volume of the data to be analysed is too large to be han-

dled by a single classifier. Training a classifier with such a large

amount of data is usually not practical. Finding a single classifier

to work well for all test data is difficult. Instead multiple classifiers

can be combined to give a better output than a single classifier. It

may not necessarily out-perform a single best classifier but the ac-

curacy will be on average better than all the individual classifiers. 

Stacking model: Stacked generalization (or stacking) is an en-

semble learner that combines multiple models. Unlike bagging

[48] and boosting [49] stacking is used to combine models of dif-

ferent types. 

Stacking exploits this prior belief further by using performance

on the testing data to combine the models rather than choose

among them, thereby typically getting a better performance than

any single one of the trained models. It has been successfully used

on both supervised learning tasks (e.g. regression) and unsuper-

vised learning (e.g. density estimation) [47] . 

Due to the multi-model nature of our features, we follow the

stacking approach in [51] , in which each modality is processed in-

dependently by the corresponding classifier and the outputs of the

classifiers are combined to yield the final result instead of concate-

nating the features to form a composite feature vector and then

input to a classifier. 

Our procedure is as follows: Let D 1 and D 2 be two different

datasets: Environmental D 1 ( including Env-Noise, Air Pressure and

UV ) and Physiological D 2 including ( HR, EDA, Body-Temp and Mo-

tion ). 

The datasets are then split up into three parts each ( D i 
0 to D i 

2 ),

the level-0 training sets, level-0 evaluation sets and level-1 evalu-

ation sets. The classifiers e i ∈ E with |E| = N are trained on D i 
0 and

evaluated on D i 
1 to produce D i 

’ the level-1 training-set parts which

are combined to form D 

’ the full level-1 training-set on which a

level-1 classifier is then trained. The whole stack is then evaluated

on the D i 
2 datasets. 

In order to train and model our labelled dataset, we stacked

a combination of three base classifiers: Support Vector Machine

( SVM ), Random Forest ( RF ) and K Nearest Neighbour ( KNN ); and

Naive Bayes ( NB ) as the Stacking Model Learner. We have chosen

these classifiers since the have proven to be effective in classifying

emotions based on on-body sensors [25–36] , and all can output a

confidence rating for each label attribute. Our class attribute is of

nominal value ranging from 1 to 5. Fig. 13 represents the Accu-

racy levels and F-measures of all the base learner models on two

modalities and the overall Stacking model. It is clear that Stacking

model with five classifiers yields excellent results and outperforms
he individual classifiers with F-measure 0.84 and Accuracy %86 . It

s difficult to compare precisely our results to previous work in the

iterature, since no other work included environmental sensor data

n the emotion model. 

The results show the improvement in the classification accuracy

f emotion prediction method by combining decision fusion and

eature fusion based on Stacking Learner. Furthermore, Illustration

f the confusion matrix of the 5 labels is indicated in Fig. 14 . 

Although our system was developed based on on-body sensor

ata as well as environmental signals obtained from multiple sen-

ors, the ratio of correct recognition was comparable with that of

he previous systems [27–33] . 

In order to learn more about the influence of each single

odality to the overall performance of the prediction, we show the

rediction accuracy of each modality and for each user, see Fig. 15 .

The line charts indicate high variability in all the two modal-

ties. The most extreme difference occurs in the environmental

ata. The physiological modality displays better accuracy levels

mong most of the participants. There are also no suggestions of

 correlation between the two modalities, e.g. high accuracy levels

f environmental data don’t indicate a corresponding high levels in

he physiological data. Also the accuracy levels among users vary

n random fashion. 

. Discussion 

We developed five generalized multiple Regression models to

nalyse the relative impact of environmental factors on body dy-

amics. The obtained results quantitatively indicated a possible

ontrol of ambient environment factors on body and emotion vari-

bles. Individual variables are not significant on their own but they

ave a significant impact when combined with other independent

ariables. 

Multiple regression results suggest that the HR data exhibits a

ronounced bimodal distribution. Also it shows that Air-Pressure

nd Env-Noise contribute to a large percentage of variation in HR ,

ith Env-Noise being the most important variable that explains the

ajority of changes, whereas, the UV has much less significance

n the HR data. In addition, adding the motion as an independent

ariable to the HR model does not make any noticeable changes to

he model. 

These results comply. Also, these findings are in agreement with

revious epidemiologic research concluding that noise exposure

an contribute to the prevalence of cardiovascular disease [50] . 

Similarly, Multiple regression model of EDA exhibits bimodal

nd variable importance metrics showing that the Env-Noise level

nd the UV both have a similar effect on the EDA whereas the Air-

ressure and Motion have a less significant effect. 

In addition, the multiple regression model of Body-Temp be-

ween the independent variables showed a perfect linear model

atching the regression base line. The variable importance for

ody-Temp suggests that, the Air-Pressure and the Env-Noise are the

ost effective measures in the model. These values also reveal that

he UV variable does not have a significant effective in this model. 

Furthermore, analysis of the multiple regression model of Mo-

ion suggests multi-modality distribution in the data, with Air-

ressure is the main noticeable relevant variable. 

Body-Temp scored much higher in terms of R 2 goodness of fit

easure = 0.35 whereas HR and EDA were more challenging to pre-

ict using the environmental factors alone. 

PCA analysis suggests that all the variables used can describe

he variability of the data. The PCA ordination map suggested that

DA, HR and Body-Temp are grouped and oriented in one direction,

hile the environmental variables are oriented towards another di-

ection of the map. Motion sits in between moving in different di-

ection from both modalities. 
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Fig. 13. Accuracy and F-Measure levels of the base learners and the Stacking learner. 

Fig. 14. Visualisation of the Confusion Matrix for the Stacking Learner. 

Fig. 15. Prediction Accuracy per user and modality and the fusion approach. 
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Although we can conclude that various environmental factors

an contribute to the prevalence of physiological changes includ-

ng heart rate variability and body temperature, the evidence for

his relationship is still inconclusive because of the limitations in

he number of the effectors measured and the exposure character-

zation. 

On the other hand, despite of the quality of the emotion pre-

iction results, it is still difficult to single out the impact of the

ndividual environmental factors compared to the individual phys-

ological measurements. Also, we can’t rule out the hidden impact

f other environmental co-founders such as gas pollution or crowd

ize around the street. 

 

p  
Since this is the first set of experiments of its kind, it is hard

o compare our results to any other studies based on sensor data

eed. As mentioned previously quantifying and modelling the rela-

ionships between all these variables haven’t been studied before. 

Future preventive health strategies should involve environmen-

al and urban interventions. Decision makers have the responsibil-

ty to develop, implement, evaluate, and improve guidelines and

tandards to protect public health around urban spaces; new tools

nd strategies based on local conditions will have to be developed.

. Conclusions and future work 

In this paper, we have described our information fusion ap-

roach for on-body and environmental sensing that offers new
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opportunities for data-intensive modelling particularly involving

the quantification of some aspects of physiological and movement

changes in relation to the variation in environmental factors mea-

sured continuously in the same Spatial-Temporal context. 

To achieve this, we have conducted a real-world study ‘in the

wild’ with on-body and mobile sensors. Data was collected from

forty participants walking around Nottingham city centre. 

Multivariate linear regression models for on-body sensor data

were developed. We found that the spatial variability in on-body

sensor data were directly associated with environmental changes.

Emotion prediction has resulted in an encouraging accuracy level

which is comparable with that of the previous systems. In ad-

dition, decision fusion of emotion recognition based on the two

modalities yielded an increase in the performance over each single

modality, indicating at least some complementarity to the modali-

ties. 

These results show that, the realisation of user independent

emotion recognition based on the integration of physiological and

environmental signals is feasible. 

Since we can only collect a limited number of signals the con-

straints imposed by the on-body instrumentation heavily influence

the design of the algorithm. Future work will look at adding more

sensor modalities to increase further our understanding of the hid-

den connections between the environment and health. Also, in fu-

ture work we will look at modelling these parameters in relation

to changes in physical places by aggregating the data into different

spatial segments. 
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