084-Resolução de problemas de optimização global através da função Lagrangeana aumentada

Ana Maria A. C. Rocha	Universidade do Minho	Portugal
Edite M. G. P. Fernandes	Universidade do Minho	Portugal

Resumo

Neste trabalho, é apresentado uma estratégia baseada na função Lagrangeana aumentada para resolver problemas com restrições contínuos de optimização global. Este tipo de problemas de optimização global é muito importante e é frequentemente encontrado em diversas aplicações da engenharia.

O método resolve aproximadamente uma sequência de subproblemas, com limites nas variáveis, em que a função objectivo penaliza a violação das restrições de igualdade e de desigualdade. A função objectivo é uma função Lagrangeana aumentada e depende de um parâmetro positivo da penalidade, assim como dos vectores dos multiplicadores de Lagrange associados às restrições da igualdade e do desigualdade. A actualização do vector dos multiplicadores é feita através da fórmula de actualização baseada nas condições de primeira ordem, e a do parâmetro da penalidade é feita de acordo com o valor da violação das restrições. Os valores do parâmetro da penalidade e do vector dos multiplicadores são fundamentais para promover a convergência global dos métodos baseados na função Lagrangeana aumentada.

Cada subproblema é resolvido por um método estocástico de optimização global, baseado em populações, que se designa por algoritmo Electromagnético (EM). Este método simula a teoria do electromagnetismo da física considerando cada ponto da população como uma partícula que tem uma carga eléctrica associada. O algoritmo EM começa com uma população de pontos gerados aleatoriamente na região admissível e usa um mecanismo do atracção-repulsão para mover a população de pontos até à optimalidade. A carga de cada ponto está relacionada com o valor da função de avaliação e determina a magnitude de atracção de um ponto sobre a população. Quanto melhor for o valor da função de avaliação, maior é a magnitude de atracção. No final de cada iteração do algoritmo EM é realizada uma pesquisa local na vizinhança do melhor ponto da população encontrado até ao momento.

Neste estudo, são apresentados e comparados três procedimentos diferentes de pesquisa local para realçar o desempenho do algoritmo EM, que está incorporado na estratégia baseada na função Lagrangeana aumentada. Para avaliar o desempenho de cada um dos algoritmos são apresentados os resultados da sua aplicação num conjunto de problemas.