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ABSTRACT

In this paper we investigate the performance of DIRECT algorithm when
solving constrained engineering design problems. For this purpose, the
hyperbolic penalty approach is employed and the algorithm is modified in
order to preserve feasibility of solutions. The algorithm is illustrated on
six well–known engineering problems with promising results. Comparisons
with other global optimization solvers are reported and discussed.
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1. INTRODUCTION

Many engineering applications, such as structural optimization, engineering de-
sign, VLSI design, economics, allocation and location problems (Floudas and Parda-
los 1987), involve difficult optimization problems that must be solved efficiently and
effectively. Due to the nature of these applications, the solutions usually need to be
constrained in specific parts of the search space that are delimited by linear and/or
nonlinear constraints.

Hence, the kind of problems to be addressed in this paper are

minimize f(x)
subject to gi(x) ≤ 0

x ∈ Ω
(1)

where f : Rn → R and gi : R
n → R

m, for i = 1, . . . ,m, are nonlinear functions and
Ω = {x ∈ R

n : l ≤ x ≤ u} is a closed set. We assume that the objective function f is
nonconvex and may possess many local minima in the feasible region. This class of
global optimization problems arises frequently in engineering applications.

Different deterministic as well as stochastic algorithms have been developed for
tackling such problems. Deterministic approaches such as Feasible Direction and
Generalized Gradient Descent make strong assumptions on the continuity and dif-
ferentiability of the objective function (Floudas and Pardalos 1987). Therefore their
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applicability is limited since these characteristics are rarely met in problems that
arise in real life applications. On the other hand, stochastic optimization algorithms
such as Genetic Algorithms, Evolution Strategies, Particle Swarm Optimization and
Electromagnetism-like mechanism do not make such assumptions and they have been
successfully applied for tackling constrained optimization problems during the past
few years (Hu et al. 2003, Coello 2002, Parsopoulos and Vrahatis 2002, Rocha and
Fernandes 2009).

A well-known approach for solving this kind of constrained optimization prob-
lems is based on penalty functions (Coello 2000). The penalty techniques transform
the constrained problem into an unconstrained problem by penalizing f when con-
straints are violated and then minimizing the penalty function using methods for
unconstrained problems.

This paper presents a numerical study of a penalty approach, based on the hy-
perbolic penalty function, where the unconstrained problems are solved by a global
deterministic algorithm, the DIRECT algorithm.

In Section 2, the penalty approach is described, as well as the proposed DIRECT
algorithm. Following, the numerical results when applying the proposed method are
presented to some engineering design problems, described in the literature. Finally
some conclusions and final remarks are reported and discussed in Section 4.

2. THE PENALTY APPROACH

Penalty functions methods have made themselves among the most common meth-
ods for solving constrained optimization problems by their advantages of simplicity
and easy to be implemented. Hence, in order to solve problem (1) a penalty approach
will be used that converts a constrained optimization problem into an unconstrained
one by adding a penalty term to the objective function of infeasible solutions so that
they will be penalized for violating the constraints. Although penalty functions are
very simple and easy to implement they often require several parameters that are
usually problem dependent and chosen by priori knowledge by users. Too large pa-
rameters lead to heavy selective pressure that would cause the algorithm hard to
converge to satisfactory solutions not mention to the global optimum. However too
small parameters make the search too broad and hard to find a feasible solution.
Different penalty functions have been suggested and can also be classified based on
the way the penalties are added: death, static, dynamic, annealing, adaptive (Coello
2002).

Here, the solution of problem (1) is obtained by solving a sequence of subproblems,
whose objective function is given by the hyperbolic penalty method (Xavier 2001)

P (x, λ, τ) = f(x) +

m
∑

i=1

(λgi(x) +
√

λ2gi(x)2 + τ2) (2)

where λ, τ ≥ 0 and λ → ∞, τ → 0. The sequence of subproblems is obtained by
controlling the two parameters in two different phases of the optimization process.
In the first phase, the initial parameter λ increases, thus causing a reduction in the
penalty to the points outside the feasible region while at the same time there is a
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reduction in the penalty for the points inside the feasible region. This phase continues
until a feasible point is obtained. From this point on, λ remains constant and the
values of τ decrease sequentially.

In this context, the subproblems to be solved in each k iteration are given by

minimize
x∈Ω

P (x, λk, τk) (3)

and are approximately solved using the DIRECT algorithm that is a determinis-
tic global optimization method. DIRECT algorithm from Jones et al. (1993), is an
acronym for DIviding RECTangles, and it is a deterministic sampling global optimiza-
tion method designed for finding the global minima for bound constrained non-smooth
problems, where no derivative information is needed. It is guaranteed to converge to
the global optimal function value, if the objective function is continuous or at least
continuous in the neighborhood of a global optimum. The most important advantage
of DIRECT stems from its approach to balancing local and global search - the simple
idea of not sampling just one point per iteration, but rather sampling several points
using all possible weightings of local versus global search. This approach leads to an
algorithm with no tuning parameters, making the algorithm easy-to-use and robust.

The first step in the DIRECT algorithm is to transform the search space to be
the unit hypercube. The function is then sampled at the center-point of this cube.
Computing the function value at the center-point instead of doing it at the vertices
is an advantage when dealing with problems in higher dimensions. The hypercube
is then divided into smaller hyperrectangles whose centerpoints are also sampled.
Instead of using a Lipschitz constant when determining the rectangles to sample
next, DIRECT identifies a set of potentially optimal rectangles in each iteration.
All potentially optimal rectangles are further divided into smaller rectangles whose
center-points are sampled. See (Finkel 2003; Finkel and Kelly 2004) for more details.

The hyperbolic penalty method for constrained optimization embedding the DI-
RECT algorithm is described in the Algorithm 1. Step 4 refers to the solution of
the subproblem (3) parametrized by the penalty parameters using the DIRECT al-
gorithm. The herein used measure of constraint violation is given by

viol =
m
∑

i=1

max{0, gi(x)}. (4)

3. NUMERICAL RESULTS

Problems of practical interest are important for assessing the effectiveness of any
algorithm. Thus, to evaluate the performance of the embedded DIRECT algorithm
in the hyperbolic penalty function method a set of 6 benchmark engineering problems
is used.

Following there is a summary of the characteristics of the engineering design prob-
lems selected, where all of them have simple bounds and inequality constraints (Costa
and Fernandes 2008, Lee and Geem 2005, Ray and Liew 2002, Rocha and Fernandes
2009).
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Algorithm 1 Hyperbolic Penalty + DIRECT Algorithm

1. Given λ1 = 20, τ1 = 10, ǫmax = 10−6, λmax = 1012, τmin = 10−12, γλ = 2,
(γλ > 1), γτ = 0.01, (0 < γτ < 1), η∗ = 10−6, kmax = 20

2. Set k = 1

3. While (viol > ǫmax OR |f∗ − f(xk)| > 10−4|f∗|) AND k < kmax do

4. Find an approximate minimizer xk to the subproblem (3) using DIRECT

5. If viol > ǫmax then λk+1 = min{λmax, γλλ
k} and τk+1 = τk

6. Else τk+1 = max{τmin, γτ τ
k} and λk+1 = λk

7. Set k = k + 1

8. End while

1. Design of a tension/compression spring where the weight of a tension/ com-
pression spring is minimized, subject to constraints on the minimum deflection,
shear stress, surge frequency, limits on outside diameter and on design variables.
The problem has 3 design variables and 4 inequality constraints.

2. Design of a speed reducer where the objective in this problem is to minimize
the total weight of a speed reducer, subject to constraints on bending stress of
the gear teeth, surface stress, transverse deflections of the shafts and stresses in
the shafts. It has 7 design variables and 11 inequality constraints.

3. Design of a disc brake where the objective is to minimize both the mass of
the brake and the stopping time. The problem has 4 design variables and 6
inequality constraints.

4. Design of a tubular column where the objective is to minimize the total cost of
the material and construction of a tubular column. The problem has 2 design
variables and 2 inequality constraints.

5. Design of three-bar truss where the objective is to minimize the volume of a
3-bar truss structure, subject to stress constraints. The problem has 2 design
variables that represent cross-sectional areas of two bars (the third bar is equal
to the first bar), and 3 inequality constraints.

6. Design of four-bar truss structure where the objective is to minimize the volume
and the displacement of a 4-bar truss structure, subject to stress constraints.
The problem has 4 design variables that represent cross-sectional areas and 1
inequality constraint.

The results reported in Table 1 include the number of iterations (Nit), the number
of objective function evaluations (Nfe) and the optimal solution found (Fopt) with
the hyperbolic penalty method as described in Algorithm 1. The stopping criteria
was the specified in Step 3 of the algorithm. We remark that we also stopped the
algorithm when the penalty parameters stabilized and the solution could not improve,
since DIRECT is a deterministic algorithm. The conditions used to stop the DIRECT
algorithm (in Step 4 of Algorithm 1) were the maximum number of iterations and the
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maximum objective function evaluations set to 10000. To assess the performance of
the hyperbolic penalty method Table 1 also reports the results of the penalty approach
with the quadratic penalty function, when applied to the same engineering problems.

Table 1: Comparison results of the penalty approach (in terms of Fopt, Nfe and Nit).

spring speed brake tubular 3-bar 4-bar
f∗ 0.0126 2994.4999 0.1274 26.5313 263.896 1400

quadratic Fopt 0.0280 3040.4774 0.1329 26.7402 263.8975 1400.0532
penalty Nfe 40115 120375 29163 3619 100155 10056
function Nit 4 12 2 11 10 1
hyperbolic Fopt 0.0156 2995.9333 0.1274 26.5329 263.9665 1400.0542
penalty Nfe 8117 90156 40099 30070 50068 30090
function Nit 8 9 7 3 3 3

The results reported in Table 1 show that, in general, the hyperbolic penalty
function performs better when compared with the quadratic penalty function. The
optimal solutions found are more closer to the optimal solution known in the literature
(f∗). We remark, for only three problems the hyperbolic function is more expensive
in terms of objective function evaluations than quadratic function, but in these cases
the optimal solution found is better.

4. CONCLUSIONS

This paper presents the hyperbolic penalty method to solve constrained engi-
neering design problems. The unconstrained problems that arrive from the penalty
approach are solved by a deterministic global optimization method, named DIRECT.
To asses the performance of the herein proposed method a set of six well–known
engineering problems is solved. A comparison with a quadratic penalty function is
reported and show promising results.
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