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ABSTRACT 
 
We address the issue of optimal resource allocation, and 
more specifically, the analysis of complementarity of 
resources (primary resource or P-resource and supportive 
resource or S-resource) to activities in a project. The concept 
of complementarity can be incorporated into the engineering 
domain as an enhancement of the efficacy of a "primary" 
resource (P-resource) by adding to it other "supportive" 
resources (S-resources). We developed a Genetic Algorithm 
capable of determining the ideal mixture of resources 
allocated to the activities of a project, such that the project is 
completed with minimal cost. This problem has a circularity 
issue that greatly increases its complexity. 
In this paper we present a constructive algorithm to build 
solutions from a chromosome that will be integrated in a 
Genetic Algorithm, which we illustrate by application to a 
small instance of the problem. The Genetic Algorithm is 
based on a random keys chromosome that is very easy to 
implement and allows using conventional genetic operators 
for combinatorial optimization problems. A project is 
formed by a set of activities. Each activity uses a specific set 
of resources, and it is also necessary to guarantee that there 
is no overlap in the time it takes to process activities in the 
same resource. 
 
INTRODUCTION 
 
This paper is concerned with the optimal resource allocation 
in activity networks under conditions of resource 
complementarity. The concept of complementarity which 
has been discussed from an economic point of view 
(Kremer, 1993) can be incorporated into the engineering 
domain as an enhancement of the efficacy of a “primary” 
resource (P-resource) by adding to it other “supportive” 
resources (S-resources). Aspects related to performance 
improvement, short duration, quality improvement have 
been presented by Silva et al. (2010) as well as the effect of 
the “supportive” resource for project cost. 
We developed a mathematical model capable of determining 
the ideal mixture of resources allocated to the activities of a 
project, such that the project is completed with minimal cost 

(Silva et al. 2010; Silva et al. 2010b). This problem has a 
circularity issue that greatly increases its complexity. We 
have developed a procedure which we illustrate by 
application to small instances of the problem, using complete 
enumeration over the decision space (Silva et al. 2010b). 
The optimal resource allocation in activity networks under 
conditions of resource complementarity is a generalization 
of the well known RCPSP which belongs to the NP-hard 
class (Brucker et al. 1998). This problem is a highly complex 
optimization problem due to its combinatorial nature, and 
thus an efficient algorithm for obtaining exact solutions is 
unknown. The development of a more computationally 
efficient procedure is now presented and is implemented in a 
Genetic Algorithm. 
 
PROBLEM DESCRIPTION 
 
Consider a project network in the activity-on-node (AoN) 
representation: ( ),G N A=  with the set of nodes N n=  

(representing the “activities”) and the set of arcs A m=  
(representing the precedence relations between the 
activities). In general each activity requires the simultaneous 
use of several resources (Tereso et al. 2008; Tereso et al. 
2009; Tereso et al. 2009b). 
There is a set of “primary” resources, denoted by P, with 
P ρ= . Typically, a primary resource has a capacity of 

several units (say workers, m/c’s, processors; etc.) (Mulcahy 
2005). Additionally, there is a pool of “supportive” 
resources, denoted by S, with S σ=  (such as less-skilled 
labor, or computers and electronic devices; etc.) that may be 
utilized in conjunction with the primary resources to 
enhance their performance. The number of supportive 
resources varies with the activity and the primary resources 
required for its execution. The impact on the P-resource is 
evaluated using a variable ( )0 , 1p qv r s< ≤  that indicates the 

fraction by which the S-resource qs  improves the 
performance of P-resource pr . Typically, 

( ) [ ], 0.1,0.5p qv r s ∈ . Consider ( )a px r  as the level of 

allocation of (primary) resource pr  to activity a , and 

{ }( )1
,a p q q

x r s
σ

=
 as the total allocation of resource pr  

(including complementary resources) to activity a .  
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We assume that the impact of the S-resources is additive: if a 
subset { }

1

v

q q
s

=
 of the S-resources is used in support of 

P-resource pr  in activity a, and only one unit of each 
S-resource is used, then the performance of the former is 
enhanced to, 

{ }( ) ( ) ( )
1

1
, ,a p q a p p qq

q
x r s x r v r s

σσ

=
=

= +∑  (1) 

 
With ( )a pw r  representing the work content of activity a for 

P-resource r, the primary resource pr P∈  would accomplish 

activity a in time ( )a py r  (see (2)). If it is enhanced by the 

addition of support resources, then its processing time 
decreases to ( ),a p qy r s  (see (3)). 

( ) ( )
( )

a p
a p

a p

w r
y r

x r
=   (2) 

 

( ) ( )
( ),

,
a p

a p q
a p q

w r
y r s

x r s
=   (3) 

An activity normally requires the simultaneous utilization of 
more than one P-resource for its execution. The problem 
then becomes: “At what level should each resource be 
utilized and which supportive resource(s) should be added to 
it (if any) in order to optimize a given objective?” 
Recall that the processing time of an activity is given by the 
maximum of the durations that would result from a specific 
allocation to each resource (see a previous discussion on the 
evaluation of the duration considering multiple resources in 
(Tereso et al. 2008; Tereso et al. 2009; Tereso et al. 2009b)). 

( ) ( ){ }
 

max
p

a pall r
y a y r=  (4) 

 
To better understand this representation, consider a simple 
project in AoN mode of representation (see Figure 1). 
 

 
 

Figure 1: Project with 3 activities AoN 
 
This project is formed by three activities, 1, 2 and 3, for 
which we will assume that it is required the utilization of 
four P-resources (in man-days); not all resources are 
required by all the activities (see Table 1). 
 

Table 1: Work content of the activities of project 
 

P-resource → 1 2 3 4 

↓  Activity/Availability→ 2 1 3 2 
A1 16 0 12 12 
A2 0 7 10 8 
A3 20 0 22 0 

 

The relevance and impact of the support resources on 
P-resources are represented in Table 2. 
 

Table 2: The P-S matrix 
 

 P-Resource → 1 2 3 4 

↓S-Resource ↓  Availability     

1 1 0.25 φ 0.25 φ 
2 2 0.15 0.35 φ φ 

 
We consider the cost of the resource utilization, a bonus for 
early completion, and a penalty for late completion of the 
project, after specifying a due date. A model was developed 
to minimize the total cost, considering that the activities 
should start as soon as they are sequence feasible (if there 
are enough primary resources to start them) (Silva et al. 
2010). Some results were also reported using a procedure 
based on the analysis of the network and the concept of state 
space (Silva et al. 2010b). 
 
GENETIC ALGORITHM 
 
Since the Job Shop Scheduling Problem (JSSP) can be seen 
as a particular case of the Resource Constrained Project 
Scheduling Problem (RCPSP), we will extend a Genetic 
Algorithm (GA) developed for the JSSP (Oliveira et al. 
2010) to the RCPSP, and particularly to the Project 
Scheduling in Activity Networks under Resource 
Complementarity. The GA is based on a random keys 
chromosome representation, that allows an easy 
reconfiguration to be applied in other problems. 
The GA’s simplicity to model more complex problems and 
its easy integration with other optimization methods were 
factors that were considered before it was chosen. Initially, 
the algorithm proposed was conceived to solve the classical 
JSSP (Oliveira 2007), but it is possible to use the same 
method to solve other variants of the JSSP (Oliveira 2006), 
or in this case to solve a generalization of JSSP, that is the 
RCPSP with complementary resources. 
One of the features that differentiates conventional genetic 
algorithms is the fact that the algorithm does not deal 
directly with the problem’s solutions, but with a solution 
representation - the chromosome. The algorithm 
manipulations are performed over the representation and not 
directly over the solution (Goldberg 1989). 
We represent the project scheduling problem in a graph in 
AoN (Activity-on-Nodes) because it is similar to the 
disjunctive graph that is used to represent the JSSP (Roy and 
Sussmann, 1964). An activity can only be started if its 
predecessors are completed and if all the primary resources 
required are available. A project has a technological 
definition that determines a specific order to process some 
activities, and it is necessary to guarantee that there is no 
overlap in the time it takes to process such activities on the 
common resources. Considering this characteristic, we use 
the concept of the schedulable activity (an activity that could 
be started), and at each decision moment, it is only necessary 
to choose an activity from the set of schedulable activities. 
The choice of the activity is driven by the genetic algorithm 
attending to the alleles existent in the chromosome that give 
the priority of each activity. 
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Traditionally, genetic algorithms used bit string 
chromosomes. These chromosomes consisted of only '0s' 
and '1s.' Modern genetic algorithms more often use problem-
specific chromosomes, as the balance between flexibility and 
raw efficiency tends away from the latter, and with evidence 
that use of real-valued chromosomes often outperformed bit 
string chromosomes anyway. Another alternative is the Gray 
code that is a binary numeral system where two successive 
values differ in only one digit (Goldberg 1989). 
The permutation code was adequate for permutation 
problems. In this kind of representation, the chromosome is 
a literal translation of the operations sequence on the 
machines. In the classical JSSP case, the chromosome is 
composed by m sub-chromosomes, one for each machine, 
each one composed by n genes, one for each operation 
(Oliveira 2007). The i gene of the sub-chromosome 
corresponds to the operation processed in i place in the 
corresponding machine. The allele identifies the operation’s 
index in the disjunctive graph (Roy and Sussmann, 1964). 
For the Activity Networks under Resource 
Complementarity, we define a chromosome with 

( )1n ρ σ+ +  genes. For each activity, the chromosome 
gives the quantity of each P-resource and the quantity of the 
complementary S-recourse. The chromosome also indicates 
the priority of each activity. 
Nevertheless, in this work, the random key code presented 
by Bean (1994) is used. The important feature of random 
keys is that all offspring formed by crossover are feasible 
solutions, when it is used jointly with a constructive 
procedure based on the available operations to schedule and 
the priority is given by the random key allele. Through the 
dynamics of the genetic algorithm, the system learns the 
relationship between random key vectors and solutions with 
good objective function values. Another advantage of the 
random key representation is the possibility of using the 
conventional genetic operators. This characteristic allows the 
use of the genetic algorithm with other optimization 
problems, adapting only a few routines related with the 
problem. 
A chromosome represents a solution to the problem and is 
encoded as a vector of random keys (random numbers). In 
this work, according to Cheng et al. (1996), the problem 
representation is indeed a mix from priority rule-based 
representation and random keys representation. 
The genetic algorithm has a very simple structure and can be 
represented in the Algorithm 1. It begins with population 
generation and her evaluation. Attending to the fitness of the 
chromosomes the individuals are selected to be parents.  
 

Algorithm 1: Genetic algorithm 
 

 
The crossover is applied and it generates a new temporary 
population that also is evaluated. Comparing the fitness of 

the new elements and of their progenitors the former 
population is updated. 
The Uniform Crossover (UX) is used this work. This genetic 
operator uses a new sequence of random numbers and swaps 
both progenitors' alleles if the random key is greater than a 
prefixed value. Figure 2 illustrates the UX's application on 
two parents (prnt1, prnt2), and swaps alleles if the random 
key is greater or equal than 0.75. The genes 3, 4 and 12 are 
changed and it originates two descendants (dscndt1, 
dscndt2). Descendant 1 is similar to parent 1, because it has 
about 75% of genes of this parent. 
 

gene 1 2 3 4 5 6 7 8 9 10 11 12
prnt1 0,89 0,49 0,24 0,03 0,41 0,11 0,24 0,12 0,33 0,30 0,27 0,18

prnt2 0,83 0,41 0,40 0,04 0,29 0,35 0,38 0,01 0,42 0,32 0,28 0,13

randkey 0,64 0,72 0,75 0,83 0,26 0,56 0,28 0,31 0,09 0,11 0,37 0,76

dscndt1 0,89 0,49 0,40 0,04 0,41 0,11 0,24 0,12 0,33 0,30 0,27 0,13

dscndt2 0,83 0,41 0,24 0,03 0,29 0,35 0,38 0,01 0,42 0,32 0,28 0,18  
 

Figure 2: The UX crossover 
 
CONSTRUCTIVE ALGORITHM 
 
The solutions are decoded by an algorithm, which is based 
on Giffler and Thompson’s algorithm (GT) (Giffler and 
Thompson 1960). While the GT algorithm can generate all 
the active plans for the JSSP, the constructive algorithm only 
generates the plan in agreement with the chromosome. As 
advantages of this strategy, we have pointed out the minor 
dimension of solution space, which includes the optimum 
solution and the fact that it does not produce impossible or 
disinteresting solutions from the optimization point of view. 
On the other hand, since the dimensions between the 
representation space and the solution space are very 
different, this option can represent a problem because many 
chromosomes can represent the same solution. 
The constructive algorithm has n stages and in each stage an 
activity is scheduled. To assist the algorithm’s presentation, 
consider the following notation existing in stage t: 

tP  - the partial schedule of the ( )1t −  scheduled activities; 

tS  - the set of activities schedulable at stage t , i.e. all the 
activities that must precede those in tS  are in tP ; 

kσ  - the earliest time that activity ka  in tS  could be started. 
This time respects the conclusion of all predecessors of ka  
and the availability of all resources that ka  will use (primary 
and supportive resources); 

kφ  - the earliest time that activity ka  in tS  could be 
finished; 
M ∗  - the set of resources used by ka  in tS  which has 

{ }min
k ka S kφ φ∗
∈= ; 

tS ∗  - the conflict set formed by ka  in tS  which use at least 
one resource of M ∗  and jσ φ∗< ; 

A∗  - the activity where { }min
k ka S kϕ ϕ∗
∈= ; 

tS ∗  - the conflict set formed by k ta S∈  that have kδ ϕ ∗< ; 

ka∗  - the selected activity to be scheduled at stage t. 
The constructive algorithm of solutions is presented in a 
format, similar to the one used by Cheng et al. (1996) to 

begin  
P ← GenerateInitialPopulation()  
Evaluate(P)  
while termination conditions not meet do  
 P’ ← Recombine(P)  
 Evaluate(P’) 
 P ← Select(P ∪ P’) 
end while  
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present the GT algorithm. In Step 3, instead of using a 
priority dispatching rule, the information given by the 
chromosome is used. If the maximum allele value is equal 
for two or more activities, one is chosen randomly. 
 

Algorithm 2: Constructive algorithm 

 
Consider the example presented in Figure 1, Table 1, and 
Table 2 with three activities ( 1 2 3, ,A A A ). In this instance, 
there are 4ρ =  primary resources and 2σ =  supportive 
resources. A chromosome to represent a solution for this 
instance has 21 genes, since there are six genes for each 
activity to establish the number of elements of each resource 
that will be used, plus a gene kA  that defines the activity’s 
priority. Table 3 presents a chromosome of random keys 
values for this instance. The values are generated randomly 
between 0 and 99. 
 

Table 3: A chromosome 
A1 P1 P2 P3 P4 S1 S2 A2 P1 P2 P3 P4 S1 S2 A3 P1 P2 P3 P4 S1 S2
94 51 88 76 52 23 68 36 73 60 61 53 75 35 47 7 15 42 86 16 16  

 
Activity 1A  has a priority 94, which is the greatest, while 2A  
has the lowest priority (36). To define the number of 
elements of each resource, we use Table 1. The availability 
of P-resource 3 is 3 units. We define three equal intervals 
between 0 and 99. For this resource, if the allele is a value 
between 0 and 32 one unit is assigned. For values between 
33 and 66, we assign two units, and for values between 67 
and 99, three units will be assigned. To establish the number 
of units for the supportive resources, the procedure is 
similar, but it also includes the possibility to assign 0 units, 
because it is not required to use at least one unit. 
Considering these rules, the chromosome presented in Table 
3 defines the following units of resources to be used, which 
are presented in Table 4. 
 

Table 4: Amount of units of resources to be used 
A1 P1 P2 P3 P4 S1 S2 A2 P1 P2 P3 P4 S1 S2 A3 P1 P2 P3 P4 S1 S2
Units 2 0 3 2 0 2 Units 0 1 2 2 1 1 Units 1 0 2 0 0 0  

 
The procedure assigns zero units of a P-resource to an 
activity, if the activity does not use that primary resource, 
which is the case of 2P  in the activity 1A , according to 

Table 1. The assignment of supportive resources to the 
primary resources is performed considering the “amount” of 
Work content existent after the assignment of primary 
resources. The first unit is assigned to the P-resource with 
the largest Work content. After the assignment, the amount 
of work is recalculated, and then the next assignment is 
made, and so on. Activity A1 has the following Work 
content (see Table 1): 

P-resource → 1 2 3 4 
A1 16 0 12 12 

Assigning the units of primary resources defined by the 
chromosome, the duration is then: 

P-resource → 1 2 3 4 
A1 8 0 4 6 

The first unit of supportive resource 2S  is assigned to 1P . 
Recalculating the durations by (3), we have: 

P-resource → 1 2 3 4 
A1 7.442 0 4 6 

The second unit of supportive resource 2S  is also assigned 
to 1P . Recalculating the durations by (3) we have: 

P-resource → 1 2 3 4 
A1 6.957 0 4 6 

Applying the same procedure to the remaining activities, we 
will have the durations presented in Table 5. 
 

Table 5: Activities duration 
 

P-resource → 1 2 3 4 
A1 6.957 0 4 6 
A2 0 5.185 4.444 4 
A3 20 0 11 0 

 
NUMERICAL EXAMPLE 
 
Figure 3 illustrates the results of applying the constructive 
algorithm. It presents the evolution of the schedulable set S  
and the corresponding staring and conclusion times for each 
activity during the execution of the constructive algorithm. 
The final Gant Chart of the project is also presented, and it 
shows the occupation of all the resource units. 
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Figure 2: Constructive Algorithm execution 

Step 1 Let 1t =  with 1P  being null. 1S  will be 
the set of all activities with no 
predecessors; in other words those that 
are connected to start vetex. 

Step 2 Find { }min
k ta S kφ φ∗
∈=  and identify A∗ . 

Form tS ∗ . 
Step 3 Select activity ka∗  in tS ∗ , with the 

greatest priority. 
Step 4 Move to next stage by 

 (1) adding ka∗  to tP , so creating 1tP+ ; 
 (2) deleting ka∗  from tS  and creating 

1tS +  by adding to tS  the activities 
that directly follows ka∗  and have 
all predecessors in 1tP+ ; 

 (3) incrementing t  by 1. 
Step 5 If there are any activities left 

unscheduled ( )t N< , go to Step 2. 
Otherwise, stop. 
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Consider the due date for the project equal to 24 units of 
time and the following parameters:  
• each unit of P-resource costs 4 per unit of Work content; 
• each unit of S-resource costs 1 per unit of Work content; 
• the delay costs 60 per unit of time; 
• the earliness costs 40 per unit of time. 
The project is complete at time 26.96 with 2.96 units of 
lateness. The resources cost is equal to 845, and the delay 
cost is 177.39. The total cost of the solution is 1022.39. 
 
CONCLUSIONS 
 
The goal of this paper was to provide a formal model to 
some unresolved issues in the management of projects, 
especially as related to the utilization of supportive 
resources, and to its implementation. The relevance of the 
problem is the opportunity to shape a system that allows not 
only for improvement in the allocation of often scarce 
resource(s), but also results in reduced uncertainties within 
the projects, combined with increased performance and 
lower project costs. The model was first presented in (Silva 
et al. 2010), but it still needed to be implemented and 
applied to some project networks to demonstrate its validity. 
We presented the procedure developed to solve the 
mathematical model, and we applied it to two simple 
networks, obtaining the desired results through an initial 
implementation in C (Silva et al. 2010b). 
Considering the feasibility of the model proposed, we 
believe it can provide the user a new option to plan and 
determine the best combination of resources and the lowest 
project cost, pushing the planning phase and increasing the 
estimation ability of the companies. 
This paper presents a structure to implement a genetic 
algorithm to solve the Project Scheduling in Activity 
Networks under Resource Complementarity. The schedules 
are built using information given by the genetic algorithm to 
order the activities. We presented an example of the 
application of the model, and we achieved preliminary 
results for a small example. In future work, we intend to test 
this approach on a set of instances taken from the literature 
of RCPSP, which will be modified to accommodate the 
supportive resources. 
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