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Abstract 

 

A new family of Ru(II) polypyridyl complexes (C1 to C6) containing furyl- or 

thienyl-imidazo-phenanthroline ligands (4-6) were synthesized using microwave 

irradiation and characterized by elemental analysis, 1H-NMR, UV-vis absorption 

and fluorescence spectroscopy, FAB, EI-MS and MALDI-TOF-MS spectrometry. 

On the other hand, the novel furyl- or thienyl-imidazo-phenanthroline derivatives 

(5-6) were synthesized through the Radziszewski reaction and completely 

characterized by the usual spectroscopic techniques.  The interaction of the 

complexes with calf thymus DNA in the absence and in the presence of different 

quenchers (ethidium bromide, potassium hexacyanoferrate(II) and 

methylviologen) has been studied by absorption spectroscopy, steady-state and 

single-photon timing luminescence measurements. Their electronic spectra 

show visible absorption peaks at 457-463 nm, with red luminescence at 603-

613 nm. The emission quantum yields of these complexes are between 0.006–

0.016 in air-equilibrated DMSO solution. Luminescence lifetimes in water lie 

within the 0.4 to 1.0 µs range, with a non-exponential behavior due to 

aggregation of the probe. Ru(II) complexes C3, C4, C5 and C6 show intrinsic 

dsDNA-binding constants of 2.74 x 105, 3.02 x 105, 1.32 x 105 and 1.63 x 105 M-

1, respectively. The planar extended structure of the imidazo-phenanthroline 

ligands and the collected spectroscopic data suggest a partial intercalative 

binding mode of the novel metal probes to double-stranded DNA.  

 

Keywords:  Ru(II) complexes , DNA, Phenanthroline, Thiophene, Furan. 
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Introduction 

Among the multiple application fields of ruthenium(II) polypyridyl complexes,1 its 

interaction with nucleic acids has been one of the most thoroughly studied over 

more than two decades.2 Featuring a unique set of chemical properties such as 

stability, excited-state reactivity, redox potentials,3 luminescence and excited 

state lifetimes, these complexes have attracted considerable attention from a 

great number of researchers, finding applications in areas such as 

photophysics, photochemistry, supramolecular chemistry, bioinorganic 

chemistry and catalysis.  

Concerning their interaction with biological structures, Ru(II) 

polyazaheteroaromatic compounds have been used as probes of the 

biopolymer tertiary structure, photocleavage agents and, in recent times, as 

inhibitors of biological functions.4,1a One of the most extensively studied metal 

complexes used as luminescent probe is [Ru(bpy)2(dppz)]2+ (bpy = 2,2’-

bipyridine, dppz = dipyrido[3,2-a:2’,3’-c]phenazine).5 This complex functions as 

a molecular “light switch” for DNA because of the dramatic emission 

enhancement experienced by this probe and related phenazine complexes in 

the presence of double-stranded nucleic acids, being otherwise weakly 

emissive in aqueous solution. The reason for this behaviour is the peculiar 

electronic nature of the phenazine ligand and the lowest-lying excited state 

swap that occurs in protic solvents,6 together with the intercalative binding 

mode to double-stranded DNA of Ru(II)-dppz and related complexes.7 For all 

ruthenium(II) polypyridyl complexes, non-radiative vibrational deactivation with 

the water molecules can be minimized by a close interaction with a hydrophobic 

negatively charged surface,8 and the intimate contact (e.g. DNA intercalation) 
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with the biopolymer protects the triplet excited state of the probe from the O2 

quenching,9 overall leading to a substantial increase in the 3MLCT excited state 

lifetime.  

Very recently these complexes have been applied as multifunctional biological 

agents for direct imaging of DNA in living cells.10 By varying the ligands that 

constitute the complexes, it is possible to modify the nature and strength of their 

binding to nucleic acids. As mentioned above, all positively charged complexes 

are expected to be attracted to the anionic DNA, and those containing at least 

one extended heteroaromatic ligand in the coordination sphere may insert such 

ligand between adjacent base-pairs of double-stranded DNA (i.e. binding by 

intercalation).2a,7,9a,11 Indeed, it has been observed that while [Ru(bpy)3]
2+ binds 

in a relatively weak manner to DNA (mostly through electrostatic interaction in 

one of the grooves), the interaction of [Ru(phen)3]
2+ is stronger.12  

Therefore, in order to study the factors that influence the DNA-binding mode of 

Ru(II) complexes with extended and ancillary ligands, the structural diversity of 

the metal chelating structures must be taken into account. Moreover, a further 

tuning of the probe photophysical and DNA binding properties might be 

achieved when new extended conjugation systems are composed by different 

heterocyclic nuclei (molecular meccano concept).  

Following our ongoing projects on fluorescent reporters and their sensing 

applications,13 we have tackled the synthesis and characterization of novel 

(oligo)thienyl-14 and arylthienyl-imidazo-phenanthrolines15 due to their 

interesting emissive properties (see below). Taking also into account that furans 

exhibit high fluorescence quantum yields16 and the recent studies concerning 

the DNA binding and photocleavage of Ru(II) complexes of a 2-(5-methyl-furan-
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2-yl)imidazo[4,5-f][1,10]phenanthroline ligand,17 suggesting that these 

complexes bind to DNA through intercalation and, when irradiated at 400 nm, 

promote the photocleavage of the DNA, we set out to synthesize Ru(II) furyl-

imidazo-phenanthroline complexes that were hitherto unknown.  

In this way, four new ligands and six Ru(II) polypyridyl complexes, C1 to C6, are 

photophysically characterized in this work, and the interaction of the latter with 

calf-thymus DNA has been followed by steady-state and single-photon timing 

luminescence measurements. The effect of three different quenchers on the 

emission properties of the DNA-bound complexes has also been studied, in an 

attempt to reveal the possible binding modes of the complexes to the nucleic 

acid.18 

 

Experimental Section 

Materials. All reagents used in the present work were commercially available 

and used without further purification, unless otherwise stated. Progress of the 

reactions was monitored by thin layer chromatography (0.25 mm thick pre-

coated Merck Fertigplatten Kieselgel 60F254 silica plates), while purification was 

carried out by silica gel column chromatography (Merck Kieselgel 60; 230-400 

mesh). Calf thymus DNA was obtained from Pharmacia GE Healthcare and 

purified by extensive dialysis against TRIS buffer. The concentration of stock 

solutions was determined spectrophotometrically using the molar absorption 

coefficient per base pair (12800 M-1 cm-1) at 258 nm9a and found to be 2.82 mM 

(for the stock solution used with C1 to C3) and 2.02 mM (for the stock solution 

used with C4 to C6) in base pairs. All the experiments with DNA were carried 

out in pH-7.0 3-mM Tris buffer. 
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Instrumentation. NMR spectra of the ligands were obtained on a Varian Unity 

Plus spectrometer at 300 MHz for 1H NMR and 75.4 MHz for 13C NMR or a 

Bruker Avance III 400 at 400 MHz for 1H NMR and 100 MHz for 13C NMR, using 

the solvent residual peak as internal reference. The solvents are indicated in 

parenthesis before the chemical shift values (δ in ppm relative to TMS). NMR 

spectra of the complexes were recorded on a Bruker AVANCE II at 400 MHz for 

1H NMR, and processed with the TOPSPIN 2.0 software (Bruker). Melting 

points were determined on a Gallenkamp apparatus and are uncorrected. 

Infrared spectra were recorded on a BOMEM MB 104 spectrophotometer. UV-

vis absorption spectra of the ligands (200–800 nm) were measured with a 

Shimadzu UV/2501PC apparatus and those of the complexes on a Varian Cary 

3Bio spectrophotometer.  

Mass spectrometry analyses of the ligands were performed at the C.A.C.T.I. -

Unidad de Espectrometria de Masas of the University of Vigo, Spain. MALDI-

TOF-MS spectra have been performed in a MALDI-TOF-MS model Voyager 

DE-PRO Biospectrometry Workstation equipped with a nitrogen laser radiating 

at 337 nm from Applied Biosystems (Foster City, United States) from the 

MALDI-TOF-MS Service of the REQUIMTE, Chemistry Department, 

Universidade Nova de Lisboa and in the MALDI-TOF-MS-MS model 4700 

Applied Biosystems at the Faculty of Science of Ourense, University of Vigo. 

The acceleration voltage was 2.0 x 104 kV with a delayed extraction (DE) time 

of 200 ns. The spectra represent accumulations of 5 x 100 laser shots. The 

reflection mode was used. The ion source and flight tube pressures were less 

than 1.80 x 10-7 and 5.60 x 10-8 Torr, respectively. 
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The MALDI mass spectra of the soluble compounds (1 or 2 µg/µL) were 

recorded using the conventional sample preparation method for MALDI-MS 

without other MALDI matrix. 

Elemental analyses were performed at the Analytical Services of the Laboratory 

of REQUIMTE-Departamento de Química, Universidade Nova de Lisboa, on a 

Thermo Finnigan-CE Flash-EA 1112-CHNS Instrument.  

The steady-state luminescence measurements were carried out with a Perkin-

Elmer LS-5 spectrofluorometer. Luminescence lifetimes were determined at 25 

± 1 ºC using ca. 10-5 M solutions of the Ru(II) complexes by the single-photon 

timing (SPT) technique with an Edinburgh Analytical Instruments LP900 kinetic 

spectrometer. Excitation of the samples was carried out with a Horiba 

NanoLED-07N 405-nm pulsed laser diode (<700 ps). A wide band-pass 405-nm 

interference filter (Edmund Scientific) was placed in front of the laser source 

and cut-off filters (590 nm, Lambda Research Optics) were used in the emission 

path to avoid distortions from the laser light scattering. The luminescence decay 

profiles were fit either to a single exponential function or to a sum of 2-3 

exponential functions with the original Marquardt algorithm-based EAI decay 

analysis software. Satisfactory fits were obtained in all cases, as judged from 

the weighted residuals, the goodness-of-the-fit 
2 parameter and the 

autocorrelation function. No oxygen outgassing was performed. The accuracy in 

the measured lifetimes for the multi-exponential decay fits is estimated to be 

±3% (1% for the single-exponential decays) and 10% for the relative weights. 

The pre-exponential weighted emission lifetime (m) is defined according to Eq. 

1, where i is the emission lifetime for each component of the multi-exponential 

fit whose relative weight is (%)i.  
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     (1) 

For the preliminary studies of complexes C1 to C3 in the presence of DNA, a 

solution of the metal complex in TRIS buffer with a concentration of ca. 10-5 M 

was obtained by dilution of a concentrated DMSO stock solution of each 

complex. Each solution was mixed with DNA in different proportions, and their 

spectra recorded both in the presence and in the absence of the biopolymer. 

The mixtures were allowed to equilibrate for at least half an hour between each 

addition and the respective measurement. For the subsequent studies with DNA 

the same procedure was adopted, by measuring at different [DNA]/[Ru] ratios 

and choosing the ratio after which no significant changes in the emission 

spectrum and lifetime were observed to be studied with the selected quenchers 

(ethidium bromide, potassium hexacyanoferrate(II) and methyl viologen).  

 

Synthesis. The precursor complex, namely cis-[Ru(bpy)2Cl2], was synthesized 

according to literature methods.19 The syntheses of ligands 4a and 4b have 

been previously reported.14a 

 

Insert Scheme 1 at about here 

 

General procedure for the synthesis of imidazo[4,5-

f][1,10]phenanthrolines 5 and 6 

A mixture of the corresponding aldehyde (1.2 mmol), NH4OAc (20 mmol) and 

1,10-phenanthroline-5,6-dione (1 mmol) in glacial acetic acid (10 mL) was 

stirred and heated at reflux for 5 h. The mixture was then cooled to room 
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temperature and the product precipitated during neutralization with NH4OH 5 M. 

The precipitate was filtered out, washed with water and diethyl ether, 

recrystallized from absolute ethanol and dried under vacuum to give the 

expected product. 

 

2-(4’-(thien-2’’-yl)phen-2’-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (5). 

Yellow solid (0.139 g, 82%). 1H NMR (300 MHz, DMSO-d6):  7.18-7.21 (m, 1H, 

4´´-H), 7.62 (d, 1H, J= 5.1 Hz, 3´´-H), 7.66 (d, 1H, J= 3.6 Hz, 5´´-H), 7.81-7.85 

(m, 2H, 5-H and 10-H), 7.90 (d, 2H, J= 8.7 Hz, 2´-H and 6´-H), 8.31 (d, 2H, J= 

8.4 Hz, 3´-H and 5´-H), 8.92 (dd, 2H, J= 8.1 and 1.5 Hz, 4-H and 11-H), 9.03 

(dd, 2H, J= 4.5 and 1.8 Hz, 6-H and 9-H), 13.79 (s, 1H, NH) ppm. 13C NMR 

(75.4 MHz, DMSO-d6):  123.4, 124.5, 125.8, 126.5, 126.9, 128.7, 128.8, 129.8, 

134.7, 135.9, 142.6, 146.4, 147.8, 150.1 ppm. MS (FAB): m/z (%) 379 ([M+H]+, 

100). HRMS (FAB): m/z calcd. for C23H15N4S 379.1017; found 379.1015. IR 

(KBr,  /cm-1): 3439, 2950, 1605, 1562, 1531, 1479, 1451, 1429, 1395, 1351, 

1312, 1296, 1259, 1212, 1190, 1119, 1069, 1029, 957, 844, 803, 740. 

Decomposition at T > 320 ºC. UV (ethanol, nm): λmax (log ) = 345 (4.16).  

 

2-(furan-2’-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (6a). The compound 

was isolated as an orange solid (0.114 g, 85%). 1H NMR (300 MHz, DMSO-d6): 

δ 6.76-6.79 (m, 1H, 4’-H), 7.25 (d, 1H, J = 3.0 Hz, 3’-H), 7.78-7.82 (m, 2H, 5-H 

+ 10-H), 7.99 (d, 1H, J = 1.2 Hz, 5’-H), 8.90 (d, 2H, J = 7.8 Hz, 4-H + 11-H), 

9.02 (d, 2H, J = 1.8 Hz, 6-H + 9-H), 13.93 (br s, 1H, NH) ppm. 13C NMR (75.4 

MHz, DMSO-d6):   109.9, 112.5, 123.3, 129.6, 143.0, 143.6, 144.4, 145.4, 

147.9 ppm. MS (FAB): m/z (%) 287 ([M+H]+, 100), 226 (5). HRMS (FAB): m/z 
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calcd. for C17H11N4O 287.09389; found 287.09274. IR (Nujol,  /cm-1): 3396, 

2923, 2853, 1644, 1565, 1538, 1507, 1463, 1397, 1377, 1350, 1228, 1191, 

1116, 1073, 1017, 976, 897, 885, 807, 739. Mp = 122.3–124.5 ºC. UV/Vis 

(ethanol, nm): λmax (log ) = 318 (4.14). 

 

2-(5’-(thien-2’’-yl)furan-2’-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (6b). 

The compound was isolated as a dark yellow solid (0.110 g, 79 %). 1H NMR 

(400 MHz, DMSO-d6): δ 7.03 (d, 1H, J = 3.6 Hz, 3’-H), 7.20-7.22 (m, 1H, 4’’-H), 

7.33 (d, 1H, J = 4.0 Hz, 4’-H), 7.60 (dd, 1H, J = 3.6 and 1.2 Hz, 3’’-H), 7.66 (dd, 

1H, J = 5.2 and 0.8 Hz, 5’’-H), 7.79-7.86 (m, 2H, 5-H + 10-H), 8.89-8.94 (m, 2H, 

4-H + 11-H), 9.03 (dd, 2H, J = 4.0 and 2.0 Hz, 6-H + 9-H), 13.89 (s, 1H, NH) 

ppm. 13C NMR (100.6 MHz, DMSO-d6):  108.0, 112.3, 119.2, 123.1, 123.4, 

123.5, 124.4, 125.9, 126.4, 128.3, 129.7, 131.9, 135.8, 142.5, 143.6, 143.7, 

144.3, 147.9, 147.9, 149.8 ppm. MS (FAB): m/z (%) 369 ([M+H]+, 100), 226 (4). 

HRMS (FAB): m/z calcd. for C21H12N4OS 369.08048; found 369.08046. IR 

(Liquid film,  /cm-1): 3436, 1567, 1498, 1444, 1421, 1265, 1072, 1017, 896, 

738, 704. Mp = 241.0-242.2 ºC. UV/Vis (ethanol, nm): λmax (log ) = 364 (4.20). 

 

2-(5’-phenylfuran-2’-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (6c). The 

compound was isolated as a yellow solid (0.061 g, 60 %). 1H NMR (400 MHz, 

DMSO-d6): δ 7.23 (d, 1H, J = 3.6 Hz, 3’-H), 7.34-7.38 (m, 2H, 4’’-H + 4’-H), 7.49 

(t, 2H, J = 8.0 and 7.6 Hz, 3’’-H + 5’’-H), 7.80-7.83 (m, 2H, 5-H + 10-H), 7.91 (d, 

2H, J = 7.6 Hz, 2’’-H + 6’’-H), 8.93 (dd, 2H, J = 8.4 and 1.6 Hz, 4-H + 11-H), 

9.02 (dd, 2H, J = 6.0 and 1.6 Hz, 6-H + 9-H) ppm. 13C NMR (100.6 MHz, 

DMSO-d6):  108.4, 111.9, 121.6, 123.3, 123.9, 128.1, 128.9, 131.3, 131.3, 
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143.2, 143.6, 145.3, 147.8, 153.9 ppm. MS (FAB): m/z (%) 363 ([M+H]+, 100). 

HRMS (FAB): m/z calcd. for C23H15N4O 363.12380; found 363.12404. IR (Nujol, 

 /cm-1): 3371, 2911, 2853, 1619, 1565, 1490, 1397, 1299, 1277, 1190, 1150, 

1124, 1073, 1027, 924, 803, 758, 688. Mp = 243.4-244.9. UV/Vis (ethanol, nm): 

λmax (log ) = 353 (4.48). 

 

Synthesis of the Ru(II) Complexes. In 5 mL of ethylene glycol, the 

corresponding quantity of imidazo-phenanthroline ligand and the Ru(bpy)2Cl2 

complex were dissolved. The mixture was heated in a Milestone microwave 

oven (450 W) for 30 s, which led to a color change from violet to deep orange, 

and then allowed to cool for a while. The mixture was heated for three more 

periods of 30 s. The solvent was removed by distillation at low pressure, the 

residue was dissolved in 2 mL of water, and a saturated NH4PF6 aqueous 

solution was added. The precipitate formed was then filtered through a frit, 

washed with water (3 x 10 mL) and diethyl ether (3 x 10 mL), and dried under 

vacuum. 

 

C1: 30.2 mg (7.85 x 10-5 mol) of 4a and 42.7 mg (8.2 x 10-5 mol) of Ru(bpy)2Cl2 

were used. Colour: Deep orange. Yield: 73.9 mg (87%). Anal. Calcd for 

C41H28F12N8P2RuS2: C, 45.30; H, 2.60; N, 10.30; S, 5.90. Found: C, 45.40; H, 

2.80; N, 10.05; S, 5.85. 1H NMR (CD3CN): δ = 8.69 (s, 1H); 8.56 (t, 4H); 8.36 (d, 

2H); 8.11 (m, 4H); 7.85 (m, 7H); 7.47 (m, 7H); 7.13 (m, 3H) ppm. FD-MS: m/z 

943.06 ([M-PF6]
+), 797.08 ([M-2PF6-H]+), 399.04 ([M-2PF6]

2+). ESI-MS: m/z 

943.2 ([M-PF6]
+), 797.2 ([M-2PF6-H]+), 399.1 ([M-2PF6]

2+). MALDI-TOF MS: m/z 

797.6 ([M-2PF6-H]+), 641.6 ([M-2PF6-bpy-H]+).  
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C2: 24.3 mg (5.85 x 10-5 mol) of 4b and 32.0 mg (6.15 x 10-5 mol) of 

Ru(bpy)2Cl2 were used. A few drops of ethanol were added in order to increase 

solubilization of the ligand. Colour: Deep orange. Yield: 29.3 mg (45%). Anal. 

Calcd for C42H30F12N8OP2RuS2·1.5C2H5OH: C, 45.55; H, 3.30; N, 9.45; S, 5.40. 

Found: C, 45.88; H, 3.40; N, 9.70; S, 5.85. 1H NMR (CD3CN): δ = 8.80 (d, 2H); 

8.53 (m, 4H); 8.10 (t, 2H); 7.99 (t, 2H); 7.87 (m, 4H); 7.66 (d, 3H); 7.56 (m, 2H); 

7.44 (t, 2H); 7.25 (t, 2H); 7.02 (d, 1H); 6.91 (d, 1H); 6.24 (d, 1H); 3.92 (s, 3H) 

ppm. FD-MS: m/z 973.03 ([M-PF6]
+), 827.07 ([M-2PF6-H]+). ESI-MS: m/z 973.2 

([M-PF6]
+), 827.2 ([M-2PF6-H]+), 414.1 ([M-Ru(bpy)2(PF6)2]˙. MALDI-TOF MS: 

m/z 827.6 ([M-2PF6-H]+).  

 

C3: 30.5 mg (8.06 x 10-5 mol) of 5 and 44.1 mg (8.47 x10-5 mol) of Ru(bpy)2Cl2 

were used. Colour: Deep orange. Yield: 26.3 mg (30%). Anal. Calcd for 

C43H30F12N8P2RuS·6H2O: C, 43.40; H, 3.55; N, 9.40; S, 2.70. Found: C, 43.35; 

H, 3.25; N, 9.40; S, 2.55.  1H NMR ((CD3)2CO): δ = 9.21 (d, 2H); 8.89 (dd, 4H); 

8.50 (d, 2H); 8.31 (m, 4H); 8.20 (m, 4H); 7.99 (d, 2H); 7.91 (dd, 2H); 7.83 (d, 

2H); 7.66 (m, 3H); 7.55 (d, 1H); 7.42 (t, 2H); 7.20 (m, 1H) ppm. FD-MS: m/z 

790.82 ([M-2PF6-H]+).  ESI-MS: m/z 937.3 ([M-PF6]
+), 791.3 ([M-2PF6-H]+), 

396.1 ([M-Ru(bpy)2(PF6)2]˙).  MALDI-TOF-MS: m/z 791.28 ([M-2PF6-H]+).  

 

C4: 27.2 mg (7.99 x 10-5 mol) of 6a and 44 mg (8.39 x 10-5 mol) of Ru(bpy)2Cl2 

were used. An orange solid was obtained. Yield: 72.2 mg (91%). Anal. Calcd for 

C37H26F12N8OP2Ru: C, 44.90; H, 2.65; N, 11.30. Found: C, 44.35; H, 2.85; N, 

11.30. 1H NMR ((CD3)2CO): δ = 9.07 (d, 2H); 8.86 (dd, 4H); 8.35 (m, 2H); 8.25 
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(t, 3H); 8.16 (m, 4H); 7.91 (m, 4H); 7.64 (m, 2H); 7.40 (m, 2H); 7.33 (s, 1H); 

6.76 (s, 1H) ppm. MALDI-TOF-MS: m/z 699.73 ([M-2PF6-H]+), 543.71 ([M-2PF6-

bpy-H]+)  

 

C5: 25 mg (6.18 x 10-5 mol) of 6b and 33.8 mg (6.49 x 10-5 mol) of Ru(bpy)2Cl2 

were used. An orange solid was obtained. Yield: 60.0 mg (91%). Anal. Calcd for 

C41H28F12N8OP2RuS: C, 45.95; H, 2.65; N, 10.45; S, 3.00. Found: C, 45.90; H, 

2.65; N, 10.60; S, 2.60. 1H NMR ((CD3)2CO): δ = 8.82 (m, 5H); 8.40 (m, 1H); 

8.23-8.16 (m, 8H); 7.96 (m, 2H); 7.64-7.40 (m, 8H); 7.15 (s, 1H); 6.95 (s, 1H) 

ppm. MALDI-TOF-MS: m/z 781.79 ([M-2PF6-H]+), 625.73 ([M-2PF6-bpy-H]+), 

368.73 ([M-Ru(bpy)2(PF6)2]˙  

 

C6: 23.5 mg (5.64E-05 mol) of 6c and 30.8 mg (5.93E-05 mol) of Ru(bpy)2Cl2 

were used. An orange solid was obtained. Yield: 57.8 mg (96%). Anal. Calcd for 

C43H30F12N8OP2Ru: C, 48.45; H, 2.85; N, 10.50. Found: C, 48.35; H, 3.00; N, 

9.90. 1H NMR ((CD3)2CO): δ = 8.83 (m, 5H); 8.40 (m, 1H); 8.25-8.16 (m, 8H); 

8.02 (m, 3H); 7.79 (s, 3H); 7.72 (s, 2H); 7.45-7.38 (m, 5H); 7.12 (s, 1H) ppm. 

MALDI-TOF-MS: m/z 775.65 ([M-2PF6-H]+), 619.62 ([M-2PF6-bpy-H]+), 463.57 

([M-(bpy)2-2PF6-H]+),  362.67 ([M-Ru(bpy)2(PF6)2]˙) 

Insert Scheme 2 at about here 

 

Results and Discussion 

Synthesis. In order to compare the effect of the electronic nature of aryl and 

heteroaryl moieties on the optical properties of linear imidazo-phenanthrolines 

4-6, formyl- derivatives containing  bithienyl 1a-b,  arylthienyl 2, furyl 3a, 
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thienylfuryl 3b and arylfuryl 3c -conjugated bridges were used as precursors of 

phenanthrolines 4-6. Compounds 1a, 2, 3a and 3c were commercially available. 

The synthesis of 5’-formyl-2-methoxy-2,2’-bithiophene 1b has been reported.20 

Therefore, heterocyclic ligands 4-6 with either bithienyl, arylthienyl, furyl, 

thienylfuryl and arylfuryl moieties (unsubstituted or bearing a methoxy donor 

group) linked to the chelating imidazo-phenanthroline system, were synthesized 

in good to excellent yields (60-85%, Table 1) through the Radziszewski 

reaction,21 using 5,6-phenanthroline-dione, formyl precursors 1-2 and 

ammonium acetate in refluxing glacial acetic acid for 15 h (Scheme 1).  

In the 1H NMR spectra of most imidazo-phenanthroline derivatives, a peak at 

about 13.8-13.9 ppm was detected as a broad singlet that was attributed to the 

N-H in the imidazole moiety. The NH was also identified by IR spectroscopy as 

a sharp band within the spectral region of 3371-3439 cm-1. 

  

Insert Table 1 at about here 

 

The complexes were obtained by direct reaction of the ligands with Ru(bpy)2Cl2 

in ethylene glycol, under microwave irradiation for 2 min. Their purity was 

confirmed by elemental analysis, 1H NMR and MALDI-TOF MS (see 

Experimental section). 

 

Spectroscopic characterization. The absorption spectra of the Ru(II) 

complexes consist mainly of three resolved bands in the 200-600 nm region. 

The bands around 280 nm are attributed to ligand-centered (LC) π-π
* 

transitions; the bands around 350 nm can either be due to the n-π
* transitions or 
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inter-ligand π-π
* transitions, and the lowest energy bands at around 460 nm are 

assigned to the metal-to-ligand charge transfer (MLCT) transitions. The 

emission spectra are all centered above 600 nm according to what is expected 

for Ru(II) polypyridyl complexes (see Figures S1 and S2, Supplementary 

material). Table 2 summarizes all the spectroscopic data.  

 

Insert Table 2 at about here 

 

Interaction of Ru(II) complexes with DNA. Electronic absorption spectroscopy 

is a very useful technique in DNA-binding studies, since binding to double 

stranded (ds) DNA through intercalation normally results in hypochromism and 

bathochromism of the MLCT visible absorption band of the complex.22 The 

extent of the hypochromism usually parallels the intercalative binding strength.22 

On the other hand, luminescence studies usually show the enhancement of 

both the luminescence intensity and lifetime of the Ru(II) complexes upon 

binding to the DNA. This indicates that the complexes can interact with DNA 

and are protected by this polynucleotide to some extent from quenching by 

molecular oxygen and the solvent molecules. Emission quenching experiments 

may provide further information, since the Stern-Volmer quenching constants 

can be used as a measure of the binding affinity. 

In this way, preliminary studies were performed with complexes C1, C2 and C3 

to compare the interaction of these complexes with DNA in a qualitative way. All 

the preliminary results obtained with C1 to C3 in the presence of DNA are 

reported in the Supplementary material. 
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 The interaction of the stronger emissive C3 to C6 complexes was studied 

quantitatively; Figure 1 shows in more detail the spectroscopic study of complex 

C3 bearing a thienyl-aryl substituent in the presence of increasing amounts of 

DNA. Figure 1A indicates that there is a hypochromicity in the MLCT band upon 

addition of DNA, suggesting the intercalation of C3 into the double DNA helix. 

At the same time the emission intensity (Figure 1B) and lifetime (Table T1 in 

Supplementary Material) of the bound luminophore are enhanced due to a 

combination of a more hydrophobic microenvironment around the metal 

complex after binding (the O-H oscillators help to deactivate the emissive 

3MLCT state)8 and the protection from quenching by dissolved molecular 

oxygen imparted by the polynucleotide strand. Inset in Figure 1B shows the 

increases observed both in the steady state spectra and in the luminescence 

lifetime in the presence of DNA. 

Insert Figure 1 at about here 

 

A similar behavior was found for the other imidazo-phenanthroline complexes, 

as can be seen for complex C5 in Figure 2 and Table T2 in Supplementary 

Material. All the results for the remaining complexes are reported in Figures S3 

to S6, and Tables T3 and T4, Supplementary Material. 

Insert Figure 2 at about here 

 

The intrinsic DNA binding constants (Kb), which provide a measure of the 

interaction strength, were obtained by monitoring the changes in absorbance at 

460 nm with increasing concentrations of DNA. The experimental data were fit 
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to the simple Scatchard eq (2),23 that is only valid for low binder-to-DNA ratios 

(i.e., far from the DNA saturation) and assumes no binding cooperativity:  

[DNA]/(εa- εf) = [DNA]/(εb- εf) + 1/[Kb(εb- εf)]    (2) 

where [DNA] is the concentration of the nucleic acid in base pairs, εa is the 

apparent absorption coefficient obtained by calculating Aobs/[Ru], and εf and εb 

are the absorption coefficients for the free and the fully bound ruthenium 

complex, respectively.  

In the [DNA]/(εa- εf) vs. [DNA] plot, Kb is given by the ratio of the slope to the  

intercept. The binding constants obtained thereof for complexes C3, C4, C5 and 

C6 were, respectively, 2.7 x 105, 3.0 x 105, 1.3 x 105 and 1.6 x 105 M-1 (see 

Figures S7 to S10, Supplementary Material). These values are larger than 

those of the DNA (minor) groove binding Ru(II) complexes such as tris(1,10-

phenanthroline)ruthenium(II) and related structures (1.1 x 104 – 4.8 x 104 M-

1),23,24,25 but smaller than those observed for the [Ru(bpy)2(dppz)]2+ DNA 

intercalator and other complexes containing an extended phenazine ligand (107 

to 109 M-1).4c This result would indicate a more intimate binding of the imidazo-

phenanthroline complex to the polynucleotide double strand than that of the 

simple tris-phenanthroline complex although not as efficient as those bearing a 

fused polycyclic (hetero)aromatic system that can be inserted between adjacent 

base pairs of the DNA ladder.  

It is interesting to note that the MLCT absorption band of complexes C4-C6 

centered at ca. 455 nm undergoes a more pronounced hypochromic effect upon 

binding to ds-DNA than the MLCT band at ca. 430 nm. This observation would 

indicate that the former corresponds to the electronic transition involving the 

chelating ligand that interacts more closely with the polynucleotide base-pair 



 18 

strand, presumably the intercalated 6a-c imidazo-phenanthrolines (the small 

bpy ligands are unable to intercalate into the double helix26). Surprisingly 

enough, the same difference is not observed for the Ru(II) complex C3 that 

contains the imidazo-phenanthroline 5. In the absence of molecular modeling 

studies, we can hypothesize that the crescent-shaped ligands 6a-c intercalate 

more efficiently than the long, linear, twisted phenyl-substituted imidazo-

phenanthroline 5. 

Except for C3, the emission profile of the luminophoric complexes in buffer 

solution can only be fit to a double exponential function (Tables T1 to T4, 

Supplementary Material). This fact may be attributed to aggregation of the 

hydrophobic dyes; the observation of just two components is a consequence of 

the strong fitting power of the bi-exponential function which does not require 

introduction of additional components. However, a variety of self-aggregates 

displaying different stoichiometries is to be expected, the emission lifetime of 

which cannot be fully resolved. In the presence of just a 5-fold (molar) 

concentration of DNA the luminescence decay slows down for the same 

reasons outlined above for the emission intensity and, although the individual 

lifetimes of the observed components remain almost the same for higher DNA 

concentrations, m increases as a consequence of the rise of the contribution of 

the long lifetime component to the overall decay (except for C3 where the 

individual components remain unchanged). These results indicate that the 

Ru(II) complexes in buffer solution are already fully bound to the DNA under the 

used experimental conditions even at a [DNA]bp/Ru ratio as low as 5. Further 

addition of the polynucleotide would just make the luminescent probes shift their 

binding mode, e.g. from aggregated on the double helix to individually bound, 
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as they become “diluted” with larger amounts of DNA. The longest emission 

lifetime would correspond to the isolated Ru(II) complexes while the shortest 

one is the signature of the aggregates. The lack of change in the relative 

contribution of the short and long lifetimes in the case of the DNA-bound 

complex C3, and the preeminence of the fast component of the decay even at 

large [DNA]bp/Ru ratios might be a consequence of its different interaction mode 

with the polynucleotide (see above) and a more difficult self-aggregation (unlike 

the other imidazo-phenanthroline complexes, a single-exponential decay is 

observed for the photoexcited C3 in the absence of DNA). 

 

Emission quenching studies. After having studied the interaction of all the 

complexes with DNA, it was observed that in all cases no significant changes 

occurred, neither in the emission spectra nor in the luminescence lifetimes, for 

DNA/Ru ratios in excess of 30. Therefore, this ratio was chosen for subsequent 

studies with selected excited state quenchers (ethidium bromide, potassium 

hexacyanoferrate(II) and methyl viologen).27 It is well established that those 

quenchers deactivate the excited state of most Ru(II) polypyridyls by 

photoinduced electron transfer with rate constants in excess of 109 L mol–1 s–1. 

Starting with C3, it was found out that the addition of increasing amounts of 

ethidium bromide to a mixture of C3+DNA (ratio 1:30) promoted an 

enhancement of the absorption values in the region corresponding to the MLCT 

absorption band (Figure S11, Supplementary Material). However, since the 

intrinsic absorption of ethidium takes place in the same wavelength range, this 

absorption increase had to be discarded. A similar effect occurred with the 

emission spectra (Figure S11, Supplementary Material) and luminescence 
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lifetime measurements (Table T5, Supplementary Material), since both 

compounds emit in the same region, and the lifetime values for ethidium are 

significantly shorter, thus masking the true m values.  

In the case of potassium hexacyanoferrate(II) quencher, no changes in the 

luminescence lifetime were observed for the photoexcited C3 bound to DNA 

(See Figure S12 and Table T6, Supplementary Material). These results suggest 

that the complex is fully bound to DNA as the positively charged complex 

should be easily quenched by this highly anionic quencher if both species were 

free in solution,27 while the negative DNA phosphate backbone hinders 

quenching of the bound complex emission. However, total luminescence 

quenching is observed for the DNA-bound C3 complex, both in steady-state and 

time-resolved emission, in the presence of methyl viologen (MV2+) (Figure 3 and 

Table 3).  

Insert Figure 3 and Table 3 at about here 

 

Emission quenching experiments for complexes C4, C5 and C6 have also been 

performed using methyl viologen as a quencher, and the results are comparable 

to those obtained for C3. Steady-state emission spectra and luminescence 

lifetime decays for C5 are represented on Figure 4 and Table 4, respectively 

(See absorption spectra in Figure S13, Supplementary Material). All the results 

for the remaining complexes are reported in Figures S14 and S15 and Tables 

T7 and T8, Supplementary Material. The slight enhancement of the lifetime 

values for the last methyl viologen additions (Tables T7 and T8) suggest a 

partial displacement of the DNA bound Ru(II) complexes to the bulk solution 

under these conditions. 
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Insert Figure 4 and Table 4 at about here 

 

From the complexes C3-C6 emission quenching studies with methyl viologen 

the Stern-Volmer constants, KSV, and the corresponding quenching rate 

constants, kq, were determined. Whenever non-linear Stern-Volmer plots were 

obtained, the rate constant data refer to the initial slope. The kq values obtained 

from each lifetime component (fast and slow, respectively) of each complex, 

were: 1.7 x 1011 and 1.0 x 1011 M-1s-1 (C3); 9.4 x 109 and 1.9 x 1010 M-1s-1 (C4); 

3.9 x 109 and 7.6 x 109 M-1s-1 (C5); 2.0 x 1010 and 2.1 x 1010 M-1s-1 (C6).  These 

values exceed by one or two orders of magnitude those commonly obtained for 

Ru(II) complexes with MV2+ (ca. 109 M-1s-1 ).27 Such acceleration of the 

photoinduced electron transfer might be due to several factors, one of them 

being the increase of the local concentration (closer average distance) of donor 

and acceptor species on the nucleic acid (since both the ruthenium (II) complex 

and the quencher are bound to the DNA). Considering this effect, the calculated 

values for the quenching rate constants represent only apparent values, since 

the quencher concentration values on the abscissa correspond to different local 

quencher concentrations on the polynucleotide. 

The results for C3+DNA in the presence of methyl viologen are represented in 

Figure 5. All the other results, including the data for C3 with ethidium bromide, 

are represented in Figures S16 to S19, Supplementary Material). 

  

Insert Figure 5 at about here 
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Conclusions 

Four new ligands and six Ru(II) polypyridyl complexes have been synthesized, 

the latter through microwave-assisted reactions, which considerably reduces 

the reaction times from hours to minutes, with satisfactory yields. Studies of 

their interaction with calf thymus DNA have suggested a partial intercalation of 

the probes into the nucleic acid double strand. According to the structural 

features of the complexes and the obtained values for the binding constants, it 

is possible that the crescent-shaped complexes C4, C5 and C6 have a more 

intimate binding to the polynucleotide double strand than the phenyl-substituted 

C3. Luminescence quenching studies further support this hypothesis, since in 

the case of potassium hexacyanoferrate(II) no quenching was observed (which 

indicates that all the complex was bound to the DNA) and with methyl viologen 

the quenching was accompanied by partial displacement of the complexes to 

the bulk solution at high quencher concentrations. All these results illustrate the 

feasibility of fine tuning the DNA interaction mode of luminescent Ru(II) 

complexes containing extended imidazo-phenanthroline ligands by molecular 

engineering of their aryl substituents. Such feature might be used in the future 

to design tailored molecular probes of the polynucleotide features.     
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Schemes, Tables and Figures 

 

 

 

Scheme 1. Synthesis of imidazo-furyl and imidazo-thienyl-phenanthroline 

derivatives. 
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Scheme 2. Synthesis of Ruthenium(II) Complexes. 
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Formyl 

derivative 

Phenanthroline 

product 

 

R 

Yield 

(%) 

IR N-H 

(cm-1)a 

H 

(imidazole) 

(ppm) d 

2 5 -  82 3439 b 13.8 

3a 6a H 85 3396 13.9 

3b 6b thienyl 79 3436 c 13.9 

3c 6c phenyl 60 3371 - e 

 

Table 1. Yields, IR absorption spectra and 1H RMN spectra of phenanthrolines 

5-6. 

a For the NH stretching band (recorded in Nujol). 

b For the NH stretching band (recorded in KBr). 

c For the NH stretching band (recorded in liquid film). 

d For the NH proton of the imidazole ring for compounds 5-6 (DMSO-d6). 

e Not observed. 

 



 27 

 

Complex λ
max

abs
/ nm εmax / M

-1cm-1 λ
max

em
/ nm ΦF 

C1 463 12700 608 0.006 

C2 459 17800 607 0.015 

C3 460 11900 603 0.016 

C4 459 15900 613 0.009 

C5 458 14300 613 0.008 

C6 457 12000 611 0.008 

 

Table 2 – MLCT (d-π*) absorption and emission maxima, molar absorption 

coefficients (in Tris buffer) and fluorescence quantum yields (in air-equilibrated 

DMSO) of complexes C1 to C6.  
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Table 3 – Luminescence lifetimes of 1:30 C3:DNA at different MV2+ 

concentrations. [C3] = 4.90 μM. λexc = 405 nm. λem = 610 nm. [DNA]stock = 2.82 

mM. [MV2+]stock = 5 mM. 

 

 

 

 

 

 

 

 

[MV2+] / M 1/μs      (%) 2/μs     (%) 3/μs   (%) m / μs 2 

0 - 0.74         67 1.34       33 0.94 1.10 

5 0.14         21 0.43         60 0.84       19 0.45 1.04 

15 0.08         37 0.22         50        0.54       13 0.21 1.03 

25 0.08         56 0.21         37        0.55       10 0.17 1.10 

50 0.04         54 0.13         41 0.40         5 0.10 1.04 

75 0.03         62 0.10         35 0.38         3 0.07 1.05 

100 0.03         69 0.09         30 0.44         1 0.05 0.91 

125 0.02         66 0.08         32 0.40         2 0.05 1.04 

150 0.02         70 0.07         29 0.40         1 0.04 0.95 

175 0.02         73 0.07         25 0.41         2 0.04 0.98 

200 0.02         77 0.07         22 0.47         1 0.04 0.98 
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[MV2+] / M 1/μs     (%) 2/μs     (%) 3/μs   (%) m / μs 2 

0 - 0.50        47 1.51       53 1.04 1.03 

25 0.18         32 0.49         61        1.09         7 0.43 1.12 

50 0.13         32 0.31         55 0.67        13 0.30 1.19 

75 0.12         57 0.36         40 0.85         3 0.24 1.11 

100 0.07         40 0.21         43 0.55       17 0.21 1.12 

150 0.07          57 0.31         34 0.65         9 0.20 1.09 

200 0.05         55 0.28         27 0.57       18 0.21 1.06 

 

Table 4 – Luminescence lifetimes of 1:30 C5:DNA at different MV2+ 

concentrations. [C5] = 10.5 μM. λexc = 405 nm. λem = 613 nm. [DNA]stock = 2.02 

mM. [MV2+]stock = 5 mM. 
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Figure 1 – (A) Absorption spectra of C3, 4.9 μM in TRIS buffer, in the absence 

(···), and in the presence of CT-DNA in ratios of 5 (---) and 10 to 30 (—).       

(B) Emission spectra of C3, 4.9 μM in TRIS buffer, in the presence of increasing 

amounts of CT-DNA (DNA/Ru ratio of 0 – 80, in base pairs). λexc = 465 nm. 

Inset: changes in the emission intensity, I/I0 (●), and emission lifetime, τ/ τ0 (○), 

of C3 as a function of DNA/Ru ratio. 
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Figure 2 – (A) Absorption spectra of C5, 10.5 μM in TRIS buffer, in the 

presence of increasing amounts of CT-DNA (DNA/Ru ratio of 0 – 80, in base 

pairs). (B) Emission spectra of C5, 10.5 μM in TRIS buffer, in the presence of 

increasing amounts of CT-DNA (DNA/Ru ratio of 0 – 80, in base pairs). λexc = 

460 nm. Inset: changes in the emission intensity, I/I0 (●), and emission lifetime, 

τ/ τ0 (○), of C5 as a function of DNA/Ru ratio. 
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Figure 3 – Emission spectra of CT-DNA + C3 (Ratio 30/1) in the presence of 

increasing amounts of methyl viologen (0 – 200 μM). [C3] = 4.90 μM. [DNA]stock 

= 2.82 mM. [MV2+]stock = 5 mM. λexc = 465 nm. 
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Figure 4 – Emission spectra of CT-DNA + C5 (Ratio 30/1) in the presence of 

increasing amounts of methyl viologen (0 – 200 μM). λexc = 465 nm. [C5] = 10.5 

μM. [DNA]stock = 2.02 mM. [MV2+]stock = 5 mM. 
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Figure 5 – Stern-Volmer emission intensity (●) and lifetime quenching plot for 

C3+DNA (ratio 1:30) in the presence of increasing amounts of methyl viologen 

(MV2+).  Both fast (short) (▲) and slow (long) (○) components of the emission 

decay are represented. λexc = 405 nm. Emission collected at 610 nm. 
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