
1

Mobile robot electronic system with a network and

micro-controller based interface

Filipe Campos Meira Castro FilipeMeiraCastro@gmail.com

António Fernando Macedo Ribeiro fernando@dei.uminho.pt

Günther Starke starke@aps-mechatronik.de

Christoph Dreyer dreyer@aps-mechatronik.de

Universidade do Minho, Departamento de Electrónica Industrial, Guimarães, Portugal [11]

APS – European Center for Mechatronics, Aachen, Germany[12]

Abstract - This paper describes the electronic system used to a

mobile tank-robot and the network and micro-controlled based
interface proceeding to drive it.

Key Words – Tank Robot, Client/Server, Qt, Atmega16,

Encoder, MD03 Driver, I2C (Inter Integrated Circuit)

I. INTRODUCTION

The key objective was to design and develop an embedded

system able to control a mobile platform. I2C communications

drives and encoders reading were developed using ATMega

microcontroller technology and Client/Server protocol carried

out using Qt libraries.

Fig. 1 shows the multi-terrain tank style robot and the two

chosen motor drivers, a DC converter, the microcontroller

display and the batteries that provide power to the

microcontroller system as well as to the motors and encoders.

The system is multiprocessor based, it is composed by two

computers (one Client and one Server), a microcontroller and

drivers, encoders and a display.

Client and Server based architecture of this robot inherits a

wireless network interconnection to entitle the robot control

without any wire-link to the exterior.

Tasks that are likely to be critical to performance and safety

are implemented in a micro-controller. Increased system

robustness is achieved when comparing to other robot systems

based on one computer only [1].

Atmega16 microcontroller is the robot hardware center: the

display gives feedback from the microcontroller states and has

an important duty about diagnose, repair and maintenance of

the robot. For example, if the connection between the motor

drivers and the I2C bus is lost, a message saying “Motor Left:

Error, Motor Right: Error” shows up.

Status monitoring of the system parameters during an

operation cycle can be also seen on the display.

The Server connects to the Atmega16 microcontroller over

RS232 protocol.

Atmega16 microcontroller code was written in C language

but C++ language is used to Server and Client computer code.

Fig. 2 shows the block diagram for the proposed solution.

II. THE DRIVER

MD03 motor driver was chosen due to its I2C capabilities

matching the project intention of a modular system design and

it has the power capabilities the system requires.

Up to eight MD03 modules can be connected to a system

(Switch selectable addresses) [3] and these robot specific

connections can be seen on Fig..3

Fig. 1. Robot, DC converter, the microcontroller, display, batteries, motors,

motor drivers and the encoders.
Fig. 2. Block Diagram

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55616609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

III. ENCODERS

This robot has two quadrature incremental encoders that are

used to precise how much is each motor running and also to

provide the speed of each motor after some computation.

A connection between channels A of each encoder was

connected to an external interrupt of atmega16 which is

programmed to catch rising edges and make the digital count

of the pulses.

To sense the rotation direction of each motor, each encoder

was coupled to a D type flip-flop with channel A as flip-flop

clock input (clk) signal and channel B as the input data (D)

signal (see Fig. 3). It is possible, using the combination of

these two signals (A and B), to obtain the output of the flip-

flop (Q) representing the direction of rotation. Output (Q) is

connected to an input pin of atmega16 so that the

microcontroller can know whenever pulses are to be increased

(Output of the flip-flop is 0) or decreased (Output of the flip-

flop is 1).

IV. THE REGULATOR

A regulator was needed to convert 24V from the batteries to

a regulated 5V used to feed the microcontroller, encoders and

the other components.

The regulator component is a LT1076 which is rated at 2A, it

is a monolithic bipolar switching regulator and requires only a

few external parts for normal operation. It has built-in power

switch, oscillator, control circuitry, and all current limit

components.

The classic positive “buck” configuration was adopted and

the switch output is specified to swing 40V below ground

which is perfect to the robot’s 24V, because it is in the middle

of the rated range.

Schematic and the regulator board can be seen on Fig. 4.

V. I2C INTERFACE

I2C (Inter Integrated Circuit) also known as TWI (Two Wire

Interface) is the communication protocol chosen because it can

easily link multiple devices together with only two wires each

[4], the two I2C signals are Serial Data (SDA) and Serial Clock

(SCL). This interface is an optimum solution to one of the most

common problems on robot development which is the ever

increasing number of sensors and the amount of cabling

required.

Philips originally developed I2C for communication and due

patent concerns Atmel uses the name TWI (Two Wire

Interface) instead of I2C. [4]

Several I2C-compatible devices are manufactured by

different companies and can be found in embedded systems.

Some examples are EEPROMS, thermal sensors, video and

audio decoders, encoders, displays, motor drivers, etc.

Fig. 5 shows the specific interconnections of the drivers with

the I2C bus: the microcontroller is the master of the I2C bus

and both drivers are I2C slave devices; the two resistors are

called “pull-up resistors”, they need to be present on the clock

line (SCL) and on the data line (SDA); they are used to do the

interface between different types of logic devices and they

ensure that the circuit assumes the default value when no other

component forces the line input state.

Since the chips are designed often open-collector, the chip

can only pull the lines low and they float to VDD otherwise;

this way, the master can sense if a simultaneously

transmissions is happening, letting the pin float and sensing the

line, if the line is still at VDD, probably no transmission is

being carried out from other device [5].

I2C matches the Master/Slave topology and supports

multiple masters and multiple slaves.

I2C Master is the device that can start and stop

communications and has usually the duty of controlling the

clock.

I2C Slave is a device that is addressed by the master. When

the master asks a slave for data, the slave has the possibility to

hold off the master in the middle of a transaction using “clock

stretching” [5] (the slave keeps SCL pulled low until it is ready

to continue). This makes synchronism of slow slave devices

possible but most I2C slave devices don't use this feature.

It is duty of every I2C slave to monitor the bus and to

respond only to its own address.

The transmitting protocol inherits the data sending of each

byte, start with the MSB (most significant byte). Fig. 6 shows a

typical communication between a master issuing the start

condition (S) followed by a 7-bit slave device address to start a

communication with a Slave. The eighth bit after the start

(read/not-write) is used to signal the slave when the master

sends more instructions (Slave will receive more data) or when

the master is ready to receive data (Slave can transmit data).

After each byte sent by the Master, the Slave must reply with

an ACK bit to signal the reception of the previous byte.

This 9-bit pattern is repeated when more bytes need to be

transmitted.

Fig. 3. Encoder Signals & Encoder Flip-Flop D

Fig. 4. Regulator Board & Regulator Schematic [LT1074 datasheet]

3

The issue of the stop condition (P) is done instead of the

ACK at the end of a master reading transaction (slave

transmitting).

When a master write transaction (slave receiving) is being

performed, the master issue the stop condition (P) when it

receives the last ACK of the data sent.

VI. MICROCONTROLLER CHOSEN AND CONSIDERATIONS

There is a large variety of microcontrollers on the market.

Atmega16 belongs to AVR family and was the microcontroller

chosen to make a new embeddable system capable to control

the I2C motor driver system, to read the encoders and to give

local feedback through a display and to perform

communications with the server.

Other microcontroller family could be used but the cost of

the programming device should be low and therefore the

compilers should be freely available. 8051, Microchip PIC®,

and Atmel AVR® were possibilities that matches the criteria.

The traditional 8051 has a simple architecture and it is

familiar to most embedded engineers. The amount and quality

of tools and sample source code available is huge but it is

common that each manufacturer provides proprietary features

and migration from one variant to another usually implies new

programmers. The typical architecture of some models is

standard for several manufacturers but those don’t have

engrossing stuff like A/D and D/A converters, I2C, In-circuit

programming, etc. [B2] That lack of standardization makes it

hard and the problem with upgrading does not meet the project

objectives and so it was discarded.

A PIC microcontroller was considered an expensive solution

much more than the Atmel AVR (The PIC official programmer

PICstart Plus) since it costs 3 times more than the AVR one

(STK500) [B2]).

AVR microcontroller is manufactured by Atmel [6] and its

family is largely used worldwide so it is easy to get access to

libraries or fragmented source codes on internet [7] and its

versatility makes it possible to make use of several different

features and to perform simple future migration of the source

code within microcontrollers of the same family and it is

possible to use different compilers and different programming

languages.

Atmega16 has a number of features which make it very good

to this project. It has 3 Timers, 4 PWM channels, I2C, 8

ADC’s, USART, SPI and 32 I/O ports [6].

The editor and debugger used was “AVR Studio” that is

freeware and has a very good and powerful debug mode and

simulator [8].

The language used is C, the medium level rate of this

language makes a good power/control ratio which makes the

robot programming flexible.

VII. MICROCONTROLLER SOFTWARE

The software written was supposed to be modular and

should have an easy to use structure for future programmers to

be able to easily improve the robot performance.

The modularity was made by using many files, each one

giving its own main functions, even so they can depend on the

others, for example: the USART (Universal Synchronous

Asynchronous Receiver Transmitter) functions use the

MOTOR functions after decoding a command sent by the

computer Server program.

“Atmega.c” is the main file of the whole microcontroller

application and initializations of the modules (error support,

USART, LCD, encoder, i2c, timers, interrupts and motor

drivers) is taken care in this module, reason why atmega16

header file connects all needed modules, as shown in Fig. 7.

After all initializations, the program will run in an infinite

loop waiting for any command sent over the serial port and

waiting for the timer to perform some computation as the

“Virtual Heart Beat” and to execute commands to feedback the

data sensor values.

“error_support.c” module is used to help the programmer

at the debug stage. Features provided are the basic turn LEDS

on and off. It is very easy to include this file in any other and

Fig. 5. Robot I2C interconnection system

Fig. 6. I2C Packages

Fig. 7. atmega16.h interconnections

4

give them this debug capability and to increase the number of

LEDS or change its port connections.

“external_interrupt.c” module is used for the encoders.

The robot has two quadruped encoders, each one is

connected to an External Interrupt and each time a transition is

made by any encoder the microcontroller will account for it.

Derived from the asynchronous and unpredicted pulse

occurrence, an external interrupt was configured, this way this

“time-critical” operation is separated from the main program

execution [2].

Generically, two main types of external interrupts could be

implemented:

• Level-sensitive interrupts are attended at either low-

level or high-level [2].

• Edge-sensitive interrupts are attended at a transition

that can be defined to be rising edge or falling edge

sensitive interrupt [2].

An edge-sensitive approach was chosen because even if, in

theory, a pulse is skipped when a subsequent interrupt occurs

[2] (practically the test with both robot wheels running at same

speed showed that the processor catch all pulses); an approach

with level-sensitive would certainty provide worst results

because the Level sensitive interrupt suspends other processing

during all level time [2] and pulses would be missed if both

wheels were running at the same speed.

Another PIN is defined, for each encoder, at the header file

and the purpose is to know whenever the encoder is running

forward or backwards and so the microcontroller knows if it

has pulses to be increased or decreased respectively.

“generics.c” module provides one function to make a

variable delay and other one to read a switch.

“lcd.c” module implements a HD44780U LCD library; it

uses 4 PIN data transfer. The main functions are the display

initialization and cursor type selection as well as functions to

clear the display, to place the cursor at a specified location and

to write a string, an integer or a char type variable.

“motor.c” module has functions to interact with the motor

drivers and interconnections are described on Fig. 8. The main

functions are to address the drivers, to make the initial test to

the motor drivers by testing the I2C communication with the

driver. That knowledge is useful to avoid sending commands to

the driver when it is not connected, and that way the

microcontroller doesn’t halt trying to send commands to a

disconnected motor driver. This way tests with other sensors

and the computer can be made without these drivers. Feedback

is also archived through the LCD. It has functions to provide a

simple and fast way to break the motors.

Functions related to the timers are implemented in “timer.c”

/ “timer.h” files.

As usual at embedded systems [2], when the timer is

activated, the program will change its flow to the function

SIGNAL (SIG_OVERFLOW1) and when it is completed it

returns to the place where it was before (SIG_OVERFLOW1 is

the address of the interruption vector respect to the

timer/counter 1 overflow).

Fig. 9 shows the interconnections between this module. The

purpose of the timer is to:

• Calculate the speed of each robot motor.

• Deal with “Virtual Heart Beat”.

• Automatically send the sensor data to the Server.

A “Virtual Heart Beat” was created between Server/Client

and Server/Microcontroller to avoid robot loss of control. On

the microcontroller side, this can be described as a command

that is sent to Server every 2 seconds. When the Server

receives it has the duty to resend that command.

If, after four seconds, no acknowledge of the previous ping

is received then a command to stop the motors is sent by the

microcontroller to avoid damages caused by an uncontrolled

robot.

“twi.c” module implements an I2C library. It is used to

provide functions to communicate with the I2C devices. The

main functions provided in this library are used to initialize the

I2C master interface; to terminate the data transfer and release

the I2C bus; to issue a start condition and send the address and

transfer direction; to issue a repeated start condition and send

the address and transfer direction; to issue a start condition and

send address and transfer direction; to send one byte to I2C

device; to read one byte from the I2C device.

“Usart.c” module provides the communication system

between atmega16 and the server program located on a laptop.

It also does the interpretation, followed by correspondent

action, of any commands provided by the server and is able to

send commands provided from other modules of the atmega16

to the server.

The Serial Ports communication is dealt with functions that

provide the device initialization and sends a character or a

string using USART.

Fig. 8. motor.h interconnections

Fig. 9. timer.h interconnections

5

The command is interpreted and then executed. The

developed commands are used to send the sensors data to the

USART, data is relative to the “Virtual Heart Beat” and to each

motor, position, velocity, current and temperature.

VIII. PROTOCOL OF COMMUNICATION BETWEEN THE SERVER
COMPUTER AND THE ATMEGA16

Each command received by the atmega16 USART, to be well

interpreted, must have at least one alphanumeric byte followed

by at least one numerical value and a ‘Z’ character to flag the

end of each command/value frame.

All characters must be in ASCII format.

Table I shows the word composition layout.

TABLE I
WORD COMPOSITION LAYOUT

Word Composition nr. 1 ……. Word Composition nr. n

Function Value ‘Z’ ……. Function Value ‘Z’

x bytes y bytes 1 byte …… u bytes v bytes 1 byte

With this protocol the communication stability is archived

because if a lack of communication occurs, the command is

misunderstood but at least synchronism loss is avoided.

The flexibility is also archived by this method because

commands and values can have different sizes.

IX. PROTOCOL OF COMMUNICATION FROM THE ATMEGA16 TO
THE SERVER COMPUTER

The protocol of sending data from atmega16 to the server

computer is different from the opposite direction.

The server wants either all sensors data or a considerable

amount of data and not just a specific value. Therefore, instead

of sending an extra character to signal the end of a specific

frame (like the ‘Z’ character in the communication from server

to the atmega16), the process is implemented to validate a

frame each time a new alphanumeric character appears. This

way, to process the last received frame, the server must receive

an extra frame: that last frame is “END0” and does nothing

except handling the possibility to the server know that previous

value received has been completed.

The “END0” frame is, in fact, an undefined command/value

by the server and so it can be replaced by any other appearance

as “E0” or any other undefined command/value.

After a command/value is identified another function is

called to execute it.

Resuming, atmega16 can send several sets of commands and

values with different sizes and when the server receives the

command/value “END0” it guarantees the process of the last

command/value.

To ensure a correct explanation of the whole communication

process, it needs to keep in mind that inherent the serial port

process, the operating system gets a variable amount of data

from the serial port buffer and the server applications get that

frame which can contain several sets of commands/value. To

deal with all amount and unpredictable data, every time the

server gets data, a copy to a new variable is done and a reset is

performed of the old buffer to a null value and starts the

process of indentifying commands/values. This way the buffer

does not get too long and the process of indentifying

commands/values has a static data within the process (the

buffer update is in other thread, reason why it has a dynamic

growth).

X. DESKTOP PROCESSING

The system proposed uses two computers based at a server-

client architecture. The client computer is not critical but the

server used is, at the moment, a common laptop although later

on it will be replaced by an industrial and low-power

consumption one.

Since the QT libraries are used, this system is platform

independent, which means that the operating system can be

Windows, Windows CE, MAC, LINUX or an embedded Linux

environment.

The necessity for a computer in the system is due to the

computer archive plug and play updates through USB ports,

can make some parallel computation and the space of a laptop

in the robot is not critical since the robot is large and a lot of

space is still free for other components.

The language used for the desktop processing is C++ and QT

libraries and other tools were also widely used.

“Qt sets the standard for high-performance cross-platform

application development. It includes a C++ class library and

tools for cross-platform development and internationalization”

[9].

Fig. 10 shows the block diagram of QT framework.

Qt uses a working philosophy based on objects and it uses

directives of Signal/Slots which can be connected with each

other.

The idea of a desktop program is to provide high level

processing and to allow users to work with the robot remotely.

Two programs were developed:

“Server” and “Client” computer connect each other through

the TCP/IP protocol.

A “Virtual Heart Beat” was created between Server/Client

and Server/Microcontroller to avoid robot loss of control. In

the Client/Server concern, it can be described as a specific

command that is sent from the Server to the Client every 2

seconds. When the Client receives it, it has the duty to resend

that command.

If, after four seconds, no acknowledge of the previous

command is received then a command to stop the motors is

sent from the server to the microcontroller to avoid damages

caused by an uncontrolled robot.

XI. THE CLIENT

The client is used to transfer the user interface values

directly to the server and it is able to interpret incoming

commands proceeding from the server to provide users to

know the values of temperature and current of each motor

drives and also the position and velocity of each motor.

6

Client also to interpret the “Virtual Heart Beat” between the

server and the client to avoid a loss of control of the robot

derived from a lack of energy that could turn off the wireless

router or even the client computer.

“Client” class makes possible to create a client based on an

IP address and a PORT by use of its constructor.

Functions to make possible to send a QString to the server

are provide as well as respective Signals that are also used to

provide a way to log the data sent by the client.

The client has a socket to receive data as well as respective

Signals; that signal is connected to a Slot that provides a way

to log the data received.

Others private Slots of each Client can be used to close a

connection, connect a server, close a connection, read, archive

socket errors, etc.

Client needs to interact with the Server in order to send

commands that the user wants the robot to have and needs to

listen to data from the Server, that data can be provided from

the robot sensors but it is the server that transmits it (if the

Server options are defined to).

The interface includes a QgroupBox named “Client” which

has Qbuttons to connect to an IP address that can be chosen

through a QlineEdit.

The data is sent as ASCII format and the protocol adopted

for command exchanged between the server and the client is

the same as from atmega16 to the server:

Several sets of commands and values with different sizes are

being concatenated every time a character is received and

when the word “END” appears the processing starts.

The client will interpret all commands/data it receives and

send it, one by one, to a function that will perform those

commands.

The commands that are currently being used are shown in

Table II:

TABLE II

COMMANDS THAT ARE CURRENTLY BEING USED
TD Turn Spin box (Turn Direction)

TV Turn Velocity

TA Turn Acceleration

MRA Motor Right Acceleration

MRV Motor Right Velocity

MLA Motor Left Acceleration

MLV Motor Left Velocity

RAD0 Read All Data

Client has a QButton, as shown in Fig.13, to signal to the

Server that the Client commands should automatically be sent

to the robot.

To do that, every time any slider is released, it will check if

“automatic send option” is active, and if so, it will call the

function associated with the “Send Button”.

Independently of the “Automatic Send Command to Robot”

option, Qbuttons can be used to send the server, data from

velocity, acceleration and direction as well as to read

temperature, current, velocity, acceleration; due to facility

purposes it has a Qbutton to stop the robot.

XII. THE SERVER

Server main interface is shown in Fig. 11.

Server is used to interpret data from the client, to

communicate with the microcontroller and it is able to operate

the robot in a stand alone mode (without the Client).

It has a copy of the Client interface and once it receives a

command from the Client, it interprets it and adjusts the sliders

values at the Server side.

It can send commands to provide the client with values of

temperature and current of the each motor driver and also the

position and velocity of each motor.

The class “Server” makes possible to create a server based

on a TCP/IP port.

The data transmission from the Server to the Client is

identical to the Client from the Server, being the only

difference the behavior to the interpreted commands.

There is a function used to send the robot sensors data to the

client.

With the SerialPort Class it is possible to have control of the

Server computer Serial Port.

Several Slots can be used when necessary to open or close a

socket port, to send data to a port and to end a connection, etc.

The slot saveBaudrate(QString) is useful to make the setup

options, which need to be made only once per computer.

Signals are used to flag connections, disconnections, errors,

data written and data read; they are useful to get/send data

from/to the serial port as well as to signal the connections

results.

There is one function used to interpret the data from the

serial port and when a command/value is interpreted another

function is called to deal with the sensors data and the robot

can forward that value to the client and update server interface.

Server has a menu where the Setup Window, as shown in

Fig.12, can be reached.

The Setup is used to set up the Com Port and the Network.

A Log window can be reached from this menu too. It is a

very useful window that shows all data shared through the

Serial Port and it is useful for debug proposes.

Fig. 10. Qt Block Diagram [9]

7

Server has a QButton (Fig. 13) to provide that the commands

are automatically sent to the robot. The behavior is the same as

described in a similar button on the Client side (Fig. 13).

Each time any slider is released, it checks whether automatic

send option is active, and if so, it will call the function

associated with the “send Button”.

Independently of the “Automatic Send Command to Robot”

option, Qbuttons can be used to send the robot (through

RS232) data from velocity, acceleration and direction as well

as to read temperature, current, velocity, acceleration and, like

the Client, the Server has a Qbutton to stop the robot.

The server has also a Qbutton, as shown in Fig. 13 to

provide the data from the robot sensors to be automatically sent

to the client. To do that, every time the server interprets the

sensors data from the Serial Port, it forwards those values to

the client if this option is enabled.

The interface shown in Fig. 14 is identical between the

server and the client even through the internal behavior is

different because at the server side, the commands are interpret

and sent over RS232 to the robot but at the client side the

command are directly sent to the server over TCP/IP.

QbuttonGroups “Motor Left” and “Motor Right” are used to

control the motors individually and the “Turn” QbuttonGroup

is used to control both motors at once. Each one has Qsliders

with connected CspinBox to provide interface of the desire

motors velocity and acceleration.

Near each individual motor control, “Sensor Readings”

QbuttonGroup are used to give feedback of temperature,

current, position and velocity respectively using QlineEdit

widget.
Typically, instead of individually control each motor, the robot

is controlled by setting its velocity and acceleration, a Qdial

widget is used to set the robot turn direction, as well as a

Qbutton to easily put the robot running forward.

Fig. 11. – Server Main Interface

Fig. 12. – Setup: Serial Com Port and Network settings

Fig. 13. Automatic send command to robot and to the Client

Fig. 14. – Identical interface components between Server and Client

XIII. CONTROL HARDWARE SCHEMATIC, STRIP-BOARD AND
3D PCB

Control unit schematic, as shown in Fig. 15, was designed in

Eagle [10] because it is a PCB and schematic freeware version

design software, which makes it desirable to learn and to use.

Even though Eagle could be more “user friendly”, it has an

easy startup learning stage. It is very popular software which

means that is relatively easy to get new parts.

Strip-board, as shown on the left side of Fig. 16, is more

robust and much smaller than the proto-board but it is not so

flexible, even so more I2C devices are easily connected to it; It

can be seen the power connectors, programmer cable, power

and debug/error LEDs, I2C bus (SDA and SCL line), LCD

connector with backlight and contrast resistors, 16Mhz crystal,

encoder connectors with D type Flip-Flop and the RS232

connector.

3D PCB, as shown at the right side of Fig. 16, was made

with help of a freeware add-on to the Eagle [11] as well as

POV-Ray that is a freeware tool to design 3D.

XIV. SOFTWARE AND HARDWARE CONSIDERATIONS

One of the most difficult aspects to describe in a paper is the

hardware and software debug phase. This process consists of

connecting all hardware and software components after

successfully tested individually.

What concerns hardware, tests were carried out with a small

motor and with small power supply. After that, the robot

motors were tested with a 24V battery and the microcontroller

8

was fed by the fixed power supply, now all the power is

provided by batteries.

Software debug can be spitted into the Desktop and the

Microcontroller parts.

First the USART was implemented and then the PWM

signals followed by debug LEDs.

Communication between the server and serial port was

tested followed by the communication between server/client.

Everything was connected together as well as the I2C

communications with the drivers.

One of the motor characteristic is the electromagnetic brake;

it needs to be fed with 24V to release the motor. The breaks are

constantly open in what this project concern, but to achieve

low power consumption, a relay will be added later to allow its

control through the microcontroller.

Sometimes the motor control driver would crash and leave

the motors running. This problem was sorted out by adding a

10nF capacitor to each motor to reduce noise as well as

rewriting the application with a better programming

philosophy.

A “Virtual Heart Beat” was created between Server/Client

and Server/Microcontroller to avoid robot loss of control. It

consists of a ping every 2 seconds.

CONCLUSION

A presentation was carried out at APS - European Centre for

Mechatronics in Germany. The robot showed high stability

with either fast or smooth control and safety mechanism gave

active and passive protection.

The use of I2C gives a proof of efficiency, fast and

expansible concept.

The software made at desktop level using qt libraries makes

the system portable and flexible. The low level developed

software at the microcontroller unit makes the system fast at

duties as calculation the position, speed and acceleration of the

robot and I2C communication leaving the desktop free for

other duties.

.ACKNOWLEDGMENT

Special regards to all persons who made this project

possible:

Special thanks to the project supervisor: Prof. Dr.-Ing.

Günther Starke who always believed on my capacity to fulfill

this work.

Special thanks to the project supervisor: Dipl.-Ing. Christoph

Dreyer due to his mentoring, guidance and kindness in all good

and difficult moments of the project.

Special thanks to the supervisor: Prof. Dr. Fernando Ribeiro

who always cleared doubts and uncertainties even from abroad.

His advices were also essential to show a path and his

availability was very kind.

REFERENCES

[1] Lewin A.R.W. Edwards, ” Open-Source Robotics and Process Control Cookbook
- Designing and Building Robust,Dependable Real-Time Systems”, Newnes,

ISBN: 0-7506-7778-3

[2] Michael Barr, Anthony Massa, ” Programming Embedded Systems”, O'Reilly,
ISBN: 0-596-00983-6, cp8, cp9, cp13

[3] Motor driver MD03 Datasheet, www.robotstorehk.com/md03tech.pdf, (Accessed
on March, 2008).

[4] Phillips manual about I2C.

www.nxp.com/acrobat_download/applicationnotes/AN102161.pdf

 (Accessed on March, 2008).
[5] Page of Wikipedia. Here you can find nice tutorial about I2C functions.

http://en.wikipedia.org/wiki/I2C (Accessed on March, 2008).
[6] Page of Atmel.. Information about microcontrollers and datasheet about

atmega16, debuggers (AVRStudio) and other Atmel products, www.atmel.com

(Accessed on March, 2008).
[7] Large projects collection; suitable to learn you more about AVR,

www.AVRfreaks.net (Accessed on March, 2008).

[8] AVR Studio, www.atmel.com/dyn/resources/prod_documents/doc2466.pdf
(Accessed on March, 2008).

[9] QT webpage. Information about QT, help documentation with libraries

specifications and features. http://trolltech.com/products/qt (Accessed on March,
2008).

[10] Eagle webpage. Downloadable freeware version of Eagle as well as many libraries

of components, www.cadsoft.de/ (Accessed on March, 2008).
[11] Eagle 3D webpage, Downloadable freeware and open source version of Eagle 3D,

add-on as well of documentations about to use it,

www.matwei.de/doku.php?id=en:eagle3d:eagle3d (Accessed on March, 2008).
[12] Main page of Industrial Electronics and Computers department of University of

Minho. Here it is possible to find information referring members of the

department, teaching activities and investigation developing projects, etc.
www.dei.uminho.pt (Accessed on March, 2008).

[13] Main page of APS - European Centre for Mechatronic,s here it is possible to find

information referring members of the center, investigation developing projects, etc.
www.aps-mechatronik.de (Accessed on March, 2008).

Fig. 15. – Controller unit schematic

Fig. 16. – Strip-Board & 3D PCB

