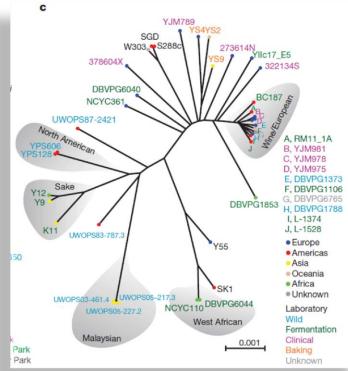


Microevolutionary changes of commercial Saccharomyces cerevisiae strains recovered from vineyard environments identified by comparative genome hybridization on array

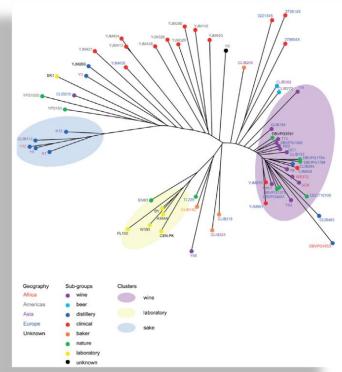
<u>Ricardo Franco-Duarte</u><sup>1</sup>, L. Carreto<sup>2</sup>, B. Cambon<sup>3</sup>, S. Dequin<sup>3</sup>, M. Santos<sup>2</sup>, M. Casal<sup>1</sup>, D. Schuller<sup>1</sup>

- 1 Centre of Molecular and Environmental Biology (CBMA), Braga, Portugal
- 2 RNA Biology Laboratory, CESAM, Aveiro, Portugal
- 3 UMR Sciences pour l'Oenologie, Microbiologie, INRA, Montpellier, France









## **INTRODUCTION**

#### The population structure of Saccharomyces cerevisiae



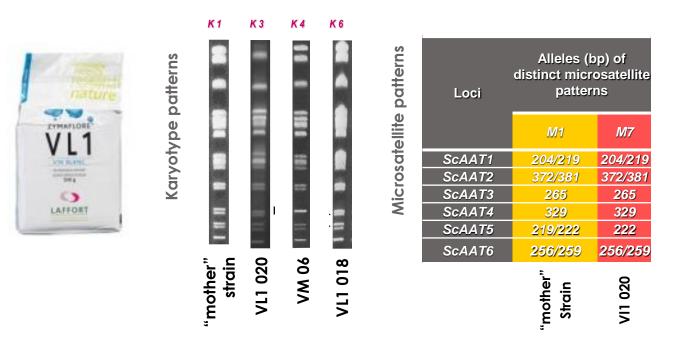
#### Liti et al., Nature, 2009

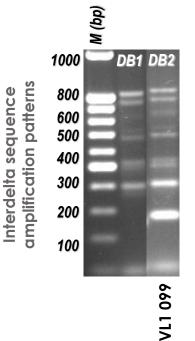
#### 235,127 SNPs 14,051 nucleotide insertions or deletions



#### Schacherer et al., Nature, 2009

1.89 x 10<sup>6</sup> SNP (30,097 SNPs per strain) 3,985 deletios (200 bp length)


- low coverage genome sequencing
- high density arrays
- few well-defined, geographically isolated lineages
- many different mosaics of these lineages (wine, laboratory and saké strains)


# INTRODUCTION

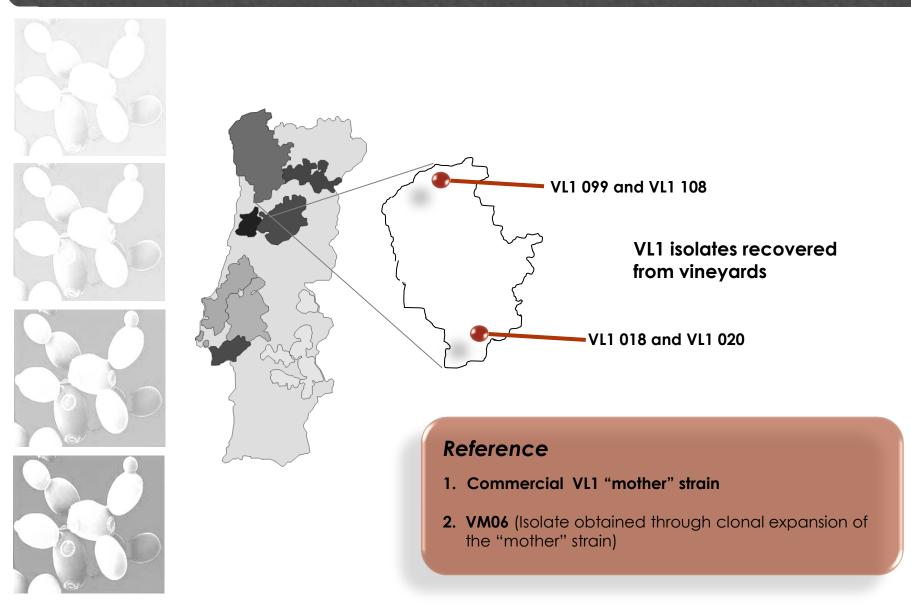
#### S. cerevisiae commercial winemaking strains



- ✓ Extensive use of commercial S. cerevisiae wine strains
- Such strains are disseminated from the winery and can be recovered from locations in close proximity (10-200m)
  Valero et al., 2005
- Re-isolation of 100 isolates of the commercial strain VL1 from vineyards close to the winery where this strain has been used during many years Schuller and Casal, 2007



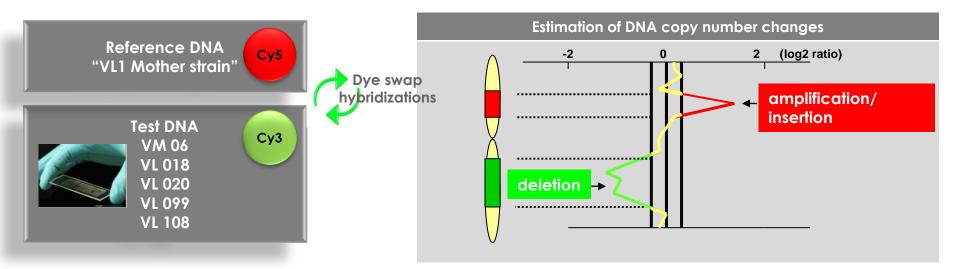


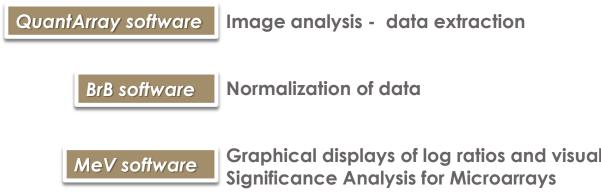



#### **Objectives**

- Evaluation of genome variations among isogenic isolates of the commercial strain Saccharomyces cerevisiae Zymaflore VL1 that were re-isolated from vineyards surrounding the wineries where this industrial strain was applied, using Comparative Genome Hybridization on array (aCGH);
- Conclude about adaptive mechanisms that occur during the strain's permanence in vineyard environments

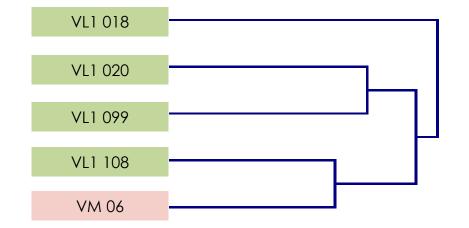
## Materials and Methods


#### Saccharomyces cerevisiae isolates




# Materials and Methods

#### Array Chromosome Genome Hybridization (aCGH)

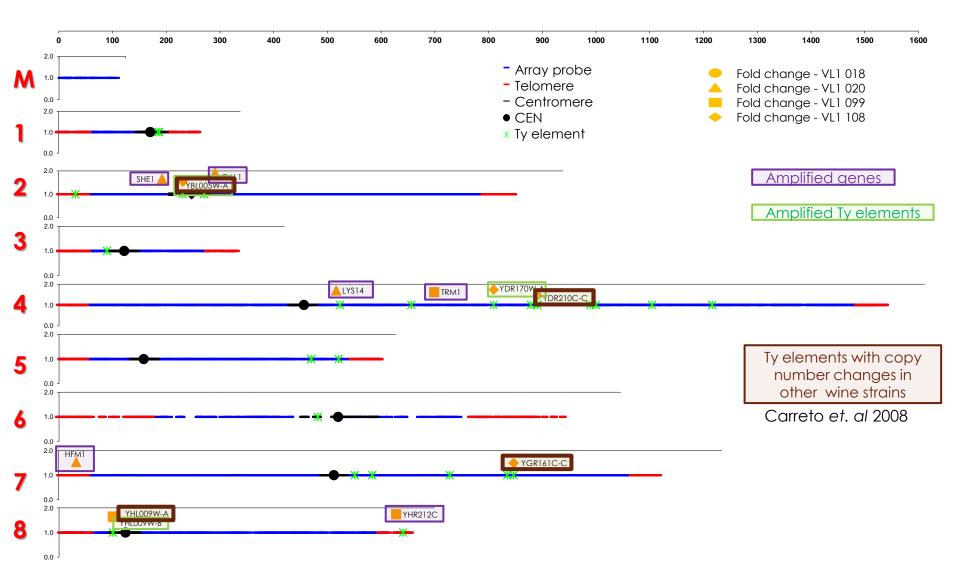

Spot





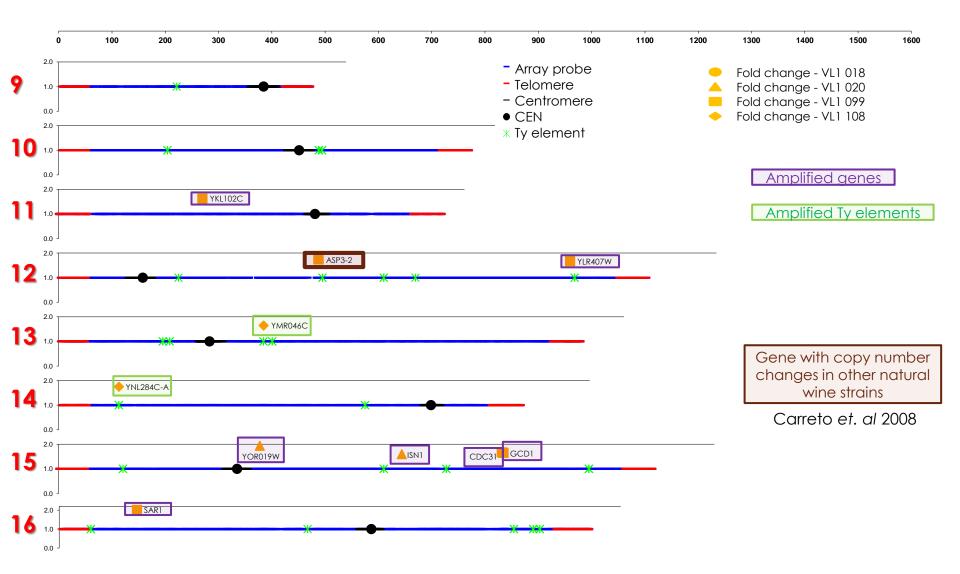
Graphical displays of log ratios and visual representation of data

#### Clustering of aCGH profiles




(Hierarchical clustering, Pearson correlation, average linkage)

No clear separation between VL1 isolates obtained from nature () and an isolate derived from the "mother" strain ()


Results

#### Gene Copy number alterations – SAM analysis



Results

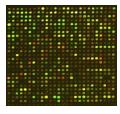
#### Gene Copy number alterations – SAM analysis



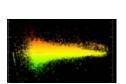
Results

#### Phenotypic characterization




- Wine must + compound
- 30 °C
- 200 rpm
- quadruplicate

|                    | Phenotypic tests |      |      |      |      |           |           |           |           |           |            |            |                         |                        |                           |                          |                     |                                 |                         |                       |
|--------------------|------------------|------|------|------|------|-----------|-----------|-----------|-----------|-----------|------------|------------|-------------------------|------------------------|---------------------------|--------------------------|---------------------|---------------------------------|-------------------------|-----------------------|
| Strain             | 30°C             | 18°C | 40°C | рН 2 | pH 8 | KCI 0.75M | NaCI 1.5M | CuSO4 5mM | SDS 0.01% | Etanol 6% | Etanol 10% | Etanol 14% | Iprodion<br>(0.05mg/mL) | lprodion<br>(0.1mg/mL) | Procymidon<br>(0.05mg/mL) | Procymidon<br>(0.1mg/mL) | KHSO3<br>(150 mg/l) | KHSO <sub>3</sub><br>(300 mg/l) | Vinho +<br>glucose 0.5% | Vinho +<br>glucose 1% |
| VL1 018            | 3                | 1    | 3    | 0    | 2    | 2         | 1         | 0         | 0         | 3         | 2          | 1          | 3                       | 3                      | 3                         | 3                        | 3                   | 1                               | 1                       | 1                     |
| VL1 020            | 3                | 1    | 3    | 0    | 2    | 3         | 1         | 0         | 0         | 3         | 2          | 1          | 3                       | 3                      | 3                         | 3                        | 3                   | 1                               | 1                       | 1                     |
| VL1 099            | 3                | 1    | 3    | 0    | 2    | 2         | 1         | 0         | 0         | 3         | 2          | 1          | 3                       | 3                      | 3                         | 3                        | 3                   | 2                               | 0                       | 0                     |
| VL1 108            | 3                | 1    | 3    | 0    | 2    | 2         | 0         | 0         | 0         | 3         | 2          | 1          | 3                       | 3                      | 3                         | 3                        | 3                   | 2                               | 0                       | 0                     |
| VM06               | 3                | 1    | 3    | 0    | 2    | 2         | 1         | 0         | 0         | 3         | 2          | 1          | 3                       | 3                      | 3                         | 3                        | 3                   | 2                               | 1                       | 1                     |
| "Mother"<br>strain | 3                | 0    | 3    | 0    | 2    | 2         | 1         | 1         | 1         | 3         | 2          | 1          | 3                       | 3                      | 3                         | 3                        | 3                   | 2                               | 0                       | 1                     |


**0** – Abs<sub>640nm</sub> 0.1

 $1 - Abs_{640nm} 0.2-0.4$   $2 - Abs_{640nm} 0.5-1.2$   $3 - Abs_{640nm} \ge 1.3$ 

# SUMMARY AND CONCLUSIONS



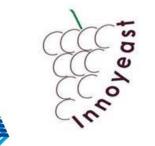
- Isogenic isolates of the commercial wine yeast strain Zymaflore VL1 recovered from nature show genetic differences in comparison with the "mother" strain:
  - Gene amplifications
  - Ty element amplifications
  - Apparent stochastic distribution



• Generation of intra-strain phenotypic variability

The transition from nutrient-rich musts to nutritionally scarce natural environments is correlated with microevolutionary changes that may reflect adaptative responses




# **Acknowledgements**



- Dorit Schuller
- João Drumonde •
- Elza Fonseca
- Inês Mendes
- Nuno Fonseca
- Eugénia Vieira •

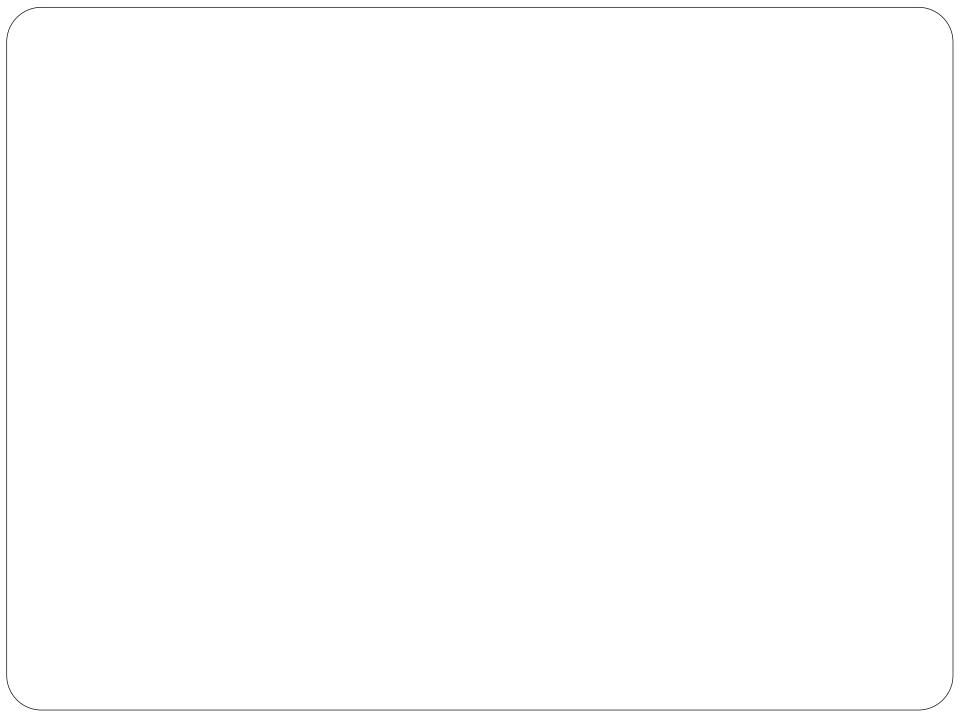
PROGRAMME







#### FCT Fundação para a Ciência e a Tecnologia


MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR





UNIÃO EUROPEIA FUNDOS ESTRUTURAIS

GOVERNO DA REPÚBLICA PORTUGUE





## Significant altered genes

| Strain | Systematic<br>Name | Classical<br>Name | Description                                                                                                                                                                                                                                         | Chromosome |  |  |  |
|--------|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| 020    | YBL031W            | SHE1              | Mitotic spindle protein that interacts with components of the Dam1 (DASH) complex, its effector Sli15p, and microtubule-associated protein Bim1p; also localizes to nuclear microtubules and to the bud neck in a ring-shaped structure             |            |  |  |  |
|        | YOR019W            | NA                | Protein of unknown function that may interact with ribosomes, based on co-purification experiments                                                                                                                                                  | 15         |  |  |  |
|        | YGL251C            | HFM1/MER3         | Meiosis specific DNA helicase involved in the conversion of double-stranded breaks to later recombination intermediates and in crossover control; catalyzes the unwinding of Holliday junctions; has ssDNA and dsDNA stimulated ATPase activity     | 7          |  |  |  |
|        | YOR155C            | ISN1              | Inosine 5'-monophosphate (IMP)-specific 5'-nucleotidase, catalyzes the breakdown of IMP to inosine, does not show similarity to known 5'-nucleotidases from other organisms                                                                         |            |  |  |  |
|        | YDR034C            | LYS14             | Transcriptional activator involved in regulation of genes of the lysine biosynthesis pathway; requires 2-aminoadipate semialdehyde as co-inducer                                                                                                    | 4          |  |  |  |
|        | YBR020W            | GAL1              | Galactokinase, phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in the first step of galactose catabolism;<br>expression regulated by Gal4p                                                                                        | 2          |  |  |  |
|        | YDR120C            | TRM1              | tRNA methyltransferase; two forms of the protein are made by alternative translation starts; localizes to both the nucleus and mitochondrion to produce the modified base N2,N2-dimethylguanosine in tRNAs in both compartments                     | 4          |  |  |  |
|        | YLR407W            | NA                | Putative protein of unknown function; null mutant displays elongated buds and a large fraction of budded cells have only one nucleus                                                                                                                | 12         |  |  |  |
| 099    | YOR260W            | GCD1/TRA3         | Gamma subunit of the translation initiation factor eIF2B, the guanine-nucleotide exchange factor for eIF2; activity subsequently regulated by phosphorylated eIF2; first identified as a negative regulator of GCN4 expression                      | 15         |  |  |  |
|        | YKL102C            | NA                | Dubious open reading frame unlikely to encode a functional protein; deletion confers sensitivity to citric acid; predicted protein would include a thiol-disulfide oxidoreductase active site                                                       | 11         |  |  |  |
|        | YOR257W            | CDC31/DSK1        | Calcium-binding component of the spindle pole body (SPB) half-bridge, required for SPB duplication in mitosis and meiosis II; homolog of mammalian centrin; binds multiubiquitinated proteins and is involved in proteasomal protein degradatio     | 15         |  |  |  |
|        | YHR212C            | NA                | Dubious open reading frame unlikely to encode a functional protein, based on available experimental and comparative sequence data                                                                                                                   | 8          |  |  |  |
|        | YLR157C            | ASP3-2            | Cell-wall L-asparaginase II involved in asparagine catabolism; expression induced during nitrogen starvation; ORF contains a short non-<br>coding RNA that enhances expression of full-length gene; reference strain \$288C has four copies of ASP3 | 12         |  |  |  |
|        | YPL218W            | SAR1              | GTPase, GTP-binding protein of the ARF family, component of COPII coat of vesicles; required for transport vesicle formation during ER to<br>Golgi protein transport                                                                                | 16         |  |  |  |

# **RESULTS**

Significant altered genes

#### Ty elements:

| Strain | Systematic Name | Chromosome | Fold Change |  |  |  |
|--------|-----------------|------------|-------------|--|--|--|
| 018    | YMR046C         | 13         | 1.6474975   |  |  |  |
| 099    | YHL009W-A       | 8          | 1.5785116   |  |  |  |
|        | YHL009W-B       | 8          | 1.646452    |  |  |  |
|        | YGR161C-C       | 7          | 1.4855264   |  |  |  |
| 108    | YBL005W-A       | 2          | 1.5453535   |  |  |  |
|        | YDR210C-C       | 4          | 1.4554093   |  |  |  |
|        | YDR170W-A       | 4          | 1.7406232   |  |  |  |
|        | YNL284C-A       | 14         | 1.7531929   |  |  |  |
|        | YMR046C         | 13         | 1.7273986   |  |  |  |