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ABSTRACT 
 This paper presents a case study of using product-lines to address 

the variability of optimization methods and target platform 
mappings in high-performance molecular dynamics simulations. 

We use Feature Oriented Programming to incrementally extend 

the base algorithm by composing performance enhancement 
features with the core functionality. Developed features 

encapsulate common optimization methods in molecular 
dynamics simulations and target platform mappings. The main 

benefits of the approach are: 1) it promotes an incremental 

development, where optimizations and mappings are developed 
incrementally and simultaneously with the core functionality; 2) 

complex optimizations and mappings can be obtained by 

composing basic features. The performance of synthesized 
products is comparable to the performance of products developed 

with traditional parallel programming techniques. In this approach 

complex optimizations become easier to develop, by composing 
basic features, providing a performance advantage over traditional 

programming techniques. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming - 

Parallel programming; D.3.3 [Programming Languages]: 

Language Constructs and Features – Concurrent programming 

structures. 

General Terms 
Algorithms, Performance, Design, Languages. 

Keywords 
Parallel programming, molecular dynamics simulations, product-
line, feature oriented programming 

1. INTRODUCTION 
Molecular dynamics (MD) simulation is an important tool to 

understand biomolecular functions. These simulations are being 

used to understand the origin of many diseases and to discover 
new drugs, among many other applications. These simulations are 

very computing demanding as the simulation is performed at atom 

to atom interaction level. Current software for molecular 

dynamics simulation, e.g., GROMACS [1][2] and NAMD [3][4], 
resorts to highly optimized methods, including the use of parallel 

processing. 

Unfortunately, with current programming techniques to develop 

software, the code must be written all-at-once where statements 

regarding core molecular dynamics simulation are mixed with 
statements expressing optimizations, parallel execution and 

platform mappings. This has strong consequences in system 

development and evolution. For instance, most well known 
packages required an almost complete rewrite on every new 

generation of the software. This is due to the lack of modularity in 

software, as concerns like optimization, parallel execution and 
mapping into target platforms are mixed with the core 

functionality. Thus, to change the implementation of one of these 

concerns we need to perform rewrites over multiple parts of the 
system. 

In this paper we describe an effort to develop a highly modular 

package for high performance molecular dynamics simulation. 

The key idea is to provide a basic molecular dynamics 
implementation and to encapsulate, into pluggable features that 

refine the basic functionality, the variability of optimizations, 

parallelization methods and platform mappings. We use Feature 
Oriented Programming [5][6] to express those features, including 

a feature model that captures composition rules and constrains. 

The rest of this paper is organized as follows. The next section 

describes, in more detail, the problems of mixing concerns (a.k.a, 

tangling) in the code and the limitations of current mainstream 
programming techniques to address separation of concerns. 

Section 3 presents the basis of molecular dynamics simulations 

and section 4 presents the developed product line. Section 5 
shows performance results and section 6 concludes the paper. 

2. PROBLEMS OF TANGLING  
We illustrate the problem of mixing concerns by presenting a 

parallel implementation of a molecular dynamic package, used for 
benchmarking purposes, that is the base of our study. This 

benchmark is written in Java and is part of the Java Grande Forum 

[7]. 

Figure 1 presents part of the JGF benchmark implementation for 

distributed memory systems (e.g., a cluster of machines). In this 
code the core functionality (in black) is mixed with statements 

implementing the parallelism models and its mapping into a target 

platform (in italic/red).  In this case the parallelization is 
implemented in MPI [8], a high performance middleware that 

targets distributed memory systems. 
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public  class  MD { 

 

    Particle  []  one;  //  Vector  with  all  particles 

    int  mdsize;  //  Problem  size  (number  of  particles) 

    int  movemx;  //  Number  of  interactions 

 

    //Declare  auxiliary  variables  to  MPI  parallelization 

   double  []  tmp_xforce; 

   double  []  tmp_yforce; 

   double  []  tmp_zforce; 

   ... 

   public  void  runiters()  throws  MPIException { 

        for  (move  =  0;  move  <  movemx;  move++) { //  Main  loop 

             for  (i  =  0;  i  <  mdsize;  i++) { 

                  one[i].domove(side);  //  move  the  particles  and update  velocities 

             } 

             ... 

           MPI.COMM_WORLD.Barrier(); 

           computeForces(MPI.COMM_WORLD.Rank(),MPI.COMM_WORLD.Size()); 

            MPI.COMM_WORLD.Barrier(); 

            for  (i  =  0;  i  <  mdsize;  i++) { //Copy  forces  to  temp  vector 

                 tmp_xforce[i]  =  one[i].xforce;    //  to  use  in  MPI  operation 

                 tmp_yforce[i]  =  one[i].yforce; 

               tmp_zforce[i]  =  one[i].zforce; 

      } 

     //Global  reduction 

    MPI.Allreduce(tmp_xforce,0,tmp_xforce,0,mdsize,MPI.DOUBLE,MPI.SUM); 

    MPI.Allreduce(tmp_yforce,0,tmp_yforce,0,mdsize,MPI.DOUBLE,MPI.SUM); 

    MPI.Allreduce(tmp_zforce,0,tmp_zforce,0,mdsize,MPI.DOUBLE,MPI.SUM); 

    ... 

// Update  forces  based  in  reduced  values 

// Scale  forces  and  calculate  velocity 

... 

} 

Figure 1 - JGF MD distributed memory parallelization 

The problem with this code is that it is written all-at-once: the 

core molecular dynamics functionality is mixed with statements 
for parallelization and platform mapping. This has strong 

implications on system development and evolution. For instance, 

to develop an implementation for a shared memory system (e.g., a 
multi-core system) the code must be rewritten, whereas, in a good 

design, only the red/italic part should be changed. Actually, the 

JGF benchmark provides three completely disjoint 
implementations of the MD benchmark: a sequential, a thread-

based and a MPI-based. Unfortunately this is the way that most 

parallel applications are written today. One of most popular 
molecular dynamics packages, GROMACS, aims to provide high 

performance on both a single (multi-core) machine and on clusters 

of machines. Since optimizations applied for each target platform 
are different, the source code of this package is also well known 

for having a large number of #ifdef statements to derive the best 
performing implementation.  

Globally, mixing parallelization concerns with the core 

functionality strongly limits modular and independent 

development. There is no reuse of the core functionality across 
target platforms which also limit the evolution of core 

functionality to cope with new domain requirements. This 

 

 

Figure 2 - Extension of MD through inheritance to cope with 

parallelization 

approach also prevents the use of different parallelization models 

according to the particular simulation at hand. This becomes 
unmanageable since implementations mixing together all the 

concerns do not properly address the variability of execution 

platforms, parallelization models and domain-specific 
requirements. This becomes more problematic for long term 

maintenance due to the overall lack of modularity. 

Traditional object-oriented encapsulation mechanisms are not 

powerful enough to ameliorate the problem. One solution could 

be to encapsulate each concern through subclassing. In the 
example of Figure 2 (taken from the JGF MD benchmark) we 

could introduce the MPI–specific code by extending the core MD 

class. Generally, each increment (a.k.a. implementation of a 
concern) extends parent class(es) to define new state and 

behavior. Thus, program increments are statically defined in a 
class hierarchy, i.e., the information about parent class(es) is hard 

coded in the subclass definition. Access to the new behavior 

defined in the subclass has to be done explicitly by using the 
subclass. Thus, this strategy does not scale if we intend to 

encapsulate multiple concerns using subclassing.  

As one example of this problem, Figure 2 shows the use of OO 

inheritance to separate the parallelization concern shown in Figure 

1. Figure 2(a) represents the base class hierarchy where class MD 
contains a set of references to Particles (atoms). The class 

Benchmark is responsible to instantiate the class MD, to configure 

the simulation and to call the method that starts the simulation. 
The use of traditional OO inheritance to encompass parallel 

execution is shown in Figure 2(b). The creation of two subclasses 

(class MD_MPI and class Particle_MPI) is needed to introduce 
the parallelization concerns reusing the core functionality. In 

order to use the MPI feature, the class Benchmark needs to be 

changed to instantiate the class MD_MPI. Moreover, Particle 
instantiations in the original MD class should be changed to 

instantiate the new Particle_MPI class. Clearly, this solution does 

not scale if we want to encapsulate several concerns, e.g., match 
of different target platforms, such as a cluster of machines or a 

single multi-core system, each in its own module (e.g., subclass) 

because it is required to make changes to all client modules to 
compose them. 

 

 



 

Figure 3 – Steps of a MD simulation algorithm 

 

3. MOLECULAR DYNAMICS 

SIMULATIONS 
Molecular dynamics is a technique of computer simulation where 

a set of particles (atoms) interact during a certain period of time. 
The particle movement during the simulation time frame is an 

approximation of what would happen in the real would. This 

technique is very useful to understand the behavior of molecules 
(e.g., proteins, DNA) and to infer their properties. 

Simulation of molecular dynamics is performed by computing 
interactions among particles in the domain in a series of time-

steps. For each pair of particles there is an interaction (force) that 

can be ignored for a relatively long distance, designated by cut-off 
radius. The force acting on each particle is given by the sum of all 

interactions with that particle. Figure 3 shows the simulation 

phases. Initially, positions and velocities are assigned to the 
particles in the domain. Then, the forces acting on each particle 

are computed and the resulting particle acceleration. The new 

position for each particle is then computed based on the particle 
velocity and on the time step. The process is repeated for a given 

number simulation steps. 

3.1 Optimizations for Single Machine 

Execution 
The most time consuming part of the simulation process is the 
force computation. Thus, optimization methods focus on this 

particular simulation phase. Two main optimizations are 

performed to reduce the amount of computations: 

    1) divide the domain into cells; 

    2) use a particle neighbor list.  

Both techniques take advantage of the fact that interactions 

between particles that are beside the cut-off radius can be ignored. 

The cell optimization (Figure 4) divides the space domain into 

cells and assigns particles to cells according to their positions. If 

the cell size is equal or greater than the cut-off radius, only 
interactions inside and with neighbor cells need to be computed. 

Dividing the domain into cells also increases locality of memory 

accesses on modern computing systems. The idea is to use cells 
that are small enough to fit in the cache, such that all interactions 

between particles in a pair of cells can be made by reusing their 

values in the cache, before advancing to the next pair of cells. The 
cell optimization also introduces some overhead due bookkeeping 

necessary to deal with particle moves across cells. 

 

 

 
Figure 4 – Cell optimization 

The neighbor list optimization (Figure 5) maintains a list of 

neighbors within the cut-off radius of each particle. For each 
particle, interactions are computed only with particles on its 

neighbor list. The list must be updated at the end of each 

interaction due to particle movement (e.g., a particle may get 
inside the radius of other particle). To avoid a prohibitive cost of 

updating the list on every time step, particles on the list can 

belong to an extra radius. Setting the optimum extra radius 
implies a trade-off between the cost of updating the list and the 

additional overhead of computing particle interactions in a wider 

radius. 

The neighbor list optimization is more effective to reduce the 

amount of computations, when compared with the cell division, as 
the neighbor is considered at particle level instead of cell level. 

On the other hand, cell optimization has less bookkeeping and is 

more “cache friendly”. Thus, in certain simulations and/or target 
platforms the cell optimization can outperform neighbor list 

optimization. 

3.2 Parallel Execution Models 
There are three alternative methods to execute molecular 
dynamics in parallel: 1) divide the particles; 2) divide the force 

computation and 3) divide the simulation domain into cells.  

 
Figure 5 – Neighbor optimization 



A particle division assigns a set of particles to each processing 

element (PE). Each PE is responsible to compute all interactions 

of particles on his set. This requires that each PE should know the 
position of all particles in the system. This division can suffer 

from load imbalance (i.e., PEs do not have equal amounts of 

work) since the number of interactions for each particle depends 
on the particles on its neighbor.  

The force decomposition divides the force computation among 
PEs. It avoids the load imbalance of the particle division but also 

requires that each PE should know the position of all particles in 

the system. 

The cell division is similar to the method used in sequential 

execution. In this case, each PE is responsible for a cell. This 
approach can also suffer from load imbalance since cells can have 

different numbers of particles but it has the advantage of requiring 
only information on neighbor cells to perform computations.  

4. MOLECULAR DYNAMICS 

PRODUCT-LINE 
We engaged the implementation of a molecular dynamics 

framework using a product line methodology. We used Feature 
Oriented Programming [5] for that purpose, where the core 

molecular dynamics algorithm can be extended by a set of 

optimization/parallelization features. We selected the JGF MD 
benchmark as our base algorithm implementation since it provides 

a basic algorithm (non-optimized) for simulation and can also be 

used for a performance assessment.  

4.1 Features and Compositions  
Figure 6 shows the developed features, as well as some of 

supported compositions. Table 1 describes the basic features and 
Table 2 describes the result of some possible compositions.  

 

 
Figure 6 – Basic features and compositions 

 

Table 1 – Description of basic features 

 

Table 2 – Description of composite features 

 

Globally we implemented 4 basic features (Table 1). The Cell and 

Neighbor implement the corresponding optimizations for single 

machine (section 3.1). The MPI feature implements the mapping 
for distributed memory systems (i.e., mapping of execution into 

clusters of machines using the MPI middleware). The Threads 
feature implements the mapping to shared memory systems (i.e., 

multi-core machines, using Java concurrency mechanisms). 

Currently we can synthesize 11 different variants of the basic 

algorithm by composing basic features (and this number is still 

growing), but only 8 of these are valid. Some of composition 
constrains are presented in the feature diagram of Figure 7.  

The original MD benchmark provides three disjoint 
implementations: sequential, Thread based and MPI based. We 

can generate all three versions by composing the base algorithm 

with the MPI and Threads features. Additionally we support Cell 
and Neighbor optimization methods and more complex 

parallelization methods through the composition of basic features. 

Figure 8 presents the atomically generated application to 
configure a product of the MD product line. We generated this 

application using the GUIDSL from the AHEAD tools suite [11]. 

 

 
 

Figure 7 – Feature diagram of the MD product-line 

 

Feature Name Description 

Cell Domain partition into cells 

Neighbor Neighbor list  

MPI  Particle partition among MPI process   

Threads Particle partition among Threads   

Composition Description 

Thread + 

Neighbor 

Thread based parallelization with neighbor list  

MPI + 

Neighbor 

MPI based parallelization with neighbor list  

MPI + 

Threads 

Hybrid parallelization using MPI for inter-

machine communication and Threads within a 

machine  

MPI + 

Threads + 

Neighbor 

MPI + Threads with neighbor optimization 



 

Figure 8 – Application for product selection  

4.2 Implementation Overview 
We implemented the product line with AspectJ [10], by 

developing one aspect to implement each feature. Each aspect 
refines classes MD and Particle to provide the additional feature-

specific functionality. New class fields and methods are 

introduced with AspectJ construct supporting static crosscutting. 
Changes to the method execution behavior are implemented with 

call type pointcuts/advices. Figure 9 illustrates the implementation 

of the MPI feature that provides the support for execution on 
distributed memory systems (equivalent to code in Figure 1). This 

aspect introduces new variables into class MD and attaches the 

required MPI-related code before and after calls the method 
computeForces. 

AspectJ provided an effective way to implement individual 
features, although we needed a tool to manage composition issues 

(e.g., specification of compatible features, see Figure 7 and Figure 
8). Thus, we used the GUIDSL tool from AHEAD. A concrete 

product line member is specified with AspectJ load-time 

mechanism, where the list of features (aspects) to apply is 
specified at application command line. We could also implement 

features with other approaches like pluggable parallelization 

[12][13], AHEAD [11] or FeatureHouse [14]. 

public  aspect MPI_MD { 

     // introduce auxiliary variables  to  MPI  parallelization 

   double  []  MD.tmp_xforce; 

   double  []  MD.tmp_yforce; 

   double  []  MD.tmp_zforce; 

   ... 

   void around(/*… */) : call(void MD.computeForces(..)) /* … */ { 

            MPI.COMM_WORLD.Barrier(); 

            proceed(/* …*/);  // execute original method call 

            MPI.COMM_WORLD.Barrier(); 

            for  (i  =  0;  i  <  mdsize;  i++) { //Copy  forces  to  temp  vector 

                 tmp_xforce[i]  =  one[i].xforce;    //  to  use  in  MPI  operation 

                 tmp_yforce[i]  =  one[i].yforce; 

                 tmp_zforce[i]  =  one[i].zforce; 

      } 

     //Global  reduction 

    MPI.Allreduce(tmp_xforce,0,tmp_xforce,0,mdsize,MPI.DOUBLE,MPI.SUM); 

    MPI.Allreduce(tmp_yforce,0,tmp_yforce,0,mdsize,MPI.DOUBLE,MPI.SUM); 

    MPI.Allreduce(tmp_zforce,0,tmp_zforce,0,mdsize,MPI.DOUBLE,MPI.SUM); 

    ... 

} 

… 

} 

Figure 9 – AspectJ implementation of the MPI feature 

 

Figure 10 – Impact of neighbor optimization 

5. EVALUATION 
One key benefit of using a methodology based on product-lines 

and FOP is to provide an incremental way of developing a 

complex application. In our case study we were particularly 
interested in the impact on performance of using the neighbor and 

cell optimizations, since the original MD code did not provide 

these optimizations. In our approach these two optimizations are 
provided as additional pluggable features becoming easy to 

synthesize a product member with just one of these optimizations. 

Figure 10 and Figure 11 show a study of the impact on execution 
time of these optimizations (features). 

 

 

Figure 11 – Impact of cell optimization 



 
 

Figure 12 – Thread-based parallelization 

Overall the approach allowed us to perform an in-depth study of 

the impact of each of these features. For instance, the cell feature 

greatly reduces the cache L1 miss-rate when more than two cells 
fit in the cache. Both neighbor and cell optimizations strategies 

reduce the execution time by reducing the number of executed 

instructions. Note that with traditional programming to perform 
these kinds of tests we need implement the basic MD algorithm 

with both optimizations. 

The second test compares the performance of our implementations 

with the ones provided in the JGF. In this case we synthesize 

products base+Thread and base+MPI that are functionally 
equivalent to the provided JGF implementations. The Threads 

implementation (Figure 12) presents a slight performance 

advantage when compared with the JGF implementation. This 
advantage is due to the use of more recent concurrency 

mechanisms provided in Java 5 (e.g., threads pools implemented 

by executors). The MPI implementations (Figure 13) have 
identical performance.  

 
 

Figure 13 – MPI-based parallelization 

 
 

Figure 14 – Hybrid parallelization 

One interesting aspect of this study is the synthesis of products 
with a complexity not originally provided by the JGF benchmark. 

One of such compositions results from the composition of Thread 

and MPI (called Hybrid Thread/MPI). Figure 14 shows that, when 
using more than 8 processing elements, the composition of Thread 

and MPI features provides better performance than using a one of 

these features. This advantage is due to hybrid parallelization 
methods that use MPI for communication inter-machines and 

Thread parallelization within each machine. It is also interesting 
to note that there is no single composition that provides the best 

performance in all cases. Thus, with our approach we can 

synthesize the best product for each case. 

6. CONCLUSION 
In this paper we described the implementation of molecular 
dynamics simulations using a methodology based on product 

lines. We rely on feature oriented programming to encapsulate, 

into features, the variability of optimization methods and platform 
mappings. 

In this case study we could incrementally develop features 
expressing several optimizations. Encapsulating each optimization 

into a feature also enables an exhaustive study of the impact of 

each feature (or compositions of features) in the execution time. 
Performance of synthesized products is similar to hand written 

implementations, but a performance gain can be provided by 
developing products by composing multiple optimizations. This 

becomes even more useful when there is no single composition 

that provides the best performance in all running conditions.  

Currently we are experimenting implementation alternatives to 

AspectJ. We are also improving the product line with more 
features, assessing the performance improvements of other 

optimizations and compositions of features. In the long term we 

intend to also address other kinds of execution platforms such as 
GPU and apply the methodology to a widely used molecular 

dynamics package. 
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