
Enhancing Locality in Java based Irregular

Applications

N. Faria, R. Silva and J. L. Sobral

{nfaria, ruisilva, jls}@di.uminho.pt
CCTC/Universidade do Minho

Abstract. Improving locality of memory accesses in current and future
multi-core platforms is a key to e�ciently exploit those platforms. Irreg-
ular applications, which operate on pointer-based data structures, are
hard to optimize in modern computer architectures due to their intrin-
sic unpredictable patterns of memory accesses. In this paper we explore
a memory locality-driven set of data-structures in order to attenuate
the memory bandwidth limitations from typical irregular algorithms.
We identify the ine�ciencies in the standard Java implementation of
a priority-queue as one of the main memory limitations in Prim’s Min-
imal Spanning Tree algorithm. We also present a priority-queue using
the data layout inspired in Van Emde Boas for ordering heaps. We also
implement optimizations in the graph data-structure and explore ways
to e�ciently combine it with the memory-e�cient priority-queue. In or-
der to improve e�ciency in both case studies we had to transform the
data-structures in the form of array of pointer into arrays of structures
or structure of arrays.

1 Introduction

The gap between CPU frequency and memory bandwidth has been increasing
over the last decades. Introducing multiple levels of memory hierarchy amelio-
rates the impact of this gap on application performance. Although, memory
hierarchy is only e↵ective when programs provide locality in data access. Mem-
ory bottleneck will also be a big hurdle in many-core platforms since several
cores usually share the available memory bandwidth, limiting the application
scalability. On the other hand, it is expected that the e↵ective bandwidth in
accessing local caches will scale proportionally to the number of cores. Current
platforms provide same fixed amount of L1/L2 cache per core, independently
from the total number of cores. Thus, to e↵ectively use current and future many-
core platforms programs should present temporal and/or spatial locality in data
access. Exploiting locally in the so-called regular applications (e.g., matrix op-
erations) is well known and usually resorts to partitioning data into blocks that
can fit into the cache [1]. Irregular applications that rely on pointer based data
structures, such as graphs, are harder to optimize due to their intrinsic usage of
pointers to access data and to their less-predictable pattern of data access. One
typical case is the Prim’s algorithm to compute a Minimum Spanning Three of a

*This research was supported by the Fundação para a Ciência e a Tecnologia (project Parallel 
Programming Refinements for Irregular Applications, UTAustin/CA/0056/2008)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55616591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


graph: the particular order of traversing the graph vertex depends on the weigh
of the edge connecting vertexes. In generic frameworks, the e↵ort to provide
collections that can be used in multiple context leads to data accesses through
additional pointer indirection. In this paper we identify this indirection as one
main source of overhead both due to pointer indirection and lack of locality of
memory accesses and explore strategies to remove this overhead.

2 Locality driven data layout

Many Java collections are implemented as Arrays of Pointers (AoP) to structures
(Figure 1a). This data layout does not provide spatial locality, but it is still
possible to exploit temporal locality. A common optimization for better temporal
locality is the division of the array into blocks (e.g., by performing a domain
decomposition). If each block fits in cache and it is accessed multiple times,
data will remain in cache and can be reused many times lowering the cache miss
rates. Optimizations to improve spatial locality need a di↵erent data layout,
in which elements are contiguous and accessed in an orderly manner. In this
paper we study three di↵erent data layouts (Figure 1): (i) arrays of pointers
(AoP), (ii) arrays of structures (AoS) and (iii) structure of arrays (SoA). In
the AoS layout, fields are stored continuously in memory, as in SoA, fields are
stored into a separate array. Choosing the best alternative depends on how the
algorithm accesses data. The SoA provides better locality if the algorithm does
not require all fields of the original structure in the same time-frame. The AoS is
the alternative used for problems that require all fields of the structure at once,
although this choice is di�cult to implement in Java since it is not possible to
use explicit pointers to data. It is also more di�cult to use if the fields are not of
the same type. We may also use an hybrid alternative, in which the data fields
are grouped according their time-frame usage. To improve the spatial locality in
Java collections it is necessary to transform an AoP implementation into an AoS
or a SoA. In the latter case, the fields of the objects are converted into arrays,
which normally evolves removing the encapsulation of data. This provides better
performance, but it might enforce significant restructuring of the code. In this
work we intend to study the impact on performance of this transformation.
Several authors propose techniques to automatically improve locality in Java
applications by relying solely on changes to the Java Virtual Machine. Hirzel et.

(a) AoP (b) AoS (c) SoA

Fig. 1: AoP, AoS and SoA views of attributes of structures in a collection



al. [2] evaluates improvements in several data layouts, by sorting objects during
garbage copying to improve locality, which can do so by placing target objects in
consecutive memory addresses, but it still maintains the AoP layout. Wimmer
et. al. [3] proposes an improvement to the JVM to automatically inline object
fields by placing the parent and children in consecutive memory places and by
replacing memory accesses by address arithmetic. It is argued that using arrays
as inlining parents is complicated because the Java byte-codes for accessing array
elements have no static type information. Thus they claim that automatic AoP
to AoS transformation at JVM level is impossible without a global data flow
analysis because of the structure of the array access byte-codes. Furthermore,
transforming AoP to SoA layouts also seems not feasible at JVM level.

3 Case studies

To illustrate the impact of cache-e�ciency in data-structures and algorithms in
Java we study a few applications that would benefit from those optimizations.
We show how we optimize the cache-hit behaviour for priority-queues (PQ)
and graph structures for the Prim’s Minimal Spanning Tree (MST) algorithm.
For each PQ and graph implementation, were generated a random sequence
of numbers (PQ) and a random graph, both stored in file so that every PQ
and graph implementation uses the same memory access pattern. All results
presented were measured with PAPI profiling tool1, integrated using Java Native
Interfaces. In order to only measure program sections we were interested in (for
PQs, insertion and removal only, ignoring file computations), we start/stop PAPI
measurements at the chosen routines. The tests were ran in a cache environment
of L1 32 KB instruction caches + 32 KB write-back data caches and shared L2
of 4 MB; the CPU is an Intel Core 2 Duo Mobile; the installed JVM is Java
HotSpot (TM) Server VM (version 1.6.0 24).

3.1 Cache e�cient priority-queues

Priority queues (PQ) are built for fast retrieval of the highest/lowest element in
a set of elements. Java’s native priority queue is based on the structural layout
of a binary heap [4]. The locality driven optimizations were applied on PQs
avoiding use the Comparable interface. Comparing, for instance, Integer objects
with explicit mathematical operators (<, >) and with the Comparable interface
incurs in similar results, due to the auto-boxing/unboxing2 - comparing reference
data-types (e.g., Integer) with explicit comparators causes the auto-unboxing of

1 A hardware counter-based profiling tool: http://icl.cs.utk.edu/papi/faq/index.html
2 Boxing is the phenomena of converting a primitive data-type value able to be ex-
plicitly stored and represented in memory into a referenced data-type value, i.e., the
value is no longer in raw format (int, float, double, etc.) since it is now a reference to
a memory location where the value is stored. Unboxing is the opposite, the conver-
sion of a reference data-type value into a primitive one. Most OO frameworks, like
Java, do this automatically for primitive data-types.



Fig. 2: The VEB data layout - numbers correspond to array indices

the referenced int value. However our main reason to use explicit primitive data
types is due to the notion of boxing - creating references to memory addresses
makes locality optimizations obsolete. After a quick analysis (see Table 1, first
three columns) it is visible that forcing element adjacency in Java collections (BH
int) substantially improves performance - less instructions were needed, cache
miss3 are also lower and the execution time is approximately three times shorter.
Using primitive data-types forces heap elements to be directly accessible from
the array (using a SoA layout), as for an array of Objects (i.e., AoP layout) we
must first resolve the pointer to the Object in order to access it; so for each array
access (in int version) pointer resolving is unnecessary - BH int runs in less than
half the instructions of BH Integer4. Also, not resolving pointers ultimately
results in less cache misses, which in its turn results in less stall cycles, thus
despite a reduction in 2 times on the number of instructions we attain an overall
improvement in execution time of 3.3 times, mainly due to a bigger improvement
in locality of memory addresses (6 times less misses in L1).

Locality aimed heap. To improve spatial locality we implemented a variation
of a binary-heap with a more cache-friendly data layout - a simplified layout
version of Van Emde Boas (VEB) [5] (Figure 2). On Table 1 we compare BH
int implementation against VEB for block sizes of 3 and 7 (i.e., block height of
1 and 2, respectively). We see a slight decrease in the execution time in VEB 3
int compared to BH int, we are able to achieve better cache performance. The
increase in instructions for VEB is explained with the increase in complexity in
children and parent index expressions.

3.2 Minimal Spanning Tree algorithm problem

The MST algorithm we focus on for this case study is Prim’s MST algorithm [6]
which uses a priority-queue to find the smallest weighted available edges to add

3 We opted to use the number of cache misses since it is more independent from
compiler optimizations than miss rates (e.g., poorly optimized code tends to show
lower miss rates due to unessential memory loads, mainly due to register spilling).

4 BH Integer is our PQ implementation (using Java’s Integer class) similar to Java
native PQ by using an AoP approach, it was developed for comparison purposes.



Table 1: Benchmarks comparing binary-heap to Java’s native PQ (AoP), and to
VEB-heap, storing single ints

Java Integer BH Integer BH int VEB 3 VEB 7

Instructions (⇥10

8
) 132.02 153.06 73.29 74.78 96.42

Cycles (⇥10

8
) 199.81 192.87 58.16 55.94 73.26

L1 accesses (⇥10

8
) 69.22 79.68 28.14 35.62 48.82

L1 misses (⇥10

6
) 234.65 232.42 39.51 28.50 22.76

L2 accesses (⇥10

6
) 418.60 412.87 93.97 70.63 57.76

L2 misses (⇥10

6
) 279.47 272.23 50.85 39.51 30.57

Time (s) 10.025 9.579 2.932 2.812 3.736

to the resulting MST graph. We studied the cache-hit/miss rates in the graph
representation, a typically irregular structure. In Figure 3 we represent some of
the graph representations studied. The encapsulation problem is more visible in
this case for weighted graphs, when referring to the concept of Neighbours. Our
implementations all follow a similar interface - (i) a set of Vertices (an Object),
(ii) in which each Vertex has a set of neighbours (set of objects, Neighbour),
(iii) each Neighbour harbouring the attributes: weight (primitive data-type),
neighbour-vertex (pointer to Vertex object) and possibly other attributes, but
for simplicity we consider only these. We distinguish the di↵erent graph imple-
mentations being AoP (Array of Pointers), AoS or SoA by looking at how the
Vertex structure holds the Neighbour array. The process of decapsulating Neigh-
bour attributes reduced redundant object instantiations between the graph and
PQ structure, with the MST layer as an intermediate layer. We opened the
implementation box, by changing the program’s API in order to work directly
with the attributes, instead of encapsulating them in objects. Thus, instead of
returning from the graph data structure and adding to the PQ a Neighbour-
object with the weight and vertex attributes, we return and add these attributes
separately, to avoid redundant object instantiation, ultimately benefiting cache-
hits. As stated in Table 2, the best execution time as well as, instruction, cycle
and cache behaviour occur for the GVG AoS and GVG SoA implementations.
The major jump in performance is mainly due to the redundant pointer resolving
operations present in creating new object instances that has now been removed
from the executions in AoS and SoA graph implementations. Although the cache

(a) Graph-Neighbour-
Vertex (GNV

AoP

)
(b) Graph-Vertex-
Graph (GVG

AoS

)
(c) Graph-Vertex-
Graph (GVG

SoA

)

Fig. 3: Graph representations



Table 2: Benchmarks comparing all three graph implementations (GNV AoP,
GVG AoS and GVG SoA), PQ implementation is VEB 3, ran with the cases
AoS and SoA.

VEB 3
AoS

VEB 3
SoA

GNV
AoP

GVG
AoS

GVG
SoA

GNV
AoP

GVG
AoS

GVG
SoA

Instructions (⇥10

8
) 9.71 6.07 6.01 9.90 6.38 6.19

Cycles (⇥10

8
) 15.40 4.87 4.78 15.52 5.08 5.00

L1 accesses (⇥10

8
) 5.94 2.98 2.80 5.95 2.90 2.79

L1 misses (⇥10

6
) 9.41 1.53 1.54 9.39 1.60 1.62

L2 accesses (⇥10

6
) 12.99 3.96 3.95 12.84 3.94 3.92

L2 misses (⇥10

6
) 3.14 1.74 1.73 3.15 1.88 1.87

Time (s) 0.776 0.299 0.302 0.784 0.297 0.299

miss behaviour in GVG AoS is slightly better than in GVG SoA, the later shows
a little less running time, because it runs in less instructions and it consumes
less cycles.

4 Conclusion

In this paper we presented the impact of data layout on application performance.
We identify the use of array of pointers as one main source of overhead in Java
collections. This overhead is mainly due to pointer indirection and to the lack
of spatial locality in data access. We explore the use of two alternative data
layouts - array of structures and structures of arrays - that showed performance
improvements in the case studies. However, e↵ective usage of these optimized
data layouts in modern object-oriented frameworks require component decapsu-
lation in order to avoid additional object creations and data copies. In the future
we plan to investigate techniques to perform locality-driven optimizations to data
layouts without compromising encapsulation.

References

1. Yotov, K., Roeder, T., Pingali, K., Gunnels, J., Gustavson, F.: An experimental
comparison of cache-oblivious and cache-conscious programs. Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms and architectures SPAA
07 (2007) 93

2. Hirzel, M.: Data Layouts for Object-Oriented Programs. In: International Confer-
ence on Measurement and Modeling of Computer Systems SIGMETRICS. (2007)

3. Wimmer, C., Mössenböök, H.: Automatic array inlining in java virtual machines.
Proceedings of the sixth annual IEEEACM international symposium on Code gen-
eration and optimization CGO 08 (2008) 14

4. Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7 (1964)
347–348

5. Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an e�cient
priority queue. Mathematical Systems Theory 10 (1976) 99–127

6. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36 (1957) 1389–1401


