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Aims The underlying mechanism(s) of vulnerability of the diabetic myocardium to ischaemia/reperfusion (I/R)-induced
injury is not fully understood. Interleukin-33 (IL-33) has been reported showing the beneficial effect to the myocar-
dium on I/R injury. The aims of this study were to test whether diabetes mellitus (DM) affects myocardial levels of IL-
33 and to examine whether reduction in IL-33 is responsible for exaggerated I/R injury in the diabetic myocardium.

Methods
and results

DM hearts were challenged with I/R in vivo, whereas while isolated cardiomyocytes in vitro were conditioned with high
glucose (HG) followed by an anoxia/reoxygenation (A/R) challenge. Myocardial levels of IL-33 were decreased in
mice with DM which was associated with increased protein kinase C bII (PKCbII) activation. Exogenous IL-33 pre-
vented the DM-induced PKCbII activation and attenuated I/R injuries (myocardial infarction size and apoptosis). HG-
conditioned myocytes incurred exaggerated apoptosis when compared with naı̈ve myocytes after A/R which was
attenuated by IL-33. HG activated PKCbII in cardiomyocytes, which was further enhanced by A/R. IL-33 prevented
the PKCbII activation in myocytes with HG or HG and A/R. Inhibition of PKCbII prevented the beneficial effect of
IL-33. Finally, IL-33 up-regulated diacylglycerol kinase zeta (DGK-zeta) in cardiomyocytes and reversed the down-
regulation of myocardial DGK-zeta in mice with DM.

Conclusion Our results indicate that decreased levels of IL-33 are responsible for the increased sensitivity of the myocardium to
I/R in DM. Reduction in IL-33 results in a chronic activation of PKCbII. I/R further enhances PKCbII activation in the
diabetic myocardium which results in exaggeration of myocardial injury.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Ischaemia/reperfusion injury † IL-33 † PKCbII † Diabetes mellitus

1. Introduction
Patients with diabetes mellitus (DM) have an increased risk of coron-
ary heart disease, and cardiovascular complications are responsible
for the majority of diabetes-related deaths.1 In acute coronary syn-
dromes, the presence of DM has a negative impact on the outcomes
of the disease.2 Due to the exposure to abnormal substrate and cyto-
kines, it appears that the myocardium of diabetic patients is more
prone to the ischaemia/reperfusion (I/R)-induced injury than those
of individuals without DM.3,4 However, the exact mechanism(s) by
which the diabetic myocardium is more vulnerable to I/R injury
remains unknown.

Interleukin-33 (IL-33) is a 30 kDa protein and is a new member of
the IL-1 cytokine family.5,6 It is broadly expressed in many tissues in-
cluding the heart. Previous studies have demonstrated that IL-33 has
beneficial actions on various cardiovascular pathologies.5 By interact-
ing with its receptor ST-2L, IL-33 can (i) prevent cardiomyocyte apop-
tosis induced by hypoxia in vitro and (ii) attenuate myocardial
infarction and improve cardiac function and survival after I/R in vivo.7

Furthermore, it has been demonstrated that IL-33 can inhibit NFkB
activation and attenuate myocardial fibrosis and myocyte hyper-
trophy.8 The above studies suggested that changing in myocardial
levels of IL-33 may contribute to various myocardial pathologies in-
cluding I/R injury in the diabetic myocardium.
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Protein kinase C (PKC) is a serine/threonine protein kinase family
which has least 11 isoforms that function in different biological
systems. PKCb is one of conventional (c-PKC) isoforms. The PKCb

activity is dependent on both Ca2+ and phosphatidylserine and is
greatly enhanced by diacylglycerol (DAG). The clearance of the
DAG is attributed to diacylglycerol kinase (DGK). Thus, an increase
in cellular levels of DGK could lead to a decrease in PKCb activity.9,10

The myocardial PKCb activity is increased in diabetic rodents.11 It
has been reported that chronic activation of PKC by hyperglycaemia
in DM leads to an increase in vascular permeability, extracellular
matrix synthesis, and myocardial dysfunction.12 Thus, there is a possi-
bility that increased PKC activity causes the vulnerability of the myo-
cardium to I/R-induced injury. Whether the increased PKC activity is
related to myocardial IL-33 level remains to be determined.

The present study aimed to test the hypothesis that the diabetic
myocardium is more vulnerable to I/R-induced injury than those of
mice without DM due to decreased myocardial levels of IL-33. The
association of IL-33 expression, PKCb activation, and myocardial I/R
injury in DM was addressed. The study shows that DM results in a
decreased myocardial IL-33 expression which is associated with an
increased myocardial infarction size and enhanced apoptosis after
I/R. Treatment of high glucose (HG) conditioned cardiomyocytes or
diabetic mice with exogenous IL-33 attenuated anoxia/reoxygenation
(A/R) or I/R-induced injury. Further, treatment of cardiac myocytes
with IL-33 results in an increase in DGK-zeta expression and prevents
the HG-induced activation of PKCb. Thus, the present study demon-
strates a novel mechanism underlying the sensitization of the myocar-
dium of DM to I/R injury.

2. Methods

2.1 Mice
C57BL/6 mice were obtained from Charles River Canada (St Constant,
Quebec, Canada) and were housed in Victoria Research Labs Vivarium
Service with a 12 h light/dark cycle and free access to rodent chow and tap
water. The mice were used for in vivo experiments, as well as a source for
cardiac myocytes for in vitro experiments. The investigation conforms to the
Guide for the Care and Use of Laboratory Animals published by the US Na-
tional Institutes of Health (NIH Publication No. 85-23, revised 1996). The ex-
perimental protocols were approved by the University of Western Ontario
Animal Care and Use Committee (Protocol No. 2009-043).

2.2 In vivo STZ model of DM
Type I DM was induced in 8-week-old male, C57BL/6 wild-type mice by
intraperitoneal (ip) injection with streptozotocin [STZ in citrate buffer;
50 mg/kg, daily for 3 consecutive days].13 These sex-matched litter
mates injected with vehicle were served as a control. Blood glucose
was determined 5 days after the final injection. DM was considered to
be induced once hyperglycaemia became evident (blood glucose levels
.22 mM). Eight weeks after the induction of DM, mice were subjected
to a myocardial I/R challenge as described below.

2.3 I/R model
The mouse model of myocardial I/R involved ligation of the left anterior
descending artery (LAD) as described previously.14,15 Briefly, mice were
anaesthetized with ketamine (150 mg/kg) and xylazine (5 mg/kg, ip).
When adequacy of anaesthesia was reached as indicated by the disappear-
ance of pedal withdrawal reflex, the tracheal intubation was performed
and the mice were artificially ventilated with a MiniVent (Type 845). Post-
thoracotomy, the LAD was occluded using a 6-0 suture with a piece of

tubing interposed between the artery and suture and the thorax closed.
Thirty minutes later, the thorax was reopened, the tubing removed, and
the suture cut. The thorax was closed again and the heart allowed to
reperfusion for 24 h. As a control, sham-operated mice underwent the
same surgical procedure except arterial occlusion. To determine the
role of IL-33 on I/R injury in mice with DM, diabetic mice were given
either IL-33 (20 mg/kg, ip) or saline 24 and 2 h prior to I/R.

2.4 Myocardial infarct size
Myocardial infarct size was measured as reported previously.15 Briefly,
24 h after reperfusion, the mouse was anaesthetized, artificially ventilated,
and the chest opened again. Immediately following re-occlusion of the
LAD at original ligation site, the heart was isolated and perfused (retro-
grade) with 4.0% Evans Blue through the aorta to stain non-ischaemic
myocardial tissue. The heart was then cut into four transverse slices.
The slices were stained with 1.5% 2,3,5-triphenyltetrazolium chloride
(TTC, Sigma) to determine the infarct area (IFA) and photographed
under a dissecting microscope. Left ventricular (LV) area, area at risk
(AAR), and IFA were determined with SigmaScan software. The area of
the myocardium without TTC staining was considered as IFA. Infarct
size was expressed as the percentage of the IFA in AAR.

2.5 Myocardial apoptosis
Myocardium apoptosis was assessed with an in situ cell death detection kit
(Roche) as described previously.14 Briefly, 24 h after I/R, the hearts were
harvested and fixed with 10% formalin for 24 h. The specimens were pro-
cessed for paraffin embedding. After deparaffinization, rehydration, and
antigen retrieval with sodium citrate (pH 6.0), the tissue sections were
treated with proteinase K (10–20 mg/mL in Tris/HCl). Subsequently,
the sections were incubated with TUNEL reaction mixture at 378C for
60 min and myocardial apoptosis was assessed by immunofluorescence
microscopy (Zeiss Axiovert 200M). To localize positive apoptotic signal
within the myocardium, the myocardial sections were also counterstained
for troponin T with Texas red (myocytes), and Hoechst for (nuclei).

Cardiomyocyte apoptosis was assessed by determination of caspase 3
activity, fragmented DNA, and apoptotic cells attaining.14 For measuring
the caspase 3 activity, the myocytes were washed with PBS and lysed
with Cell Lysis Buffer (BioVision). Subsequently, the cell lysates were cen-
trifugated at 10 000 g for 10 min at 48C. The supernatants were incubated
with a caspase 3 fluorometric substrate DEVA-AFC (BioVision). The
caspase 3 activity was determined by measuring the fluorescence intensity
with a Victor 3 multilabel counter (Perkin Elmer).

Apoptotic myocyte death was determined with a quantitative Cell
Death Detection ELISA Kit (Roche) to detect fragmented DNA according
to the manufacturer’s instructions.14 Briefly, cardiomyocytes were washed
with PBS, lysed with cell lysis buffer in the kit, and harvested in an Eppen-
drof tube. After centrifugation at 20 000 g for 10 min at 48C, the superna-
tants were collected for detection of histone-associated DNA fragments
with ELISA.

For direct detection of apoptotic cells in myocytes, the cells were seeded
on cover slips and cultured with or without HG followed by challenged with
a normoxia/reoxygenation (N/R) or A/R. Subsequently, the cells were fixed
with 4% paraformaldehyde and apoptotic cells were detected with TUNEL
staining as described above for the myocardium apoptosis.

2.6 Myocardial function
Mouse cardiac function was evaluated with a pressure–volume loop ana-
lysis system as described previously.16 Briefly, mice were anaesthetized
with ketamine (150 mg/kg) and xylazine (5 mg/kg) and the adequacy of an-
esthesia was monitored for the disappearance of pedal withdrawal reflex.
Subsequently, a Millar tip transducer catheter (Model SPR-893, 1.4 Fr) was
advanced into the LV via the right carotid artery. After recording of the
basic haemodynamic parameters, LV pressure–volume loops were gener-
ated by occlusion of the inferior caval vein using a PowerLab system (AD
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Instruments, USA) connected to the Millar catheter.17 LV end-systolic
pressure–volume relation was calculated and used as an index of myocar-
dial contractile function.

2.7 Cardiac myocytes culture
Cardiac myocytes were isolated from neonatal mouse hearts.14 In brief,
the harvested hearts were minced, digested, washed, and the cells sus-
pended in M199 with 10% foetal calf serum (FCS). The myocytes were
enriched by a preplating approach to remove contaminating cells (fibro-
blasts and endothelial cells readily adhere, while myocytes do not). The
non-adherent cells were removed and cultured in M199 supplemented
with 10% FCS. After 48 h in culture, the cells had formed a confluent
monolayer consisting of 95% myocytes beating in synchrony.

2.8 In vitro model of hyperglycaemia
Cardiac myocytes were cultured with M199 containing 30 mM glucose for
up to 72 h to simulate the hyperglycaemia of DM.18 As a control, the cells
were incubated in M199 with 30 mM mannitol.

2.9 A/R model
As in vitro correlates to I/R in vivo, cardiomyocytes were exposed to an A/R
as described previously.14 Briefly, the myocyte monolayer were exposed
to anoxia for 30 min and then reoxygenated for up to 24 h. The control
cardiac myocytes were exposed to normoxia (N/R). In some experiments,

recombinant IL-33 (0.2–5 ng/mL) was given to myocytes while they were
challenged with A/R.

2.10 Protein expression
Myocardial tissue and cardiac myocytes protein expression was assessed
with western blot as described previously.16 Briefly, tissue or cell lysates
were resolved on SDS–polyacrylamide gels (PAGE) and transferred to
polyvinylidene fluoride membranes. After blocking with 5% non-fat milk,
the membranes were probed with primary antibodies against one of the
following proteins: IL-33, DGK-zeta, b-actin, GAPDH, and P-Cadhrin.
After incubated with related secondary antibodies, the specific bands
were visualized with an ECL detection system according to the manufac-
turer’s instructions.

2.11 PKCbII activation
Myocardial tissue PKCbII activation was assessed by detection of
membrane-bonded PKCbII as described previously.19 Briefly, cell mem-
brane fraction of the myocardium was separate with a membrane/cytoplasm
fractionation kit (BioVision). Membrane-bonded PKCbII and cytosolic
PKCbII were determined with western blot. The ratio of membrane
bonded to cytosolic PKCbII was used as an index of tissue PKCbII activation.
PKCbII activation in cardiac myocytes was determined by detecting the
phosphorylation status of intracellular PKCbII by western blot.11

Figure 1 DM decreases myocardial levels of IL-33 and activates PKCbII. (A) Myocardial IL-33 expression was decreased in STZ-treated mice when
compared with those of vehicle-treated mice. Upper panel: actual blots; lower panel: densitometry analysis data. n ¼ 3; *P , 0.05 compared with
vehicle. (B) Exogenous IL-33 attenuated the activation of myocardial PKCbII by DM. Myocardial PKCbII activation was assessed 24 h after the admin-
istration of IL-33 by measuring membrane-bonded PKCbII with western blot. n ¼ 3; *P , 0.05 compared with vehicle; #P , 0.05 compared with STZ.

T. Rui et al.372
D

ow
nloaded from

 https://academ
ic.oup.com

/cardiovascres/article/94/2/370/268880 by guest on 23 February 2023



2.12 PKCbII small-interference RNA
transfection
Small-interference RNA (siRNA) specific for PKCbII was purchased from
Santa Cruz Biotechnology. Cardiac myocytes were transfected the siRNA
using Lipofectamine 2000 reagent (Invitrogen) according to the manufac-
turer’s instructions.20 Transfection efficiency was �70% as determined
with western blot (see Supplementary material online, Figure S1) and
the cardiac myocytes were used in experiments 48 h after the siRNA
transfection.

2.13 Statistical analysis
Data are expressed as mean+ SEM. Statistical analysis was performed
with two-way ANOVA followed by a Bonferroni correction for multiple
comparisons. GraphPad Software program was used for statistical analysis.
A P-value of ,0.05 is considered to be statistically significant.

3. Results

3.1 Myocardial IL-33 expression, PKCbII
activation, and I/R-induced myocardial
injury in mice with DM
Myocardial IL-33 expression is decreased in mice with DM (Figure 1A),
which is associated with an increased activation of PKCbII (Figure 1B).
In addition, an I/R challenge to the myocardium resulted in an

increased myocardial infarction size (Figure 2), and exaggerated myo-
cardial apoptosis and dysfunction in mice with DM compared with
mice without DM (Figure 3). To determine whether the deficiency
of myocardial IL-33 in diabetic mice causes activation of PKCbII and
sensitization of the myocardium to I/R-induced injury, DM mice
were administrated with IL-33. Subsequently, the PKCbII activation,
I/R injury, and myocardial function were assessed. As shown in
Figure 1B, exogenous IL-33 abolished the PKCbII activation, attenu-
ated I/R injury (myocardial infarction size and apoptosis), and
improved myocardial function in both mice with and without DM.
However, the protective effect was more prominent in mice with
DM than those without DM (Figures 2 and 3).

3.2 Role of IL-33 on A/R-induced apoptosis
in cardiomyocytes with HG
To study the mechanism(s) by which the diabetic myocardium is
protected by exogenous IL-33, the cardiomyocytes were exposed
to HG to mimic hyperglycaemia in vivo. Subsequently, the
HG-treated cardiomyocytes were challenged with an A/R with or
without IL-33. As shown in Figure 4A and B, HG-treated cardiomyo-
cytes incurred exaggerated apoptosis after the A/R challenge com-
pared with those of myocytes without HG. Treatment of
cardiomyocytes with IL-33 (1–5 ng/mL) attenuated myocyte apop-
tosis after A/R, while 0.2 ng/mL IL-33 showed no effect (Figure 4C).
We further evaluated the effect of IL-33 on A/R-induced apoptosis
in HG-conditioned myocytes. As shown in Figure 4D, exogenous
IL-33 (5 ng/mL) attenuated the A/R-induced apoptosis in
HG-conditioned cardiomyocytes.

3.3 Effect of IL-33 on HG-induced
activation of PKCbII in cardiomyocytes and
on cardiomyocyte DGK-zeta expression
Treatment of cardiac myocytes with HG resulted in an increase in
PKCbII phosphorylation (Figure 5A) which is an indication of
PKCbII activation.11 IL-33 prevented the increase in PKCbII phos-
phorylation (Figure 5B). Further, HG-induced activation of PKCbII
was dramatically enhanced when the HG-treated cardiomyocytes
were challenged with A/R. Again, the IL-33 significantly attenuated
the A/R-induced activation of PKCbII in HG-treated cardiomyocytes
(Figure 5C). To further demonstrate whether PKCbII activation
is associated with the A/R-induced myocyte apoptosis, cardiac
myocytes were pretreated with either a PKCbII inhibitor
[3-(1-(3-Imidazol-1-ylpropyl)-1H-indol-3-yl)-4-anilino-1H-pyrrole-2,5-
dione] or an siRNA specific to PKCbII prior to being challenged with
A/R. As shown in Figure 6A and B, blockade of PKCbII by either the
inhibitor or the siRNA prevented the A/R-induced myocyte apop-
tosis. Furthermore, as shown in Figure 6B, both exogenous IL-33
and siRNA showed protection to cardiomyocytes; however, exogen-
ous IL-33 to siRNA-treated myocytes did not show additional protec-
tion. These results indicate that IL-33 protects cardiomyocytes
through inhibition of PKCbII.

PKCbII activation is a complex event including a series of serine/
threonine transphosphorylation and autophosphorylation followed
by relocation of activated PKCbII to plasma membrane. The PKCbII
activity is greatly affected by the availability of DAG, an intermediate
product synthesized from glucose.12 DGKs are intracellular lipid
kinases which can regulate PKCb activity by altering the availability
of DAG.10 In the heart, DGK-zeta has been reported being related

Figure 2 Myocardial infarction size was measured. Upper panels
are actual images and lower panels are quantitative data. n ¼ 5;
*P , 0.05 vs. vehicle mice/I/R; +P , 0.05 compared with vehicle
mice/I/R; #P , 0.05 vs. STZ mice I/R.
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to I/R injury.21 Thus, we assessed the effect of IL-33 on DGK-zeta ex-
pression in cardiomyocytes and myocardium of diabetic mice. As
shown in Figure 6C, treatment of cardiomyocytes with IL-33 (1–
5 ng/mL) increased myocyte DGK-zeta expression. Furthermore,
DM resulted in decreased levels of myocardial DGK-zeta which was
prevented by exogenous IL-33 (Figure 6D).

4. Discussion
After a myocardial infarction, the prognosis of patients with DM is
much worse than that of patients without DM.2 Experimental

studies have demonstrated that an I/R challenge to the myocardium
of diabetic animals resulted in a larger infarction size than those of
animals without DM.4 However, the underlying mechanism(s) by
which the diabetic myocardium is more vulnerable to I/R-induced
injury remains poorly understood.

Previous reports indicate that aldose reductase, an NADPH-
dependent enzyme, is activated in DM and is responsible for diabetes-
related vascular and neurological complications.22,23 In the heart, it
has been demonstrated that the I/R challenge results in an increase
in myocardial aldose reductase activity. Inhibition of the aldose reduc-
tase attenuates the I/R-induced myocardial injury.24 These studies

Figure 3 I/R results in an exaggerated myocardial apoptosis and dysfunction in mice with DM which was attenuated by exogenous IL-33. (A) Myo-
cardial apoptosis assessed with TUNEL staining. The upper panel is an actual imagine of TUNEL immunofluorescence staining. Scale bar ¼ 20 mm;
lower panel: quantitative analysis data. n ¼ 5; *P , 0.05 compared with respective sham mice; #P , 0.05 compared with I/R/vehicle mice;
+P , 0.05 compared with respective I/R. (B) IL-33 improved cardiac contractility after I/R in mice with or without DM. n ¼ 7; *P , 0.05 compared
with respective sham mice; #P , 0.05 compared with vehicle/sham mice; +P , 0.05 compared with respective I/R.
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imply that the aldose reductase plays key roles in the I/R injury in the
diabetic myocardium. In addition, (i) chronic hyperglycaemia leads to a
decreased microvasculature density in the myocardium25 and (ii)
either hyperglycaemia or I/R can result in a robust free radical
species production.9 The oxidant stress to microvascular cells can
cause further damage to the diabetic myocardium. Thus, others
believe that microcirculation dysfunction of the diabetic myocardium
causes the vulnerability to I/R injury.

Our study provides a novel insight to I/R injury in the diabetic myo-
cardium. Using a mouse model of type I DM and I/R challenge to the
diabetic mice, we found that DM decreases myocardial levels of IL-33
which is associated with increased myocardial PKCbII activation and
exaggerated I/R injury. Administration of IL-33 to diabetic mice or car-
diomyocytes attenuates I/R- and A/R-induced apoptosis. In addition,
we demonstrated that A/R challenge enhances HG-induced PKCbII

activation which is associated with the exaggerated myocyte apop-
tosis, and IL-33 attenuates A/R or I/R injury by inhibition of PKCbII
activation. Finally, we provided evidence indicating that exogenous
IL-33 increased DGK-zeta expression in cardiomyocytes and myocar-
dium of mice with DM.

It is generally believed that cytokines play important roles in the
I/R-induced myocardial injury14 and myocardial dysfunction in DM.26

Previous studies have demonstrated that increased expression of
TNFa, IL-6, MCP-1, and recently HMGB1 in both settings is detrimen-
tal and showed cytotoxic effects to cardiomyocytes.14,27,28 IL-33 is a
newly identified cytokine which belongs to IL-1 family. Interestingly,
in contrast to those cytotoxic cytokines, IL-33 has been reported
showing beneficial effects to the cardiovascular system including
preventing the development of arthrosclerosis and attenuating
I/R-induced myocardial injury and fibrosis.7,8 In the present study,

Figure 4 A/R-induced apoptosis was exaggerated in cardiomyocytes with HG which was attenuated by IL-33. (A) Cardiomyocyte caspase 3 activity
and fragmented DNA were measured. n ¼ 3; *P , 0.05 compared with respective N/R; #P , 0.05 compared with normal glucose (NG)/A/R or man-
nitol/A/R. (B) Cardiomyocytes were grown on cover slips and challenged with HG followed by A/R. Apoptosis assessed with TUNEL staining. Rep-
resentative staining for TUNEL (green signal), troponin T (red signal), and Hoechst 33342 (blue signal). Upper panel—actual images; N/R: a, NG; b,
mannitol; c, HG; A/R: d, NG; e, mannitol; f, HG. Scale bar ¼ 20 mm; lower panel—quantitative data. n ¼ 3; *P , 0.05 compared with respective N/R;
#P , 0.05 compared with M199/A/R or mannitol/A/R. (C) Cardiac myocytes were challenged with an N/R or A/R with or without IL-33 (0.2–5 ng/mL)
and apoptosis assessed. n ¼ 3; *P , 0.05 compared with N/R; #P , 0.05 compared with A/R without IL-33. (D) Cardiac myocytes were cultured with
mannitol or HG for 48 h followed by A/R with or without IL-33 (5 ng/mL) and myocyte apoptosis assessed. n ¼ 4; *P , 0.05 compared with mannitol/
A/R; +P , 0.05 compared with HG/A/R.
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we discovered for the first time that myocardial levels of IL-33 are
decreased in diabetic mice. The reduction in myocardial IL-33
results in the diabetic myocardium is more sensitive to I/R.
However, the mechanism which causes a reduction in myocardial
IL-33 in diabetes is not clear. One potential mechanism is the induc-
tion of microRNA (miR) in the diabetic heart. By microarray assay, we
recently found that several miRs are elevated in the diabetic myocar-
dium (unpublished observation). Of which miR-375, miR-380-5p are

directly targeting the 3′-UTR of the IL-33 based on the
bio-information tools (microrna.org, targetscan.org). Thus, the in-
crease in myocardial miRNA expression could lead to a reduction
in myocardial IL-33 in diabetes.

PKCb is an important kinase that contributes to myocardial dys-
function in various pathologies.12 In I/R myocardial injury, an increase
in the PKCb level resulted in myocyte death. Genetic and pharmaco-
logical inhibition of PKCb resulted in diminished phosphorylation of
c-Jun NH2-terminal mitogen-activated protein kinase and attenuated
I/R-induced myocardial injury and apoptosis.29 These results indicate
that PKCb is a pivotal kinase in I/R-induced myocyte apoptosis. Our
results agree with the role of PKCb in I/R-induced myocardial injury.

Chronic activation of PKCb has been demonstrated in DM and is
believed to contribute to DM-related complications.12 In addition, it
has been reported that I/R can activate PKCb and contribute to myo-
cardial injury.29 Thus, we postulate that enhanced myocardial injury
after I/R in diabetic mice is attributed to exaggerated activation of
PKCb. Indeed, our data support the contention. We found that treat-
ment of cardiomyocytes with HG activated PKCbII, which was further
enhanced when the HG treated cardiomyocytes were further chal-
lenged with an A/R. IL-33 prevented the exaggerated PKCbII
activation and attenuated the A/R-induced apoptosis in myocytes
with HG.

Our results indicate that myocardial PKCbII was increased in dia-
betic mice. However, myocardial IL-33 was decreased and exogenous
IL-33 attenuated the activation of PKCbII. Therefore, we believe that
decreased myocardial IL-33 contributes to chronic activation of
PKCbII in diabetes. As a c-PKC isoform, the PKCbII activation and ac-
tivity is dependent on the DAG level which is regulated by DGK.12

Therefore, a change in the DGK level could affect the PKCbII activa-
tion. In this study, we demonstrated for the first time that treatment
of the cardiomyocyte with IL-33 increased the DGK-zeta expression;
furthermore, we found that myocardial DGK-zeta was decreased in
diabetic mice, which was reversed by exogenous IL-33.

It has been demonstrated that an increase in myocardial aldose
reductase activity results in cytosolic NADH/NAD+ elevation.23,30

The resultant of the above changes is the increase in PKCa/b activity
and myocardial injury.30 However, our data support that a reduction in
IL-33 leads to a decrease in the DGK level which further activates
PKCbII. It is not clear whether a reduction in myocardial IL-33 could
further activate aldose reductase. To this end, we measured the
aldose reductase activity, lactate/pyruvate ratio (a measure for cytosolic
NADH/NAD+), and intracellular levels of ATP in cardiomyocyte
with HG. As shown in Supplementary material online, Figure S2,
after HG treatment for 48 h, myocyte aldose reductase activity and
lactate/pyruvate ratio were elevated. The metabolic changes were
exaggerated after A/R. The IL-33 treatment attenuated the HG or
HG with an A/R-induced increase in aldose reductase activity and
lactate/pyruvate ratio. Based on the above data, it seems that
HG-induced activation of aldose reductase is related to the down-
regulation of IL-33. However, the exact pathway by which to link the
IL-33 and activation of the aldose reductase remains to be determined.

One limitation of the present study is to use normal cardiomyocytes
treated with HG in vitro to mimic diabetic myocardium in vivo.
However, based on the aldose reductase activity and lactate/pyruvate
ratios, it seems that cardiomyocytes show similar abnormalities as
those of the diabetic myocardium (see Supplementary material
online, Figure S2). The metabolic difference between HG-treated myo-

Figure 5 IL-33 prevented the A/R-challenge enhanced PKCbII ac-
tivation in cardiomyocytes with HG. (A) Cardiomyocyte PKCbII
phosphorylation increased after HG. n ¼ 3; *P , 0.05 compared
with control. (B) IL-33 attenuated HG-induced PKCbII phosphoryl-
ation. n ¼ 3; *P , 0.05 compared with mannitol; #P , 0.05 com-
pared with HG. (C ) A/R enhanced HG-induced PKCbII
phosphorylation which was attenuated by IL-33. n ¼ 3; *P , 0.05
compared with HG/N/R; #P , 0.05 compared with HG/A/R.
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cytes and the diabetic myocardium is that HG slightly increases intra-
cellular ATP (see Supplementary material online, Figure S2C), while the
diabetic myocardium incurs decreased intracellular ATP.31 However,
intracellular ATP was dramatically decreased after A/R in HG-treated
myocytes (see Supplementary material online, Figure S2C) which is
similar to ATP levels in the diabetic myocardium after I/R.32 Thus,
we believe that our in vitro setting mimics the metabolic abnormalities
of the diabetic myocardium in vivo. Another limitation of the study is to
use the STZ mouse model of diabetes. The blood glucose levels of the
diabetic mice were not controlled with insulin. They are rather severe
diabetic mice challenged with I/R. Thus, the results should be inter-
preted within the limits of the experimental setting.

In conclusion, our study demonstrated for the first time that DM
decreases myocardial IL-33 expression. The resultant of decreased
IL-33 is down-regulation of DGK-zeta and chronic activation of
PKCbII. The enhanced activation of PKCbII after I/R in the diabetic
myocardium results in exaggeration of myocardial injury.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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