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ABSTRACT 

This paper introduces a distributed data mining approach suited to 
grid computing environments based on a supervised learning 
classifier system. Different methods of merging data mining 
models generated at different distributed sites are explored. 
Centralized Data Mining (CDM) is a conventional method of data 
mining in distributed data. In CDM, data that is stored in 
distributed locations have to be collected and stored in a central 
repository before executing the data mining algorithm. CDM 
method is reliable; however it is expensive (computational, 
communicational and implementation costs are high).  
Alternatively, Distributed Data Mining (DDM) approach is 
economical but it has limitations in combining local models. In 
DDM, the data mining algorithm has to be executed at each one of 
the sites to induce a local model. Those induced local models are 
collected and combined to form a global data mining model. In 
this work six different tactics are used for constructing the global 
model in DDM: Generalized Classifier Method (GCM); Specific 
Classifier Method (SCM); Weighed Classifier Method (WCM); 
Majority Voting Method (MVM); Model Sampling Method 
(MSM); and Centralized Training Method (CTM). Preliminary 
experimental tests were conducted with two synthetic data sets 
(eleven multiplexer and monks3) and a real world data set 
(intensive care medicine). The initial results demonstrate that the 
performance of DDM methods is competitive when compared 
with the CDM methods.  

Categories and Subject Descriptors 
I.2.6 [Learning]: Induction, Knowledge acquisition 

General Terms 

Algorithms, Experimentation 

Keywords 

Grid Data Mining, Supervised Learning Classifier Systems, 

Model Merging Strategies. 

1. INTRODUCTION 
Recently, there is a significant progress in the research related to 
distribute data mining. Digital data stored in the distributed 
environments is doubling within a few years. For example, 
distributed organizations, e.g. large supermarkets, store chains, 
healthcare units that have different branches in all over the world 
should create and maintain individual data repositories. All the 
data that are stored in different databases are important for new 
decision making process. Supermarkets store large amounts of 
transactional data in their local databases. Local databases are 
important to induce local data mining models, but they are also 
important to induce global data mining models (e.g. predicting 
future sales volume).   

More advanced and feasible distributed data mining algorithms 
and strategies are required in the current fast growing 
environment. The increasing necessity of distributed data mining 
applications is attracting more attention from researchers and 
software developers. 

Learning Classifier System (LCS) is a concept formally 
introduced by John Holland as a genetic based machine learning 
algorithm [1]. Supervised Classifier System (UCS) is a LCS 
derived from XCS [1]. UCS adopted many features from the XCS 
that are suitable for supervised learning scheme. UCS algorithm 
was chosen to be applied in this implementation of grid based 
distributed data mining due to the supervised nature of the most 
part of the problems in this area. Substantial work has been done 
to parallelize and to distribute the LCS canonical model in order 
to improve the performance and to be suited to inherently 
distributed problems. Manuel Santos [2] developed the DICE 
system, a parallel and distributed architecture for LCS. In his 
work he attempted to parallelize the genetic algorithm and LCS 
message operations to increase system’s performance. Interesting 
speedups were attained in the experimental work. A. Giani, 
Dorigo and Bersini also did significant research in the area of 
parallel LCS [3]. Their implementation also tried to increase the 
performance of the system. All implementations of parallel LCS 
consider a single data and generate a single model. 

This work is part of a major project – the Gridclass project – 
whose main goal is to implement the UCS in a grid environment. 
Gridclass system does not paralyze any part of the UCS. Various 
instances of the UCS are executed in different distributed sites 
with different set of data. Recalling the supermarket application 
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example presented in the beginning of this introduction, each 
branch can generate local models running an UCS instance on the 
data available in that site. Using the conventional method of 
Centralized Data Mining (CDM), each distributed site has to send 
data to the central site. If on a daily basis each site � ∈ �1, . . , ��	 
generates Rs records, the total effort to generate a global model 
tends to: 

Tcdm≈Mcdm+ � �(��)
�

 

Where Tcdm stands for the time needed to induce a global data 
mining model. Mcdm is the global modeling time. T stands for the 
communication time needed to transfer Rs records from the site S 
to the central site. Data security is another concern in sending 
data. This work adopts the pattern of Distributed Data Mining 
(DDM) approach where each distributed site sends an induced 
data mining model Ms to the central site. The key advantage of 
this method is it avoids sending large size of data from each 
distributed sites to the central site. The effort to induce a global 
model can be computed as: 

Tddm≈Mddm+ � �(��)
�

+ � �(��)
�

 

Mddm corresponds to the global modeling time. M is the 
modeling time for the model Ms. When the volume of data rises 
Tddm tends to be much smaller than Tcdm (Tddm << Tcdm). The 
DDM can configure an attractive solution since the accuracies of 
the global models are similar. 

All the experimental work was done using the Grid gain platform; 
a java based distributed computing middleware [4]. This 
middleware combines a computational grid with data grid and 
auto scaling on any managed infrastructure, moreover the 
applications are easy to implement.  

The key objective of this work is to construct a global data mining 
model from different local models of the grid and compare DDM 
and CDM methods. Grid computing architecture is considered the 
best distributed framework for solving the distributed data mining 
task [5, 6]. Each node of the grid environment executes different 
UCS and those nodes send local data mining models to the central 
site for developing a global model. This paper introduces six 
different methods for merging local models from each distributed 
sites. The different strategies are: Specific Classifier Method 
(SCM), Weighted Classifier Method (WCM), Generalized 
Classifier Method (GCM), Majority Voting Method (MVM), 
Model Sampling Method (MSM) and Centralized Training 
Method (CTM). Three sets of data were used for testing all the 
strategies described in this paper: ICU data, 11mux problem and 
monks3 problem. 

The remaining sections of this paper are organized as follows: 
Section 2 explains the construction methods of global model. 
Subsections of section 2 describe the six different construction 
strategies and the corresponding algorithms. Section 3 explains 
the experimental setup of ICU data, 11 multiplexer and monks3 
problems. Section 4 discusses the performance of the different 
strategies used and related work. The final section presents 
conclusions and the road map for future efforts. 

2. GLOBAL MODEL CONSTRUCTION 
Gridclass is a project that uses the UCS for data mining proposes 
in a grid environment. Two levels of data mining models are 
generated in the Gridclass system. The first level is related to the 
models generated in each distributed sites and the second level 

correspond to the model generated in the central site. The first 
data mining models are known as local models. The second level 
is known as global model and is generated from all the local 
models in the first level. The global model represents all the data 
in the distributed environment. 

During the training process, Gridclass system generates data 
mining models based on the training data and a predefined set of 
classifier [7]. If a predefined set of classifiers is provided, then the 
system can perform incremental learning. The incremental 
learning process improves the performance therefore the system 
can provide more generalized learning model. If a predefined set 
of classifiers is not provided, then the system generates the data 
mining models only from training data. Data mining models are 
maintained by genetic algorithm and covering operations in UCS 
system [8, 9, 10].  

There are many challenges for constructing a global model, 
because wrong combination of the classifiers gathered from the 
local models, will affect negatively the performance of global 
model. The main difficulty is to derive the significance of each 
classifier and predict their values in the global model. All training 
data are completely independent even though there should be 
many similar classifiers with different sets of parameter values 
(benefits). Therefore the parameter evaluation of the classifiers in 
the global model is important. 

Remaining sections demonstrate some solutions that are suitable 
for constructing the global model. Each strategy establishes 
different sort of combinations of local models in the global model. 
Those strategies help to understand the significance of availability 
of different sort of local classifiers in the global model. Each 
strategy has peculiar significance for the development of the 
global model. The performance of global model is evaluated from 
the testing accuracies of the global model.  

2.1 Specific Classifier Method (SCM) 
Specific Classifier Method (SCM) only preserves discrete 
classifiers in the global model [11]. SCM induce the global model 
without repeating similar classifiers and simultaneously keeping 
all the benefits of the local classifiers. The evaluation of the 
classifiers only considers the rule condition and the action part. 
SCM system doesn’t consider the generality of the classifier. For 
example, ‘c1’ =”0#0” - >1, ‘c2’ =” 010” ->1, and ‘c3’ =”000”->1 
are three classifiers. The action part of these classifiers is similar 
but condition part is different. In other sense the classifier ‘c1’ is 
more general than the other two classifiers but in SCM these three 
classifiers are considered as three different classifiers. If there are 
two or more classifiers that have similar conditions and actions, 
then system keeps only one classifier in the global model and 
updates the parameters of the classifier which is in the global 
model with the parameters of the repeated classifiers.  

In SCM the initial process is to collect all the classifiers from the 
distributed sites and store them in a central location. The collected 
classifiers have to be evaluated based on the criteria of SCM and 
those classifiers that are eligible to be integrated the global model 
will be stored in the global model. While classifiers are evaluated, 
each classifier needs to be matched with all other classifiers in the 
collected local model. When one classifier finds another similar 
classifier in the collected local models then that classifier updates 
its parameters with parameters of matched classifier.  Finally, the 
induced global model will be tested using a data set that was 
generated from the global data set. 



The classifiers’ parameters in SCM are updated using the 
expressions 1, 2 and 3.  The expression 1 shows the modification 
of number of match and expression 2 explains the modification of 
number of correct and expression 3 shows the modification of 
accuracy. The parameter, Last Time This Was in the GA is 
modified with its maximum value among similar classifiers. Other 
parameters, numerosity and correct set size are not updated.  

��� = ��� + ���                          (1) 

��� = ��� + ���                             (2) 

Where:   

GNm = Number of Match of the current classifier in the global 
model; NNm = Number of Match of the new classifier; GNc = 
Number of Correct of the current classifier in the global model; 
and NNc= Number of Correct of the new classifier. 

���� =  (�� ∗��"∗�#"")$(�� ∗��"∗�#"")
(�� ∗��")$(�� ∗��")              (3) 

The global model size of the SCM is dynamic. Algorithm 1 
explains the functionality of the SCM. 

BEGIN 

 Initialize Global Population 

 Collect all local models  

 Global_ size= 1  

  // update the parameters. 

  // Nm =number of match, Nc= number of correct, Gc= global 

              model, Lc= local model 

 

 Repeat N 

  Repeat i   

   Repeat j 

  If Condition (Gc[j]) = Condition (Lc[i]) AND Ac (Gc[j]) =  Ac 

(Lc[i])  Then 

     ��(��%&') = ��(��%&') + ��((�%)') 

     ��(��%&') = ��(��%&') + ��((�%)') 

     ��(��%&') = 
*��(��%&') ∗ ��(��%&') ∗ ��(��%&')+ +

(��((�%)') ∗ ��((�%)') ∗ ��((�%)'))
(��(��%&') ∗ ��(��%&')) + ��((�%)') ∗ ��((�%)')) 

     (,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&') = 

        �,2((,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&'), 
           (,�-�)�.-ℎ)�0,� )1 -ℎ. ��((�%)')) 

       Flag=1 

     End if 

  Until j reached up to Global_ size 

     If flag != 1 then 

          Global_ Class [j+1] = Local_ Class[i] 

          Global_ size= Global_ size + 1 

    End if 

 Until i reached up to end of local models 

Until N reached up to Node // node means number of nodes 

END 
Algorithm 1: The algorithm for Specific Classifier Method. 

2.2 Generalized Classifier Method (GCM) 
Generalized Classifier Method (GCM) only preserves more 
general classifiers in the global model [11]. The main intention of 

the GCM is to induce a global model with all more general 
classifiers. More general classifiers can represent all less general 
classifiers therefore in GCM. The system doesn’t allow for less 
general classifiers into the global model. The parameter of the 
more general classifier which is already in the global model is 
updated with the value of the less general or similar classifier. In 
other case, if the new classifier is more general than the classifier 
that are already in the global model, then all less general 
classifiers have to be removed from the global model and the 
parameter of the new classifier are updated with the parameters of 
all removed classifiers.  

Let’s consider for example the three following classifiers: 
c1=”0,0,0”->1 ,c2= “0,#,0”->1, c3= ”0,1,0”->1; which come to 
the global model in that order, with ‘c1’ as the first classifier. In 
this case, the system only stores the classifier c2, because c2 is 
more general than the other two classifiers (c1, c3). Initially, the 
classifier c1 is stored in the global model, but when the classifier 
c2 arrives, classifier c1 is removed and c2 is stored in the global 
model. The parameters of the classifier c2 will be updated with 
the parameters of the classifier c1. Classifier c3 is less general 
than the classifier c2. So the system doesn’t permit c3 to be stored 
in the global model. Here, the parameters of the classifier c2 are 
again updated with the parameters of c3. Normally, the global 
models generated by GCM are very small (compact) and the 
global model size are not determined by the user. 

The initial process of GCM is to collect all local models from the 
distributed sites and store them in a global model. All classifiers 
whose condition and action part matches in the collected local 
models are stored and its parameters are updated with the 
parameters of other matched classifiers. All isolated classifiers are 
also stored in the global model. In a third step, each classifier 
(from the isolated classifiers) has to be evaluated based on the 
generality against to other classifiers that are available in the 
global model. If a classifier is less general than another classifier 
in the global model, then the less general classifier needs to be 
removed from the global model. Finally, last induced global 
model will be tested with a specific data that was collected from 
the global data set. 

The classifiers’ parameters are updated using expressions 4, 5, 
and 6. Expression 4 explains the modification of the parameter 
number of match, expression 5 explains how the number of 
correct is modified and expression 6 explains the modification of 
accuracy. The parameter Last Time This Was In The GA takes the 
maximum value among less general or similar classifiers. Other 
parameters such as numerosity and correct set size are not 
updated.  

��� = ��� + (��                          (4) 

��� = ��� + (��                             (5) 

Expression 7, define the accuracy of new classifier.  

�.0,�� =  (�� ∗��"∗�#"")$(3� ∗3�"∗3#"")
(�� ∗��")$(3� ∗3�")              (6) 

Where: 

GNm = Number of Match of the more general classifier; LNm = 
Number of Match of the less general classifier; GNc= Number of 
Correct of the more general classifier; LNc = Number of Correct 
of less general classifier; GAcc = Accuracy of more general 
classifier; and  LAcc= Accuracy of less general classifier.  



Algorithm 2 explains the work flow of the GCM. 

BEGIN 

     Initialize Global Population 

    Collect all local models 

    Global_ size= 1 

Repeat N 

  Repeat i 

   Repeat j 

 If Condition (global_ Class[j]) = Condition (Local_ Class[i]) 

AND Action (global_ Class[j]) = Action (Local_ Class[i]) 

then 

        // update the parameters. 

        // Nm =number of match, Nc= number of correct,  

  //Gc= global      model, Lc= local model 

         ��(��%&') = ��(��%&') + ��((�%)') 

        ��(��%&') = ��(��%&') + ��((�%)') 

        ��(��%&') = 

            
*��(��%&') ∗ ��(��%&') ∗ ��(��%&')+
+(��((�%)') ∗ ��((�%)') ∗ ��((�%)'))

(��(��%&') ∗ ��(��%&')) + ��((�%)') ∗ ��((�%)')) 

         (,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&')
= �,2((,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&') 

               , (,�-�)�.-ℎ)�0,� )1 -ℎ. ��((�%)')) 

         Flag=1 

      End if 

    Until j reached up to Global_ size 

    If flag != 1 then 

         Global_ Class [j+1] = Local_ Class[i] 

         Global_ size= Global_ size + 1 

    End if 

  Until i reached up to end of local models 

Until N reached up to Node // node means number of nodes 

Repeat i 

   Repeat j 

    If global_ Class[i] is more general global_ Class[j] then 

      // updates the parameters of  Global_ class[i] 

      // Nm =number of match, Nc= number of correct, 

     // Gc= global    model,Ac= Accuracy 

       ��(��%)') = ��(��%)') + ��(��%&') 

       ��(��%)') = ��(��%)') + ��(��%&') 

                 ��(��%&') = 

                   
*��(��%)') ∗ ��(��%)') ∗ ��(��%)')+ +

(��(��%&') ∗ ��(��%&') ∗ ��(��%&'))
(��(��%)') ∗ ��(��%)')) + ��(��%&') ∗ ��(��%&')) 

                  (,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&') = 

                 �,2((,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&'), 
                  (,�-�)�.-ℎ)�0,� )1 -ℎ. ��((�%)')) 

               Flag=1 

          End if 

      Until j reached up to Global_ size 

Until i reached up to end of local models 

Repeat i 

   Repeat j 

     If global_ Class[i] is more general global_ Class[j] then 

      Temp= j 

       Repeat Temp 

         Global_ Class[Temp] = Global_ Class[Temp +1] 

       Until Temp reached up to Global_ size -1 

       Global_ size = Global_ size -1 

     End if 

   Until j reached up to Global_ size 

Until i reached up to Global_ size 
END 

Algorithm 2: The algorithm for Generalized Classifier Method. 

2.3 Weighted Classifier Method (WCM) 
Weighted Classifier Method (WCM) only maintains the highest 
weighted classifiers in the global population according to the 
global model size [11]. The purpose of the WCM is to calculate 
the quality of the classifiers from its parameters and eliminate all 
weightless classifiers from the global model. Global model size 
derived from the local model size.  The accuracy of the classifiers 
is considered as the weight of a classifier. Classifier accuracy 
needs to be normalized because each local model may have a 
different background. Therefore, accuracy of a classifier needs to 
be multiplied to the ratio of the size of local training data set and 
the global training data set.  

Initially, the system collects and sorts all the classifiers in the 
local model in descending order of the weights, then selects the 
classifiers that are in the range of global population size (to crowd 
the population). The global population in WCM cannot represent 
all the classifiers in the local models because the less weighted 
classifiers wouldn’t be included in the global population. 
Algorithm 3 explains the workflow of the WCM.  

BEGIN 
   Initialize Global Population 
  Collect all local training models  
  Repeat N    // for each node 
    Repeat i      
       // calculate weights of each classifier    

  Weight (Local_ Class[i]) = number_ of_ match(Local_       
Class[i])* number_ of_ correct (Local_ Class[i]) * accuracy 
(Local_ Class[i])  

     Until i reached up to POPMAX    
     // POPMAX is the maximum size of local model. 
   Until N reached up to Node  
   // node means number of nodes in the distributed site. 
Repeat N 
  Repeat i   
    Repeat j 
     If weight (global_ Class[j]) < weight (Local_ Class[i]) then 
      Temp<- Global_ size 
      Repeat Temp 
        Global_ Class [Temp] = Global_ Class [temp -1] 
        Temp= Temp- 1 
        Until Temp = j 
        Global_ Class[j] =Local_ Class[i] 
     End if 
   Until j reach up to Global_ size 
 Until i reached up to end of local models 
Until N reached up to Node  
END 
Algorithm 3: The algorithm for Weighted Classifier Method. 

2.4 Majority Voting Method (MVM) 
Majority Voting Method (MVM) is another strategy for 
constructing the global model from distributed local models. The 
goal of the MVM is to eradicate weak classifiers from the global 
model and construct a strong model in the central system (global 
model). 



Initially, MVM gathers all local models and stores them in the 
central system, then goes on to find all discrete classifiers from 
the accumulated local models as SCM. Later, the system 
calculates a threshold value (cut_ off_ threshold) from the 
collected classifiers and uses it to benchmark the classifiers in the 
population [11]. If the accuracy of a classifier is greater than the 
cut_ off_ threshold value then that classifier will be stored in the 
global model. The threshold value is derived from the accuracies 
of the discrete classifiers, i.e. the average of the accuracies of the 
classifiers in the collected local models. The global population 
size of MVM is dynamic. Algorithm 4 describes the work flow of 
the MVM.   

BEGIN 

 Initialize Global Population 

 Collect all local models  

 Global_ size= 1  

 Repeat N 

   Repeat i   

    Repeat j 

      If Condition (global_ Class[j]) = Condition (Local_ Class[i])   

AND Action (global_ Class[j]) = Action (Local_ Class[i]) 

then 

      // update the parameters. 

     // Nm =number of match, Nc= number of correct, 

     // Gc= global     model, Lc= local model 

      ��(��%&') = ��(��%&') + ��((�%)') 

      ��(��%&') = ��(��%&') + ��((�%)') 

        ��(��%&')      = 

         
*��(��%&') ∗ ��(��%&') ∗ ��(��%&')+
+(��((�%)') ∗ ��((�%)') ∗ ��((�%)'))

(��(��%&') ∗ ��(��%&')) + ��((�%)') ∗ ��((�%)')) 

         (,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&') = 

        �,2((,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&'), 
        (,�-�)�.-ℎ)�0,� )1 -ℎ. ��((�%)')) 

        Flag=1 

     End if 

   Until j reached up to Global_ size 

     If flag != 1 then 

      Global_ Class [j+1] = Local_ Class[i] 

      Global_ size= Global_ size + 1 

    End if 

  Until i reached up to end of local models 

Until N reached up to Node // node means number of nodes 

 AvgAcc = 0 

 Repeat j 

     AvgAcc = AvgAcc + Accuracy(Global_ Class[j] 

Until j reached up to Global_ size 

      �45��� =  �45���
�678,6_�):. 

Repeat j 

     If Accuracy (Global_ Class [j]) < AvgAcc then 

     Temp = j 

   Repeat  Temp 

       Global_ Class [Temp] = Global_ Class [Temp + 1] 

   Until  Temp up to Global_ size -1 

    Global_ size =Global_ size - 1 

 Until j reached up to Global_ size 

END 

Algorithm 3: The algorithm for Majority Voting Method. 
 

2.5 Model sampling Method (MSM) 
Model Sampling Method (MSM) is another strategy for 
constructing the global model from distributed local models. The 
main intension of MSM is to replicate the classifiers depending on 
the experience of each classifier. Each time a classifier is correctly 
matched with an example (training data), the value of number of 

match of that classifier will be increased by one.  Therefore the 
experience of a classifier is equivalent to the number of match of a 
classifier.  

The system replicates the classifier proportionally to the value of 
experience of a classifier.  During sampling, all don’t care 
symbols in the rule condition are replaced with other suitable 
values.  But parameters of the replicated classifiers received the 
same values from the base classifiers. After sampling, replicated 
classifiers have to be filtered based on some quality criteria.  
Quality of a classifier is defined from the accuracy of that 
classifier. In MSM, the system will filter the classifier based on 
the user defined quality level. After the filtering, system will 
provide a final global model.  Fig 1, describes the structure of 
MSM and Algorithm 5 explains the MSM operations. 

 

 Figure 1. Basic structure of MSM. 

BEGIN 

  Initialize Global Population 

  Initialize GloAccTh    

  // global accuracy threshold 

   Collect all local models  

   Sum_num_match<-0 

 Repeat N 

   Repeat i   

    // update the parameters. 

    // Nm =number of match, Nc= number of correct, 

   // Num= numerosity, NCorr = Number of correct,  

    //Gc= global model, Lc= local model 

    Condition (Gc[j,])= Condition (Lc[j,]) 
     ��(��%&') = ��((�%)') 

     ��(��%&') = ��((�%)') 

     ��(��%&') = (��((�%)') 

     Num(Gc[j])= Num(Lc[j]) 

        NCorr(Gc[j])= NCorr(Lc[j]) 

        (,�-�)�.-ℎ)�0,� )1 -ℎ. ��(��%&') = 

         (,�-�)�.-ℎ)�0,� )1 -ℎ. ��((�%)')) 

        j=j+1 

    Until i reached up to end of local models 

Until N reached up to Node  

  // node means number of nodes 

  Global_ size=j 

 //Replication process based on number of match of the classifier 

 //NewAc =new Accuracy, NewNm= New Number of Match, 

//  NewNc= New number of correct, NewNum= new numerosity, 

// NewNcorr= New number of correct,  
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//NewLastTimethiswas in the GA= New LastTimethiswas in     
the GA , 

   //Rgs=size of repeated global population. 

   Rgs<-1 

Repeat  i 

 Repeat j 

   Repeat k 

    If Condition (Gc[i,k])== # then 
 NewCondition [Rgs, k]=random value of value of that     
position 

    End if 
  Until k reached up to size of condition 
        NewAc[Rgs]=  ��(��%)') /( (7�,6�7<.6�):. ∗
        �678,6=7=>6,-)71 �):.) 
       NewNm[Rgs]=Nm(Gc[i]) 
      NewNc[Rgs]=Nc(Gc[i]) 
      NewLastTimethiswas in the GA[Rgs]=  
      LastTimethiswas in      the GA(Gc[i]) 
      NewNum[Rgs]= NewNum[i] 
      NewNcorr[Rgs]= NewNcorr[i] 
     Rgs<-Rgs+1 
   Until j reached up to Nm(Gc[i]) 
Until i reached up to Global_size  
 

//  filter the repeated classifier 

Repeat i 

   If  NewAc[i] < GloAccTh   Then  

       Remove i
th 

 classifier from the population.
 

  Until i  reached up to Rgs (Global_ size) 

END 

Algorithm 5: The algorithm for Model sampling Approach.  

2.6 Centralized Training Method (CTM) 
Global Model Method (CTM) is based on the training of the 
replicated local models into the central system. In CTM, 
classifiers in the local models are replicated like in MSM, 
converting those replicated rule conditions and actions to the 
central training data.   The parameters of the classifiers in the 
local models are ignored while constructing the centralized 
training data. The central training data is obtained using UCS to 
form a final global model. The global model size of the CTM is 
the maximum population size of the UCS in the central node.  
CTM structure is depicted in Figure 2 and its operation is 
explained in the Algorithm 6. 

 

Figure 2. Basic structre of CTM 

BEGIN 

 Initialize Global Population 

 Initialize GloAccTh   // global accuracy threshold 

  Collect all local models  

 Repeat N 

   Repeat i   

     //, Gc= global model, Lc= local model, Ac is accuracy 

      Condition (Gc[j,])= Condition (Lc[j,])                                           
      Ac(Gc[j])=Ac(Lc[i]) 
       j=j+1 

   Until i reached up to end of local models 

 Until N reached up to Node  

   // node means number of sites in the distributed system 

    Global_ size=j 

     //Replication process is  based on number of match of 

        the classifier 

    //Rgs=size of repeated global population. 

     Rgs<-1 

Repeat  i 

  Repeat j 

    Repeat k 

      If Condition (Gc[i,k])== # then 
 NewCondition [Rgs, k]=random value that is suitable for  
that position 

      End if 
    Until k reached up to size of condition 

   NewAc[Rgs]=  ��(��%)') /( (7�,6�7<.6�):. ∗
�678,6=7=>6,-)71 �):.) 

      Rgs<-Rgs+1 
   Until j reached up to Nm(Gc[i]) 
Until i reached up to Global_size  
  // Training the replicated population,  

  //UCS = supervised learning classifier system 

  UCS(NewCondition,  NewAc) 
    // UCS will return the final global model 

END 

Algorithm 6: the algorithm for Centralized Training Method.  

3. EXPERIMENTAL WORK 
Three sets of data were taken for this experimental work: 11mux 
problem; monks3problem; and Intensive Care Unit (ICU) data. 
11mux and Monks are synthetic data while ICU data is a real 
world data that was collected from the Oporto Hospital Center. 
11mux problem has 2048 ordered cases (211). The first three bits 
of the 11mux is considered as the address bits while the final eight 
bits are considered as the answer bits. Monks3 problem has 8 
attributes and 432 instances. The permitted values for the first, the 
second, and the fourth positions is from 1to 3, third and sixth 
position can have values 1 and 2, and the fifth position can have 
values between 1 and 5. The ICU data is concerning to the 
prediction of organ failure about six different organic systems 
[12]. There are 31 fields of data that was collected from three 
different sources such as the electronic health record, ten bed side 
monitors, and paper based nursing records. The ICU data set has a 
total of 3566 records of data, from 32 patient’s information of first 
five days.  The three datasets have only two classes (1 and 0). 

Four nodes were considered for the distributed sites and a same 
number of training and testing data sets were created from the 
main data set. Random generated data was provided to each 
training and testing data sets. For the induction of local data 
mining models 5000 training iteration were considered for each 
execution. Holdout sampling has been applied to all data sets 
partitioning them into training (70 %) and testing data sets (30%). 
Seventy percent of the training data was equally distributed into 4 
data sets, one for each node in the distributed sites; similarly thirty 
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percent of the testing data was equally distributed into 4 data sets 
among the four nodes in the distributed sites. In the experiment, 
400 classifiers were considered in each local model. The 
configuration parameters used in the UCS are:  
ProbabilityOfClassZero = 0.5, V = 20, GaThreshold = 25, 
MutationProb = 0.05, CrossoverProb = 0.8, 
InexperienceThreshold = 20, InexperiencePenalty = 0.01, 
CoveringProbability = 0.33, ThetaSub = 20, 
ThetaSubAccuracyMinimum = 0.99, ThetaDel =20, ThetaDelFra 
= 0.10.  

3.1 DDM Experiments 
Table 1 shows the global model testing accuracies for the six 
DDM strategies considering the three different data sets. The data 
set of the monks 3 problem is very small and simple, on the 
opposite the ICU data set is a bigger and more complex data set. 

 Table 1. Testing accuracies of global models generated using 6 
different strategies.  

Data Set Strategy Accuracy Global 
model size 

ICU GCM 0.84 1382 

11mux GCM 0.79 238 

Monks3 GCM 0.72 17 

ICU SCM 0.85 1466 

11mux SCM 0.93 775 

Monks3 SCM 1 276 

ICU MVM 0.89 1416 

11mux MVM 0.91 507 

Monks3 MVM 1 240 

ICU WCM 0.73 400 

11mux WCM 0.94 400 

Monks3 WCM 1 400 

ICU MSM 0.85 2755 

11mux MSM 0.87 14,901 

Monks3 MSM 0.89 42905 

ICU CTM  0.63 400 

11mux CTM 0.84 800 

Monks3 CTM 1 400 

Table 2 compares the results obtained crossing the different data 
sets and the DDM global model construction strategies 
considered. For monks 3 problem SCM, MVM, WCM, and CTM 
achieved best accuracy. For 11 multiplexer problem WCM 
received best accuracy but SCM and MVM also have good 
accuracies. For ICU data MVM reached the best accuracy but 
GCM, SCM and MSM also have almost similar accuracies. Based 
on the strategies, three datasets in SCM and MVM have good 
accuracies. But for 11 multiplexer and monks3 problem WCM 
received good accuracies.  

Table 2. Results by data set and DDM strategies. 

Strategies ICU 11MUX MONKS3 

GCM 0.84 0.79 0.72 

Strategies ICU 11MUX MONKS3 

SCM 0.85 0.93 1 

MVM 0.89 0.91 1 

WCM 0.73 0.94 1 

MSM 0.85 0.87 0.89 

CTM 0.63 0.84 1 

3.2 CDM Experiments 
For the CDM experiments, a training data set was created by 
combing all four training data sets in the distributed sites. So the 
sizes of the centralized training data sets are: 2496 for the ICU, 
1360 for the 11 multiplexer problems, and 576 for the monk’s 
problem. The number of training iterations considered was 10000 
because the data sets are larger. Table 3 shows the testing 
accuracies attained by the CDM method with the three different 
datasets.  

Table 3. Testing accuracies for the CDM method. 

Data  Accuracy Model size 

ICU 0.62 400 

11mux 0.97 400 
Monks3 1 400 

Taking as an example for comparison the ICU dataset, CDM 
attained an accuracy of 0.62. For the same dataset, excepting the 
CTM method, all the other DDM methods attained higher 
accuracies. For the 11multiplexer problem, all the DDM methods 
attained a lower accuracy than CDM.  In Monks3 problem, only 
MSM and GCM have less accuracy then the CDM.      

4. DISCUSSION AND RELATED WORK 
The main goal of this work is to induce global data mining models 
and compare the performance of CDM versus the DDM methods. 
Six strategies described above were able to construct the global 
model from the distributed local models. The global model in the 
CDM method is obviously representing the overall problem 
(dataset) in the distributed site because that model is generated 
from global data without any intervention. Though table 2 and 3 
shows that DDM and CDM attained similar accuracies. SCM and 
MVM strategies could generate good global models than the other 
four methods, since SCM and MVM have good accuracies in the 
given three datasets. Another advantage assignable to the DDM 
method is that it avoids sending large size of data from different 
sites to a central site. DDM data is processed at each distributed 
sites and generate learning models. As mentioned in the 
introduction the size of the training data is always very large than 
the data mining model size (classifiers population) and the 
computational and communicational times associated to DDM 
tend to be very much lower the required for CDM. This way of 
processing has two main advantages: 1) privacy of the data; and 
2) less communication costs [8]. 

It should be stressed that those strategies are not based on any 
specific domain. The main idea of behind these different strategies 
is to understand the behavior of a global model constructed with 
classifiers copied from the local modes. The first two strategies 
(SCM and GCM) shape the global model based on the rules 
(Condition and Action of the classifier), next two strategies 
(MVM and WCM) shape the global model based on the 
classifiers’ parameter values. The last two strategies (MSM and 
CTM) shape the global model based on the replication function. 



Therefore the best way of comparing these strategies is based on 
these groups. GCM method can generate more compact global 
models but the accuracies attained are always poor. The SCM 
attains good accuracies in all global models but the population 
size is higher than the GCM method. Every classifier in local 
model has at least one representative classifier in the global 
model. This is the key advantage of the SCM and GCM strategies.  
MVM and WCM strategies find the best classifier in the global 
model from the classifiers in the local models based on its 
parameters (classifier experience and accuracy). The WCM has a 
fixed size of population but in MVM the global model population 
size is not defined by user. Testing accuracies of the MVM and 
WCM are almost similar.  WCM presented a better operational 
efficiency, since it follows a smaller algorithm for constructing 
the global model. MSM and CTM correspond to the more 
complicated methods to induce the global model. The main 
disadvantage of MSM is the large population size of the global 
model. For example, MSM generated 42905 classifiers in the 
population of the global model for the monks3 problem. But 
MSM presented better global model testing accuracies than CTM. 
CTM’s limitation is the needing for a high number of training 
iterations, since the replication process will generate large size of 
training data in the central system from the collected local models. 
Also the testing accuracies of the CTM are poor.  

Considerable related work could be found in parallel and 
distributed implementations of LCS. The experimental work is 
mainly oriented to compare the speed-up attained. Our work 
points to a different direction. We are primarily concerned with 
the induction of global models based on local models. Similarities 
can be established with meta-learning approaches. The goal of the 
meta-learning is to construct the global population of classifiers 
from a collection of inherently distributed data sources [13]. 
GALE (Genetic and Artificial Life Environment) is another 
related work in the distributed data mining area. GALE is a fine 
grained parallel genetic algorithm based on a classification system 
[14]. Learning classifier system ensembles with rule sharing is 
another associated work relating to in the parallel and distributed 
LCS [15].     

5. CONCLUSIONS AND FURTHER WORK 
This paper presented six different strategies to induce global data 
mining models in a distributed environment (e.g., grid our cloud 
environments). Based on preliminary results, some final 
conclusions can be made: 

o The performance in terms of accuracy of DDM seems to be 
similar to the performance of the CDM. Therefore DDM 
approach is more convenient and economical for the 
implementation of the distributed data mining problems; 

o Among the various strategies of DDM, WCM accrue 
superior accuracy when compared to the other strategies. 

Further experimentation is required to corroborate the results 
presented in this work and to reach more robust conclusions (e.g. 
considering more configurations in terms of the data sets, number 
of iterations). Next work will also be focused on real world data 
and include more dynamic methods to construct global model 
from the distributed local learning models. 
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