
Grid Data Mining by means of Learning Classifier Systems
and Distributed Model Induction

Manuel Santos

Department of Information Systems
University of Minho

Guimarães, Portugal
+351253510306

mfs@dsi.uminho.pt

Wesley Mathew
Department of Information Systems

University of Minho
Guimarães, Portugal

+351253510264

wesley@dsi.uminho.pt

Henrique Santos
Department of Information Systems

University of Minho
Guimarães, Portugal

+351253510302

hsantos@dsi.uminho.pt

ABSTRACT

This paper introduces a distributed data mining approach suited to
grid computing environments based on a supervised learning
classifier system. Different methods of merging data mining
models generated at different distributed sites are explored.
Centralized Data Mining (CDM) is a conventional method of data
mining in distributed data. In CDM, data that is stored in
distributed locations have to be collected and stored in a central
repository before executing the data mining algorithm. CDM
method is reliable; however it is expensive (computational,
communicational and implementation costs are high).
Alternatively, Distributed Data Mining (DDM) approach is
economical but it has limitations in combining local models. In
DDM, the data mining algorithm has to be executed at each one of
the sites to induce a local model. Those induced local models are
collected and combined to form a global data mining model. In
this work six different tactics are used for constructing the global
model in DDM: Generalized Classifier Method (GCM); Specific
Classifier Method (SCM); Weighed Classifier Method (WCM);
Majority Voting Method (MVM); Model Sampling Method
(MSM); and Centralized Training Method (CTM). Preliminary
experimental tests were conducted with two synthetic data sets
(eleven multiplexer and monks3) and a real world data set
(intensive care medicine). The initial results demonstrate that the
performance of DDM methods is competitive when compared
with the CDM methods.

Categories and Subject Descriptors
I.2.6 [Learning]: Induction, Knowledge acquisition

General Terms

Algorithms, Experimentation

Keywords

Grid Data Mining, Supervised Learning Classifier Systems,

Model Merging Strategies.

1. INTRODUCTION
Recently, there is a significant progress in the research related to
distribute data mining. Digital data stored in the distributed
environments is doubling within a few years. For example,
distributed organizations, e.g. large supermarkets, store chains,
healthcare units that have different branches in all over the world
should create and maintain individual data repositories. All the
data that are stored in different databases are important for new
decision making process. Supermarkets store large amounts of
transactional data in their local databases. Local databases are
important to induce local data mining models, but they are also
important to induce global data mining models (e.g. predicting
future sales volume).

More advanced and feasible distributed data mining algorithms
and strategies are required in the current fast growing
environment. The increasing necessity of distributed data mining
applications is attracting more attention from researchers and
software developers.

Learning Classifier System (LCS) is a concept formally
introduced by John Holland as a genetic based machine learning
algorithm [1]. Supervised Classifier System (UCS) is a LCS
derived from XCS [1]. UCS adopted many features from the XCS
that are suitable for supervised learning scheme. UCS algorithm
was chosen to be applied in this implementation of grid based
distributed data mining due to the supervised nature of the most
part of the problems in this area. Substantial work has been done
to parallelize and to distribute the LCS canonical model in order
to improve the performance and to be suited to inherently
distributed problems. Manuel Santos [2] developed the DICE
system, a parallel and distributed architecture for LCS. In his
work he attempted to parallelize the genetic algorithm and LCS
message operations to increase system’s performance. Interesting
speedups were attained in the experimental work. A. Giani,
Dorigo and Bersini also did significant research in the area of
parallel LCS [3]. Their implementation also tried to increase the
performance of the system. All implementations of parallel LCS
consider a single data and generate a single model.

This work is part of a major project – the Gridclass project –
whose main goal is to implement the UCS in a grid environment.
Gridclass system does not paralyze any part of the UCS. Various
instances of the UCS are executed in different distributed sites
with different set of data. Recalling the supermarket application

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55616468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

example presented in the beginning of this introduction, each
branch can generate local models running an UCS instance on the
data available in that site. Using the conventional method of
Centralized Data Mining (CDM), each distributed site has to send
data to the central site. If on a daily basis each site � ∈ �1, . . , ��	
generates Rs records, the total effort to generate a global model
tends to:

Tcdm≈Mcdm+ � �(��)
�

Where Tcdm stands for the time needed to induce a global data
mining model. Mcdm is the global modeling time. T stands for the
communication time needed to transfer Rs records from the site S
to the central site. Data security is another concern in sending
data. This work adopts the pattern of Distributed Data Mining
(DDM) approach where each distributed site sends an induced
data mining model Ms to the central site. The key advantage of
this method is it avoids sending large size of data from each
distributed sites to the central site. The effort to induce a global
model can be computed as:

Tddm≈Mddm+ � �(��)
�

+ � �(��)
�

Mddm corresponds to the global modeling time. M is the
modeling time for the model Ms. When the volume of data rises
Tddm tends to be much smaller than Tcdm (Tddm << Tcdm). The
DDM can configure an attractive solution since the accuracies of
the global models are similar.

All the experimental work was done using the Grid gain platform;
a java based distributed computing middleware [4]. This
middleware combines a computational grid with data grid and
auto scaling on any managed infrastructure, moreover the
applications are easy to implement.

The key objective of this work is to construct a global data mining
model from different local models of the grid and compare DDM
and CDM methods. Grid computing architecture is considered the
best distributed framework for solving the distributed data mining
task [5, 6]. Each node of the grid environment executes different
UCS and those nodes send local data mining models to the central
site for developing a global model. This paper introduces six
different methods for merging local models from each distributed
sites. The different strategies are: Specific Classifier Method
(SCM), Weighted Classifier Method (WCM), Generalized
Classifier Method (GCM), Majority Voting Method (MVM),
Model Sampling Method (MSM) and Centralized Training
Method (CTM). Three sets of data were used for testing all the
strategies described in this paper: ICU data, 11mux problem and
monks3 problem.

The remaining sections of this paper are organized as follows:
Section 2 explains the construction methods of global model.
Subsections of section 2 describe the six different construction
strategies and the corresponding algorithms. Section 3 explains
the experimental setup of ICU data, 11 multiplexer and monks3
problems. Section 4 discusses the performance of the different
strategies used and related work. The final section presents
conclusions and the road map for future efforts.

2. GLOBAL MODEL CONSTRUCTION
Gridclass is a project that uses the UCS for data mining proposes
in a grid environment. Two levels of data mining models are
generated in the Gridclass system. The first level is related to the
models generated in each distributed sites and the second level

correspond to the model generated in the central site. The first
data mining models are known as local models. The second level
is known as global model and is generated from all the local
models in the first level. The global model represents all the data
in the distributed environment.

During the training process, Gridclass system generates data
mining models based on the training data and a predefined set of
classifier [7]. If a predefined set of classifiers is provided, then the
system can perform incremental learning. The incremental
learning process improves the performance therefore the system
can provide more generalized learning model. If a predefined set
of classifiers is not provided, then the system generates the data
mining models only from training data. Data mining models are
maintained by genetic algorithm and covering operations in UCS
system [8, 9, 10].

There are many challenges for constructing a global model,
because wrong combination of the classifiers gathered from the
local models, will affect negatively the performance of global
model. The main difficulty is to derive the significance of each
classifier and predict their values in the global model. All training
data are completely independent even though there should be
many similar classifiers with different sets of parameter values
(benefits). Therefore the parameter evaluation of the classifiers in
the global model is important.

Remaining sections demonstrate some solutions that are suitable
for constructing the global model. Each strategy establishes
different sort of combinations of local models in the global model.
Those strategies help to understand the significance of availability
of different sort of local classifiers in the global model. Each
strategy has peculiar significance for the development of the
global model. The performance of global model is evaluated from
the testing accuracies of the global model.

2.1 Specific Classifier Method (SCM)
Specific Classifier Method (SCM) only preserves discrete
classifiers in the global model [11]. SCM induce the global model
without repeating similar classifiers and simultaneously keeping
all the benefits of the local classifiers. The evaluation of the
classifiers only considers the rule condition and the action part.
SCM system doesn’t consider the generality of the classifier. For
example, ‘c1’ =”0#0” - >1, ‘c2’ =” 010” ->1, and ‘c3’ =”000”->1
are three classifiers. The action part of these classifiers is similar
but condition part is different. In other sense the classifier ‘c1’ is
more general than the other two classifiers but in SCM these three
classifiers are considered as three different classifiers. If there are
two or more classifiers that have similar conditions and actions,
then system keeps only one classifier in the global model and
updates the parameters of the classifier which is in the global
model with the parameters of the repeated classifiers.

In SCM the initial process is to collect all the classifiers from the
distributed sites and store them in a central location. The collected
classifiers have to be evaluated based on the criteria of SCM and
those classifiers that are eligible to be integrated the global model
will be stored in the global model. While classifiers are evaluated,
each classifier needs to be matched with all other classifiers in the
collected local model. When one classifier finds another similar
classifier in the collected local models then that classifier updates
its parameters with parameters of matched classifier. Finally, the
induced global model will be tested using a data set that was
generated from the global data set.

The classifiers’ parameters in SCM are updated using the
expressions 1, 2 and 3. The expression 1 shows the modification
of number of match and expression 2 explains the modification of
number of correct and expression 3 shows the modification of
accuracy. The parameter, Last Time This Was in the GA is
modified with its maximum value among similar classifiers. Other
parameters, numerosity and correct set size are not updated.

��� = ��� + ��� (1)

��� = ��� + ��� (2)

Where:

GNm = Number of Match of the current classifier in the global
model; NNm = Number of Match of the new classifier; GNc =
Number of Correct of the current classifier in the global model;
and NNc= Number of Correct of the new classifier.

���� = (�� ∗��"∗�#"")$(�� ∗��"∗�#"")
(�� ∗��")$(�� ∗��") (3)

The global model size of the SCM is dynamic. Algorithm 1
explains the functionality of the SCM.

BEGIN

 Initialize Global Population

 Collect all local models

 Global_ size= 1

 // update the parameters.

 // Nm =number of match, Nc= number of correct, Gc= global

 model, Lc= local model

 Repeat N

 Repeat i

 Repeat j

 If Condition (Gc[j]) = Condition (Lc[i]) AND Ac (Gc[j]) = Ac

(Lc[i]) Then

 ��(��%&') = ��(��%&') + ��((�%)')

 ��(��%&') = ��(��%&') + ��((�%)')

 ��(��%&') =
*��(��%&') ∗ ��(��%&') ∗ ��(��%&')+ +

(��((�%)') ∗ ��((�%)') ∗ ��((�%)'))
(��(��%&') ∗ ��(��%&')) + ��((�%)') ∗ ��((�%)'))

 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&') =

 �,2((,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&'),
 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��((�%)'))

 Flag=1

 End if

 Until j reached up to Global_ size

 If flag != 1 then

 Global_ Class [j+1] = Local_ Class[i]

 Global_ size= Global_ size + 1

 End if

 Until i reached up to end of local models

Until N reached up to Node // node means number of nodes

END
Algorithm 1: The algorithm for Specific Classifier Method.

2.2 Generalized Classifier Method (GCM)
Generalized Classifier Method (GCM) only preserves more
general classifiers in the global model [11]. The main intention of

the GCM is to induce a global model with all more general
classifiers. More general classifiers can represent all less general
classifiers therefore in GCM. The system doesn’t allow for less
general classifiers into the global model. The parameter of the
more general classifier which is already in the global model is
updated with the value of the less general or similar classifier. In
other case, if the new classifier is more general than the classifier
that are already in the global model, then all less general
classifiers have to be removed from the global model and the
parameter of the new classifier are updated with the parameters of
all removed classifiers.

Let’s consider for example the three following classifiers:
c1=”0,0,0”->1 ,c2= “0,#,0”->1, c3= ”0,1,0”->1; which come to
the global model in that order, with ‘c1’ as the first classifier. In
this case, the system only stores the classifier c2, because c2 is
more general than the other two classifiers (c1, c3). Initially, the
classifier c1 is stored in the global model, but when the classifier
c2 arrives, classifier c1 is removed and c2 is stored in the global
model. The parameters of the classifier c2 will be updated with
the parameters of the classifier c1. Classifier c3 is less general
than the classifier c2. So the system doesn’t permit c3 to be stored
in the global model. Here, the parameters of the classifier c2 are
again updated with the parameters of c3. Normally, the global
models generated by GCM are very small (compact) and the
global model size are not determined by the user.

The initial process of GCM is to collect all local models from the
distributed sites and store them in a global model. All classifiers
whose condition and action part matches in the collected local
models are stored and its parameters are updated with the
parameters of other matched classifiers. All isolated classifiers are
also stored in the global model. In a third step, each classifier
(from the isolated classifiers) has to be evaluated based on the
generality against to other classifiers that are available in the
global model. If a classifier is less general than another classifier
in the global model, then the less general classifier needs to be
removed from the global model. Finally, last induced global
model will be tested with a specific data that was collected from
the global data set.

The classifiers’ parameters are updated using expressions 4, 5,
and 6. Expression 4 explains the modification of the parameter
number of match, expression 5 explains how the number of
correct is modified and expression 6 explains the modification of
accuracy. The parameter Last Time This Was In The GA takes the
maximum value among less general or similar classifiers. Other
parameters such as numerosity and correct set size are not
updated.

��� = ��� + (�� (4)

��� = ��� + (�� (5)

Expression 7, define the accuracy of new classifier.

�.0,�� = (�� ∗��"∗�#"")$(3� ∗3�"∗3#"")
(�� ∗��")$(3� ∗3�") (6)

Where:

GNm = Number of Match of the more general classifier; LNm =
Number of Match of the less general classifier; GNc= Number of
Correct of the more general classifier; LNc = Number of Correct
of less general classifier; GAcc = Accuracy of more general
classifier; and LAcc= Accuracy of less general classifier.

Algorithm 2 explains the work flow of the GCM.

BEGIN

 Initialize Global Population

 Collect all local models

 Global_ size= 1

Repeat N

 Repeat i

 Repeat j

 If Condition (global_ Class[j]) = Condition (Local_ Class[i])

AND Action (global_ Class[j]) = Action (Local_ Class[i])

then

 // update the parameters.

 // Nm =number of match, Nc= number of correct,

 //Gc= global model, Lc= local model

 ��(��%&') = ��(��%&') + ��((�%)')

 ��(��%&') = ��(��%&') + ��((�%)')

 ��(��%&') =

*��(��%&') ∗ ��(��%&') ∗ ��(��%&')+
+(��((�%)') ∗ ��((�%)') ∗ ��((�%)'))

(��(��%&') ∗ ��(��%&')) + ��((�%)') ∗ ��((�%)'))

 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&')
= �,2((,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&')

 , (,�-�)�.-ℎ)�0,�)1 -ℎ. ��((�%)'))

 Flag=1

 End if

 Until j reached up to Global_ size

 If flag != 1 then

 Global_ Class [j+1] = Local_ Class[i]

 Global_ size= Global_ size + 1

 End if

 Until i reached up to end of local models

Until N reached up to Node // node means number of nodes

Repeat i

 Repeat j

 If global_ Class[i] is more general global_ Class[j] then

 // updates the parameters of Global_ class[i]

 // Nm =number of match, Nc= number of correct,

 // Gc= global model,Ac= Accuracy

 ��(��%)') = ��(��%)') + ��(��%&')

 ��(��%)') = ��(��%)') + ��(��%&')

 ��(��%&') =

*��(��%)') ∗ ��(��%)') ∗ ��(��%)')+ +

(��(��%&') ∗ ��(��%&') ∗ ��(��%&'))
(��(��%)') ∗ ��(��%)')) + ��(��%&') ∗ ��(��%&'))

 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&') =

 �,2((,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&'),
 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��((�%)'))

 Flag=1

 End if

 Until j reached up to Global_ size

Until i reached up to end of local models

Repeat i

 Repeat j

 If global_ Class[i] is more general global_ Class[j] then

 Temp= j

 Repeat Temp

 Global_ Class[Temp] = Global_ Class[Temp +1]

 Until Temp reached up to Global_ size -1

 Global_ size = Global_ size -1

 End if

 Until j reached up to Global_ size

Until i reached up to Global_ size
END

Algorithm 2: The algorithm for Generalized Classifier Method.

2.3 Weighted Classifier Method (WCM)
Weighted Classifier Method (WCM) only maintains the highest
weighted classifiers in the global population according to the
global model size [11]. The purpose of the WCM is to calculate
the quality of the classifiers from its parameters and eliminate all
weightless classifiers from the global model. Global model size
derived from the local model size. The accuracy of the classifiers
is considered as the weight of a classifier. Classifier accuracy
needs to be normalized because each local model may have a
different background. Therefore, accuracy of a classifier needs to
be multiplied to the ratio of the size of local training data set and
the global training data set.

Initially, the system collects and sorts all the classifiers in the
local model in descending order of the weights, then selects the
classifiers that are in the range of global population size (to crowd
the population). The global population in WCM cannot represent
all the classifiers in the local models because the less weighted
classifiers wouldn’t be included in the global population.
Algorithm 3 explains the workflow of the WCM.

BEGIN
 Initialize Global Population
 Collect all local training models
 Repeat N // for each node
 Repeat i
 // calculate weights of each classifier

 Weight (Local_ Class[i]) = number_ of_ match(Local_
Class[i])* number_ of_ correct (Local_ Class[i]) * accuracy
(Local_ Class[i])

 Until i reached up to POPMAX
 // POPMAX is the maximum size of local model.
 Until N reached up to Node
 // node means number of nodes in the distributed site.
Repeat N
 Repeat i
 Repeat j
 If weight (global_ Class[j]) < weight (Local_ Class[i]) then
 Temp<- Global_ size
 Repeat Temp
 Global_ Class [Temp] = Global_ Class [temp -1]
 Temp= Temp- 1
 Until Temp = j
 Global_ Class[j] =Local_ Class[i]
 End if
 Until j reach up to Global_ size
 Until i reached up to end of local models
Until N reached up to Node
END
Algorithm 3: The algorithm for Weighted Classifier Method.

2.4 Majority Voting Method (MVM)
Majority Voting Method (MVM) is another strategy for
constructing the global model from distributed local models. The
goal of the MVM is to eradicate weak classifiers from the global
model and construct a strong model in the central system (global
model).

Initially, MVM gathers all local models and stores them in the
central system, then goes on to find all discrete classifiers from
the accumulated local models as SCM. Later, the system
calculates a threshold value (cut_ off_ threshold) from the
collected classifiers and uses it to benchmark the classifiers in the
population [11]. If the accuracy of a classifier is greater than the
cut_ off_ threshold value then that classifier will be stored in the
global model. The threshold value is derived from the accuracies
of the discrete classifiers, i.e. the average of the accuracies of the
classifiers in the collected local models. The global population
size of MVM is dynamic. Algorithm 4 describes the work flow of
the MVM.

BEGIN

 Initialize Global Population

 Collect all local models

 Global_ size= 1

 Repeat N

 Repeat i

 Repeat j

 If Condition (global_ Class[j]) = Condition (Local_ Class[i])

AND Action (global_ Class[j]) = Action (Local_ Class[i])

then

 // update the parameters.

 // Nm =number of match, Nc= number of correct,

 // Gc= global model, Lc= local model

 ��(��%&') = ��(��%&') + ��((�%)')

 ��(��%&') = ��(��%&') + ��((�%)')

 ��(��%&') =

*��(��%&') ∗ ��(��%&') ∗ ��(��%&')+
+(��((�%)') ∗ ��((�%)') ∗ ��((�%)'))

(��(��%&') ∗ ��(��%&')) + ��((�%)') ∗ ��((�%)'))

 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&') =

 �,2((,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&'),
 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��((�%)'))

 Flag=1

 End if

 Until j reached up to Global_ size

 If flag != 1 then

 Global_ Class [j+1] = Local_ Class[i]

 Global_ size= Global_ size + 1

 End if

 Until i reached up to end of local models

Until N reached up to Node // node means number of nodes

 AvgAcc = 0

 Repeat j

 AvgAcc = AvgAcc + Accuracy(Global_ Class[j]

Until j reached up to Global_ size

 �45��� = �45���
�678,6_�):.

Repeat j

 If Accuracy (Global_ Class [j]) < AvgAcc then

 Temp = j

 Repeat Temp

 Global_ Class [Temp] = Global_ Class [Temp + 1]

 Until Temp up to Global_ size -1

 Global_ size =Global_ size - 1

 Until j reached up to Global_ size

END

Algorithm 3: The algorithm for Majority Voting Method.

2.5 Model sampling Method (MSM)
Model Sampling Method (MSM) is another strategy for
constructing the global model from distributed local models. The
main intension of MSM is to replicate the classifiers depending on
the experience of each classifier. Each time a classifier is correctly
matched with an example (training data), the value of number of

match of that classifier will be increased by one. Therefore the
experience of a classifier is equivalent to the number of match of a
classifier.

The system replicates the classifier proportionally to the value of
experience of a classifier. During sampling, all don’t care
symbols in the rule condition are replaced with other suitable
values. But parameters of the replicated classifiers received the
same values from the base classifiers. After sampling, replicated
classifiers have to be filtered based on some quality criteria.
Quality of a classifier is defined from the accuracy of that
classifier. In MSM, the system will filter the classifier based on
the user defined quality level. After the filtering, system will
provide a final global model. Fig 1, describes the structure of
MSM and Algorithm 5 explains the MSM operations.

 Figure 1. Basic structure of MSM.

BEGIN

 Initialize Global Population

 Initialize GloAccTh

 // global accuracy threshold

 Collect all local models

 Sum_num_match<-0

 Repeat N

 Repeat i

 // update the parameters.

 // Nm =number of match, Nc= number of correct,

 // Num= numerosity, NCorr = Number of correct,

 //Gc= global model, Lc= local model

 Condition (Gc[j,])= Condition (Lc[j,])
 ��(��%&') = ��((�%)')

 ��(��%&') = ��((�%)')

 ��(��%&') = (��((�%)')

 Num(Gc[j])= Num(Lc[j])

 NCorr(Gc[j])= NCorr(Lc[j])

 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��(��%&') =

 (,�-�)�.-ℎ)�0,�)1 -ℎ. ��((�%)'))

 j=j+1

 Until i reached up to end of local models

Until N reached up to Node

 // node means number of nodes

 Global_ size=j

 //Replication process based on number of match of the classifier

 //NewAc =new Accuracy, NewNm= New Number of Match,

// NewNc= New number of correct, NewNum= new numerosity,

// NewNcorr= New number of correct,

Local Data

Collected

Classifiers

UCS Local Model

UCS

UCS

Local Model

Local Model

Analyzing

Global Model

Local Data

Local Data

//NewLastTimethiswas in the GA= New LastTimethiswas in
the GA ,

 //Rgs=size of repeated global population.

 Rgs<-1

Repeat i

 Repeat j

 Repeat k

 If Condition (Gc[i,k])== # then
 NewCondition [Rgs, k]=random value of value of that
position

 End if
 Until k reached up to size of condition
 NewAc[Rgs]= ��(��%)') /((7�,6�7<.6�):. ∗
 �678,6=7=>6,-)71 �):.)
 NewNm[Rgs]=Nm(Gc[i])
 NewNc[Rgs]=Nc(Gc[i])
 NewLastTimethiswas in the GA[Rgs]=
 LastTimethiswas in the GA(Gc[i])
 NewNum[Rgs]= NewNum[i]
 NewNcorr[Rgs]= NewNcorr[i]
 Rgs<-Rgs+1
 Until j reached up to Nm(Gc[i])
Until i reached up to Global_size

// filter the repeated classifier

Repeat i

 If NewAc[i] < GloAccTh Then

 Remove i
th

 classifier from the population.

 Until i reached up to Rgs (Global_ size)

END

Algorithm 5: The algorithm for Model sampling Approach.

2.6 Centralized Training Method (CTM)
Global Model Method (CTM) is based on the training of the
replicated local models into the central system. In CTM,
classifiers in the local models are replicated like in MSM,
converting those replicated rule conditions and actions to the
central training data. The parameters of the classifiers in the
local models are ignored while constructing the centralized
training data. The central training data is obtained using UCS to
form a final global model. The global model size of the CTM is
the maximum population size of the UCS in the central node.
CTM structure is depicted in Figure 2 and its operation is
explained in the Algorithm 6.

Figure 2. Basic structre of CTM

BEGIN

 Initialize Global Population

 Initialize GloAccTh // global accuracy threshold

 Collect all local models

 Repeat N

 Repeat i

 //, Gc= global model, Lc= local model, Ac is accuracy

 Condition (Gc[j,])= Condition (Lc[j,])
 Ac(Gc[j])=Ac(Lc[i])
 j=j+1

 Until i reached up to end of local models

 Until N reached up to Node

 // node means number of sites in the distributed system

 Global_ size=j

 //Replication process is based on number of match of

 the classifier

 //Rgs=size of repeated global population.

 Rgs<-1

Repeat i

 Repeat j

 Repeat k

 If Condition (Gc[i,k])== # then
 NewCondition [Rgs, k]=random value that is suitable for
that position

 End if
 Until k reached up to size of condition

 NewAc[Rgs]= ��(��%)') /((7�,6�7<.6�):. ∗
�678,6=7=>6,-)71 �):.)

 Rgs<-Rgs+1
 Until j reached up to Nm(Gc[i])
Until i reached up to Global_size
 // Training the replicated population,

 //UCS = supervised learning classifier system

 UCS(NewCondition, NewAc)
 // UCS will return the final global model

END

Algorithm 6: the algorithm for Centralized Training Method.

3. EXPERIMENTAL WORK
Three sets of data were taken for this experimental work: 11mux
problem; monks3problem; and Intensive Care Unit (ICU) data.
11mux and Monks are synthetic data while ICU data is a real
world data that was collected from the Oporto Hospital Center.
11mux problem has 2048 ordered cases (211). The first three bits
of the 11mux is considered as the address bits while the final eight
bits are considered as the answer bits. Monks3 problem has 8
attributes and 432 instances. The permitted values for the first, the
second, and the fourth positions is from 1to 3, third and sixth
position can have values 1 and 2, and the fifth position can have
values between 1 and 5. The ICU data is concerning to the
prediction of organ failure about six different organic systems
[12]. There are 31 fields of data that was collected from three
different sources such as the electronic health record, ten bed side
monitors, and paper based nursing records. The ICU data set has a
total of 3566 records of data, from 32 patient’s information of first
five days. The three datasets have only two classes (1 and 0).

Four nodes were considered for the distributed sites and a same
number of training and testing data sets were created from the
main data set. Random generated data was provided to each
training and testing data sets. For the induction of local data
mining models 5000 training iteration were considered for each
execution. Holdout sampling has been applied to all data sets
partitioning them into training (70 %) and testing data sets (30%).
Seventy percent of the training data was equally distributed into 4
data sets, one for each node in the distributed sites; similarly thirty

Local Data

Global

Training Data

UCS Local Model

UCS

UCS

Local Model

Local Model

UCS

Global Model

Local Data

Local Data

percent of the testing data was equally distributed into 4 data sets
among the four nodes in the distributed sites. In the experiment,
400 classifiers were considered in each local model. The
configuration parameters used in the UCS are:
ProbabilityOfClassZero = 0.5, V = 20, GaThreshold = 25,
MutationProb = 0.05, CrossoverProb = 0.8,
InexperienceThreshold = 20, InexperiencePenalty = 0.01,
CoveringProbability = 0.33, ThetaSub = 20,
ThetaSubAccuracyMinimum = 0.99, ThetaDel =20, ThetaDelFra
= 0.10.

3.1 DDM Experiments
Table 1 shows the global model testing accuracies for the six
DDM strategies considering the three different data sets. The data
set of the monks 3 problem is very small and simple, on the
opposite the ICU data set is a bigger and more complex data set.

 Table 1. Testing accuracies of global models generated using 6
different strategies.

Data Set Strategy Accuracy Global
model size

ICU GCM 0.84 1382

11mux GCM 0.79 238

Monks3 GCM 0.72 17

ICU SCM 0.85 1466

11mux SCM 0.93 775

Monks3 SCM 1 276

ICU MVM 0.89 1416

11mux MVM 0.91 507

Monks3 MVM 1 240

ICU WCM 0.73 400

11mux WCM 0.94 400

Monks3 WCM 1 400

ICU MSM 0.85 2755

11mux MSM 0.87 14,901

Monks3 MSM 0.89 42905

ICU CTM 0.63 400

11mux CTM 0.84 800

Monks3 CTM 1 400

Table 2 compares the results obtained crossing the different data
sets and the DDM global model construction strategies
considered. For monks 3 problem SCM, MVM, WCM, and CTM
achieved best accuracy. For 11 multiplexer problem WCM
received best accuracy but SCM and MVM also have good
accuracies. For ICU data MVM reached the best accuracy but
GCM, SCM and MSM also have almost similar accuracies. Based
on the strategies, three datasets in SCM and MVM have good
accuracies. But for 11 multiplexer and monks3 problem WCM
received good accuracies.

Table 2. Results by data set and DDM strategies.

Strategies ICU 11MUX MONKS3

GCM 0.84 0.79 0.72

Strategies ICU 11MUX MONKS3

SCM 0.85 0.93 1

MVM 0.89 0.91 1

WCM 0.73 0.94 1

MSM 0.85 0.87 0.89

CTM 0.63 0.84 1

3.2 CDM Experiments
For the CDM experiments, a training data set was created by
combing all four training data sets in the distributed sites. So the
sizes of the centralized training data sets are: 2496 for the ICU,
1360 for the 11 multiplexer problems, and 576 for the monk’s
problem. The number of training iterations considered was 10000
because the data sets are larger. Table 3 shows the testing
accuracies attained by the CDM method with the three different
datasets.

Table 3. Testing accuracies for the CDM method.

Data Accuracy Model size

ICU 0.62 400

11mux 0.97 400
Monks3 1 400

Taking as an example for comparison the ICU dataset, CDM
attained an accuracy of 0.62. For the same dataset, excepting the
CTM method, all the other DDM methods attained higher
accuracies. For the 11multiplexer problem, all the DDM methods
attained a lower accuracy than CDM. In Monks3 problem, only
MSM and GCM have less accuracy then the CDM.

4. DISCUSSION AND RELATED WORK
The main goal of this work is to induce global data mining models
and compare the performance of CDM versus the DDM methods.
Six strategies described above were able to construct the global
model from the distributed local models. The global model in the
CDM method is obviously representing the overall problem
(dataset) in the distributed site because that model is generated
from global data without any intervention. Though table 2 and 3
shows that DDM and CDM attained similar accuracies. SCM and
MVM strategies could generate good global models than the other
four methods, since SCM and MVM have good accuracies in the
given three datasets. Another advantage assignable to the DDM
method is that it avoids sending large size of data from different
sites to a central site. DDM data is processed at each distributed
sites and generate learning models. As mentioned in the
introduction the size of the training data is always very large than
the data mining model size (classifiers population) and the
computational and communicational times associated to DDM
tend to be very much lower the required for CDM. This way of
processing has two main advantages: 1) privacy of the data; and
2) less communication costs [8].

It should be stressed that those strategies are not based on any
specific domain. The main idea of behind these different strategies
is to understand the behavior of a global model constructed with
classifiers copied from the local modes. The first two strategies
(SCM and GCM) shape the global model based on the rules
(Condition and Action of the classifier), next two strategies
(MVM and WCM) shape the global model based on the
classifiers’ parameter values. The last two strategies (MSM and
CTM) shape the global model based on the replication function.

Therefore the best way of comparing these strategies is based on
these groups. GCM method can generate more compact global
models but the accuracies attained are always poor. The SCM
attains good accuracies in all global models but the population
size is higher than the GCM method. Every classifier in local
model has at least one representative classifier in the global
model. This is the key advantage of the SCM and GCM strategies.
MVM and WCM strategies find the best classifier in the global
model from the classifiers in the local models based on its
parameters (classifier experience and accuracy). The WCM has a
fixed size of population but in MVM the global model population
size is not defined by user. Testing accuracies of the MVM and
WCM are almost similar. WCM presented a better operational
efficiency, since it follows a smaller algorithm for constructing
the global model. MSM and CTM correspond to the more
complicated methods to induce the global model. The main
disadvantage of MSM is the large population size of the global
model. For example, MSM generated 42905 classifiers in the
population of the global model for the monks3 problem. But
MSM presented better global model testing accuracies than CTM.
CTM’s limitation is the needing for a high number of training
iterations, since the replication process will generate large size of
training data in the central system from the collected local models.
Also the testing accuracies of the CTM are poor.

Considerable related work could be found in parallel and
distributed implementations of LCS. The experimental work is
mainly oriented to compare the speed-up attained. Our work
points to a different direction. We are primarily concerned with
the induction of global models based on local models. Similarities
can be established with meta-learning approaches. The goal of the
meta-learning is to construct the global population of classifiers
from a collection of inherently distributed data sources [13].
GALE (Genetic and Artificial Life Environment) is another
related work in the distributed data mining area. GALE is a fine
grained parallel genetic algorithm based on a classification system
[14]. Learning classifier system ensembles with rule sharing is
another associated work relating to in the parallel and distributed
LCS [15].

5. CONCLUSIONS AND FURTHER WORK
This paper presented six different strategies to induce global data
mining models in a distributed environment (e.g., grid our cloud
environments). Based on preliminary results, some final
conclusions can be made:

o The performance in terms of accuracy of DDM seems to be
similar to the performance of the CDM. Therefore DDM
approach is more convenient and economical for the
implementation of the distributed data mining problems;

o Among the various strategies of DDM, WCM accrue
superior accuracy when compared to the other strategies.

Further experimentation is required to corroborate the results
presented in this work and to reach more robust conclusions (e.g.
considering more configurations in terms of the data sets, number
of iterations). Next work will also be focused on real world data
and include more dynamic methods to construct global model
from the distributed local learning models.

6. ACKNOWLEDGMENTS
The authors would like to express their gratitude to FCT
(Foundation of Science and Technology, Portugal), for the
financial support through the contract GRID/GRI/81736/2006.

7. REFERENCES
[1] M. F. Santos, W. Mathew, T. Kovacs, H. Santos, A grid data

mining architecture for learning classifier system. WSEAS
TRANSACTIONS on COMPUTERS Volume 8, 2009 ISSN:
1109-2750

[2] M. F. Santos. Learning Classifier System in Distributed
environments, University of Minho School of Engineering
Department of Information System. PhD Thesis work 1999.

[3] A. Giani, Parallel Cooperative classifier system. Dottorato di
ricerca in informatica Universita di Pisa, PhD Thesis TD-4/
99.

[4] http://www.gridgain.com/key_features.html. Consulted on 8
- 2 - 2011.

[5] .M.Cannataro, A. Congiusta, A. Pugliese, D.Talia, P.
Trunfio, Distributed Data Mining on Grid: Services, Tools,
and Applications. IEEE TRANSACTIONS ON SYSTEM,

MAN, AND CYBERNETICS- PART B: CYBETNETICS, VOL.
34 NO6, DECEMBER 2004

[6] J. Luo, M. Wang, J. Hu, Z. Shi, Distributed data mining on
Agent Grid: Issues, Platform and development toolkit.
Future Generation computer system 23 (2007) 61-68

[7] J. Luo, M. Wang, J. Hu, Z. Shi, Distributed data mining on
Agent Grid: Issues, Platform and development toolkit.
Future Generation computer system 23 (2007) 61-68.

[8] http://www.idsia.ch/~juergen/icmlkolmogorov/node9.html.
Consulted on 1/7/ 2010.

[9] H. H. Dam, A scalable Evolutionary Learning Classifier
System for Knowledge Discovery in Stream Data Mining,
M.Sci. University of Western Australia, Australia, B.Sci.
(Hons) Curtin University of Technology, Australia. Thesis
work 2008.

[10] A. Orriols-Puig, A Further Look at UCS Classifier System.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA

[11] M. F. Santos, W. Mathew, and H. Santos: GridClass:
Strategies for Global Vs Centralized Model Construction in
Grid Data Mining, Proceeding of the workshop on ECAI,
Lisbon 2010.

[12] M. Vilas-Bous, M. F. Santos, F. Portela, A. Silva, F. Rua,
Hourly prediction of organ failure and outcome in intensive
care based on data mining techniques. ICEIS 2010
conference, 2010.

[13] E. Cesario, A. Congiusta, D. Talia, P.Trunfio, Data analysis
services in the knowledge Grid in DATA MINING
TECHNIQUES in Grid Computing Environments, Ed.
Dubbitzky,W., Wiley-Blackwell, UK, 2008.

[14] X. Llora, Joseph M. Garrell, Knowledge- Independent Data
Mining with Fine Grained Parallel evolutionary Algorithm.
In proceeding of the Genetic and Evolutionary Computation
Conference (GECCO 2001).

[15] L. Bull, M. Studley, A. Bagnall, I. Whittley, Learning
Classifier System Ensembles With Rule Sharing. IEEE
1089-778x, 2006.

