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Abstract

The Object and Event Detection and Response (OEDR) assessment of Automated Vehicles(AVs) must
be thoroughly conducted on the entire Operational Design Domain(ODD) to prevent any potential safety
risk caused by corner cases. In response to these challenges, AVs must be tested over hundreds of mil-
lions of kilometers before deployment to convince its OEDR capabilities. However, claiming safety
through years of testing on the entire ODD is not practically sound. Therefore, many studies have ad-
dressed this problem, focusing on efficiently and effectively finding corner cases within high-fidelity
simulation environment. In particular, one of key OEDR functionalities is a collision risk assessment
system alarming the driver about an impending collision in advance. In AV ODD context, the collision
risk assessment is confronting challenging situations such as incorrect sensor information and unex-
pected algorithmic errors derived from uncertain environments (weather, traffic flow, road conditions,
obstacles). Whereas the widely employed collision risk assessment methods relies on the first principle,
e.g., Time-To-Collision (TTC), the aforementioned situations cannot be properly assessed without ap-
propriate scene understanding toward the each situation. To this end, Al-based research that leverages
previous experience and sensor information (especially camera image) to assess collision risk through
visual cues has been developed in recent years. Inspired by the above research trends, this paper aims
to develop: 1) systematic corner case generation using a scenario-based falsification simulation; and 2)
an Al-based safety monitoring system applicable in complex driving scenarios. The implemented sim-
ulation is shown to competently find the corner case scenarios, through which the developed system is
validated that it can be used as an alternative to an existing collision risk indicator in complex AV driving

scenarios.



WUMNisT
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY



II

I

v

Contents

Introduction . . . . . . . ... 1
1.1 Related Work . . . . . . . . o o 2
1.2 Contribution . . . . . . ..o 3
Simulation-Assisted Training Dataset Generation . . . . . . . ... ... .. ...... 5
2.1 STPA and Ontology-based Scenario Generation . . . . . . ... ... ...... 5
2.2 Automated Driving System and Simulator . . . . . . . ... ... 0oL 9
2.3 Generation of Training Dataset . . . . . . . ... .. ... ... ......... 11
Formulation of Al-based Safety Monitoring System . . . . . . ... ... ... ..... 12
3.1 Al-based Safety Monitoring: An Overview . . . . . .. ... ... ... .... 12
32 Insight into the Convolution Long-Short Term Memory Network . . . . . . . . . 12
33 The Proposed System Architecture . . . . . . . . ... ... .. ... .. .... 14
Implementation of the Proposed System for Safety Monitoring . . . . . . ... ... .. 15
4.1 Training the Proposed System Using Simulation-assisted Dataset . . . . . . . . 15
4.2 Testing the Proposed System on Simulation-assisted Dataset . . . . . . . .. .. 15
4.3 Case Study the Proposed System on Simulation Environment . . . . . . . .. .. 17
4.4 Comparative Analysis . . . . . . . . . . . 18
Conclusion . . . . . . . . e e 20



References

Acknowledgements . . . . .. ... e

Acknowledgements . . . . . . . ... L



10

11

12

13

14

15

16

List of Figures

A national consortium is being formed for safe autonomous driving . . . . ... .. .. 1

The purpose of scenario-based testing in simulation: minimize unsafe unknown areas by

EeNErating teSt CaASES. . . . v+ v v . i e e e e e e e e e e e e e e e e e 2
Overview of proposed mainidea . . . . . . . .. . ... ... ... ... ... ..., 3
Specific structure of eachmodule . . . . . . . . ... L Lo 4
System-Theoretic Process Analysis(STPA) process . . . . . .. ... .. ... ..... 5
Example control structure . . . . . . . . ... oL e 6
Guide words for Unsafe Control Actions(UCAs) . . . . . . . . . ... ... ...... 6
Fundamental ontology for AV guidance . . . ... ... ... ... .. ......... 7
Examplescene . . . . . . . .. .. 7
Example of ontology-based scenario parametrization . . . . . . . ... ... ... ... 8
CARLA with Autoware system for simulation and data collecting . . ... ... .. .. 10
Dataset generation Pipeline . . . . . . .. ... ... L oL 11
Training Dataset structure . . . . . . . . . . . .. . Lo 11
A general form of asingle LSTMcell . . . ... ... ... ... ... . .... 13

A schematic of a data-driven simulation-assisted-severity learned Al model for modeling

course severity prediction . . . . . . ... L. L L 14

Training scenario example : Cut-in scenario with GPS faults . . . . . .. ... ... .. 16



17

18

19

20

21

22

23

24

Training history of training accuracy . . . . . . . . . . . . ... o 17
Training history of training loss . . . . . . . . . . . .. ... L o 17
Training history of training AUC . . . . . . . . . ... .. ... ... ... 17
Analytical results for label and predicted values (confusion matrix) . . . . . . ... ... 17
Comparison of training accuracy between baseline and ourmodel . . . . . ... .. .. 18
Comparison of training loss between baseline and our model . . . . . . ... ... ... 18
Comparison of training AUC between baseline and our model . . . . .. ... ... .. 18

Baseline model architecture vs Our model architecture: The baseline model only fed into

the images, but our model uses images and state information. . . . . . . ... ... ... 19



I Introduction

In recent years, with the evolution of autonomous driving technology, cars are getting closer to fully
autonomous driving. The demand for autonomous driving technology is increasing worldwide, and as
a result, securing the reliability of various autonomous driving core technologies is essential for the
commercialization of safe AVs [1]. To this end, a worldwide consortium (e.g., ISO, UNECE [2]) is
developing policies for dependable AVs.
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Figure 1: A national consortium is being formed for safe autonomous driving

In practice, however, because the development of the truly perfect technology is infeasible [3],
critical-scenario can occur during testing or operation. The critical-scenario, so-called corner cases,
represents the safety violation due to the unforeseeable situation or malfunctions in the AVs [4]. It is
challenging to ensure that safe behavior can be guaranteed when AVs are deployed in real life due to the
widespread application of Al and ML technologies [5], [6], [7], [8], [9]. In addition, environmental un-
certainties such as weather and road conditions and hardware faults can have a significant impact on the
safety of autonomous systems [10], [11], [12]. Reducing these unforeseen and unsafe areas is the chal-
lenge confronting autonomous driving technology today (see Figure. 2). In response to these challenges,
AVs must drive hundreds of millions of kilometers without failure to convince the reliability of the AV’s
OEDR capabilities in terms of fatality and injury [3]. It is apparent that claiming safety through years of
testing on the entire ODD is clearly inefficient. Also, even if the corner case occurs during on-road test-
ing, the testing results are challenging to reproduce(e.g., sensor noise) resulting from the previous prob-
lem. Therefore, many studies have addressed this problem, focusing on efficiently and effectively finding
corner cases within the simulation environment [13], [14], [15], [16], [17], [18]. To find corner cases in
simulations, it is important to create scenarios that can happen in real life but are difficult to find based
on a systematic scenario generation methodology [19], [20], [21], [22]. In particular, research is ac-
tively being conducted on how to automatically find corner case scenarios in infinite scenario generation
parameter spaces [23], [24]. In addition, the fault injection technique recommended in 1SO26262 [25]
V&V process can be applied to finding extremely rare corner cases from the propagation of the inter-

nal fault of the AVs components [26], [27], [28], [29]. Especially, the safety claims can be forged by



injecting system-level fault injection in AVs according to the safety analysis technique such as System-
Theoretic Process Analysis(STPA) [30], [31]. Machine learning-based fault injection studies were also
conducted to automate fault injection and efficient corner case exploration [32], [33], [34], [35], [36]. In
this way, corner case testing to probe for weak spots that might be activated via unforeseen situations
can be implemented more efficiently.

In accordance with the importance of finding the corner cases, one of the key OEDR functionalities
of AVs is a safety monitoring system alarming the driver about an impending collision in advance. In
AV ODD context, safety monitoring is confronting challenging situations such as incorrect sensor in-
formation and unexpected algorithmic errors derived from uncertain environments (weather, traffic flow,
road conditions, obstacles) [37]. In order for AVs to drive reliably in all situations, it is essential to detect
and decision-make these complex situations properly. Whereas the widely employed safety monitoring
methods rely on the first principle, e.g., Time-To-Collision (TTC), the aforementioned situations cannot
be properly assessed without appropriate scene understanding toward each situation. To this end, Al-
based research that leverages previous experience and sensor information (especially camera image) to
assess collision risk through visual cues has been developed in recent years. Therefore, in this paper, our

interest is to use Al to monitor the safety of AVs even in complex situations.
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Figure 2: The purpose of scenario-based testing in simulation: minimize unsafe unknown areas by gen-

erating test cases.

1.1 Related Work

When driving in complex or uncertain situations, a person deliberately takes conservative action to
ensure safety by judging the risk. In Al-based safety monitoring systems, several types of research have
been conducted to predict impending collision or driveability in complex situations like humans.

In [38], the author presented an Al model to predict situations in which too challenging situations
can lead to the failure of the OEDR function of AVs. To this end, they first learn a convolutional Long
Short Term Memory(convLSTM) network that uses the real-world driving historical image sequence of
the front camera and the steering and speed sequences to predict the current steering and speed values.

Next, to predict the failure of the OEDR function of AVs, failure scores were defined based on the



discrepancy between predicted maneuvers (steering and speed) and human driver maneuvers. According
to this definition, the safe or hazardous situations were distinguished by threshold. Through this, they
have developed a system that allows us to monitor the safety of AVs in real situations by learning models
that predict failures from the present to specific sequences in the future.

The authors of [39] suggest an Al model that allows us to predict the degree of risk of the current
scene through a threatening situation element to AVs. First, the pre-trained Mask R-CNN model creates
a semantic segmentation mask in each video frame. The masked images are then fed into the convLSTM
network model to learn to predict the risky action in the actual lane change situation. Ground truth for
determining the risky action was subjectively assessed in each case by ten commentators watching the
video clip.

Both of the above models can predict the risks posed by challenging situations that AVs may face.
However, the problem with these models involves an individual’s subjectivity to the ground truth because
they use real-world driving data to predict risks. In addition, the real-world driving data is 1) difficult to
handle all driving scenarios, 2) difficult to obtain collision data, and 3) cannot address algorithmic errors
from components faults in the AVs.

On the other hand, in [40], the author obtained accident data from simulations to predict impending
collisions. The data includes the front camera image, camera position, vehicle position, speed, accelera-
tion, and command values. This data was used to learn the Bayesian convLSTM network. The advantage
of this model is that simulations can be used to leverage real accident data as well as hard-to-face sce-
narios in the real-world. Nevertheless, they still do not address 1) systematic scenario generation to
secure realistic scenarios and 2) algorithmic errors due to component failures that may pose a fatal risk

in autonomous vehicles.
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Figure 3: Overview of proposed main idea

1.2 Contribution

Inspired by the above research trends, this paper aims to develop:
1) systematic corner case generation using a scenario-based falsification simulation; and

2) an Al-based safety monitoring system applicable in complex driving scenarios.
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To overcome the aforementioned problems, we define logical scenarios through the ontology method
for systematic scenario generation and STPA-based signal-level falsification approaches to respond to
various component faults. A Multi-Armed Bandit-based sampling technique is applied to efficiently ex-
plore corner cases in an infinite combination of logical scenario parameters. Concrete scenarios were
generated through sampling, and front camera images, fault information, vehicle information (speed,
yaw rate), and collision information were collected through open source-based autonomous driving sys-
tem simulations. The collected data was used to train the convLSTM network to monitor future collisions
after a specific time step. Simulations for various situations have been carried out to verify the effective-
ness of the trained model against image-based models.

The remainder of this paper consists of the following sections. In Section 2, scenario-based test
methodologies are described into two categories. Next, the methodology for generating concrete fault
injection scenarios and the specific process for obtaining training datasets are described in Section 3.
Next, the implementation of the online prediction system is described in section 4. Finally, the experi-

mental results and conclusions are described in sections 5 and 6.



II Simulation-Assisted Training Dataset Generation

In this section, the process of dataset acquisition that is necessary for training Al algorithms is demon-
strated. The following section gives a consecutive process of dataset generation.

2.1 STPA and Ontology-based Scenario Generation

System-Theoretic Process Analysis(STPA)

Systems-Theoretic Process Analysis(STPA) [31] is a safety analysis approach to identify the potential
unsafe control actions that can cause a failure of AV by modeling the hierarchical control structure of
the AVs. This approach can be applied to the fault injection test to improve the probability of generation

of safety-critical scenarios and hazard coverage [41].
System System- Hazards Unsafe Control Causal
Description Level Losses Actions(UCA) Factors

Figure 5: System-Theoretic Process Analysis(STPA) process

STPA fault analysis is defined in the order shown in Figure.5. First, complete the control structure
(see Figure.6) by representing all system elements within the analysis scope and defining the interfaces
between each element. Next, we define situations that are unintentional or undesired to occur that may
lead to accidents, such as injury or property damage. In this paper, collisions between AVs and all
other environments are considered accidents. The unsafe control actions(UCAs, see Figure.7) that can
cause such collisions are then applied to the interfaces between all system elements according to the
guide words to derive parameters for the fault injection test. Finally, the STPA analysis is completed by

analyzing and identifying the causal factors(CFs) that trigger these UCAs.

Ontology

Ontology is known as a formal and explicit conceptualization of entities, interfaces, behaviors, and
relationships. It has been applied to various applications such as decision-making, traffic description,
autonomous driving, etc [42], [43]. Scenario-based AV testing can be performed systematically through
domain ontology construction, test case creation, and test execution. Figure.8 shows the relationship
between the elements that make up the ontology, and the following is about the concept of each element.

Scenario is a sequence of Scenes and usually contains static, dynamic obstacles around and its/their
interactions between AVs(see Figure.9. Ego vehicle consists of specifically stated autonomous func-
tions, sensors, and vehicles. Depending on the purpose of the test, the scope of the self-driving car can
be limited. In this study, an autonomous driving system, including an open source based localization-
perception-planning-control system was used for the universality of the study.

The scenario formalized according to the ontology methodology is represented as Abstract scenario

according to ISO 34501, and an example is shown in the following figure. Based on the Abstract sce-



nario, all the elements that set up the scenario are parameterized to define a logical scenario represented
by means, range, and distribution. Finally, a concrete scenario is created to represent exactly one specific

scene to execute the simulation.

Sampling Method for Concrete Scenario Generation

Various sampling techniques can be used for efficient corner case exploration while automatically gen-
erating concrete scenarios. In this paper, concrete scenarios are automatically generated using the Upper
Confidence Bound(UCB) algorithm, one of the multi-armed bandit problem strategies. The problem
with multi-armed bandits is finding the most rewarding slot machines through several attempts on N
slot machines with different rewards. The core of the multi-armed bandit problem is exploration and
exploitation. For this reason, the UCB algorithm was used to select slot machines that showed good

rewards through reasonable exploration rather than random exploration, and that could be the optimal
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lTrajectory
I Planner I
Ref Pose 2
| Radar Sensor | (X, Y, Heading) | Camera Sensor | Lane boundary curvature(deg/m)
Ref Velocity (m/s) Curve length(m)
Relative Distance (m) Direction (0 | 1) Lane boundary heading(deg)
Relative velocity (m/s) J Curvature (1/m) Distance of lance boundary(m)
\ 4 y \ 4
I AD Controller I Curr Pose (X, Y, Heading)
‘Steer cmd (rad) A Curr velocity (m/s)
Accel Cmd (m/s?) . Curr Pose (X, Y, Heading)
Decel Cmd (m/s?) Steer-by-Wire Curr velocity (m/s)
Gear Cmd (R, N, D) Curr Steer (deg)
Sleep Angle (rad) [ Curr Yaw Rate (deg/s)
A\ 4 \ 4
Vehicle
I ECU I I TCU I I Active Differential Controller I I Brake Pressure Controller I

Curr lateral velocity (m/s)
Curr longitudinal velocity (m/s)
& Relative Distance (m)
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Figure 6: Example control structure

Not Needed and Hazardous (1)

Provided —» Intensity is incorrect (2)
Delivered incorrectly (3)
Needed —

Control Action Duration is too long or too short (4)

Starting time is too soon or too late (5)

Not Provided — But needed to maintain safety (6)

Figure 7: Guide words for Unsafe Control Actions(UCAs)
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choice. The UCB algorithm for selecting an action is represented by the following formula:

10g(t)}
N;(a)

A; = argmax,[Q;(a) + ¢



times the slot machine was selected. where t is the sum of the number of times all slot machines have

been selected, and Q,(a) is the average compensation value for the slot machine selection.
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Figure 10: Example of ontology-based scenario parametrization

In Formula 1, ¢ is a hyperparameter that can adjust the degree of exploration. N, (a) is the number of

Specific scenario generation pseudo-code with UCB algorithm is as follows:

Algorithm 1 UCB-based concrete scenario generation

1:

2
2
2
2
2
2
2:
2
2
2
2
2

Initialize each logical scenario parameter with a specific resolution

: for iteration=1,2,... do

: Bandit Machines = product(logical scenario parameters)

Initialize each bandit with O reward

: end for
- while Simulation do

for iteration =1,2,... do

Estimates = [Equation.1 for each bandit]

end for

Concrete scenario = Bandits[argmax(Estimates)]

Reward = [0 for safe, 1 for collision]

Update reward

: end while=0




2.2 Automated Driving System and Simulator

Building a scenario-based test process for AVs requires a general-purpose autonomous driving system
and a simulator that can realistically mimic the surrounding environment, such as self-driving cars and
sensors, and static and dynamic obstacles. Autoware [44] is a widely used open-source autonomous driv-
ing system that provides localization, perception, planning, and control systems that are core algorithms
for AVs. The CARLA simulator [45] is also the most well-known open source-based AVs simulator
that offers a wide range of sensor models, including RGB cameras, LiDAR, IMU, GPS, collisions, and
lane invasion. Not only that, but it also offers a wide variety of maps, actors, car models, and traffic
simulations, enabling simulations in a wide variety of environments. Because of these advantages, the

Autoware system and CARLA simulator were used to perform scenario-based falsification tests.

Autoware

Localization: The localization algorithm implemented in Autoware is an NDT algorithm that leverages
scan matching between a 3d map and a LiDAR scan. The NDT algorithm’s computing costs are not
dominated by map size, making it suitable for high-definition and high-resolution 3D maps.

Detection and Decision: A CNN-based detection algorithm was used to detect the surrounding envi-
ronments, follow traffic rules, and avoid collisions. It also uses the nearest neighbors algorithm to cluster
point clouds and calculate the euclidean distance between AVs and peripheral obstacles. Once the ob-
stacles and traffic signals are detected, the mission planning and decision module use an intelligent state
machine to determine the appropriate trajectory for AVs to travel.

Planning and Control: The planning module generated trajectories according to the output of the
decision-making module, and in this paper, we used the global and local algorithms. Finally, a pure-
pursuit algorithm was used to generate the actuation command according to the local trajectories for
AVs.

CARLA simulator

The CARLA simulator provides RGB camera, LiDAR, IMU, radar, and GPS sensor models that can
be used for signal-level fault injection simulations of AVs core components. Signal-level faults that can
be injected into these sensor models can mimic various situations where noise, bias, lens flare strength,
and so on can cause algorithmic errors. It also provides a variety of maps, including downtown roads
and highways, making it easy to manage areas suitable for road models of ontology-derived logical
scenarios. We implemented a core sensor fault and road model using the CARLA API and verified the

results through simulation.



Sensor List and Fault Parameters

Sensor Name Fault Parameters

RGB Camera Bloom intensity, Lens flare intensity, Blur amount

GNSS Noise lat, lon Bias, Noise lat, lon stddev

IMU Noise Accel Stddev x,y,z

LiDAR Atmosphere attenuation rate, Dropoff general rate, Dropoff zero intensity, Noise stddev

Table 1: Various sensor fault example

Autoware SW Stack
CARLA Server
Command Array
Decision — Planning
Sensorsignal
Perception Controller
Dataset with
—>}
Safety Assessment Safety Label
Signal level fault propagation

Figure 11: CARLA with Autoware system for simulation and data collecting
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2.3 Generation of Training Dataset

Using the methodologies and tools described above, we created concrete scenarios and built a process
to classify the simulation results according to the safety metric(e.g., CARLA collision sensor). NHTSA
[46], WP29 documents were referenced to identify test scenarios, and parameter types and ranges of
logical scenarios were defined based on ontology. The Upper Confidence Bound sampling technique
creates concrete scenarios in logical scenarios, and the process of testing scenarios through simulators
and classifying simulation results stores the data needed for learning. The generated data includes front
camera images V|,_, stored at 5 Hz, state values of AVs §j,_; ;(e.g., fault, velocity, yaw rate), and
simulation results based on safety metrics(see Figure.13). The entire dataset was generated by 2000
simulations and identified 1000 safe scenarios and 1000 collision scenarios to balance the dataset. See

Figure.12 for the overall process of data generation.
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Figure 12: Dataset generation Pipeline
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Figure 13: Training Dataset structure
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III Formulation of AI-based Safety Monitoring System

Typically, in deep learning models, RNN networks have played an important role in modeling inputs and
outputs that are related to time. In particular, the Convolutional Long-Short Term Memory(ConvLSTM)
network is a type of RNN network that combines Convolutional Neural Network(CNN) with LSTM net-
works to provide proper characteristics for spatiotemporal data learning. Therefore, convLSTM was used
to learn the safety monitoring system by the front camera image and state information obtained through
the simulation. In this section, The process and components of the proposed AIFAF are described in

detail. This section details the convLSTM model architecture for safety monitoring.

3.1 Al-based Safety Monitoring: An Overview

The goal of the safety monitoring system is to predict the safety information of AVs using V};_;, and
S|k, obtained through a systematic fault injection simulation. In the deep learning framework, this
problem can be modeled by using spatiotemporal data to predict safety information after a specific time
step. The convLSTM can store long-term input information in internal memory, which is proper for
solving spatiotemporal dependency problems. The convLSTM network applies the same basic task to
each input sequence in a phased process and switches the input information sequence to a single output.

In conclusion, the problem we want to solve using convLSTM networks can be modeled as follows:

FMVit—ka)sSi—ka) = Glrmy
Vii—k, : RGB camera image sequence )

S|t~k : Fault information, Current speed, Yaw rate

Gli+m) : Safety information after m time step

3.2 Insight into the Convolution Long-Short Term Memory Network

An LSTM network is an RNN-series network that can store historical information. To address the prob-
lems modeled using sequence data, LSTM networks have proven to be ideal choices and stable networks
to model long-term dependencies for learning complex dynamics [47]. LSTM’s memory cells, which act
like status information accumulators, are the core elements of the network. Cells are accessed, written,
and cleared by several self-parameterized controlling gates. The key formula is shown in 3 where 'o’

denotes the Hadamard product.

ir = 6 (Wax; +Wyihy 1 +Weioci1 +b;)
fi = o(Wypx; +Whphi—1 +Wepoci—1 + by)
¢t = froci—1 iy otanh(Wyexy + Wiehi—1 + be) 3)
01 = 0 (WeoXe + Wiohi—1 +Wep 000+ by)
hy = o, otanh(c,)
Modeling time information in this way is an advantage, but encoding space information over an

LSTM network has lots of redundancy. The ConvLSTM network is used to overcome this problem
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and follows the formula described in [48] for the safety monitoring system problems. The spatiotem-
poral data is given by the network’s input tensor Xi, ..., X;, the cell output is Cy,...,C;, the hidden state
Hy,...,H;, and the gates are input #;, forgotf;, and the output o, gate of the convLSTM cell is shown in
Figure.14. The input to convLSTM is a 3D tensor whose last two dimensions are spatial feature dimen-
sions. The input gate determines whether to include information about the memory cell and the forget
gate f; plays a role in removing information in the cell state. The output gate o, is responsible for trans-
ferring information from C; to the following hidden states H;. ConvLSTM determines the extraction of
features from current and past states through convolution operations. The key formula [48] for convL-
STM is shown in (eq.5) below, where '+" denotes the convolution operator and ’o’, as before, denotes the

Hadamard product:

Figure 14: A general form of a single LSTM cell

it = 0(Wy* X, + Wy« Hi—1 + W0 Gy + b;)

fi=0(Wer X, + Wy xH_1 +WepoCi_y + by)

Ci = fioC1+isotanh(Wy. x Xy + Wye x Hi—1 + b;) “4)
01 = 0(Wyo % X; +Wyo % Hy—1 +Weo0Cy + by)

H, = o; otanh(C;)



3.3 The Proposed System Architecture

A key characteristic of a safety monitoring system is to learn the relevance of space-time data through
continuous camera scene information and state information and monitor safety online with high accuracy
and appropriate sampling rates. The architecture of the proposed model to monitor safety through risk
prediction is shown in Figure.15. The model has a structure in which convolution cells for learning
images and LSTM cells are stacked, and a structure in which Dense cells and LSTM cells are stacked and
these two structures are separated. The features embedded by the architecture of the separated structure
were fed into a fully connected structure network and modeled to predict safe or collision. Among the
input data sets, image sequences are supplied through the convolution layer of each convLSTM cell to
extract spatial features for classifying the safety state of AVs. A layer of encoder structure was used
to compress image information to generate meaningful feature vectors. The encoder processes repeated
inputs through the laminated convLSTM layer and output an embedded tensor, the full sequence of
hidden states, in all encoder convLSTM cells that indicate scene propagation. The input data set fault,
and state information sequence is fed to a fully connected LSTM cell. The last fully connected network
has a tensor built in through each encoder as an input sequence and outputs the predicted safety through
the classification layer. The label used to learn the network is the safety information five steps from the
present for AVs, which can be adjusted appropriately for the use case.

8frame [Iaule, Vego Wego | ‘E ‘! H!
Ieaure(t7) Lpe (1) | a8 ron |

egott7) egotty
Wego(t7) Wego (1)

Imagegrone(t-7) Imagegone [t)

| Dense 1 | | Dense 2 | ooe | Dense N | CNN 1 | | CNN 2 |
| LSTM 1 | | LSTM 2 | | LSTMN h| Embd 1 | | Embd 1 |

L{ ISTM 1 | | ISTM 2 | ISTMN | LstTmM1 || LsTM 2 |

| LI LSTM 1 LSTM 2 | LSTMN
| ;

| ENCODING | | ENCODING
i

| Fully Connected

Safe Collision

Figure 15: A schematic of a data-driven simulation-assisted-severity learned Al model for modeling

course severity prediction
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IV Implementation of the Proposed System for Safety Monitoring

In this section, previous experience and sensor information (especially camera image) is taught to the
safety monitoring system while training the network to predict the collision risk as a binary classifica-
tion. The test dataset and simulation environment quantitatively analyze the performance of the safety
monitoring system. We also present the difference in predictive performance in the inclusion of fault

information by comparison with baseline models.

4.1 Training the Proposed System Using Simulation-assisted Dataset

The proposed safety monitoring system is trained using simulation-aided training sequences generated
by CARLA-Autoware and domain knowledge-based sampling in Section 2. These training datasets are
a set of images and state values obtained from the simulation with a sampling period of 0.2 seconds per
frame during the total simulation time. Each simulation set consists of data of different frame lengths
according to different simulation times, of which the remaining data is removed from the events of
interest except for 17 past frames. This ensures that all simulation data sequences have 17 constant sizes
and that eight frames of sequential time size are selected in chronological order. Of a total of 2000
simulated data sets, 70% were used as training data, 20% as validation data, and 10% as test data. A
140x210 size RGB input image was used to train the network. Image pixel values [0, 255] are normalized
to [0, 1] for fast network convergence. The training dataset also provides scalar value vehicle state and
fault information to the network along with an input image sequence. The system (see Figure.15) is
implemented in the TensorFlow of the Python platform, an open-source framework, to train the network
through multiple GPUs. The model architecture consists of a convLSTM layer for image learning, an
LSTM layer for scalar value learning, and a fully connected neural network layer for learning embedded
tensors. Each layer consists of a different kernel size and hidden units. The safety monitoring network is
trained to minimize binary cross-entropy loss functions using the backpropagation through time(BPTT)

algorithm. The binary cross-entropy loss function is as follows:

L(9,y) = —[ylog(3+ (1 —y)log(1 — ] 5)

where is the ground truth safety value and y is the predicted safety value. The Adam optimizer is
used to optimize weights and bias at different layers, and the hyperparameters required for learning are
the same as the Table.2. Figure.17-19 shows the accuracy, loss, and area under the curve(AUC) values
as a function of the number of iterations. Because loss and accuracy are stabilized over the number
of iterations, the predicted results are determined to be similar to ground truth based on the specified
learning rate. Training loss for 500 epoch iterations is 0.144. The NVIDIA GeForce RTX 1080Ti* 4

processor takes approximately 3 hours and 30 minutes to train the model.

4.2 Testing the Proposed System on Simulation-assisted Dataset

The trained risk prediction model is evaluated using a 10% test dataset to quantify performance. The

model uses eight previous image frames and state information as input to generate one future risk pre-
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Params Value
CPU Intel® Core™ 19-10900X CPU@ 3.70GHz
RAM 126 GB
GPU GeForce RTX 2080 Ti x4
Total layer num 39
Input size 8x140x210x3
Output size 1x2
Total parameters 14,814,338
Total trainable parameters 14,811,202
Non-trainable parameters 3,136
Optimizer Adam
Learning rate le-4
Decay rate le-5
Epochs 500
Mini-batch size 8
Training time 3h 29m 44s

Table 2: Parameters related to network training

[
— Logical Scenario
=i ® €
E’ \ ‘ [ ] Params Range
[
x . Ego spawn point [0,1,2,3,4,5]
Ego destination [0,1,2,3,4,5]
y
' SV spawn point [0,1,2,3,4,5]
SV destination [0,1,2,3,4,5]
GPS fault
—~ Ego target speed [20,21...39,40]km/h
I - SV target speed [20,21...39,40]km/h
|E‘ GPS lat bias [0,£0.1,£0.2, £0.3]
® GPS lat stddev [0,£0.5, £1]
° GPS lon bias [0,£0.1,£0.2,£0.3]
[
GPS lon stddev [0,£0.5, 1]
{x,y,6

Figure 16: Training scenario example : Cut-in scenario with GPS faults
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training accuracy training loss training AUC

diction value as output. For quantitative evaluation of the trained risk prediction model, scenarios such as
GPS fault, detection failure due to camera faults, and localization failure due to LiDAR fault were used
in various situations. The risk predicted by the safety monitoring system was compared to the actual
simulation result value (taken as ground truth) stored for quantitative evaluation. Figure.16 shows one
of the scenarios used in the test. Figure.20 shows the confusion matrix derived from the actual and the
result values predicted using these sequences. Performance evaluated through a total of 4728 sequences

showed 94% accuracy and 88% Flscore. See Table.3 for more information.

Test Dataset Confusion Matrix

Safe o

162

True label

Collision 1 4 114 1020

0 1
Safe Predicted label Collision

Figure 20: Analytical results for label and predicted values (confusion matrix)

4.3 Case Study the Proposed System on Simulation Environment

Scenarios were configured in the CARLA simulator to test learned networks online. The scenario set for
this is a situation in which a surrounding vehicle around the right side attempts to change lanes to the
lane of an AV in a two-lane situation. In this situation, quantitative tests were conducted to verify that

the safety monitoring system works properly in a scenario where the forward vehicle detection fails due

17



Metric Value
Sequence Num | 4728
Accuracy 94.0%
Precision 86.0%
Recall 90.0%
Flscore 88.0%

Table 3: Test dataset prediction result

to a sensor fault necessary for detection and so an accident occurs. The simulation confirmed that the

learned network successfully predicts future accidents in online video streaming situations.

4.4 Comparative Analysis

Finally, we compared the networks we learned using images and state information to those using images
only. Compared to the baseline model, the network using the status information of AVs showed higher
performance during the training process. The training process is shown in Figure.21-23. As a result of
measuring performance over the same test set for two trained networks, the network containing state
information was 1.9 percentage points more accurate than the existing network. The architecture of the
two networks used for the performance comparison is shown in Figure.24, and information about the

performance comparison is shown in Table.4.

Model Loss Model AUC

e

— Tain
Baseline_Train

Model Accuracy

— Tain /W
06

090 Baseline_Train Baseline_Train 095
0.85 05 0.90

— Tain

Loss

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch

Figure 21: Comparison of train-
ing accuracy between baseline

and our model

Figure 22: Comparison of train-
ing loss between baseline and our

model

Figure 23: Comparison of train-
ing AUC between baseline and

our model

Baseline (only image) Our model
Accuracy 92.7% 94.6%
Loss 0.209 0.144
AUC 97.0% 98.4%

Table 4: Comparative analysis of safety monitoring system performance
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V Conclusion

In this study, simulation-aided datasets through systematic scenario generation were acquired, and Al
was learned to monitor the safety of AVs in various sensor fault and algorithmic failure situations. The
safety monitoring system was trained using datasets obtained through fault injection tests in a CARLA-
Autoware environment. The trained safety monitoring system can predict future collisions with data up
to the current point in time when an algorithmic error is caused by a sensor fault in an AV. A trained
safety monitoring system can be deployed online to predict future collisions in complex situations,
including failures that traditionally could not be resolved. The results obtained from the proposed safety
monitoring system show higher performance than traditional image-based models and show that the risk

of failure conditions can be effectively predicted.
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