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Abstract

This paper addresses an overtaking strategy in autonomous head-to-head racing, by virtue of a learning-

based prediction to the opponent vehicle’s behavior. The existing prediction approaches either rely on

prior model or off-line learning for opponent behavior, whose accuracy diminishes when the opponent

in real racing exhibits different driving style. Motivated by this concern, we proposes an online learning-

based prediction algorithm that can adapt to the opponents’ different driving style and refine the predic-

tion during the race. Resorting to Gaussian Process (GP) regressor as the baseline learning model, we

leverage several techniques to reduce the data size and computation cost of GP, making the algorithm

suitable for online learning and prediction refinement in real time. The effectiveness of the proposed

algorithm is demonstrated with different simulation scenarios and compared with the other algorithms

in terms of prediction accuracy, computation efficiency, and success rate of overtaking maneuver.
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I Introduction

Autonomous racing is one of the most notable subtopics of autonomous driving that has recently at-

tracted significant interest [1]. Focusing on the autonomous algorithm aspect, many competitions like

Roborace, Indy Autonomous Challenge, and F1TENTH have emerged that allow researchers to imple-

ment and test their S/W stacks within archetypal H/W platforms. Albeit the competition rules are almost

the same as manual racing, adhering to them fully autonomously necessitates several key algorithms,

including sensing, planning, and control. And there are some notable features to consider in the racing

to generate algorithms.

First, it is highly dynamic. The algorithm must account for the vehicle’s limits, such as fast speeds

and quick reaction times. Second, the race is competitive and adversarial. In competition, race cars

attempt to drive as quickly as possible on a specific track. In addition, it must be able to identify un-

structured environments, such as track conditions that are dry, wet, snowy, or sticky. Most importantly,

racecars must always prioritize safety while making decisions. Even if they are racing at high speeds to

overtake other vehicles, they must be aware of the other’s movements and prevent situations that could

result in a collision.

Formal studies have expanded the classical motion planning or control techniques to account for

collision avoidance while considering opponents as static obstacles [2, 3]. However, such methods are

limited to executing reliable maneuvers at high speeds. Since approximating opponents as static obsta-

cles are no longer applicable. Furthermore, making the opponent’s vehicle stationary makes it impossible

to reflect one’s different driving style. Therefore, to be accurately aware of the other’s movements, it is

necessary to accurately predict the opponent’s future behavior for overtaking the opponent’s vehicle

without collision, which is the main interest of this paper.

1.1 Related Work

Figure 1: A visual representation of the three types of prediction methods.

We present three methodologies for motion prediction, categorized according to how they describe

the object’s motion; planning-based, physics-based, and pattern-based. Figure 1 demonstrates the dis-

tinction between each method in the scenario of two vehicles on a two-lane highway. We introduce each

method and its application to autonomous racing.
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Planning-based prediction

The planning-based prediction approach generates the trajectory of a vehicle by taking into account the

actions of surrounding vehicles to achieve their goal under their hidden policies. The most important is

the modeling goal and hidden policies, usually approximated by the Markov Decision Process (MDP).

In [4], they construct a cost function with a linear combination of static and dynamic variables that

parameterize each state. They model the trajectory of a vehicle as a series of states. In [5], The cost

function parameters are learned from examples using Inverse Reinforcement Learning (IRL), which

considers risk-averse vehicle encounters. These methods require more comprehensive data to infer expert

behavior, particularly IL, correctly.

In addition, accounting for the opponent’s driving style, the game-theoretic approaches have been

considered to solve the rational driving action of the opponent for the given cost function. With these

techniques, continuous motion planning is converted into a sequential game in which players can make

"one move" at a time. The trajectory of each vehicle is repeatedly planned in sequence until convergence

[6]. And the resulting control commands generate trajectories of rich game strategies such as blocking,

faking, and opportunistic overtaking. In [7], a game-theoretic MPC is presented using a data-driven

method for model identification. It plans behaviors that can respond to various race environments based

on their game-based opponents’ trajectory predictor and high-level race strategy planner.

However, the induced driving action could be too optimistic as the real opponent in practice may not

necessarily take the rational action as assumed. Further, one can also apply IRL to identify the cost of the

game-theoretic formulation, thereby directly tackling the overtaking problem [8]. Although the game-

theoretic technique produces the optimal control commands, the computational complexity it demands

occasionally makes the controller unsuitable for racing which needs high frequency.

Physics-based prediction

Physics-based prediction models predict future motion utilizing motion equations from classical me-

chanics. Dynamic or kinematic model equations form a basis for modeling the future motion of the

target object to create its physical description. Numerous works which use simple kinematics have been

presented to develop high-level decision-making processes to account for dynamic opponents. Constant

acceleration and constant velocity model are presented under the straight-line motion assumption. The

author of [9] has applied the Kalman filter to perform prediction accounting for the uncertainty in the

vehicle model.

A line of these works has been developed for the constant turn rate and velocity (CTRV) and constant

turn rate and acceleration(CTRA) model adding the constant vehicle state. To improve expressiveness

in heterogeneous scenarios, the author of [10] proposes a method that combines multiple KF-based

kinematic models in an Interacting Multiple Model (IMM) based on heuristics. Despite its simple com-

putation, which is advantageous for real-time prediction, this method lacks an understanding of the

opponent’s driving style due to its simplified input assumption.

These challenges of physics-based methods in real-world racing applications require a combina-
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tion with other methods to provide more accurate long-term forecasts. Reachable set (RS) predictions

with a physics model are presented to represent all physically possible behaviors [11]. Kinematic sim-

plifications can be applied to convex hulls in conjunction with an over-approximation to account for

simplification errors to reduce the size of a set [12]. However, this process of approximating the sets is

too conservative for long-term prediction and too costly to calculate RS without approximations in the

highly dynamic autonomous racing field.

Pattern-based prediction

Pattern-based prediction models predict future motion by comparing an observation to a human-made

or learned pattern. The motion of objects is classified into one of the predefined maneuver classes by

human-made patterns. [13] proposed a method to recognize maneuver. Based on kinematic measure-

ments and road geometry detection, the most similar maneuver is selected from a predefined set, and

trajectory is generated and propagated with selected maneuvers. [14] applied spectral clustering to clus-

ter vehicle trajectory with k-means based on a trajectory similarity measure, which uses modified Haus-

dorff(MH) distance. Then, the trajectory is represented by ordered collections of points.

Different machine learning methods are also studied to learn the pattern from data, such as hid-

den Markov models (HMMs) [15, 16], kernel regression [17], bayesian network [18, 19], and encoder-

decoder [20]. In [16], the combination of prior and posterior probabilities for behavior prediction is

first presented to learn the driving behavior of traffic scenarios. [17] generates discrete lane-changing

start/endpoints while taking into account the interaction of surrounding vehicles as a non-parametric

regression. To handle a large amount of data, it was extended to the Recurrent Meta Induction Neural

Network (RMIN) framework [18]. [19] uses an RNN with Long Short Term Memory (LSTM) cells to

predict possible lane-change intentions based on accumulated information about the surrounding vehi-

cle and its trajectory history. Using an LSTM with an encoder and a decoder, [20] predict the likelihood

of occupancy in a grid map and then use a beam search to select the k trajectories with the highest

probability.

This method may be effective for standard road scenarios but not for high-speed racing conditions.

Recently, an approach including physics-based prediction methodologies has been implemented to ad-

dress this issue. While prior work did not explicitly encode vehicle kinematics and instead relied on

data-driven learning constraints, [21] introduces kinematic constraints to deep neural networks to pro-

vide kinematically feasible motion prediction. [22] integrates dynamic constraints and diverse data into

a graph-structured recurrent model for trajectory prediction. And, using uncertainty propagation of dy-

namic equation, it generates dynamically constrained predictions accompanied by their uncertainty.

Notwithstanding the success of the learning-based prediction, they usually require a large amount of

training data over a long time, and thus the learning must be processed offline. Furthermore, it doesn’t

give any failure explanations, such as uncertainty bounds.

To plan the overtaking maneuver of the ego vehicle in high-speed racing, it is crucial to generate a

prediction model with limited data and quantify the confidence of the predicted opponent’s behavior. In

3



that regards, Gaussian Process model is deemed to be adequate as it accompanies the predicted behavior

with its covariance statistics. The Gaussian process (GP) is used in [23] to create a state transition model

for a linearized kinematic vehicle model. They use the predicted trajectory to construct the free space for

a stochastic MPC constraining the half space which car most likely to go. In [24], a path-following model

is used to forecast the cut-in behavior of surrounding vehicles using an estimated behavior parameter

obtained by GP. [25] is developed to generate the prediction of nominal trajectory and uncertainty for

nonlinear dynamics via sampling. Although these GP-based methods can be used in a racing setting, the

learned prediction model cannot accommodate the opponent in real racing who exhibits a different driv-

ing style from the training data [26]. This, in turn, degrades the prediction accuracy and correspondingly

limits the overtaking maneuver.

1.2 Contribution

In this paper, we propose an online learning framework for predicting the opponent’s maneuver while

adapting with different driving styles including those who are not trained a priori. To the best of our

knowledge, the online prediction and refinement framework for high-speed overtaking scenarios has

yet to be addressed before. By learning the opponent driving style during the racing, we can refine

the prediction more accurately facilitating more overtaking maneuver. Respecting the earlier work, we

resort to GP model as online learning baseline. The major technical barrier is the computation overhead,

as GP model is computationally prohibitive from real-time operation through the on-board unit of the

vehicle. To this end, we carry out several techniques to make the online GP-based prediction viable for

autonomous racing.

First, we decompose the opponent behavior model into offline GP and online GP parts, on top of

the prior knowledge on the racing environment. Considering the fact that many autonomous racing

competitions standardize uniform vehicle specification, the vehicle dynamics model is less sensitive to

the opponent’s driving style. Thus, the vehicle dynamics part can be learned through the offline GP part,

while the online GP part exclusively learn the opponent’s driving action model that varies with driving

style. The integrated offline-online GP model takes advantage in computation aspect, i.e., significantly

reducing online learning part, and also in data aspect, i.e., using both offline and online data together.

Second, we further reduce the training data size for the online GP based on the racing track informa-

tion. Inspired by [27, 28] where the control policy of the vehicle depends on the spatial-temporal states

over the racing track, we establish new feature space that better represents the input of the opponent’s

driving action model. Having smaller input dimension, once can accommodate more data points with

the limited kernel matrix size of the online GP model. Meanwhile, we additionally employ the sparse

GP technique to reduce the total data point [29]. To preserve the prediction accuracy, we need to appro-

priately update the inducing points, which is again contingent upon the racing track information. The

new feature space and sparse GP technique can reduce the data dimension and point size for the online

GP, which in turn reduce the computation burden.

Finally, the two on/off-line trained modules are combined together to predict the opponent vehicle
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trajectory prediction, and the predicted trajectory is fed into MPC solver such that more reliable, flexible

and accurate overtaking.

The main contributions are summarized as follows:

• In the midst of racing, a new prediction model is trained based on the collected data online and

combined with a nominal prediction model learned offline. The combined prediction model gen-

erated the predicted action of the target vehicle considering the opponents’ driving style.

• Leveraging the known model information in conjunction with the learning framework, the imple-

mented prediction model generates a more accurate and physically feasible trajectory.

• The accuracy of the opponent’s predicted trajectory is also quantified in terms of the correspond-

ing covariance measure.This prediction information is then used as the constraints of the Model

Predictive Control (MPC) for the ego vehicle overtaking maneuver.

1.3 Outline

The first part of this thesis introduces the motivation of the work and state-of-the-art trajectory predic-

tion work used in the autonomous driving field. Chapter 2 presents the vehicle model described by the

bicycle model with nonlinear tire forces. And basic theories about model predictive control(MPC) and

the gaussian process (GP) are introduced. Chapter 3 introduces the details of the problem concerned

with MPC Formulation and assumption. Chapter 4 describes the algorithms to learn the residual vehicle

and control action model described in Figure 2. Chapter 5 describes the details of the implementation

and simulation results. A final chapter, Chapter 6, is dedicated to conclusions.
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Figure 2: The overall architecture for offline and online GP-based trajectory prediction is represented

here. The offline process is colored by gray color. The online process is colored blue color. The dotted

arrow line represents data training, and data processing is represented by the regular arrow line with its

processing data.
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II Preliminary

2.1 Vehicle Dynamics

Vehicle dynamic model

We consider the vehicle to be a single rigid-body bicycle for simplicity, with a mass of m and an inertial

moment of Iz. The distances l f and lr represent the front and back tires to the CoG, respectively. The

vehicle’s nominal dynamics are modeled using the dynamic bicycle in [30]. The model is represented

by the following equations and described in Figure 3:

ṗx = vxcos(ψ)− vysin(ψ)

ṗy = vxsin(ψ)+ vycos(ψ)

ψ̇ = ω

v̇x =
1
m
(Fr,x−Ff ,ysin(δ )+mvyω

v̇y =
1
m
(Fr,y +Ff ,ycos(δ ))−mvxω

ω̇ =
1
Iz
(Ff ,yl f cos(δ )−Fr,ylr),

(1)

where px and py are the positions of the vehicle’s center of gravity (CoG), ψ is the vehicle’s heading,

vx and vy are the longitudinal and lateral velocity of the CoG respectively (w.r.t. a body-fixed frame),

and ω is the vehicle yaw rate. The vehsicle is controlled by the longitudinal acceleration a and steering

angle δ . The subscripts f and r represent the front and rear tires concerning the vehicle’s body-fixed

frames, whereas the subscripts x and y indicate longitudinal and lateral direction.

Tire force model

The tire forces Fx,Fy is the part that represents the interaction between the car and the road. We ignore

other terms and parameters for longitudinal tire forces, such as aerodynamic force, and describe the

longitudinal force Fx as longitudinal acceleration a, which is the control action. The lateral tire forces

represented by Fx,Fy are modeled using a simplified pacejka tire model defined by the following equa-

tions:
F f

y = D f sin(C f +arctan(B f
α f ))

Fr
y = Drsin(Cr +arctan(Br

αr)).
(2)

The parameters B,C,D are obtained from the semi-empirical curve. The slip angles for front α f and rear

αr are by the following equations:

α f =−arctan(
ωl f + vy

vx
)+δ ,

αr = arctan(
ωlr− vy

vx
).

(3)
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Figure 3: This figure shows the bicycle model of the vehicle dynamics. The position of the vehicle

is represented by global(inertial) coordinates. The velocity of the vehicle is represented by body-fixed

frames. Only the front steering angle can be controlled by the steering angle (δ ). The longitudinal and

lateral tire force is represented through the simplified pacejka tire model with each tire’s slip angle.
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Frenet Coordinate

Frenet coordinates are an effective method to represent the position of a car on the road more intuitively

in Figure 4. The centerline is parameterized by the arc length s using twice continuously differentiable

functions, such as third-order spline polynomials. The parameter s means the path arc length from the

track’s start position, where L is the entire length.We can get any vehicle position by evaluating the

function τ(·) for its parameter s. With the help of this parameterization, the centerline’s known points

can be interpolated with accuracy. Also, transforming the frenet Coordinate makes it simple to represent

the track’s state constraints, making it a simple box that makes it easy to formulate the MPC problem

formulation in Chapter 3.2.

Figure 4: The representation of vehicle state in frenet coordinate

The frenet coordinates define the vehicle position using the ey,eψ , the lateral distance from the center

track, and the heading deviation from the centerline tangent angle ψcenter, respectively. The position of

the vehicle in frenet coordinate is calculated from the global position p = [px, py] and heading ψ as

follows.

s(p) = argmin
s
∥τ(s)− p∥,

ey(p) = min
s
∥τ(s)− p∥,

eψ(p,ψ) = ψ− arctan(τ ′(s(p))).

Also, the track information, curvature κ , can be calculated as follows.

|(s)|= ∥τ ′′(s)|.

Furthermore, the motion of the vehicle in vehicle global coordinates can be transformed to frenet

coordinates using the transform matrix. The transformation matrix is the rotation matrix around the axis

orthogonal to the plane by angle θ and represented as follows:

T =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (4)
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The rotation velocity is given by Ṙ = [0,0, θ̇ ]T = [0,0,κ(s)ṡ]T . Now, using the transformation matrix

and rotation velocity, we can get the equation as follows.
ṡ

ėy

0

= T ·


ṗx

ṗy

0

− Ṙ×


0

ey

0

=


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 ·


ṗx

ṗy

0

−


0

0

κ(s)ṡ

×


0

ey

0

 . (5)

Solving for ṡ and ėy and rearranging the variable results in followings.

ṡ =
vxcos(eψ)− vysin(eψ)

1− eyκ(s)
,

ėy = vxsin(eψ)+ vycos(eψ),

ėψ = ψ̇−κ(s)
vxcos(eψ)− vysin(eψ)

1− eyκ(s)
,

v̇x =
1
m
(Fr,x−Ff ,ysin(δ )+mvyω

v̇y =
1
m
(Fr,y +Ff ,ycos(δ ))−mvxω

ω̇ =
1
Iz
(Ff ,yl f cos(δ )−Fr,ylr).

(6)

where velocity terms is same with Equation (1).

2.2 Model Predictive Control

Model Predictive Control(MPC) is a control technique that uses control inputs obtained by predicting

future output values using a process model. At every sampling time, It repeatedly solves an open-loop

constrained optimal control problem (OCP) and uses the first element of optimized control actions in a

receding-horizon manner depicted in Figure 5.

Figure 5: The receding horizon strategy of MPC formulation.

A linear time-invariant system is a system that is regularly taken into account in the literature. How-

ever, nonlinear models are also widely employed within the mpc framework. Here, we consider the

following structure to describe the nonlinear system model. We also discretize the vehicle dynamics

with a sampling time to formulate the MPC controller as a finite-dimensional optimization problem.

xk+1 = f (xk,uk) (7)
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where f is discrete nonlinear system dynamics and xk ∈ Rn
x denotes the state vector and uk ∈ Rn

u control

input vector in time step k. The goal of mpc is to minimize a cost function while keeping state and input

constraints. The general MPC controller can be formulated as an optimization problem as follows (see

Figure 6).

min
U

N−1

∑
k=0

ℓ(xk,uk) (8a)

s.t. U = {u0,u1, ...,uN−1} (8b)

xk+1 = f (xk,uk), (8c)

xk ∈ X,uk ∈ U, (8d)

x0 = x(k), (8e)

Where ℓ(·) is the stage cost we want to minimize. The optimization is carried out over a sequence of

input U = {u0,u1, ...,uN−1}. The next state xk+1 is the state of the system generated by (8c) with state

xk and input uk at time step k. All states and inputs should satisfy its constraints in (8d). This nonlinear

MPC is non-convex but can be solved iteratively using an off-the-shelf nonlinear solver.

Figure 6: The Optimization loop of the MPC.

2.3 Gaussian Process

Supervised learning is a learning technique used in the field of machine learning that maps input vectors

to outputs based on the relationships between input-output pairs. When data is provided, the Gaussian

process(GP) regression is the method to learn a function that predicts the output at unseen input locations

based on supervised learning. The definition of GP is the generalization of the multivariate normal

distribution to an infinite-dimension stochastic process. And GP regression is a nonparametric bayesian

regression method using the properties of the gaussian process. A GP can be interpreted in various

ways from a mathematical perspective; weight-space view and function-space view [31]. Here, we will

introduce the function-space view of GP which is much easier to represent.
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Figure 7: A visual representation of Gaussian Process Regression with data points.

Function-space view

A GP is a distribution over functions defined by its mean function m(x)and symmetric and positive

semi-definite covariance function k(x,x′). In the following, we employ a squared-exponential kernel

κ(x,x′) = σ
2exp(

(x− x′)T L−2(x− x′)
2

) (9)

The mean function and covariance function is defined as follows.

m(x) = E[ f (x)]

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′)]
(10)

As usual, the mean function is taken equal to zero. Therefore, we also suppose that our mean function

is zero. Now, Assuming that we have n input-output pairs denoted by D = (xi,yi)
n
i=1, we can represent

X = [x1,x2, · · · ,xn]
T and express the zero-mean gaussian process f (X) as follows.

f (X) =


f (x1)

...

f (xn)

 ∈ Rn (11)

And, for the new gaussian process f (x∗), if it is also jointly gaussian, we can state jointly gaussian

distribution as follows.
f (x1)

...

f (xn)

f (x∗)

= N

0,


k(x1,x1) · · · k(x1,xn) k(x1,x∗)

...
. . .

...
...

k(xn,x1,) · · · k(xn,xn) k(xn,x∗)

k(x∗,x1,) · · · k(x∗,xn) k(x∗,x∗)



 (12)
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we also can rewrite the (12) as follows.[
f

f (x∗)

]
= N

(
0,

[
K(X ,X) K(X ,x∗)

K(x∗,X) K(x∗,x∗)

])
(13)

where K(·, ·) is gram matrix. Using the concept of the conditional distribution of a jointly gaussian

random vector. We can get GP denoted as follows.

p( f∗|x∗,X , f )∼ N(µ∗,σ
2
∗ )

where µ∗ = K(x∗,X)K(X ,X)−1 f

σ∗ = k(x∗,x∗)−K(x∗,X)K(X ,X)−1K(X ,x∗)

(14)

where µ∗ is mean function and σ∗ is a covariance function.

Sparse GP

The Gaussian process has the advantage of being able to explain the regressed function and learn with

less data. But it is limited to the real world when there is much data with increasing computational

complexity. The computational complexity of GP regression strongly depends on the number of data

points N. The quantity of data points(N) has a significant impact oncomputation complexity of GP re-

gression. It requires mathcal O(n3) operations for training and O(n2) operations for evaluation when the

predicted mean and variance are taken into account. Several approaches address this issue using sparse

approximations, such as inducing variables (see figure 8). It is a method that can reduce computational

costs much getting a set of inducing points that can essentially represent the entire original input space.

There are many different approximation approaches in [31], but we focus on the variational formulation

presented in [32].

Using this technique, the distance between the exact GP and a variational approximation is mini-

mized. The inducing inputs are now variational parameters that are chosen to minimize the distance.

The predictive gaussian is described as follows∫
p(z | f)p(f | y)df, (15)

where p(z | f) are the conditional prior over the set of function points z. It is same with the posterior GP

which we want to represent. To represent (15) using a small m set of inducing variables fm at the pseudo

inputs Xm, we reformulate the integral as follows.

p(z | y) =
∫

p(z | fm, f) p(f | fm,y) p(fm | y)dfdfm

=
∫

p(z | fm) p(fm | y)dfm = q(z, fm)dfm

(16)

where q(z) = p(z | y) and p(y | f)p(z, fm, f) is the augmented joint and fm are the function points taken

from the GP prior. Additionally, we assume that fm is a sufficient statistic for the parameter f , allowing

that z and f are independent given fm. Using (16), we can represent the approximate posterior GP mean
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and covariance as follows

mq
y(x) = KxmK−1

mmµ

kq
y (x,x′) = k

(
x,x′

)
−KxmK−1

mmKmx′+KxmK−1
mmAK−1

mmKmx′
(17)

This equation represents the form of the sparse GP posterior which have O(nm2) computational com-

plexity. Detailed equation and proofs are explained in [32].

Figure 8: A visual representation of Sparse Approximation of Gaussian Process Regression (SGP).(Top,

left) : Original Gaussian process Regression, (Top, right) : Sparse Gaussian process Regression with 6

inducing points, (Bottom, left) : Sparse Gaussian process Regression with 8 inducing points, (Bottom,

right) : Sparse Gaussian process Regression with 10 inducing points
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III Problem Formulation

Here, we take into account a scenario in which two racing vehicles are going head-to-head race on the

racetrack. One is the controlled racing car, denoted by the ego vehicle (EV) and the other is the target

vehicle (TV) which will be overtaken by the EV. We consider the following structure to describe the

vehicle model.

ẋ = f (x,u)≈ fn(x,u)+gc(x,u) (18)

where fn are the nominal system dynamics of the vehicle. gc is unmodeled residual dynamics. x ∈ X ⊂
Rnx represents the system state and u ∈U ⊂ Rnu is the control actions with following vehicle state and

input vectors.

x = [px, pyφ ,vx,vy,ω]T , u = [a,δ ]T

3.1 Assumption Observation Model

As we don’t know each other’s racing strategy in advance, we make a few assumptions regarding TV’s

racing policy. Without loss of generality, the racing vehicle’s physical specifications are assumed to be

identical according to racing standards. Therefore, individual vehicles differ only in their driving style,

i.e., control actions under a given racing track condition. In addition, to learn the TV’s control action

model, it is necessary to observe the control action of the TV. However, direct access to the TV’s control

action is not available. This leads us to utilize the EV’s race data, which can provide access to the

control action, in order to learn the inverse kino-dynamics model using GP or deep neural network [33].

We assume that we can estimate the TV’s control action by learning an inverse kino-dynamics model

from the TV’s state history. Let us denote the inverse kino-dynamics model using neural Net as I−1
NN(·)

which outputs the control action from the vehicle state transition history. Then, the output control action

is represented as follows.

utv(k) = [atv(k),δ tv(k)]≈ I−1
NN(x

tv(k+1)− xtv(k)) = [âtv, δ̂ tv] (19)

where [âtv, δ̂ tv] represent estimate the TV’s control action from inverse kino-dynamics model. Now, we

can estimate the control action though control actions of opponent vehicles are not directly available.

And, we can use it to learn the control action prediction model with reasonable accuracy.

15



Figure 9: The structure of inverse kino-dynamics neural network based observation model. We use the

linear and angular velocity and their transition as input and acceleration and steer angle as output. It

consists of input, output and 5 hidden layers with each units.
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3.2 MPC Formulation

Inspired by the model predictive contouring control(MPCC) formulation for racing vehicles presented

in [34], we design the optimization problem for controlling the vehicle (1). The nonlinear projection

of the vehicle’s position onto the center line is taken into account when the designed problem plans a

progress-optimal path control the vehicle. The corresponding MPCC formulation is as follows:

min
U

N−1

∑
t=0

qcec(xk,uk)+uT
t RuuT

t +∆uT
t ∆Ru∆uT

t −qss̄N (20a)

s.t. xk+1 = f (xk,uk), t = 0, ....,N−1 (20b)

x0 = X0, s̄0 = s(x0) (20c)

s̄t+1 = s̄t +Tsvx,t , t = 0, ...,N−1 (20d)

xt ∈ X, ut ∈ U, t = 0, ...,N (20e)

h(xt ,xtv
t )< 0, t = 0, ...,N (20f)

where U = {u0, ...,uN−1}, ∆ut = ut − ut−1. The objective of problem (20a) is to maximize approx-

imations of track progress s̄N and to minimize centerline deviation ec. s̄ means the distance vehicle

drives along the track from the start position, and ec means lateral deviation from the centerline. Each

is controlled by penalizing the parameters qc and qs, respectively.Each is controlled by penalizing the

parameters qc and qs, respectively. In addition, the control effort and its changes are minimized by Ru

and ∆Ru. The above value of vehicle states which are represented by the parametric variable(s,ey,epsi)

are constrained by the state set (20e). First, vehicle progress(s) is constrained by the track length(Tl)

from 0 to (L). The lateral deviation from the centerline is constrained to the track width(wtrack), angle

difference with the center line is constrained to (−π,π). Also, the maximum velocity and minimum

linear and angular velocity of the vehicle are also applied to states constrained. And the control action

(acceleration, steering angle) can also be constrained by their maximum and minimum values. These

values are calculated by the system identification vehicles. When TV is in front of the EV, another con-

straint is necessary for collision avoidance. The constraint (20f) is formulated based on EV’s state xt and

TV’s state xtv. As we can’t know the opponent’s plans or their racing control policy, we, therefore, need

a prediction model to generate TV’s trajectories. It is generated by our prediction framework, which we

will discuss in the following section.

3.3 Obstacle Avoidance Constraint

We make the collision avoidance constraints with the predicted TV’s trajectory in Figure 10. As the

major importance of proposed prediction algorithms is uncertainty, we modify the traditional constraints

to leverage the uncertainties of predicted trajectories. We first define the original obstacle avoidance

constraints using a circle and ellipse. We represent the EV’s state as a set of four circles with a center

and radius. Next, we represent the state of the TV as an ellipse with the center position (px, py,ψ) and

axis length. The major and minor axis are represented using the vehicle’s length and width to cover

the vehicle’s size. And, to cover the uncertainty of the prediction, the uncertainty magnitudes of the

17



Figure 10: The collision avoidance constraints of mpcc problem. The ego vehicle is represented as a

green box with four circles, and the target vehicle is represented as a red box with a yellow ellipse and

a red ellipse. The yellow ellipse means the traditional constraints for collision avoidance, and the red

ellipse represents the vehicle’s state which incorporates the uncertainty of prediction with its confidence

level.

longitudinal and lateral direction variance are added to the original ellipse’s length. The constraints of

the collision avoidance is represented as follows.

h j(xev
j,k,x

tv
j,k) = 1−

((px
ev
j,t − px

tv
j,t cos(ψ tv

t )+(py
ev
j,t − py

tv
j,t)sin(ψ tv

t ))2

a2

−
((px

ev
j,t − px

tv
j,t)sin(ψ tv

t )+(py
ev
j,t − py

tv
j,t)cos(ψ tv

t ))2

b2

(21)

To incorporate the uncertainties (σat ,σbt ) of each direction, we represented the uncertainty using the

variance as follows.
Var(at) =Var(cos(etv

ψ,t)s
tv
t + sin(etv

ψ)e
tv
y,t)

= cos2(etv
ψ)Var(stv

t )+ sin2(etv
ψ)Var(etv

y,t)

Var(bt) = sin2(etv
ψ,t)Var(stv

t )+ cos2(etv
ψ,t)Var(etv

y,t)

(22)

Then we resize the major and minor axis lengths using the following equations. The gamma(γ) is chosen

number which controls how much we would like to account for uncertainties for our safety constraints.[
σat

σbt

]
= γ

[√
Var(at)√
Var(bt)

]
(1− εt)+

[
a

b

]
(23)

Finally, this resized value of the major and minor axis is applied to the equation (21) for collision

avoidance safety which reflects the uncertainty
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IV Algorithm Development

In this section, we will introduce the framework to learn the TV’s trajectory prediction model. The

frameworks are divided into offline and online. Afterward, we show how to exploit the prediction model

to construct the MPC constraints for overtaking.

4.1 Learning Dynamics GP

To predict the accurate trajectory of TV, we need to learn the behavior model and incorporate accurate

dynamics information for generating the trajectory. To do that, we learn two GP models: residual dy-

namics and a nominal behavior model. To begin, we learn the residual dynamics with the EV’s single

race data to infer the accurate model information for generating the trajectory. As the vehicle’s physical

specifications are the same, if we choose the TV’s nominal vehicle model as (1), the residual dynamics

of the two cars will be identical. We use the assumption that the model uncertainty and process noise

w only impact the dynamic portions of the system, which are vx,vy,andomega, as the dynamics of the

first three states are entirely determined by kinematic equations. Let us denote the modeling errors of

dynamic parts at the discrete time step k as follows.

evx(k) = vx(k+1)− v̂x(k+1)

evy(k) = vy(k+1)− v̂y(k+1)

eω(k) = ω(k+1)− ω̂(k+1)

where v̂x(k+1), v̂y(k+1),and ω̂(k+1) are propagated from the equation (1) with vehicle state and input

(x(k),u(k)). Then the residual dynamics GP model is trained to represent the following vector-valued

function.

gc(x(k),u(k))≈ ggp(x(k),u(k)) = [evx(k), evy(k), eω(k)]T (24)

where gc(·, ·) is original residual dynamics model and ggp(·, ·) is the learned residual GP model which

approximates the modeling errors. A GP for a function ggp is set to have zero prior mean and a squared

exponential kernel function as (9). Based on the data of measurements x(k + 1) corresponding to the

inputs x(k),u(k), the predictions of GP at x(k) are represented by the predictive mean µ and variance σ .

Now, we can obtain the residual dynamics in form of gaussian distribution as follows.

evx ∼N (µvx ,σ
2
vx
), evy ∼N (µvy ,σ

2
vy
), eω ∼N (µω ,σ

2
ω) (25)

Note, we can incorporate the learned model to increase control performance by inferring the learned

model to MPC formulation (8c). Some previous works incorporate learned models successfully in au-

tonomous racing [29]. However, it can increase computational complexity for solving the optimization

problem, making the system non-real-time. In other words, there is a trade-off between control perfor-

mance and the feasibility of an optimization solution.
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4.2 Learning Offline Control Action Prediction GP

We learn the behavior model which can predict the target vehicle’s control action with reduced inputs

regarding the vehicle state and race corner. To represent the race track and vehicle position, we use a

curvilinear reference frame w.r.t track center line. The race track is represented using a curvature κ ,

which contains the full information of the track center line [35]. The vehicle’s position is represented

using the track progress s, lateral deviation from the centerline ey, and its heading deviation from the

centerline tangent angle eφ . Now, we express the vehicle state as follows.

x̂ = [s,ey,eφ ,vx,vy,ω]T

where x̂ represents the transformed vehicle state into a curvilinear reference. Motivated by [27] which

learns the policy using spatial information of the race corner, we propose a feature space that may

describe the characteristics of the track and the TV’s current state. Then the nominal behavior prediction

GP model is trained to represent the following vector-valued function.

utv(k) = [atv,δ tv]≈ utv
gp(z(k)) = [âtv, δ̂ tv] (26)

where utv
gp represents the behavior prediction model which is the target model to train. z(k)= [ey(k),κ(k),vx(k)]

is the model input measurement vectors and [âtv, δ̂ tv] is the model output measurement vectors which

are estimated from the function (19). Like (25), we can obtain the control action prediction in form of

the gaussian distribution as follows.

atv ∼ N(µatv ,σ2
âtv), δ

tv ∼ N(µδ tv ,σ2
δ tv) (27)

Additionally, we used the sparse GP approximation for all the offline model training to efficiently infer

the learned model.

4.3 Learning Online Control Action Prediction GP

Previously, the offline GP model for TV’s behavior did not account for the interaction between vehicles;

only vehicle state related to racing track information is taken into account. To reflect the interaction

of vehicles and, therefore, refine the accuracy of predicted trajectory, we collect the data following the

opponents and learn the behavior model online. We again represent the vehicle state into a curvilinear

reference frame and define the feature space as the difference between EV’s state and TV’s state as

follows.
∆ey(k) = etv

y (k)− eev
y (k)

κ(k) = κ
tv(k)

∆vx(k) = vtv
x (k)− vev

x (k)

where the superscript (ev, tv) denotes the state of EV and TV, respectively. ∆ denotes the state difference

between EV and TV. Then the online behavior prediction GP model is trained to represent as (26) and

outputs the distribution as (27) with different model input measurements ∆z(k) = [∆ey(k),κ(k)∆vx(k)].
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Algorithm 1 Online process for trajectory prediction with uncertainties
0: Input : initial state of EV, TV : xev(k), xtv(k)

0: parameter : horizon length N, the number of samples M =0

0: xtv,i(k)← xtv(k) ∀i = 1, ...,M;

0: for t = 1, ...,N−1 do
0: Frame transformation from global to curvilinear : x̂tv,i(k+ t), x̂ev(k+ t)

0: ztv,i(k+ t)← Extract feature from x̂tv,i(k+ t);

0: ∆ztv,i(k+ t)← Extract feature from x̂tv,i(k+ t), x̂ev(k+ t);

0: Get distribution utv
o f f (k+ t)∼N (µ tv,i

o f f (k+ t),(σ tv,i
o f f (k+ t))2);

0: Get distribution utv
on(k+ t)∼N (µ tv,i

on,k+t ,(σ
tv,i
on (k+ t))2);

0: utv
comb(k+ t)← Do information fusion with (28);

0: for i = 1, ...,M do
0: Sample utv,i

comb(k+ t)∼N (µ tv,i
comb(k+ t),(σ tv,i

comb(k+ t))2);

0: Transfrom vehicle state curvilinear frame into global frame;

0: xtv,i(k+ t +1)← fn(x,u)+ggp(x,u) using the equation (1) and (25);

0: end for
0: end for
0: x̄tv(k+ t)← 1

M ΣM
i=1xtv,i(k+ t);

0: Σtv(k+ t)← 1
M−1 ΣM

i=1(x
tv,i(k+ t)− x̄tv(k+ t))(xTV,i(k+ t)− x̄tv(k+ t))T ;

0: Output : x̄tv(k+ t),Σtv(k+ t) ∀t = 1, ..,N−1 =0

4.4 Overtaking with Online Prediction Refinement

We incorporate offline model predictions into online model predictions. It prevents the online model

to make weird predictions in cases when it does not have enough data and improves the prediction ac-

cording to TV’s behavior as data collects. Since the learned model employing GP is a kind of Gaussian

distribution, we may assume that the offline behavior model’s control action follows uo f f ∼N (µo f f ,σ
2
o f f )

and the online behavior model’s control action follows uon ∼N (µon,σ
2
on). Now, we can combine two

gaussian distributions as follows.

µcomb =
σ2

o f f µon +σ2
onµo f f

σ2
o f f +σ2

on
, σ

2
comb =

σ2
o f f σ

2
on

σ2
o f f +σ2

on
(28)

We produce the projected trajectory by inferring it from the vehicle model based on the predicted control

action. As our predictions are not precisely correct, we employ a sampling-based method to estimate the

TV state and propagate the uncertainty using our model. The detailed procedure for online learning and

trajectory generation is presented in Algorithm 1. Algorithm starts with each vehicle’s state (xev
k ,xtv

k )

and parameters N,M. Each vehicle’s state transformed to a curvilinear frame (zev
k ,ztv

k ) to predict the

behavior with low dimension. Lines 5 and 6 evaluate the distribution of predicted behavior using the

offline GP model and the online GP model, respectively. Information fusion (28) between two Gaussian

distributions is performed in Line 7. Then, control actions are sampled from the resulting distribution
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in Line 9. In Line 11, sampled control actions feed into the nominal vehicle dynamics and residual

dynamics to compute the propagating state of TV. Note, the function ggp(·, ·) is the learned residual

dynamics using GP. This state generation procedure is repeated to generate the TV’s trajectory of N

steps. The N steps TV trajectory is generated by iterating this process for N-1 times. Finally, Line 16

computes the mean and standard deviation of M samples at each time step and returns the predicted

trajectory along with uncertainty. From these process, we can generate the trajectory prediction with

long horizon which are relected in to the MPC constraints to ensure collision avoidance.
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V Numerical Simulation

5.1 Simulation Setup

Figure 11: Training track configuration which is generated randomly.

We consider a race scenario, where the ego vehicle intends to overtake the opponent. For both ve-

hicle, MPCC policy in (8) is used with a sampling time of Ts = 0.1s and a prediction horizon N = 10.

Training data is accumulated through driving the test track which generated with different curvatures

and configuration such as straight, curve, and chicane.(see Figure 11) Additionally, for the opponent

vehicle, Additional cost is added to make the behavior of interaction such as blocking, lane keeping.

qy(∆ey)
2)/(1+(∆s)2) (29)

where ∆ey,∆s are the difference of progress and deviation from the center line between TV and EV, and

qy is the tuning parameter that determines the aggressiveness of blocking. The difference trajectories of

target by the different cost are represented in figure 12. When we set qy equal to zero, the target vehicle

doesn’t show a blocking motion like the left figure. And, when we set qy equal to one hundred, it shows

moderate blocking motion. And, if we set the qy equal to 500, TV moves aggressively to block the ego

vehicle.

Figure 12: The different trajectory of target vehicle at the same scenario with different cost of target

vehicle’s blocking motion (left: the case where the cost is 0, middle : the case where cost is 100, right :

the case where cost is 500.

Also, as we make the assumption of the observation model, we can estimate the TV’s control ac-

tion by learning an inverse kino-dynamics model from the TV’s state history. We use the neural net in
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Figure 13: The result of Inverse kinodynamics model learning. Top : Inverse kino-dynamic prediction

result. blue dot means ground truth of control action and black dot means estimated value of control

action. Bottom : estimated error of each control action.

figure(9) to learn the inverse kino-dynamics model, and the result shows that we can estimate each con-

trol action with reasonable accuracy. And, Each GP for prediction model is trained with a GPyTorch [36]

which is a widely used software platform for scalable GP inference. Its GPU acceleration allows for fast,

effective computing of the trajectory via parallelization. The MPC problem is solved using a primal-dual

interior point method through an off-the-shelf nonlinear optimization solver, Forces Pro [37, 38].

5.2 Discussions

Figure 14: The result of the predicted trajectory without and with learned dynamics GP. (left) shows the

predicted trajectory with and without GP model and ground trught dynamic model. (right) shows the

predicted error with prediction horizon compared to predicted trajectory with ground truth dynamics.
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Figure 15: The result of predicted trajectory with offline learned control action prediction model. (a) :

The trajectory history and predicted trajectory with uncertainty. (b):prediction Accuracy and prediction

covariance.

Here, we simulate a scenario in which an EV tries to overtake a TV that is likely to block the EV’s

progress. To show the performance of proposed algorithms, we separate the algorithm step to 3 parts

and show the performance of each part; Dynamics GP, Offline control action prediction GP, and Online

control action prediction GP. First, in figure 14, we compare the predicted trajectory of target vehicle

with and without learned dynamics GP. Green represents Target vehicle’s ground truth plan, and blue

represents the use of the existing vehicle model only, and red represents the use of the existing vehicle

model and the learned dynamics together. We can see the red trajectory is much more similar to the

green than the blue trajectory, which means the predicted trajectory with dynamics GP increases the

prediction accuracy. Also, we can see the the predicted error is reduced significantly by about 10 times

at last horizon.

In Figure 15, we show the result when we predict the control action using the offline model and

learned dynamics model together. To show the prediction accuracy, we use two scenarios. Top of the

Figure 15 shows the first scenario when the policy of the target vehicle is the same as the learned policy.

Bottom of the Figure 15 shows the second scenario when the policy of the target vehicle is the same as the

learned policy. Comparing the figure of two scenarios, the predicted accuracy gets lower when the Ego

meets a new scenario. And it makes the ego vehicle move conservatively. In other words, It makes ego

vehicle overtake Target inefficiently. Also, comparing the prediction accuracy and prediction covariance,

it shows great performance of prediction when EV meets the learned policy. But, when the EV meets

TV which uses new policy, the prediction error are higher than learned one and increase higher with

increased prediction horizon. So, we can conclude that it is not enough to predict the trajectory using

the offline learned model. In Figure 16, we display the predicted trajectory together with its associated

uncertainty to demonstrate that the learned model is adapted well to the real TV’s behavior. When the

EV meets the TV at the first corner, because there is not enough data for the TV’s behavior, the predicted

uncertainty is large and EV is trying to follow the TV until there is enough place to overtake. As EV
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Figure 16: Predicted Trajectory with its covariance. (top,left) shows the trajectory of EV and TV during

the race. (top,right) EV follows the TV while collecting information. (bottom) shows the corners where

EV tries to overtake TV

collects data, GP for behavior prediction has less covariance and becomes accurate. In addition, EV

attempts to overtake if it determines that there is enough space to pass through considering the predicted

trajectory of TV and covariance. Furthermore, it can be seen that by increasing the efficiency of learning,

sufficient data is collected in one or two turns, and the model is learned appropriately and quickly.

Also, in order to evaluate the accuracy of the predicted trajectory, we perform a Monte-Carlo (MC)

simulation with 200 different starting positions and compare the results with the other methods shown

in Fig 17. First, we investigate the longitudinal and lateral errors of nominal open-loop predictions with

respect to the ground truth trajectory planned by the TV’s actual control action policy. Fig 17 (left) shows

that the proposed method outperforms other methods comparing the longitudinal and lateral errors. To

quantify overtaking performance of the proposed framework, we compare the overtaking success rate

and collision rate with other prediction methods in Fig 17(right). The simulation is conducted with

the added objective (29) changing the qy. The offline GP predictor [25] is trained with the objective

qy = 50. All the prediction module shows great performance when there is no blocking motion. However,

when TV shows different behavior with the trained condition, Offline GP and NLP predictor shows

poor performance. Whereas EV can’t overtake the TV using the offline GP predictor even TV shows

less aggressive blocking motion, EV overtakes the TV successfully. Remarkably, regardless of how

aggressively the TV behaves, overtaking performance with the proposed predictor performs better than

existing methods.
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Figure 17: Top: Prediction accuracy of longitudinal(left) and lateral(right) RMSE. The length of the bar

represents the average size of the uncertainty at each step of prediction. Bottom: Overtaking success

rate and collision rate using the proposed method, and others: Offline GP, nonlinear programming(NLP)

method.
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VI Conclusion

In this paper, we have proposed a learning-based opponent vehicle trajectory prediction framework that

combines offline and online GP models. The proposed method learns the vehicle model and nominal

prediction model using the past available offline. When the vehicle starts to drive and collect data, the

offline learned model is used to predict the opponent’s trajectory for the safety constraints of MPC. At

the same time, the vehicle learns a new prediction model online based on the collected data. To facilitate

the online learning process, the original state data size is reduced by transforming into the feature state

having a smaller dimension. Additionally, all the control actions from the learned prediction model are

fed into the vehicle dynamics model to generate a dynamically feasible trajectory. In order to show the

effectiveness of our methods, we have demonstrated that our framework predicts accurately and achieves

higher win rates with less uncertainty in new environments compared to the existing learning-based

prediction model through simulation.
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