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Abstract

A gyroaveraged nonlinear collision operator is formulated based on the Fokker-Planck operator in the

Rosenbluth-MacDonald-Judd (RMJ) potential form and implemented for the gyrokinetic simulations

with the discontinuous Galerkin scheme. The divergence structure of the original RMJ form is carefully

preserved throughout the formulation to guarantee the density conservation while neglecting the finite

Larmor radius effect. The B-spline finite element method is used to calculate the Rosenbluth potentials

for the nonlinear collision operator. In addition to the nonlinear collision operator, linear and Dougherty

collision models are also implemented to assess the benefits and drawbacks of each model. For the

conservation of the parallel momentum and energy, we adopt a simple advection-diffusion model which

numerically enforces the conservation of physical quantities. From bump-on-tail relaxation tests, the

monotonically increasing entropy in time and conservation properties are demonstrated for the developed

collision operator. Also, a few theoretical predictions for the neoclassical physics such as the neoclassical

heat flux, poloidal flow and collisional damping of zonal flow are successfully reproduced by numerical

simulations.
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I Introduction

Coulomb collisions are one of the fundamental processes in magnetically confined plasmas. Governing

the classical and neoclassical physics of the confined plasmas, they also affect the anomalous transports

driven by micro-turbulences. As an essential ingredient for the physics of magnetized plasmas, Coulomb

collisions are described by Fokker-Planck operators. Basically, the description and formulation of the op-

erators rely on the characteristics of small angle scatterings. The formulation of the Coulomb collisions

has been developed in mathematically two different ways: 1) an integro-differential form by Landau [1]

and 2) a form with potentials by Rosenbluth, MacDonald, and Judd (RMJ) [2]. As dictated by physics,

the operators obey the H-theorem and also the conservations of mass, momentum, and energy.

Due to intractable nonlinearity of their original forms, however, approximated operators have been

developed in a few limiting cases of practical interests. One of widely used operators in practice is a

linearized collision operator developed under an assumption that probability distribution function f is

close to the Maxwellian distribution function fM such that f = fM + δ f , where δ f/ fM ≪ 1. In deriv-

ing the linearized operators, it is important to make the operators analytically and numerically tractable

while retaining correct physical properties, i.e., the conservations of mass, momentum, and energy, and

the observance of the H-theorem which means the second law of thermodynamics. Starting from the

truncation of higher order terms ∼ O(1/ lnΛ) [3] in the nonlinear Fokker-Planck operator, which cor-

responds to ∼ 1/18 ≈ 5.6% in conventional tokamak plasma, various physical arguments are applied

during the derivations. Here, lnΛ denotes a Coulomb logarithm.

A variety of approximated collision operators have been developed along with continuing improve-

ment efforts - BGK operator [4], Lorentz operator, Lenard-Bernstein [5] or Dougherty operator [6],

Lenard-Balescu operator [7, 8], Hirshman-Sigmar operator [9], Abel operator [10] and Sugama opera-

tors [11, 12]. One way to approximate the nonlinear Fokker-Planck collision operator is linearization,

which splits the operator into a test particle collision part and a field particle collision part. The con-

servation for the linearized collision operator can be proved by self-adjointness property [3]. Due to

computational complexity, the field particle part is frequently ignored in practice. To preserve conserva-

tion property of the collision operator in the absence of the field particle part, free parameters are often

introduced with additional constraints, through which the conservations are enforced. The Hirshman-

Sigmar, Abel, and Sugama operators were derived following this approach. Also, we can reduce the

linearized collision operator to the Dougherty operator as shown in Appendix A by retaining only the

test particle part of the linearized collision operator in the small speed limit v/vTs → 0 and consequently

neglecting cross-diffusion terms. Here v and vTs ≡
√

Ts/ms are speed and thermal speed for species s,

respectively. Due to the approximation, it was pointed out that the friction of the operator for high energy

particles increases with velocity [6, 9].
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1.1 Backgrounds

1.1.1 Fusion concept

Currently, several countries including Korea, Japan and the European Union are aiming for carbon neu-

trality by 2050 to cope with climate change [13]. To this end, global energy consumption continues

to increase despite the need to reduce fossil fuels. Therefore, an eco-friendly energy source is needed

while satisfying this energy demand. It is expected that fusion power generation can play an important

role here. Of course, there are already base power source called nuclear power and eco-friendly renew-

able energy sources such as solar and wind power. Nevertheless, the reasons for achieving fusion power

generation are as follows. First, fission has the problem of storing spent nuclear fuel and the risk of

meltdown. Next, renewable energy is less sustainable because it is influenced by nature, or weather. On

the other hand, in the case of fusion, there is a problem that neutrons generated by fusion reactions acti-

vate wall materials, but it can be minimized by selecting appropriate materials. In addition, deuterium,

the main material of nuclear fusion, can be extracted from the sea, and tritium can be extracted from

lithium, although it does not exist in a natural state. Therefore, fusion has clear advantages over fission

and renewable energy.

The fusion method currently being targeted in the first generation nuclear fusion reactor is a Deuterium-

Tritium reaction, and the tritium is radioactive, but it is not a problem unlike that of fission because the

half-life is short and only a small amount is used [14]. The reaction formula is as follows.

H2
1 + H3

1 −→ He4
2 + n1

0 +17.6MeV (1)

where H2
1 (or D) is the nucleus of deuterium atom called a deuteron, H3

1 (or T) is the nucleus of tritium

atom called a triton, He4
2 (or just α) is the nucleus of helium atom and n1

0 (or just n) is the neutron.

Here, α has 3.5 MeV and n has 14.1 MeV, respectively. Tritium extraction from lithium for the D-T

reaction is possible with the following reaction.

Li63 +n(slow)−→ α +T+4.8MeV, (2)

Li73 +n(fast)−→ α +T+n−2.5MeV. (3)

Naturally, there are 7.4% of Li63 and 92.6% of Li73 , but since Li63 reaction is easier, the reaction with

Li63 is dominant [15]. Neutron multiplication methods are also needed to prepare for neutron losses that

may occur for any reason in fusion process. This is possible by reaction with beryllium or lead and more

suitable one is beryllium with the reaction equation as [16]

n+Be −→ 2n+2He4 −1.8MeV. (4)

Various conditions are required for fusion reactions, typically temperature, confinement time and

density [17]. A very high temperature is required to overcome the repulsive force between atomic nu-

clei. For the DT reaction, a temperature of approximately 10keV or higher is required. Paradoxically,

as the temperature rises, the collision rate decreases because of shorter interaction time, and to solve
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this problem, many atoms in the plasma state need to be confined for a long time. There are two typical

confinement methods: Magnetic and Inertial confinement. Here, the concept of a magentic confinement

device tokamak used in International Thermonuclear Experimental Reactor(ITER) and Korea Supercon-

ducting Tokamak Advanced Research(KSTAR) will be described.

The principle of magnetic confinement is as follows. Charged particles obey the Lorentz force F =

q(E+v×B) where F is the electromagnetic force, q is the charge, E is the electric field, v is the

velocity and B is the magnetic field. The idea of magnetic confinement can be found in the second term

of the right hand side. Charged particles under a magnetic field are free in a direction parallel to the

magnetic field, but are not free in a vertical direction and move in a circle around the magnetic field. The

radius of the circle formed at this time is called Larmor radius and is represented by rL =
mv⊥
|q|B with mass

m and velocity perpendicular to B, v⊥. Therefore, under a magnetic field, charged particles perform

helical motion around a line of force. Here, to prevent the loss of particles in a direction parallel to the

field line, it is the torus-shaped tokamak that connects both ends of the field line.

In the case of the tokamak, the TF(Toroidal Field) coil existing outside creates a magnetic field in the

toroidal direction. However, a problem caused by the bent magnetic field occurs, which is a curvature

drift vR =
mv2

∥
q

Rc×B
R2

cB2 where v∥ is the velocity parallel to the B and Rc is the radius of the center of

curvature. In addition, the toroidal magnetic field(BT ), which decreases as it becomes farther from the

center, has a gradient in the center direction, which generates a ∇B drift v∇B = ±1
2 v⊥rL

B×∇B
B2 with

plus sign for ion and minus sign for electron. In this way, both drifts cause charge separation between

electrons and ions, and the electric field generated at this time generates E×B drift vE = E×B
B2 and

pushes the plasma outward. This problem can be resolved by creating a poloidal magnetic field(BP). The

charges move along the poloidal direction and then the separated charges are mixed again. The method of

making a poloidal magnetic field is possible by electromagnetic induction between the tokamak-centered

solenoid and plasma, that is, Faraday’s law. The plasma has an electric current and this current creates a

BP. Here, the problem is that the generation of plasma current through electromagnetic induction, i.e.,

the generation of BP, is pulsed operation. Steady operation is required to serve as a base power source

and this can be achieved by the bootstrap current generated by plasma itself by the pressure gradient of

plasma [18, 19]. Despite the presence of BP, there is a problem that plasma tries to go outside due to

internal pressure. To resolve this, additional external vertical field coils are used to suppress the internal

plasma pressure by the I×Bv force and it also adjusts the shape of the plasma. Fig. 1 helps to visually

understand the explanation so far. Finally, the heating method of the plasma will be described.

First, there is an ohmic heating. It is a heating method using the resistance generated when a current

flows through the plasma to create a poloidal magnetic field. However, as the temperature increases, the

resistance decreases, so the heating resulting from this is limited to about 1keV. Therefore, additional

heating methods such as Neutral Beam Injection(NBI) heating and Radio Frequency(RF) heating are

required for a temperature of 10keV or higher. NBI heating is that neutralizes the accelerated ions using

voltage differences and shoots them into the tokamak, and the plasma heats up as these neutral particles

collide with the internal plasma particles. RF heating is a method using a resonance phenomenon, and

the wave emitted from outside using an antenna heats up the plasma at a region equal to the frequency
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Figure 1: Schematic of a tokamak geometry [20].

of the internal plasma which is ω = qB
m .

1.1.2 Collisional transport

Despite various efforts to confine plasma using magnetic fields, the diffusion of particles and heat takes

place in tokamak. There are three main transports: classical, neoclassical and anomalous. It is known

that the first two are caused by collisions and the last by turbulence.

First, consider a fully ionized plasma in a straight magnetic field, where the transport of particles

and heat can be expressed by the following equations.

Γ=−D∇n : Fick’s law (5)

q =−κ∇T : Fourier’s law (6)

where Γ is the particle flux, D is the diffusion coefficient, ∇n is the density gradient, q is the heat flux,

κ is the heat conductivity and ∇T is the temperature gradient. Collisional transports can be described as

a random walk argument such as D ∼ (∆x)2

τ
. Here, ∆x is the step length and τ is the time taken the step

length. In this case, each coefficient has the following relationship [3]

D⊥ ∼ r2
L

2τ
, κ⊥ ∼ nr2

L

2τ
≡ nχ⊥ (7)

where τ is the collision time and χ⊥ is the heat diffusivity across the magnetic field. We can divide the

collision between particles into two cases which are the like-particle collision and the unlike-particle

collision. First, like-particle collision do not cause particle transport because collisions between the

same species do not change the center of the guiding centers. When a collision occurs between unlike-

particles, the particle transport rates of ions and electrons are the same due to the ambipolarity of the
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plasma. On the other hand, in the case of heat diffusion, it occurs even in collisions between the like-

particles. In this case, the diffusion of heat by the ion-ion collision is the greatest, due to the difference in

mass between ions and electrons. Classically, D⊥ is inversely proportional to the square of the magnetic

field, but according to actual experimental results, D⊥ is inversely proportional to the magnetic field.

This is called Bohm diffusion and is expressed as D⊥ = 1
16

KTe
eB ≡ DB where K is the Boltzmann constant.

There are three main causes of this: the possibility of magnetic field errors, the possibility of asymmetric

electric fields and the possibility of oscillating electric fields arising from unstable plasma waves [21].

Now let’s think about tokamak, which is our interest, the structure where the magnetic field is bent.

Inevitably, the inner magnetic field becomes stronger than the outer one, which blocks the movement of

particles like a magnetic mirror device. The particles fail to circle in the poloidal direction and draw a

new orbit, which is called the banana orbit. Its characteristic length is called the banana width, δ rb ∼
ρp

√
ε where ρp =

mv⊥
qBp

and ε = r/R is the inverse aspect ratio with r is the minor radius and R is the

major radius. Bp is usually ten times smaller than B, so D⊥ is increased than classical one by our random

walk argument and so is χ⊥, and this is the neoclassical transport.

1.1.3 Discontinuous Galerkin method

The discontinuous Galerkin(DG) method is one of numerical methods to solve differential equations and

it can be thought as the combination of finite element method(FEM) and finite volume method(FVM).

DG method has some advantages compared to well known numerical methods such as finite difference

method(FDM), FVM and FEM. DG method is suitable for complex geometry unlike FDM, it has high-

order accuracy and hp-adaptivity contrary to FVM and explicit semi-discrete form in contrast to FEM.

Also, of course, it satisfies conservation laws and can be used for elliptic problems like other methods

[22] and can easily handle irregular meshes [23]. As the name suggests, the difference from continuous

Galerkin method is that DG can have discontinuous basis functions for each element. A simple example

follows for reader’s understanding from [22, 24].

Consider a 1D wave equation

∂u
∂ t

+
∂ f (u)

∂x
= 0 on Ω (8)

where f (u) = cu, Ω ≃ Ωh =
⋃N

k=1 Dk is the domain and Dk =
[
xk− 1

2 ,xk+ 1
2

]
is the kth element. Also, we

can approximate the solution u as follows

u(x, t)≃ uh(x, t) =
N⊕

k=1

uk
h(x, t) (9)

x ∈ Dk uk
h(x, t) =

Np

∑
i=1

uk
h(x

k
i , t)l

k
i (x) (10)

where
⊕

means the direct sum, Np is the local grid points and lk
i (x) is the Lagrange interpolating

polynomial. Multiplying a test function w(x) to the Eq. (8) and integrating it over an element, we can
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get the following equation. ∫
Dk

(
w

∂u
∂ t

+w
∂ f (u)

∂x

)
dx = 0. (11)

Integrating the above equation by parts and substituting the approximate solution, it becomes∫
Dk

wh
∂uk

h
∂ t

dx =
∫

Dk

∂wh

∂x
f (uk

h)dx− f̂
(

uk
h

(
xk+ 1

2 , t)
))

wh

(
xk+ 1

2
−

)
+ f̂

(
uk

h

(
xk− 1

2 , t)
))

wh

(
xk− 1

2
+

)
.

(12)

Here, - and + mean left and right limits, respectively. Since DG allows discontinuity between elements,

it is necessary to uniquely determine the flux at the boundary. The numerical flux, f̂ , is defined as

f̂
(

uk
h

(
xk+ 1

2 , t)
))

= f̂
(

uk
h

(
xk+ 1

2
− , t)

)
,uk

h

(
xk+ 1

2
+ , t)

))
. Usually, the upwind flux is chosen. In the case

of linear flux, the upwind flux is

f̂ (a,b) =

 ca, if c ≥ 0

cb, if c < 0.
(13)

From this, we can construct matrix equation and obtain the solution. To do that, we set wh = lk
j and use

Eq. (10) to Eq. (12). Then Eq. (12) becomes

∫
Dk

lk
i lk

j
∂uk

h(x
k
i , t)

∂ t
dx =

∫
Dk

cuk
h(x

k
i , t)l

k
i

∂ lk
j

∂x
dx− f̂

(
uk

h

(
xk+ 1

2 , t)
))

lk
j

(
xk+ 1

2
−

)
+ f̂

(
uk

h

(
xk− 1

2 , t)
))

lk
j

(
xk− 1

2
+

)
where i, j = 1,2, · · · ,Np. (14)

1.2 Motivation and objective

For a whole device modeling (WDM) of tokamaks, however, it is very important to implement the non-

linear collision operator because the probability distributions in the edge and scrape-off region deviate

far from Maxwellian, i.e., the key assumption used in the derivation of the linearized collision operators

is no longer valid. There have been dedicated numerical works to solve multi-dimensional nonlinear

Fokker-Planck equation for fusion plasma in the Landau form and the RMJ form. The RMJ form was

employed by Chacón et al. [25, 26] and Taitano et al. [27] using finite volume methods and by Pataki

et al. using a spectral method [28]. The numerical works discretizing the Landau form include a finite

volume method used by Yoon et al. [29] and Hager et al. [30] and a finite element method by Hirvijoki et

al. [31]. Also, recent works by Francisquez et al. [32] and Hakim et al. [33] employ the Dougherty oper-

ator using a discontinuous Galerkin (DG) method. At the time of peer review processes, we have noticed

that T. Shiroto et al. [34] published an article about RMJ form of the nonlinear Fokker-Planck operator

using a DG method for evolution of an isotropic probability distribution function and Rosenbluth po-

tentials. Since an exhaustive review on all past works related to collision implementation is not in the

scope of this thesis, there are other important researches we couldn’t mention here for the non-isotropic

probability distribution function.
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In applying DG methods, there have been growing interests for gyrokinetic whole device model-

ing of tokamak [33, 35]. DG methods provide many advantages in the gyrokinetic WDM of tokamak

plasma. Just listing a few, the methods allow a flexible choice of basis functions to represent numerical

solutions, which can exhibit vastly different behaviors depending on simulation region. Especially, in

the edge or the scrape-off-layer (SOL) regions of the tokamak, the gradients of density or temperature

can be extremely stiff to be treated with the typical grid resolution. The usefulness of the DG method in

those stiff gradient regions is demonstrated in the previous gyrokinetic SOL simulations [33, 36]. Also

allowing discontinuities of numerical solutions, the methods enable highly localized computing, which

can be exploited for an efficient parallelization of simulation. For instance, the core-to-core communi-

cation required for the equation of motions based on DG methods is limited to the local exchange of

data between neighboring grid cells, instead of the global communication which can be numerically

expensive. However, as DG methods are based on the weak form of gyrokinetic equation, terms with

derivatives higher than first order are not straightforward to deal with in standard DG methods. Careful

and consistent numerical treatments are required for the derivatives still present in the weak form. As

nonlinear Coulomb collisions are an essential ingredient in a comprehensive WDM of tokamak plasma,

it is highly desired to develop a formulation and numerical scheme for the nonlinear collisions using a

DG method.

1.3 Thesis outline

In this work, a nonlinear collision operator based on the Fokker-Planck RMJ form is formulated in

gyrokinetic variables and numerically implemented in the DG-based gyrokinetic code [35]. In addition

to the nonlinear collision operator, linear and Dougherty collision models are implemented as well to

assess the benefits and drawbacks of each model. Also, to analyze characteristics of each collision model

in tokamak geometry, a few neoclassical benchmark tests are performed.

The remainder of this thesis is organized as follows. In section II, we present the construction of the

gyro-averaged RMJ collision operator and its discretization using the DG method. Section III investi-

gates its numerical properties by comparing the newly implemented operator with the others based on

previously known formulations. Section IV shows results of neoclassical verification tests for the newly

developed DG collision module in a tokamak geometry. Lastly, conclusions and discussions are given in

the last section.
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II Numerical method

2.1 The gyroaveraged RMJ collision operator

In the gyrokinetic formalism, the gyroangle is systematically eliminated with gyrokinetic coordinate

transformations. By removing the gyroangle, the total number of phase space dimensions is effectively

reduced from 6D to 5D. But, it is not trivial to construct collision operators with the finite Larmor

radius (FLR) effect and implement such operators numerically. While there are several researches about

collision models with FLR effects [11,37], a simpler model without the FLR effect is used in this work.

If we neglect the derivatives with respect to the gyroangle in the RMJ form of Fokker-Planck equation,

Eq. (A.1), the gyroaveraged RMJ operator for the self-collision of the ion species a is given as [28]

C( fa) = Γaa
∂

∂v∥o

[
− ∂ha

∂v∥o
fa +

∂ 2ga

∂v2
∥o

∂ fa

∂v∥o
+

∂ 2ga

∂v∥o∂v⊥o

∂ fa

∂v⊥o

]

+Γaa
1

v⊥o

∂

∂v⊥o

[
− ∂ha

∂v⊥o
v⊥o fa +

∂ 2ga

∂v2
⊥o

v⊥o
∂ fa

∂v⊥o
+

∂ 2ga

∂v∥o∂v⊥o
v⊥o

∂ fa

∂v∥o

]
, (15)

fa =− 1
v⊥o

∂

∂v⊥o

[
v⊥o

∂ha

∂v⊥o

]
− ∂ 2ha

∂v2
∥o
, (16)

ha =
1

v⊥o

∂

∂v⊥o

[
v⊥o

∂ga

∂v⊥o

]
+

∂ 2ga

∂v2
∥o
, (17)

where Γaa ≡ 16π2
(

q2
a

ma

)2
lnΛaa with the Coulomb logarithm lnΛaa. Here, v∥o, v⊥o, qa and ma are the

parallel velocity, the perpendicular velocity to the background magnetic field, the electric charge and the

mass of the species a, respectively. Also, ha and ga are the Rosenbluth potentials of the species a. Since

we only deal with the self-collision in this work, the species index a will be omitted in the rest of this

thesis.

To be implemented in the gyrokinetic simulations, Eq. (15) needs to be transformed from the original

coordinate (⃗x, v⃗o) to a set of gyrokinetic variables z⃗ = (X⃗ ,v∥,u) [38]. Here, x⃗ and v⃗o are the position

and the velocity vectors of particles. On the other hand, X⃗ is a position vector of the gyrocenter and

v∥ is a parallel velocity of the gyrocenter. Also, u is defined as
√

2µB0/m where µ and B0 are the

magnetic moment of the gyrocenter and the equilibrium magnetic field at the magnetic axis of tokamak

geometry, respectively. Since du/dt ∝ dµ/dt = 0 in the Vlasov part of the gyrokinetic equation, u is

a natural choice for the velocity coordinate of the gyrokinetic simulation. With this set of variables,

the phase space volume d⃗xd⃗vo is expressed as (2π/B0)B∗
∥ud⃗z, where B∗

∥ ≡ b̂ ·
[
B+ mc

q v∥∇× b̂
]

with

the equilibrium magnetic field B and d⃗z = dX⃗dv∥du. Here, b̂ is the unit vector along the equilibrium

field and c is the speed of light. B∗
∥ is the Jacobian of the velocity space, i.e., the density of the phase-

space volume element for the gyrokinetic coordinate. In the lowest order of the gyrokinetic ordering, v∥o

and v⊥o are approximated as v∥ and u
√

B/B0, respectively. From Eq. (15) with this approximation, the
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collisional change of (B0/2π) f d⃗xd⃗vo can be written as

B0

2π

∂ f (⃗x, v⃗o)

∂ t
d⃗xd⃗vo =C

(
f
(

X⃗ ,v∥,u
))

B∗
∥ud⃗z (18)

≈ ΓuB∗
∥

∂

∂v∥

[(
− ∂h

∂v∥
f +

∂ 2g
∂v2

∥

∂ f
∂v∥

+
B0

B
∂ 2g

∂v∥∂u
∂ f
∂u

)]
d⃗z

+ΓB∗
∥

B0

B
∂

∂u

[(
−∂h

∂u
u f +

∂ 2g
∂u2 u

B0

B
∂ f
∂u

+
∂ 2g

∂v∥∂u
u

∂ f
∂v∥

)]
d⃗z (19)

=
∂

∂v∥

[
ΓuB∗

∥

(
− ∂h

∂v∥
f +

∂ 2g
∂v2

∥

∂ f
∂v∥

+
B0

B
∂ 2g

∂v∥∂u
∂ f
∂u

)]
d⃗z

+
∂

∂u

[
ΓB∗

∥

(
−B0

B
∂h
∂u

u f +
B0

B
∂ 2g
∂u2 u

B0

B
∂ f
∂u

+
B0

B
∂ 2g

∂v∥∂u
u

∂ f
∂v∥

)]
d⃗z

−
vT ∂B∗

∥

B0∂v∥

1
vT

[
ΓuB0

(
− ∂h

∂v∥
f +

∂ 2g
∂v2

∥

∂ f
∂v∥

+
B0

B
∂ 2g

∂v∥∂u
∂ f
∂u

)]
d⃗z. (20)

Note that Eq. (20) is not in a divergence form in the phase space due to the last term which is propor-

tional to (vT/B0)
(

∂B∗
∥/∂v∥

)
. In this work, the last term of Eq. (20) is neglected with the assumption

of negligible FLR effects, i.e., (vT/B0)
(

∂B∗
∥/∂v∥

)
≈ (vT mc)/(B0qR0) ≈ ρ/R0 ≪ 1, where ρ is the

gyroradius and R0 is the major radius of tokamak geometry. With this approximation, Eq. (20) can be

written as

C
(

f
(

X⃗ ,v∥,u
))

B∗
∥ud⃗z ≈ ∂

∂v∥

[
uB∗

∥

(
−α1 f +α2

∂ f
∂v∥

+α5
∂ f
∂u

)]
d⃗z

+
∂

∂u

[
uB∗

∥

(
−α3 f +α4

B0

B
∂ f
∂u

+α6
∂ f
∂v∥

)]
d⃗z, (21)

where α1 ≡ Γ
∂h
∂v∥

, α3 ≡ Γ
B0
B

∂h
∂u , α2 ≡ Γ

∂ 2g
∂v2

∥
, α4 ≡ Γ

B0
B

∂ 2g
∂u2 , α5 ≡ α6 ≡ Γ

B0
B

∂ 2g
∂v∥∂u are introduced for nota-

tional simplicity. Although Eq. (21) is an approximated form, two important properties of the original

RMJ operator are retained as follows.

1. The divergence form of the original RMJ operator is preserved. This is consistent to the previous

work which shows that the linearlized collision operator in the gyrokinetic coordinate can be

written in a divergence form when the FLR effect is neglected [39]. The numerical conservation

of gyrocenter density can be guaranteed more straightforwardly due to this property.

2. C( fM) = 0 when fM is the Maxwellian distribution function defined as

fM =
n

(2π)3/2v3
T

exp

[
−
(
v∥−U∥

)2
+u2B/B0

2v2
T

]
, (22)

where n and U∥ are the density and the parallel fluid velocity, respectively.

In addition to the RMJ operator, two simpler models (i.e., the test particle collision and Dougherty

model) are also implemented for comparison. The detailed derivation of those models from the RMJ

operator is given in A. While the specific expressions for the coefficients αi are different for each model,
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RMJ model Test particle collision Dougherty model

α1 Γ
∂h
∂v∥

−ν̄
3
√

π

8x3 (F1 +3F2)
(
v∥−U∥

)
−ν̄
(
v∥−U∥

)
α2 Γ

∂ 2g
∂v2

∥
ν̄

3
√

πv2
T

8x3

(
F1 +

3(v∥−U∥)
2

2v2
T x2 F2

)
ν̄v2

T

α3 Γ
B0
B

∂h
∂u −ν̄

3
√

π

8x3 (F1 +3F2)u −ν̄u

α4 Γ
B0
B

∂ 2g
∂u2 ν̄

3
√

πv2
T

8x3

(
F1 +

3u2

2v2
T x2

B
B0

F2

)
ν̄v2

T

α5, α6 Γ
B0
B

∂ 2g
∂v∥∂u ν̄

9
√

π

16x5 F2u
(
v∥−U∥

)
0

Table 1: Coefficients αi of Eq. (21) for each collision model. The detailed derivation for this table is

given in A.

all of operators share the same functional form of Eq. (21). Table 1 summarizes the coefficients for each

collision model. Here, x, F1, F2 and the collision frequency ν̄ are defined as

x =

√√√√(v∥−U∥
)2

+u2B/B0

2v2
T

, (23)

F1(x) = x
derf(x)

dx
+(2x2 −1)erf(x), (24)

F2(x) =
(

1− 2
3

x2
)

erf(x)− x
derf(x)

dx
, (25)

ν̄ =
nΓ

3(2π)3/2v3
T
=

4
√

2πnq4 lnΛ

3m2v3
T

, (26)

where erf(x) = 2√
π

∫ x
0 e−t2

dt is the error function.

2.2 The weight evolution equations with DG basis

To be used in DG gyrokinetic simulations, collision operators need to be discretized with the DG basis.

While the DG formulation for the Dougherty operator is derived in [32], the generalized version for the

RMJ operator is presented in this section. Although Eq. (21) can be discretized on any specific geometry,

we only consider the toroidally axisymmetric configuration of tokamak geometry in this work. The

cylindrical coordinate X = (R,Z,φ) is used, where φ is an ignorable variable since the axisymmetry

is assumed in the toroidal direction. A poloidal plane in the (R,Z) space is used as the spatial domain

which is partitioned with the unstructured triangular mesh. Since the collision operator approximated as

Eq. (21) does not induce any flux in the spatial direction of the phase space, the numerical operation for

the collision can be performed separately on each spatial cell. Therefore, we formulate the discretization

of the collision operator for a single spatial cell Ωx which has a triangular shape in the (R,Z) space. For

the velocity space, the following rectangular domain Ωv is used.

Ωv := {(v∥,u) : v∥,min ≤ v∥ ≤ v∥,max,0 ≤ u ≤ umax}. (27)

This velocity domain Ωv is divided with Nv∥ ×Nu rectangular mesh, where Nv∥ and Nu are numbers of

cells in the respective directions. Correspondingly, the total phase space Ω = Ωx×Ωv is partitioned with
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Ω[ j,k] defined as the Cartesian product Ωx × [v∥, j′= j−1,v∥, j′= j]× [uk′=k−1,uk′=k]. Here, j ∈ {1, · · · ,Nv∥}
and k ∈ {1, · · · ,Nu} are cell indices for v∥ and u directions, respectively. On the other hand, j′ and k′ are

exclusively used as indices of vertices for v∥ and u directions. Also, v∥, j′ and uk′ are the velocity values

at vertices and defined as

v∥, j′ ≡ v∥,min +
v∥,max − v∥,min

Nv∥
j′, (28)

uk′ ≡
umax

Nu
k′. (29)

The structure of the single mesh cell Ω[ j,k] is shown in Fig. 2.

Figure 2: Single mesh cell Ω[ j,k] in the phase space.

In this work, we employ piecewise continuous quadratic polynomials as DG basis functions to rep-

resent f in Eq. (21). The corresponding basis function space for Ω[ j,k] is given as

Vd =
{

ζ
[ j,k] : ζ

[ j,k]|
Ω[ j,k] ∈ P2

}
, (30)

where P2 = {Rl1Zl2vl3
∥ ul4 : l1 + l2 ≤ 2, l3 + l4 ≤ 2, li ∈ Z≥0} and Z≥0 is a set of non-negative integers.

With Eq. (30), f can be approximated as

f (⃗z, t)∼ fd = ∑
j,k

f [ j,k]d (⃗z, t) , (31)

f [ j,k]d (⃗z, t)≡ ∑
l′

f̂ [ j,k]l′ (t)ζ
[ j,k]
l′ (⃗z) , (32)

where z⃗ = (X⃗ ,v∥,u). When we multiply Eq. (21) by an arbitrary function W (⃗z) and take
∫

Ω[ j,k] ×, the

following equation is obtained.∫
Ω[ j,k]

d⃗z
(

uB∗
∥

)
WC( f ) =

∫
Ω[ j,k]

d⃗zJ
∂W f

∂ t

=
∫

Ω[ j,k]
d⃗zW

∂

∂v∥

[
J

(
−α1 f +α2

∂ f
∂v∥

+α5
∂ f
∂u

)]
+
∫

Ω[ j,k]
d⃗zW

∂

∂u

[
J

(
−α3 f +α4

B0

B
∂ f
∂u

+α6
∂ f
∂v∥

)]
, (33)
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where d⃗z ≡ dX⃗dv∥du, dX⃗ ≡ 2πRdRdZ, and J ≡ uB∗
∥. If we integrate Eq. (33) by parts

∫
Ω[ j,k]

d⃗zJ
∂W f

∂ t
=
∫

Ω[ j,k]
dX⃗du

[
WJ

(
−α1 f +α2

∂ f
∂v∥

+α5
∂ f
∂u

)] j

j−1

+
∫

Ω[ j,k]
dX⃗dv∥

[
WJ

(
−α3 f +α4

B0

B
∂ f
∂u

+α6
∂ f
∂v∥

)]k

k−1

−
∫

Ω[ j,k]
d⃗z

∂W
∂v∥

[
J

(
−α1 f +α2

∂ f
∂v∥

+α5
∂ f
∂u

)]
−
∫

Ω[ j,k]
d⃗z

∂W
∂u

[
J

(
−α3 f +α4

B0

B
∂ f
∂u

+α6
∂ f
∂v∥

)]
and do again and then apply Eq. (31), the weighted equation is obtained as

∫
Ω[ j,k]

d⃗zJ
∂W f [ j,k]d

∂ t
=
[
S[ j

′,k]
v∥ (W )

] j′= j

j′= j−1
+
[
S[ j,k

′]
u (W )

]k′=k

k′=k−1
+V[ j,k] (W ) , (34)

where we define the following functions:

S[ j
′,k]

v∥ (W )≡
∫

Ωx

dX⃗
∫ uk′=k

uk′=k−1

du
[
J

{
−Wα1 f +Wα2

∂ f
∂v∥

− ∂W
∂v∥

α2 f − ∂W
∂u

α6 f
}]

v∥=v∥, j′

, (35)

S[ j,k
′]

u (W )≡
∫

Ωx

dX⃗
∫ v∥, j′= j

v∥, j′= j−1

dv∥

[
J

{
−Wα3 f +W

B0

B
α4

∂ f
∂u

− ∂W
∂u

B0

B
α4 f − ∂W

∂v∥
α5 f

}]
u=uk′

, (36)

V[ j,k] (W )≡
∫

Ω[ j,k]
d⃗z
[

∂W
∂v∥

α1 +
1

J

∂

∂v∥

(
∂W
∂v∥

α2J

)
+

1
u

∂

∂u

(
∂W
∂v∥

α5u
)

+
∂W
∂u

α3 +
1
u

∂

∂u

(
∂W
∂u

α4
B0

B
u
)
+

1
J

∂

∂v∥

(
∂W
∂u

α6J

)]
J f [ j,k]d . (37)

V[ j,k] represents the volume integration term and can be evaluated by using quadrature rules. S[ j
′,k]

v∥ and

S[ j,k
′]

u are surface integration terms at fixed v∥ = v∥, j′ and u = uk′ , respectively. For the calculation of

those surface terms, we mainly follow the method presented in [32] with some minor changes. For

completeness, models used in this work for calculation of surface terms are presented in the rest of

this section. Although fd is discontinuous at the boundaries between cells, single-valued functions are

required for these surface terms to conserve physical quantities. While there is no single definite way to

construct such a single-valued flux, how to model the flux is related to the numerical instability due to the

local negativity of fd . In the DG formalism, it is not trivial to remove the local negativity completely [40].

Also, the local negativity does not necessarily lead to the numerical instability [36]. In [32], it was shown

that the upwind flux is effective to maintain the low level of the local negativity and enable numerically

stable simulations with Dougherty operator. Therefore, we approximate the advection parts (∝ α1,α3)

of surface terms with the upwind flux. The effectiveness of the upwind flux for controlling the negativity

in simulations with the nonlinear RMJ collision operator is more discussed in section 3.2. The diffusion

parts (∝ α2,α4,α5, and α6) of surface terms are evaluated with the continuous probability distribution

function reconstructed from fd of two adjacent cells. More specifically, S[ j
′,k]

v∥ is approximated as the
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Basis functions Domain in the velocity space

f [ j= j′,k]
d ζl ∈VX ×{1,v∥,u,v2

∥,v∥u,u2} v∥, j′= j−1 ≤ v∥ ≤ v∥, j′= j

f [ j= j′+1,k]
d ζl ∈VX ×{1,v∥,u,v2

∥,v∥u,u2} v∥, j′= j ≤ v∥ ≤ v∥, j′= j+1

f̄ [ j
′,k]

v∥
ζ̄l ∈VX ×{1,v∥,v2

∥,v
3
∥,v

4
∥,

u,v∥u,v2
∥u,v3

∥u,u2,v∥u2,v2
∥u2}

v∥, j′= j−1 ≤ v∥ ≤ v∥, j′= j+1

Table 2: Basis functions and their domain for f [ j= j′,k]
d , f [ j= j′+1,k]

d and f̄ [ j
′,k]

v∥ .

following model function :

S[ j
′,k]

v∥ (W )∼
∫

Ωx

dX⃗
∫ uk′=k

uk′=k−1

du
[
J
{
−Wα1 f [ j

′,k]
v∥,up +Wα2G[ j′,k]

v∥

−
(

∂W
∂v∥

α2 +
∂W
∂u

α6

)
F [ j′,k]

v∥

}]
v∥=v∥, j′

. (38)

In Eq. (38), different sets of definition for
(

f [ j
′,k]

v∥,up,F
[ j′,k]

v∥ ,G[ j′,k]
v∥

)
are used for the inner boundaries

and the outermost boundaries, as follows.

1. At the inner boundaries between two cells (i.e., 0 < j′ < Nv∥) :

f [ j
′,k]

v∥,up represents the upwind flux which is given as

f [ j
′,k]

v∥,up =

 f [ j= j′,k]
d if α1|v∥=v∥, j′ < 0,

f [ j= j′+1,k]
d if α1|v∥=v∥, j′ ≥ 0.

(39)

F [ j′,k]
v∥ stands for the higher-order polynomial f̄ [ j

′,k]
v∥ which is differentiable with respect to v∥ at

v∥ = v∥, j′ . In this work, f̄ [ j
′,k]

v∥ is reconstructed from f [ j= j′,k]
d and f [ j= j′+1,k]

d by the L2 minimization

on the interval
[
v∥, j′= j−1,v∥, j′= j+1

]
. The maximal-order recovery polynomial [32] is used for the

basis of f̄ [ j
′,k]

v∥ . Basis functions for f [ j= j′,k]
d , f [ j= j′+1,k]

d and f̄ [ j
′,k]

v∥ are shown in Table 2, where VX is

the set of spatial basis functions, i.e., {Rl1Zl2 : l1 + l2 ≤ 2, li ∈ Z≥0}. Coefficients for f̄ [ j
′,k]

v∥ can be

evaluated from∫
Ωx

dX⃗
∫ uk′=k

uk′=k−1

du
∫ v∥, j′= j+1

v∥, j′= j−1

dv∥J ζ̄l

[
f̄ [ j

′,k]
v∥ −

(
f [ j= j′,k]
d + f [ j= j′+1,k]

d

)]
= 0, (40)

where ζ̄l is a basis function for f̄ [ j
′,k]

v∥ with 1 ≤ l ≤ 12. More detailed information about this

reconstruction can be found in [32]. Also, G[ j′,k]
v∥ is defined as ∂ f̄ [ j

′,k]
v∥ /∂v∥.

2. At the outermost boundaries (i.e., j′ = 0 or Nv∥) :

f [ j
′,k]

v∥,up and G[ j′,k]
v∥ are set to zero, which effectively prevents any net particle flux across the outer-

most boundaries as shown in the subsection 2.3. On the other hand, unphysical accumulation of

particles is observed when F [ j′,k]
v∥ are set to zero at the outermost boundaries. To avoid this numer-

ical difficulty, we use F [ j′=0,k]
v∥ = f [ j=1,k]

d and F
[ j′=Nv∥ ,k]

v∥ = f
[ j=Nv∥ ,k]

d , as done in [32]. Even though

those terms do not affect the net particle conservation, they can induce the finite momentum and

energy flux across the outermost boundaries.
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Similarly, S[ j,k
′]

u is approximated as

S[ j,k
′]

u (W )∼
∫

Ωx

dX⃗
∫ v∥, j′= j

v∥, j′= j−1

dv∥

[
J

{
−Wα3 f [ j,k

′]
u,up +W

B0

B
α4G[ j,k′]

u

−
(

∂W
∂u

B0

B
α4 +

∂W
∂v∥

α5

)
F [ j,k′]

u

}]
u=uk′

, (41)

where we use the following definitions:

f [ j,k
′]

u,up =


f [ j,k=k′]
d if 0 < k′ < Nu and α3|u=uk′ < 0,

f [ j,k=k′+1]
d if 0 < k′ < Nu and α3|u=uk′ ≥ 0.

0 if k′ = 0 or Nu,

(42)

(
F [ j,k′]

u ,G[ j,k′]
u

)
=



(
f̄ [ j,k

′]
u ,∂ f̄ [ j,k

′]
u /∂u

)
if 0 < k′ < Nu,(

f [ j,k=1]
d ,0

)
if k′ = 0,(

f [ j,k=Nu]
d ,0

)
if k′ = Nu.

(43)

Here, f̄ [ j,k
′]

u is the higher-order polynomial reconstructed from f [ j,k=k′]
d and f [ j,k=k′+1]

d on the interval

u = [uk′=k−1,uk′=k+1]. If we set W = ζ
[ j,k]
l and substitute Eq. (32) into Eq. (34), the weight evolution

equations of f̂ [ j,k]l′ (t) is obtained as

∑
l′

M[ j,k]
ll′

∂ f̂ [ j,k]l′

∂ t
=
[
S[ j

′,k]
v∥

(
ζ
[ j,k]
l

)] j′= j

j′= j−1
+
[
S[ j,k

′]
u

(
ζ
[ j,k]
l

)]k′=k

k′=k−1
+V[ j,k]

(
ζ
[ j,k]
l

)
, (44)

where M[ j,k]
ll′ ≡

∫
Ω[ j,k] d⃗zJ ζ

[ j,k]
l ζ

[ j,k]
l′ . For the temporal discretization, a third-order SSP (Strong Stability

Preserving) Runge-Kutta method [41] is used. As shown in [32], the numerical stability of DG collision

operator with SSP is strongly affected by the grid size and the order of basis functions. Numerical

estimation for the maximum time step size of Eq. (44) is given in the section 3.3.

2.3 Conservation of physical quantities

Since one of principal objectives in this work is the development of collision operators for gyrokinetic

simulations, it is important to ensure that the operators satisfies the conservation of relevant physical

variables. We focus on 3 major conserved moments given as

M0 = ∑
j,k

∫
Ω[ j,k]

d⃗zJ f [ j,k]d , (45)

M1 = ∑
j,k

∫
Ω[ j,k]

d⃗zv∥J f [ j,k]d , (46)

M2 = ∑
j,k

∫
Ω[ j,k]

d⃗zEJ f [ j,k]d , (47)
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where E is defined as 1
2(v

2
∥+u2B/B0). From these moments, the parallel fluid velocity U∥ and the thermal

velocity vT can be obtained as

U∥ =
M1

M0
, (48)

v2
T =

2
3

(
M2

M0
− 1

2
U2
∥

)
. (49)

M0 of Eq. (45) represents the total number of particles and ∂M0/∂ t can be evaluated from Eq. (34) with

W = 1 as

∂M0

∂ t
= ∑

j,k

∫
Ω[ j,k]

d⃗zJ
∂

∂ t

[
f [ j,k]d

]
= ∑

k

[
S[ j

′,k]
v∥ (1)

] j′=Nv∥

j′=0
+∑

j

[
S[ j,k

′]
u (1)

]k′=Nu

k′=0

=
∫

Ωx

dX⃗
∫ umax

0
du
[{

−J α1 f [ j
′,k]

v∥,up +J α2G[ j′,k]
v∥

}
v∥=v∥, j′

] j′=Nv∥

j′=0

+
∫

Ωx

dX⃗
∫ v∥,max

v∥,min

dv∥

[{
−J α3 f [ j,k

′]
u,up +J

B0

B
α4G[ j,k′]

u

}
u=uk′

]k′=Nu

k′=0

= 0, (50)

since f [ j
′,k]

v∥,up, f [ j,k
′]

u,up , G[ j′,k]
v∥ and G[ j,k′]

u are set to zero at the outermost boundaries. Therefore, the particle

number conservation is satisfied with any choice of αs. The momentum conservation constraint, i.e.,

∂M1/∂ t = 0, can be obtained from Eq. (34) with W = v∥ as

∂M1

∂ t
= ∑

j,k

∫
Ω[ j,k]

d⃗zJ
∂

∂ t

[
v∥ f [ j,k]d

]
= ∑

k

[
S[ j

′,k]
v∥ (v∥)

] j′=Nv∥

j′=0
+∑

j,k
V[ j,k] (v∥)= 0. (51)

Similarly, the energy conservation constraint, i.e., ∂M2/∂ t = 0, can be formulated from Eq. (34) with

W = E as

∂M2

∂ t
= ∑

j,k

∫
Ω[ j,k]

d⃗zJ
∂

∂ t

[
E f [ j,k]d

]
= ∑

k

[
S[ j

′,k]
v∥ (E)

] j′=Nv∥

j′=0
+∑

j

[
S[ j,k

′]
u (E)

]k′=Nu

k′=0
+∑

j,k
V[ j,k] (E) = 0. (52)

Since it is not guaranteed that Eqs. (51) and (52) are automatically satisfied, additional numerical op-

erations are required for the conservation of M1 and M2. In the following subsections, two numerical

conservation methods used in this work are presented.

15



2.3.1 Simple advection-diffusion model

With the coefficients for the Dougherty operator in Table 1, the conservation constraints, Eqs. (51) and

(52), can be written as

∂M1

∂ t
= ∑

k

[
S[ j

′,k]
v∥ (v∥)

] j′=Nv∥

j′=0
+ ν̄v2

T ∑
j,k

∫
Ω[ j,k]

d⃗z
∂J

∂v∥
f [ j,k]d − ν̄

[
M1 −U∥M0

]
= 0, (53)

∂M2

∂ t
= ∑

k

[
S[ j

′,k]
v∥ (E)

] j′=Nv∥

j′=0
+∑

j

[
S[ j,k

′]
u (E)

]k′=Nu

k′=0

+ ν̄v2
T ∑

j,k

∫
Ω[ j,k]

d⃗z
[

v∥
∂J

∂v∥

]
f [ j,k]d +2ν̄M0

[
3
2

v2
T − M2

M0
+

1
2

U∥
M1

M0

]
= 0. (54)

If we assume that ∂J /∂v∥ and the outermost boundary terms can be neglected, Eqs. (53) and (54) can

be simplified as

∂M1

∂ t
=−ν̄

[
M1 −U∥M0

]
= 0, (55)

∂M2

∂ t
= 2ν̄M0

[
3
2

v2
T − M2

M0
+

1
2

U∥
M1

M0

]
= 0, (56)

which are well satisfied if U∥ and v2
T are given as Eqs. (48) and (49). But, if ∂J /∂v∥ and the outermost

boundary terms of Eqs. (53) and (54) have finite values, additional operations are required to satisfy the

momentum and energy conservation. In [32], U∥ and v2
T are redefined from Eqs. (53) and (54) to satisfy

the conservation automatically. In this work, instead of modifying the definitions for U∥ and v2
T , a simple

advection-diffusion operator LA is introduced as

∂ f/∂ t =C( f )+LA( f ), (57)

where

LA ( f )≡−β1
1

B∗
∥

∂

∂v∥

(
B∗
∥ f
)
+β2

[
1

B∗
∥

∂

∂v∥

(
B∗
∥

∂ f
∂v∥

)
+

1
u

∂

∂u

(
u

B0

B
∂ f
∂u

)]
. (58)

Here, β1 and β2 are free parameters used to ensure the conservation. This kind of methods introducing

free parameters has been widely used for the conservation property of collision operators. For instance,

iterative conservation approaches for particle-in-cell methods and finite difference methods (FDMs) are

suggested in [42] and in [43], respectively, and references therein. In addition, a non-iterative method is

introduced in [44]. Also, a more sophisticated model including multi-species cases is developed for finite

volume methods (FVMs) in [27]. The 1st term of the right hand side (RHS) of Eq. (58) is an advection

operator in v∥ direction and the 2nd term of RHS is a diffusion operator. Since LA is in the divergence

form, the particle conservation is affected little by introducing LA. With Eq. (57), the weighted equation

Eq. (34) is modified as

∫
Ω[ j,k]

d⃗z
∂WJ f [ j,k]d

∂ t
=
∫

Ω[ j,k]
d⃗zWJ

[
C( f [ j,k]d )+LA( f [ j,k]d )

]
=
[
S[ j

′,k]
v∥ (W )

] j′= j

j′= j−1
+
[
S[ j,k

′]
u (W )

]k′=k

k′=k−1
+V[ j,k] (W )+

2

∑
n=1

βnL
[ j,k]
A,n (W ), (59)

16



where

L[ j,k]
A,1 (W ) =

∫
Ωx

dX⃗
∫ uk′=k

uk′=k−1

du
[{

−JW f [ j
′,k]

v∥,up

}
v∥=v∥, j′

] j′= j

j′= j−1
+
∫

Ω[ j,k]
d⃗z

∂W
∂v∥

J f [ j,k]d , (60)

L[ j,k]
A,2 (W ) =

∫
Ωx

dX⃗
∫ uk′=k

uk′=k−1

du

{JWG[ j′,k]
v∥ −J

∂W
∂v∥

F [ j′,k]
v∥

}
v∥=v∥, j′

 j′= j

j′= j−1

+
∫

Ωx

dX⃗
∫ v∥, j′= j

v∥, j′= j−1

dv∥J

[{
W

B0

B
G[ j,k′]

u − ∂W
∂u

B0

B
F [ j,k′]

u

}
u=uk′

]k′=k

k′=k−1

+
∫

Ω[ j,k]
d⃗z
[

1
J

∂

∂v∥

(
∂W
∂v∥

J

)
+

1
u

∂

∂u

(
∂W
∂u

B0

B
u
)]

J f [ j,k]d . (61)

With Eq. (59), ∂M1/∂ t = 0 and ∂M2/∂ t = 0 can be written as

∂M1

∂ t
= ∑

k

[
S[ j

′,k]
v∥ (v∥)

] j′=Nv∥

j′=0
+∑

j,k
V[ j,k] (v∥)+∑

j,k

2

∑
n=1

βnL
[ j,k]
A,n (v∥) = 0, (62)

∂M2

∂ t
= ∑

k

[
S[ j

′,k]
v∥ (E)

] j′=Nv∥

j′=0
+∑

j

[
S[ j,k

′]
u (E)

]k′=Nu

k′=0
+∑

j,k
V[ j,k] (E)

+∑
j,k

2

∑
n=1

βnL
[ j,k]
A,n (E) = 0. (63)

Once β1 and β2 are calculated from Eqs. (62) and (63), the weight evolution equations are obtained from

Eq. (59) with W = ζ
[ j,k]
l as

∑
l′

M[ j,k]
ll′

∂ f̂ [ j,k]l′

∂ t
=
[
S[ j

′,k]
v∥

(
ζ
[ j,k]
l

)] j′= j

j′= j−1
+
[
S[ j,k

′]
u

(
ζ
[ j,k]
l

)]k′=k

k′=k−1

+V[ j,k]
(

ζ
[ j,k]
l

)
+

2

∑
n=1

βnL
[ j,k]
A,n

(
ζ
[ j,k]
l

)
. (64)

Although the Dougherty model is chosen as an example in this section, the LA operator is also employed

to ensure the conservation properties of the nonlinear collision operator in the rest of this thesis, if not

explicitly stated otherwise.

2.3.2 Linearized field particle collision model

Unlike the Dougherty model, the test particle collision does not satisfy Eqs. (51) and (52), even if

∂J /∂v∥ and the outermost boundary terms are neglected. This is partially because the field particle

collision part is not properly accounted for. Therefore, we implement the linearized field particle colli-

sion LF for the test particle collision, as well as LA. The functional form of LF used in this work is given

as [42, 43]

LF ≡
3

∑
n=1

γn ∑
j,k

L[ j,k]
F,n , (65)
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where

L[ j,k]
F,1 = f [ j,k]M,d , (66)

L[ j,k]
F,2 =

(
v∥−U∥

)
y−3/2

φ(y) f [ j,k]M,d , (67)

L[ j,k]
F,3 = y−1/2

(
φ(y)− dφ(y)

dy

)
f [ j,k]M,d , (68)

y =

(
v∥−U∥

)2
+u2B/B0

2v2
T

. (69)

Here, φ(y) = 2√
π

∫ y
0 e−t√tdt is the Maxwellian integral. f [ j,k]M,d is the Maxwellian function discretized

with the DG basis {ζ [ j,k]} and recalculated at each collision time step. Also, γn’s are free parameters

used to enforce the conservation, as in the case of LA. With LF , the weighted equation, Eq. (34), can be

written as ∫
Ω[ j,k]

d⃗z
∂WJ f [ j,k]d

∂ t
=
∫

Ω[ j,k]
d⃗zWJ

[
C( f [ j,k]d )

]
+

3

∑
n=1

γnL
[ j,k]
F,n (W ), (70)

where L[ j,k]
F,n (W ) =

∫
Ω[ j,k] d⃗z

[
WJ L[ j,k]

F,n

]
. From Eq. (70), the constraints for conservation are given as

follows.

∂Mp

∂ t
=
∫

Ω[ j,k]
d⃗z

∂wpJ f [ j,k]d
∂ t

=
∫

Ω[ j,k]
d⃗zwpJ

[
C( f [ j,k]d )

]
+

3

∑
n=1

γnL
[ j,k]
F,n (wp) = 0, (71)

where p ∈ {0,1,2} and [w0,w1,w2] = [1,v∥,E]. Note that a constraint for the particle number conser-

vation, i.e., ∂M0/∂ t = 0, is included in Eq. (71), since LF is not in the divergence form of f . Unlike

the case of LA introduced in the previous section, the enforcement of ∂M0/∂ t = 0 is important for LF

to guarantee the numerical stability of simulations. Once γn’s are calculated from Eq. (71), the weight

evolution for f [ j,k]d can be calculated from Eq. (70) with W = ζ
[ j,k]
l . To distinguish [the test particle colli-

sion + LF ] from [the test particle collision + LA], we refer the former as “Linearized collision operator",

while the latter is just called as “Test particle collision operator" in the rest of this thesis.

2.4 FEM solver for the Rosenbluth potential

In this section, the method used to calculate the Rosenbluth potentials is presented. With
(
v∥o,v⊥o

)
∼(

v∥,u
√

B/B0

)
, Eqs. (16) and (17) can be approximated as

f =−1
u

∂

∂u

[
B0

B
u

∂h
∂u

]
− ∂ 2h

∂v2
∥
, (72)

h =
1
u

∂

∂u

[
B0

B
u

∂g
∂u

]
+

∂ 2g
∂v2

∥
. (73)

Since derivatives of h and g are required for the collision operator, the finite element method (FEM) with

continuous basis functions is used for h and g. In this case, the maximum order of the basis functions
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should be higher enough to deal with the derivative order required for coefficients αi’s in Eqs. (35)-(37).

For the RMJ operator, Eq. (37) can be written as

V[ j,k] (W ) = Γ

∫
Ω[ j,k]

d⃗z

[
∂W
∂v∥

∂h
∂v∥

+
1

J

∂

∂v∥

(
∂W
∂v∥

∂ 2g
∂v2

∥
J

)
+

B0

B
1
u

∂

∂u

(
∂W
∂v∥

∂ 2g
∂v∥∂u

u
)

+
B0

B
∂W
∂u

∂h
∂u

+
B2

0
B2

1
u

∂

∂u

(
∂W
∂u

∂ 2g
∂u2 u

)
+

B0

B
1

J

∂

∂v∥

(
∂W
∂u

∂ 2g
∂v∥∂u

J

)]
J f [ j,k]d , (74)

which contains the third order derivatives of g such as ∂ 3g/∂v3
∥. When we replace those third order

derivatives of g with the first order derivatives of h, Eq. (74) can be rearranged as

V[ j,k] (W ) = Γ

∫
Ω[ j,k]

d⃗z

[{
2

∂h
∂v∥

+
∂ 2g
∂v2

∥

1
J

∂J

∂v∥

}
∂W
∂v∥

+
∂ 2g
∂v2

∥

∂ 2W
∂v2

∥
+2

B0

B
∂ 2g

∂v∥∂u
∂ 2W

∂v∥∂u

+
B0

B

{
2

∂h
∂u

+
∂ 2g

∂v∥∂u
1

J

∂J

∂v∥
+

B0

B
1
u2

∂g
∂u

}
∂W
∂u

+

(
B0

B

)2
∂ 2g
∂u2

∂ 2W
∂u2

]
J f [ j,k]d . (75)

The detail of derivation of Eq. (75) is given in Appendix B. In [45], (h,g) are split into Maxwellian

and non-Maxwellian parts to preserve the Maxwellian distribution function exactly at the equilibrium.

Similarly, we split (h,g) into the equilibrium parts (hM,gM) and the residual parts (δh,δg) in this work.

Here, (hM,gM) are the analytic solutions of following equations.

fM =−1
u

∂

∂u

[
B0

B
u

∂hM

∂u

]
− ∂ 2hM

∂v2
∥
, (76)

hM =
1
u

∂

∂u

[
B0

B
u

∂gM

∂u

]
+

∂ 2gM

∂v2
∥
. (77)

(hM,gM) are introduced to improve the numerical resolution when f is close to fM and their specific

forms are given in Eqs. (A.13) and (A.14). The effect of including (hM,gM) is demonstrated in the

section 3.1. Since the maximum derivative order of Eq. (75) is the second order, cubic B-splines are

chosen as basis functions for (δh,δg). With those basis functions, δh and δg for each spatial mesh Ωx

can be expressed as follows.

δh (⃗z) =
Nv∥+1

∑
i1=−1

Nu+1

∑
i2=−1

hiΛi(v∥,u), (78)

δg (⃗z) =
Nv∥+1

∑
i1=−1

Nu+1

∑
i2=−1

giΛi(v∥,u), (79)

where i≡ [i1, i2] is a set of indexes for the basis Λi(v∥,u)≡ϒv∥,i1(v∥)ϒu,i2(u). Here, ϒv∥,i1(v∥) and ϒu,i2(u)

are cubic B-spline functions centered at v∥ = v∥, j′=i1 and u = uk′=i2 , respectively. In Eqs. (78) and (79),

we ignored the spatial variation of δh and δg within a single cell to avoid numerical instability which

can occur where fd becomes locally negative within the spatial cell. If we take
∫

d⃗z 2πB
B0

RuΛi′× to [Eq.

(72) − Eq. (76)] and integrate it by parts, the following equation is obtained.∫ 2πB
B0

Rud⃗zΛi′( f − fM) =−V
∫

dv∥uΛi′
∂δh
∂u

∣∣∣∣uk′=i′2+2

uk′=i′2−2

−VB

∫
duuΛi′

∂δh
∂v∥

∣∣∣∣v∥, j′=i′1+2

v∥, j′=i′1−2

+V
∫

dv∥duu
∂Λi′

∂u
∂δh
∂u

+VB

∫
dv∥duu

∂Λi′

∂v∥

∂δh
∂v∥

, (80)
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where V ≡
∫

Ωx
dX⃗2πR and VB ≡

∫
Ωx

dX⃗2πR B
B0

. With Eqs. (31), (78) and (80), a set of linear equations

for hi can be expressed as

∑
i

Ni′ihi = ∑
j,k,l

Θ
[ j,k]
i′l ( f̂ [ j,k]l − f̂ [ j,k]M,l ). (81)

where

Ni′i =−V
∫

dv∥uΛi′
∂Λi

∂u

∣∣∣∣uk′=i′2+2

uk′=i′2−2

−VB

∫
duuΛi′

∂Λi

∂v∥

∣∣∣∣v∥, j′=i′1+2

v∥, j′=i′1−2

+V
∫

dv∥duu
∂Λi′

∂u
∂Λi

∂u
+VB

∫
dv∥duu

∂Λi′

∂v∥

∂Λi

∂v∥
,

Θ
[ j,k]
i′l =

∫ 2πB
B0

Rud⃗zΛi′ζ
[ j,k]
l .

Here f̂ [ j,k]M,l is a coefficient of the discretized Maxwellian function f [ j,k]M,d . Similarly,
∫

d⃗z 2πB
B0

RuΛi′× [Eq.

(73) − Eq. (77)] can be written as

∑
i

Ni′igi = ∑
i

Ξi′ihi, (82)

where

Ξi′i =−
∫ 2πB

B0
Rud⃗zΛi′Λi.

Boundary conditions required for Eqs. (81) and (82) are calculated at the outermost vertices (v∥,u) =

(v∥,C,uC) as [25]

δh(v∥,C,uC) =
2
V ∑

j,k

∫
Ω[ j,k]

d⃗zRu
B
B0

δ f [ j,k]d (v∥,u)K[k̄]
D

,

δg(v∥,C,uC) =
1
V ∑

j,k

∫
Ω[ j,k]

d⃗zRu
B
B0

δ f [ j,k]d (v∥,u)E[k̄]D, (83)

where

δ f [ j,k]d = f [ j,k]d − f [ j,k]M,d ,

D=

√
B
B0

(uC +u)2 +(v∥,C − v∥)2,

k̄ =
1
D
√

4uuCB/B0.

Here, K[k̄] and E[k̄] are the complete elliptic integrals of the first kind and the second kind, respectively.

At u = 0, Neumann boundary conditions, ∂δh/∂u = ∂δg/∂u = 0, are used.
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III Numerical properties of the developed model

3.1 Numerical convergence test with the initially loaded Maxwellian distribution func-
tion

In this subsection, we present how accurately the developed collision operators can maintain the initially

loaded Maxwellian distribution function fM. The velocity domain for the test is v∥ ∈ [−10vT ,10vT ] and

u ∈ [0,10vT ]. The explicit time step is set as ∆t = 0.001τ , where τ is the ion self-collision time which is

defined as the inverse of ν̄ in Eq. (26). To measure the deviation of f from the initial fM, the residual of

C( fM) is defined as

L∆v
2 ≡

√
∑
j,k

∫
Ω[ j,k]

d⃗zJ
[

f [ j,k]d (t = 50τ)− f [ j,k]d (t = 0)
]2
. (84)

Results with various grid size ∆v are shown in Fig. 3. Here, ∆v is a grid size of each velocity cell, i.e.,

∆v∥ = ∆u = ∆v where ∆v∥ (∆u) is the grid size in the v∥ (u) direction. The overall convergence rate is

approximately (∆v)1.6 which is a slightly degraded result, compared to the second-order convergence

reported for the finite volume method (FVM) case [27]. It is noticeable that L∆v
2 of the Dougherty op-

erator (the blue circle symbols) is an order of magnitude smaller than values from the other operators.

This difference is closely related to the cross-diffusion terms (e.g., ∂ 2/∂v∥∂u) which are not included in

the Dougherty model. For instance, if we artificially remove the cross-diffusion terms in the linearized

collision model, L∆v
2 ’s from the linearized collision model (the green asterisk symbols) are at the same

level of L∆v
2 ’s from the Dougherty model. While the specific choice of velocity space grids or the basis

functions might change the results, the detailed study on this issue is not in the scope of this work. The

linearized (the red cross symbols) and the nonlinear operators (the black square symbols) show almost

identical results, which is expected from that the αi’s from hM and gM are identical to αi’s for the test

particle collision. To demonstrate the effect of utilizing hM and gM, we test a modified nonlinear col-

lision model in which the total h and g are described by the cubic spline basis functions only, without

hM and gM. As shown in Fig. 3, the nonlinear case without hM and gM (the magenta diamond symbols)

shows higher L∆v
2 than the values from the case with hM and gM (the black square symbols). This result

indicates that the resolution of nonlinear collision operators can be improved by using hM and gM, espe-

cially when f is close to fM. As mentioned in the preceding subsection 2.4, the separation of (hM,gM)

from (h,g) is previously studied in [45]. In [45], the advective and diffusive flux are also modified to

exactly preserve fM at the equilibrium. Although the flux modification is not implemented in this work,

overall effects of introducing (hM,gM) are consistent to the results presented in [45].

The computing time for each collision operator is summarized in Table 3. Currently, the code [35] in

which collision operators of this work are implemented is based on the C++ language and supplemented

by Intel MKL libraries. While the code is MPI-parallelized for multi-core simulations, a single CPU

is used for this benchmark, since each spatial cell is assigned to a single CPU core and the velocity

space is not MPI-parallelized. The model of CPU used in this test is the Intel Xeon Platinum 8260.

Two cases with different velocity dimensions, i.e., [Nv∥ ,Nu] = [20,10] and [60,30], are tested for this
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Figure 3: The residual of C( fM) with varying grid sizes. ∆v is the grid size of each velocity cell for both

of v∥ and u directions.

benchmark. In Table 3, numbers without parentheses represent [Nv∥ ,Nu] = [20,10] case, while numbers

inside parentheses are results with [Nv∥ ,Nu] = [60,30]. ‘Boundary conditions for δh and δg’ is the time

needed to calculate the boundary conditions for the Rosenbluth potentials, i.e., Eq. (83). For this part of

calculation, the ratio between the required times from [Nv∥ ,Nu] = [60,30] and [Nv∥ ,Nu] = [20,10] cases

is 1.96/0.07 ∼ 28 which is close to N3/2
ratio = 93/2 = 27. Here, Nratio is N[60,30]/N[20,10] = 9 when N[60,30]

and N[20,10] are the total number of grid cells for [Nv∥ ,Nu] = [60,30] case and the [Nv∥ ,Nu] = [20,10] case,

respectively. While N3/2
ratio is an expected scaling law for Eq. (83) [26], there have been several researches

to improve the scaling. For instance, a fixed number of boundary points and interpolation are used

in [27]. Also, an adaptive spline technique is introduced in [46] to achieve the desired accuracy under

any circumstances. Although these methods are directly applicable to our model, the implementation

is left as a future work. ‘Source terms for δh and δg’ is the time required to evaluate the right hand

side of FEM equations, i.e., Eqs. (81) and (82). ‘Solver for δh and δg’ means the time to solve Eqs.

(81) and (82). As mentioned in section 2.4, a direct LU factorization with the Intel MKL PARDISO

library is used for the FEM solver. ‘Field particle collision model’ is the calculation of the conservation

model for the linearized collision operator. The most time-consuming part is the calculation of ‘Source

terms for the weight evolution’ which represents the calculation for the right hand side of Eq. (44). The

computing cost of this part for linearized and nonlinear operators is about 60% ∼ 80% higher than that

of the Dougherty operator, since more computation is required to evaluate the coefficients αi’s for the

linear and nonlinear models. ‘Solver for the weight evolution’ is the procedure of solving Eq. (44) once

the source terms are evaluated. The total computing time of the nonlinear collision operator is about

70% ∼ 90% higher than that of the Dougherty operator.
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Dougherty Linearized Nonlinear

Boundary conditions for δh and δg 0 0 0.07 (1.96)

Source terms for δh and δg 0 0 0.04 (0.44)

Solver for δh and δg 0 0 0.03 (0.37)

Field particle collision model 0 0.31 (2.59) 0

Source terms for the weight evolution 0.83 (7.52) 1.30 (11.51) 1.32 (13.53)

Solver for the weight evolution 0.14 (1.54) 0.13 (1.54) 0.15 (2.12)

Total 1.00 (9.8) 1.77 (15.8) 1.64 (18.6)

Table 3: Distribution of computing time for each collision model. Numbers without parentheses repre-

sents the [Nv∥ ,Nu] = [20,10] case and numbers inside parentheses are results with [Nv∥ ,Nu] = [60,30].

The unit of time is normalized by the total computing time of the Dougherty collision model with

[Nv∥ ,Nu] = [20,10].

3.2 Relaxation of the bump-on-tail distribution

In this subsection, the benchmark test on the collisional relaxation of the bump-on-tail distribution is

presented. More specifically, the initial condition f (t = 0) is given as follows.

finput =

 fM,U∥=0 × 1
2

[
1+ cos( 2πv∥

0.5vT
)
]

if v∥ ≥ 0,

fM,U∥=0 if v∥ < 0,
(85)

where fM,U∥=0 is the Maxwellian distribution function with the zero mean drift velocity. The velocity

domain for the test is v∥ ∈ [−5vT ,5vT ] and u ∈ [0,5vT ]. The velocity grid size ∆v is 0.25vT and the total

simulation time is 10τ with the time step ∆t = 0.001τ .

The blue solid line in Fig. 4 represents the initially loaded fd(v∥,u = 0, t = 0), while the red dashed

line shows finput of Eq. (85). Note that there are some regions with fd < 0 due to the grid-scale gradient

length of finput , even though finput itself is non-negative for the whole domain. When the nonlinear

collision operator is applied, the distribution function is relaxed to the Maxwellian distribution function

with the finite drift velocity and modified temperature, after a few collision times. The resulted fd(t =

10τ) is represented as a solid black line in Fig. 4. Qualitatively similar results are obtained when we

perform the same test with linearized and Dougherty operators.

To study the positivity-preserving property of each collision model, the maximum negative values

of fd in time are plotted in Fig. 5(a).

In the case of the Dougherty operator, the negative part of fd is completely eliminated after ∼0.02 τ .

For the linearized and nonlinear collision models, the negative value of fd is significantly reduced within

∼0.1 τ and remains small for the rest of the simulation. In [32], the upwind flux is shown to be helpful in

maintaining the low level of negativity induced by Dougherty collision operator. Although the absolute

level of the negativity from the nonlinear collision operator is higher than the values from the Dougherty

operator case, it seems that the upwind flux is still effective for controlling the negativity from the

linearized and nonlinear collision operators. The evolution of entropy difference ∆S[≡ S(t)− S(t = 0)]
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Figure 4: Relaxation of the bump-on-tail distribution function f with the nonlinear collision operator.

All graphs are plotted at u = 0.

Figure 5: The evolution of (a) the maximum of negative f and (b) the normalized entropy difference ∆S.

Here, S0 is defined as S(t = 0).
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is also plotted in Fig.5(b). Here, the entropy S is defined as

S ≡−∑
j,k

∫
Ω[ j,k]

d⃗zJ f [ j,k]d ln | f [ j,k]d |. (86)

The Dougherty operator shows the fastest time scale and the nonlinear operator exhibits the slowest

time scale for the relaxation. Despite the different relaxation rate for each model, the entropy increases

monotonically in time and converges to the same value for all cases, as expected.
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Figure 6: Time evolution of (a) the density nN , (b) the parallel mean velocity U∥,N , and (c) temperature

TN .

Fig. 6 shows time evolution of conserved quantities with the nonlinear collision operator. In Fig. 6,

∆nN(t), ∆U∥,N(t) and ∆TN(t) are defined as

∆nN(t) =
M0(t)−M0(t = 0)

M0(t = 0)
, (87)

∆U∥,N(t) =
M1(t)−M1(t = 0)

vT M0(t = 0)
, (88)

∆TN(t) =
M2(t)−M2(t = 0)

M2(t = 0)
, (89)

where M0, M1 and M2 are evaluated from Eqs. (45)-(47) with a time variable t. Here, nN , U∥,N and

TN correspond to the density, the parallel mean velocity and the energy, respectively. For comparison,

cases with and without the conservation operator LA are plotted. Both cases show excellent density

conservation since the collision operator is in the divergence form. Note that it is possible to improve

the density conservation further, if one more free parameter β3 f is added to Eq. (58) and ∂M0/∂ t = 0

is enforced. The numerical benefit of enforcing the density conservation directly, however, might not
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be huge, since the level of the density error accumulation is tolerable in most simulation cases and the

similar amount of density error is already generated through the collisionless part of the gyrokinetic

equations. The momentum and energy from simulations without LA increase gradually in time, while

the case with LA maintains the conservation properties. Without LA, the rate of the temperature change,

i.e., dTN/dt, is about 2×10−5(/τ).

3.3 Anisotropic temperature relaxation

For a given bi-Maxwellian probability distribution with T⊥ ̸= T∥, the temperatures of each direction are

relaxed to the same value via the collisional process. Here, T⊥ = m
2n

∫
v2
⊥ f d⃗v and T∥ = m

n

∫
v2
∥ f d⃗v are

temperatures perpendicular and parallel to the magnetic field, respectively. In Fig. 7, numerical results

with Dougherty, linearlized and nonlinear collision models are compared with the following analytic

formula [47].

dT⊥
dt

=−1
2

dT∥
dt

=−ν
α
T
(
T⊥−T∥

)
, (90)

where

ν
α
T =

2
√

πn lnΛq4
√

mT 1.5
∥

A−2
[
−3+

(A+3) tan−1 A0.5

A0.5

]

=
3

2
√

2
ν̄

(
T
T∥

)1.5

A−2
[
−3+

(A+3) tan−1 A0.5

A0.5

]
. (91)

Here, the initial T⊥(t = 0) is set as 1.3×T∥(t = 0) and A(t) is defined as T⊥(t)
T∥(t)

− 1. The velocity grid

size is set as 0.5vT and the time step size ∆t is 0.001(τ). Also, the velocity domains for the test are

v∥ ∈ [−5vT ,5vT ] and u ∈ [0,5vT ]. Although all of three operators show the relaxation process toward

Figure 7: Temperature relaxation of each case with respect to the time.

T∥(t) = T⊥(t) = 1.2T∥(t = 0), the relaxation rates are different for each collision operator. The relaxation

rate of the nonlinear operator is slightly smaller than that of the linear operator [29], but closely follows
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Estimation from Eq. (92) Dougherty Linearized Nonlinear

∆tmax/τ 5.0×10−3 3.3×10−3 4.2×10−3 4.2×10−3

Table 4: The maximum time step ∆tmax from analytical estimation of Eq. (92) and anisotropic tempera-

ture relaxation simulations when ∆v∥ = ∆u = 0.5vT and max(|v∥|) = max(u) = 5vT .

the analytic formula over the simulation time. On the other hand, the relaxation rate of the Dougherty

operator is about 2.5 times bigger than the analytic formula.

The numerical stability with different time step sizes is also tested for each collision operator. The

maximum time step ∆tmax,theo for the Dougherty collision operator with the SSP3 time integration can

be estimated as [32]

∆tmax,theo/τ ∼ ∆p

[
2Cadv,p(2p+1)

{
max(|v∥|)

∆v∥
+

max(u)
∆u

}

+ 4Cdi f ,pv2
T (p+1)2

{
1(

∆v∥
)2 +

1

(∆u)2

}]−1

, (92)

where ∆v∥ and ∆u are the grid sizes in v∥ and u directions. Also, ∆p, Cadv,p and Cdi f ,p are functions of the

basis order p. With p = 2 in this work, ∆p, Cadv,p and Cdi f ,p are 2.512, 1.2 and 0.92, respectively. When

∆v∥ = ∆u = 0.5vT and max(|v∥|) = max(u) = 5vT , ∆tmax,theo from Eq. (92) and ∆tmax from simulations

shown in Fig. 7 are given in Table 4. The level of agreement between the estimation and simulation

results seems to be reasonable. Since SSP3 is an explicit method, numerical costs might be prohibitive

at high collisionality regimes such as tokamak edge regions. Note that several implicit methods were

developed for collision operators with the finite difference method [26] or the finite volume method [27],

previously. Whether they can be directly applicable for DG collision operators will be tested as a future

work.
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IV Verifications of the implemented collision modules

In this section, we present neoclassical benchmark results for the various collision models introduced in

the preceding sections. More specifically, numerical properties of each collision module are investigated

for test cases of neoclassical heat diffusivity, poloidal flow, and Rosenbluth-Hinton residual potential

with the collisional damping.

(a)
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Figure 8: (a) A mesh in the configuration space and (b) the safety factor profile used for the verification.

All verification tests in the following subsections are carried out under the concentric circular mag-

netic geometry with a configuration space mesh of 5,846 vertices, as shown in Fig. 8(a). The number

of cells used in velocity space is Nv∥ = 30 and Nu = 10. The velocity domains are v∥ ∈ [−5vT ,5vT ] and

u ∈ [0,5vT ]. Basic physics parameters commonly used in the following verifications are a major radius

R0 = 1.7m, a minor radius a0 = 0.6m and magnetic field strength at the center B0 = 1.1T. A concentric

circular geometry without the Shafranov shift is used for the magnetic field geometry. The radial profile

of the safety factor q is set as shown in Fig. 8(b) and only Deuteron-Deuteron collisions are considered

for all test cases. Electrons are treated as fixed at a given initial state that electron profiles for density and

temperature are same as corresponding initial ion profiles over an entire simulation. A set of gyrokinetic

equations [38] without the FLR effect is used for the collisionless part of the simulation. Without the

FLR effect, the equations of motion are effectively reduced to the drift kinetic model. Although these

equations are not suitable for the quantitative micro-turbulence study, they are sufficient to investigate

neoclassical physics in the drift kinetic limit. More details about the implementation of these equation

for DG simulations are given in [35]. The third-order SSP3 Runge-Kutta method [41] is used for the

time integration of gyrokinetic equations, as well as the collision operator. The normalized time step is

defined as dt = ∆t
R0/vT

, where ∆t = min
(

0.001
√

2τ,0.002R0/vT

)
and R0/vT is ion transit time. With this

setup, parameter scans over normalized ion collision frequency, ν∗ = ν̄/
(√

2ε3/2vT ∇∥θ

)
, is carried out

by changing density, where ε = r/R0 is inverse aspect ratio and ∇∥θ = 1/qR0 is used.
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Figure 9: (a): Ion temperature profile. (b): Ion density profile at ν∗ = 1.0.

4.1 Neoclassical radial heat diffusivity

Chang and Hinton [48] predicted the ion thermal conductivity, Li, for the arbitrary aspect ratio, plasma

shaping and collision frequency as

Li = niε
1/2 ρ2

iθ√
2τ

kq, (93)

where ρiθ =
√

2vT mi
qiBθ

is an ion poloidal gyroradius with the poloidal magnetic field Bθ , kq is a dimension-

less thermal conductivity coefficient [49]

kq =
0.66+1.88ε1/2 −1.54ε

1+1.03ν
1/2
∗ +0.31ν∗

〈
B2〉〈 1

B2

〉
+

0.58ν∗ε

1+0.74ν∗ε3/2

(〈
B2〉〈 1

B2

〉
−1
)
, (94)

and the angle bracket denotes flux surface averaging operation for a given parameter. In this thesis, we

used thermal diffusivity χi for comparison by a relation χi = Li/ni.

Parameter scans are conducted for normalized ion collision frequencies ν∗=0.05, 0.1, 0.5, 1, 5, and

10. Initial density and temperature profiles are monotonically decreasing linear functions with flat buffer

regions around the radial boundaries. At center of the radial domain (r/a0 = 0.5), density and tempera-

ture gradients are set to R/Lni = 1 and R/LTi = 1, respectively, where Lni ≡
∣∣∣ 1

ni

dni
dr

∣∣∣−1
and LTi ≡

∣∣∣ 1
Ti

dTi
dr

∣∣∣−1
.

Temperature at the radial center is fixed to Ti = 2keV while density changes according to a parameter of

the normalized ion collision frequency. Fig. 9(a) and 9(b) show the temperature and density profiles at

ν∗ = 1.0. Total simulation time is decided by a criterion ttot = max
(√

2τ,20R0/vT

)
.

Fig. 10 shows numerical heat diffusivities for each collision module of the test particle, linearized,

nonlinear, and Dougherty collision operators against the Chang-Hinton analytic formula. The numerical

values are obtained by moving average over 500 time steps of window in (0.9ttot , ttot), where back-

ground profile change is comparatively mild after its relaxation. We observe that all numerical results

follow analytic trend that radial heat diffusivity increases as the collision frequency increases. In addi-

tion, all collision models except the Dougherty show reasonable agreement with the analytic formula.

Particularly, the maximum difference between the analytic formula and the nonlinear collision result

is about 20% at ν∗ = 5.0. Furthermore, we found that χis for the Dougherty operator are 2 or 3 times

higher than χis of the other numerical operators, which would be because of enhanced collisionality for

29



Figure 10: Comparison of the heat diffusivity at ε = 0.1725 among numerical collision results and the-

ory. ⃝(red): the Dougherty operator, △(yellow): the test particle operator, ×(purple): the linearized

operator, □(Green): the nonlinear collision operator, and (a blue solid line) : the Chang-Hinton for-

mula

the high energy ions in the Dougherty model. Lastly, the nonlinear operator exhibits slightly smaller heat

diffusivity χi than the linear operator as observed in [50].

4.2 Neoclassical poloidal flow

To verify the developed collision operators against neoclassical poloidal flow theory, we conducted

parameter scans over the same set of collisionality with the same simulation setup for the neoclassical

heat diffusivity illustrated in the preceding subsection 4.1. In this poloidal flow test, a dimensionless

flow coefficient k∥ is inferred by poloidal velocity obtained in a simulation via relation as follows.

Vθ = k∥cIBθ

(
Ze
〈
B2〉)−1

dTi/dψ, (95)

where I = RBζ and Bζ is the toroidal magnetic field.

Fig. 11 shows the parallel flow coefficient k∥ evaluated from numerical collision operators and the

Sauter formula [51],

k∥ =−
[

1
1+0.5

√
ν∗

(
−1.17 fc

1−0.22 ft −0.19 f 2
t
+0.25

(
1− f 2

t
)√

ν∗

)
+0.315ν

2
∗ f 6

t

]
1

1+0.15ν2
∗ f 6

t
, (96)

where ft = 1− fc is trapped fraction of particles. The values of the numerical results in the figure are

obtained using the moving average as done in the subsection 4.1. All numerical collision operators

clearly exhibit sign flip of the coefficient k∥ in increasing collision frequency as predicted by the theory.

Also it is noticeable that the k∥ for the Dougherty operator is negatively shifted over most frequency

domain and consequently transition of the sign flip occurs at smaller frequency than the others.
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Figure 11: Comparison of the parallel flow coefficient at ε = 0.1725 among numerical collision re-

sults and theory. ⃝(red): the Dougherty operator, △(yellow): the test particle operator, ×(purple): the

linearized operator, □(Green): the nonlinear collision operator, and (a blue solid line) : the Sauter

formula.

ν∗ = 0.1 ν∗ = 1.0

γ b γ b

Dougherty 0.032 0.014 0.12 0.012

Test Particle 0.026 0.017 0.10 0.013

Linearized 0.026 0.016 0.10 0.012

Nonlinear 0.025 0.017 0.096 0.012

Xiao (YX) et al. 0.023 0.016 0.22 0.016

Table 5: Exponential fitting of residual potential behavior

Figure 12: Damping of residual potential at ν∗ = 0.1.
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4.3 Damping of residual potential

In this subsection, the benchmark results for the collisional damping of zonal flow are presented. Since

the zonal flow can have crucial impacts on regulating the turbulent heat flux, the collisional damping

of zonal flow is an important issue. In the collisional case, initially loaded potential perturbations will

be damped to the certain residual value B2
p/B2 [52] which is different from the residual value of the

collisionless case. For the benchmark, we compare the simulation results with the analytic formula of

Xiao et al. [53] as follows.

φk/φk(t = 0) =
ε2/q2

1+ ε2/q2 ×

[
1+

1−Θ

Θ+ ε2/q2 exp

{
−

3
√

π
(
1+ ε2/q2

)
γν̄t

4(Θ+ ε2/q2)

}]
(97)

where Θ = 1.635ε3/2 + ε2/2+0.360ε5/2 and γ = 0.4
(
1.46

√
ε +1.32ε

)
.

To investigate the collisional effect on the zonal flow, a sinusoidal radial electric field with krρi ∼
0.12 is applied as an initial condition. Here, ρi =

vT mi
qiB

is the ion gyroradius and the ratio of the initial

ExB flow velocity to the vT is 0.015. Also, flat density and temperature profiles are used as initial inputs.

To separate initial GAM oscillations from the collisional damping, the collision modules are turned on

at t = tinit ≡ 30(R0/vT ) when the Er reaches the steady state after the collisionless neoclassical damping.

Two cases with ν∗ = 0.1 and 1.0 are tested and we compare Φ(t) = Er(t)−∇p(t)/ne, instead of φ(t),

with the analytic formulas to exclude contributions from the pressure gradients and the boundary effects.

Fig. 12 shows long time behavior of Φ(t) with ν∗ = 0.1. All results from different collision mod-

els do not deviate much during the relaxation phase and converge asymptotically - In the figure, a

line from the test particle model is mostly overlaid by the line from the linearized model. Maximum

difference of the residual ratio over 200 transit time is 9.34% for ν∗ = 0.1 and 9.14% for ν∗ = 1.0

between Dougherty and the nonlinear operator. For easier comparison, we fit the data with y(t) =

[Φ(tinit)/Φ(0)−b]exp [−γ(t − tinit)] + b, where γ is the damping rate and b is the residual value after

long term simulation. The results from the fitting are summarized in table 2. From the data, we can see

that all b values from the simulation and Xiao closely agree within ∼ 4 % relative error range of the

potential at t = tinit . Note that this residual value is closely related to the energy conservation between

electric field and toroidal angular momentum, as well as the radial force balance. In addition, we found

that the collisional damping rate γ from the Dougherty operator is about 20 percent higher than the val-

ues from the other numerical models. This is consistent with the results of previous sections in which

the Dougherty model exhibits the enhanced collisionality. Also, we observe that the numerical γ does

not linearly increase with the collision frequency while that from the analytic formula in Eq. (97) does.

4.4 Collisional effects on GAM frequency and damping rates

Previously, collisional effects on GAM were studied with fluid models and kinetic models [54]. From

those studies, it has been known that the real frequency of GAM (ωGAM) decreases to the frequency

of the fluid limit as the collisionality increases, since collisions weaken the pressure anisotropy. On the
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other hand, the damping rate of GAM (γGAM) increases with the increasing collisionality at the low col-

lisionality regime, while γGAM decreases back to the collisionless level at the high collisionality regime.

To verify that those behaviors can be reproduced with the collision model of this work, benchmark re-

sults of the collisional GAM damping are presented in this subsection. For the benchmark, we compare

the simulation results to the following theoretical formula based on the number and energy conserving

Krook operator [55].

ωGAM =
vT

R0

√
2
[

7
4
+ τe −

(3π/32)νN
2

7+4τe +(9π/8)νN
2

]1/2

, (98)

γGAM =
vT

R0

(√
π/4

)
νN

14+8τe +(9π/4)νN
2 , (99)

where τe is the ratio between the electron temperature and the ion temperature. νN is a normalized

collisionality and defined as ν̄R0/vT . Since the adiabatic electron model is used in this work, we only

present the results with τe = 0, i.e. no kinetic electron effect. The krρi of the initial perturbation is 0.12.

Note that there is no safety factor dependence in Eqs. (98) and (99), since they are derived in the infinite

q limit. Also, several collisionless mechanisms such as the Landau damping and finite orbit effects [56]

are missed as well. Fig. 13 shows ωGAM from simulations and analytic formulas with varying νN . Since

it is impractical to perform a simulation with an infinite q, several simulations with different safety

factors are performed to examine the change of ω as the q increases. As shown in Fig. 13, ωGAM tends to

decrease as q increases. For collisionless cases, the following formulas of ωGAM and γGAM with varying

q were derived in [57, 58].

ωGAM =
vT

R0

√
7
2

√
1+

46
49q2 , (100)

γGAM =
vT

R0
q

√
π

2

[
1+

46
49q2

]−1 [
exp(−ω̂

2
G)
{

ω̂
4
G + ω̂

2
G
}

+
1
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(√
2qkrρi

)2
exp(−ω̂

2
G/4)

{
ω̂6

G
16

+
ω̂4

G
2

+3ω̂
2
G

}]
, (101)

where ω̂G is defined as qR0ωGAM/(
√

2vT ). Analytic values of ωGAM from Eq. (100) are plotted in Fig. 13

as filled symbols and show good agreements with simulations results. Therefore the decrease of ωGAM

with increasing q can be explained by the collisionless part of the simulations. As shown in Fig. 13, ωGAM

decreases with increasing νN , as predicted by the analytic formula Eq. (98). Also, ωGAM approaches to

the analytic formula as q increases, which is consistent to the fact that the analytic formula is based on

the infinite q assumption.

The total γGAM which is affected by both of collisionless and collisional damping mechanism is shown in

Fig. 14(a). Analytic predictions from Eq. (101) for νN = 0 are also plotted in Fig. 14(a) as filled symbols.

Theoretically, γGAM tends to decrease, although not monotonically, with increasing q since the number of

resonant particles becomes smaller with higher q. [56,59] γGAM values from simulations with νN = 0 are

qualitatively consistent to the theoretical prediction, although the level of agreement with the analytical

prediction Eq. (101) is less satisfactory than ωGAM cases shown in Fig. 13. At the low collisionality,

γGAM increases as νN increases, while it decreases with increasing νN at the high collisionality. This
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Figure 13: Comparison of the real frequency (ωGAM) of GAM from simulations with the nonlinear

collision operator and the analytic formula. νN is defined as ν̄R0/vT . ⃝(blue): q = 1.4, □(magenta): q

= 3.0, △(red): q = 5.0, and (a black solid line) : the analytic formula, Eq. (98) [55]. Filled symbols

represent values from the analytic formula Eq. (100) for νN = 0 cases [57, 58].

result agrees with the theoretical prediction qualitatively. To focus more on the collisional effects on

γGAM, the change of damping rate ∆γGAM defined as γ(νN)− γ(νN = 0) is plotted in Fig. 14(b). Like

the case of ωGAM, ∆γGAM approaches to the analytic formula as q increases. As a partial summary of

this subsection, the collisional effects on GAM from the simulations with the newly developed collision

module are consistent to the theoretical prediction, although the quantitative verification is not available.
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Figure 14: (a) the total damping rate (γGAM) of GAM as a function of the normalized collisionality νN

and (b) the change of damping rate ∆γ = γ(νN)−γ(νN = 0). νN is defined as ν̄R0/vT . ⃝(blue): q = 1.4,

□(magenta): q = 3.0, △(red): q = 5.0, and (a black solid line) : the analytic formula, Eq. (99) [55].

Filled symbols represent values from the analytic formula Eq. (101) for νN = 0 cases [57, 58].
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V Conclusion

A nonlinear collision operator is formulated and implemented for the gyrokinetic simulations with the

discontinuous Galerkin (DG) scheme. For better numerical efficiency, the Rosenbluth-MacDonald-Judd

(RMJ) form is implemented instead of the Landau integral form. In addition to the nonlinear collision

operator, linearized and Dougherty collision models are also implemented to assess the benefits and

drawbacks of each model. In this work, we only consider the self-collisions of a single ionic species.

Conservation properties of collision models are important for the stability and reliability of the long

time gyrokinetic simulations. Due to the divergence structure of the formulation, the density conser-

vation is guaranteed numerically. For the conservation of the parallel momentum and energy, a simple

advection-diffusion model, i.e., LA, with two free parameters is adopted for the Dougherty and nonlin-

ear collision operators. By using LA, the conservation of the momentum and energy is enforced up to

the machine accuracy. In the case of the linear collision operator, the linearized field particle collision

operator is adopted as another way to enforce the conservations.

While the DG method is used to describe the particle distribution function f , the finite element

method (FEM) with the cubic B-spline basis is applied to evaluate the Rosenbluth potentials h and g,

since the 2nd order derivatives of h and g are required for the nonlinear collision operator. Especially, the

analytic solutions for the equilibrium parts of h and g are utilized to improve the numerical resolution

for the case where f is close to the Maxwellian distribution function fM.

Several benchmark problems are solved to test the numerical properties of the developed collision

models. The residuals of C( fM), i.e., L∆v
2 , are evaluated for each collision model with the initial condition

of f = fM. All models show similar convergence rates of L∆v
2 ∝ (∆v)1.6 with varying grid sizes ∆v. While

linearized and nonlinear operators exhibit the same level of L∆v
2 , L∆v

2 from the Dougherty operator is

smaller than those from the other operators. L∆v
2 of the linearized operator without cross-diffusion terms

(∝ ∂ 2/∂v∥∂u) is close to that of the Dougherty operator, which indicates that L∆v
2 of the current model

is sensitive to the cross-diffusion in the velocity space. In terms of the numerical cost for each model,

the computing times for the linear and nonlinear operators are about 70% ∼ 90% higher than the time

required for the Dougherty operator for the range of parameters tested in this work.

As another benchmark problem, the collisional relaxation of f from the bump-on-tail distribution

to fM is tested. From the test, the numerical stability with the locally negative f , the monotonically in-

creasing entropy in time and the conservation properties are verified for the developed nonlinear collision

model. In the anisotropic temperature relaxation test with T⊥ ̸= T∥ as an initial condition, the results from

the linear and nonlinear models agree well with the analytic prediction, while the Dougherty operator

tends to overestimate the relaxation rate by ∼ 2.5 times.

To analyze characteristics of each collision model in tokamak magnetic geometry, a few neoclassical

benchmark tests are performed. The neoclassical heat flux and poloidal flow from linear and nonlinear

collision models show a good agreement with theoretical values. On the other hand, the heat flux from

the Dougherty operator is about 2 or 3 times bigger than results from the other operators, which can be

explained by the neglected velocity dependency in the Dougherty operator. The collisional damping of
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zonal flow is also tested with initial electric field perturbations. For ν∗ = 0.1, the damping rates from

linear and nonlinear collision models are ∼ 15% bigger than the analytic formula. On the other hand, the

damping rates from simulations for ν∗ = 1.0 are about 50 % of the theoretical prediction. In both cases,

the damping rates from the Dougherty model are ∼ 20% higher than those from other collision models.

In terms of residual Er after the collisional damping, all collision models show similar results close to the

theoretical values. In addition, the collisional effect on the GAM frequency and damping rate is tested.

From the test, it is shown that the simulation results agree with the analytic formula qualitatively in the

relevant limit.

Since the multi-species collision is not included in this work, a natural direction for further re-

search would be the implementation of inter-species collision operators. Contrary to the self-collision,

the velocity domains of different species can be significantly disparate from each other if the mass ratio

between species is not of order unity. In this case, additional numerical operations might be required

to interpolate the Rosenbluth potentials from one velocity space to another. We can leverage work by

Taitano et al. [60] that introduces multipole expansion with adaptive mesh to treat the different scales.

Also, the conservation of momentum and energy for inter-species collisions is not a trivial problem.

These issues related to multi-species collisions with the DG scheme will be reported separately in near

future.

Most test cases in this work show similar numerical behavior among the linear and nonlinear col-

lision models. This is partially because the distribution function stays near fM in closed magnetic field

line system used in those tests. On the other hand, the distribution can deviate significantly from fM with

open field lines, since ions suffer the ion orbit loss and the electrons stream into the machine wall along

the field lines. Therefore, more noticeable differences between linear and nonlinear models are expected

at the tokamak edge region where the closed and open field lines are present together. Quantitative

analysis on the nonlinear collisional effect at the edge region is left as a future work.
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A Relations between introduced collision operators

The linearized collision operator, the test particle collision operator, and the Dougherty operator can be

derived in order from the Fokker-Planck collision operator. Rosenbluth, MacDonald, and Judd intro-

duced a potential theory to Fokker-Planck-Landau equation [2],(
∂ fa

∂ t

)
c
= ∑

b
−Γab

[
ma +mb

mb

∂

∂v
·
(

fa
∂hb

∂v

)
− ∂ 2

∂v∂v
:
(

fa
∂ 2gb

∂v∂v

)]
(A.1)

= ∑
b
−Γab

[
ma

mb

∂

∂v
·
(

fa
∂hb

∂v

)
− ∂

∂v
·
{

∂ fa

∂v
·
(

∂ 2gb

∂v∂v

)}]
, (A.2)

≡ ∑
b

Cab( fa, fb)

∇
2
vhb =− fb, (A.3)

∇
2
vgb = hb, (A.4)

where the coefficient Γab is {4πqaqb/ma}2 lnΛab in CGS (or {qaqb/(maε0)}2 lnΛab in MKS [3, 47, 61]

with the vacuum permittivity ε0), and lnΛab is the Coulomb logarithm for an incident species a and a

target species b. qs and ms are charge and mass for species s, respectively. In this appendix, v represents

the original velocity coordinate which is not transformed into gyrokinetic variables. Here, Rosenbluth

potentials are defined as

hb =
1

4π

∫
dv′ fb(v

′)
∣∣v−v′∣∣−1

, (A.5)

gb =
1

8π

∫
dv′ fb(v

′)
∣∣v−v′∣∣ . (A.6)

Splitting the probability distribution function f into equilibrium part f0 and perturbed part δ f as f =

f0 +δ f , the collision operator can be decomposed based on its bilinearity as

Cab( fa, fb) =Cab( fa0, fb0)+Cab(δ fa, fb0)+Cab( fa0,δ fb)+Cab(δ fa,δ fb). (A.7)

The first term is contribution from two equilibrium distribution, which vanishes when fa0 and fb0 are

Maxwellian distribution functions with same mean velocity and temperature. The second and third terms

are called a test particle collision operator and a field particle collision operator, respectively. The last

term is a nonlinear part, which is usually neglected on the assumption of δ f ≪ f0 in linearization

process. Considering the validity regime of the approximation, the assumption would limit the region of

simulation domain in Tokamaks and consequently hinder a whole device modeling.

By introducing Maxwellian distribution function fM as an equilibrium distribution function, f0 = fM

into Eqs. (A.3) and (A.4), we can make further progress with the Rosenbluth potentials to be analyti-

cally expressed in the first and second terms of Eq. (A.7). The resulting test particle collision operator
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(a) F1(x)(the blue solid line) and 3F2(x)(the red

dashed line)
(b) F1(x)+3F2(x)(the orange solid line) and F1(x)(the

purple dashed line)

Figure A.1: Global behavior of F1(x), 3F3(x) and their sum

including the equilibrium part contribution becomes [61]

Cab( fa, fb,M) =−Γab

8π
nb∇ ·

[
ma

mb
Rab,M fa −Dab,M ·∇ fa

]
, (A.8)

Rab,M =− v′

v′3
[F1(x)+3F2(x)] , (A.9)

Dab,M =
v2

Tb

v′3

[
IF1(x)+3

v′v′

v′2
F2(x)

]
, (A.10)

F1(x) = x
derf(x)

dx
+(2x2 −1)erf(x), (A.11)

F2(x) =
(

1− 2
3

x2
)

erf(x)− x
derf(x)

dx
, (A.12)

where x = v′√
2vTb

, vTb ≡
√

Tb
mb

, and v′ = v−Ub. Here, ns, Us and Ts are the density, mean fluid velocity

and temperature for the species s, respectively. Also, erf(x) = 2√
π

∫ x
0 e−t2

dt is the error function. The

Rosenbluth potentials in this context [45] correspond to

hb,M =
nb

4π

1√
2vTb

erf(x)
x

, (A.13)

gb,M =
nb

8π

vTb√
2

1
x

[
x

derf(x)
dx

+(1+2x2)erf(x)
]
. (A.14)

These expressions for the Rosenbluth potentials contain additional factors in front to Hazeltine and

Waelbroeck [61] with correcting typos - See the factors in Eqs. (A.5) and (A.6).

By taking a small speed limit x→ 0, we can analytically proceed further with Eq. (A.8) using asymp-

totic expansion of the error function, erf(x) = 2√
π

(
x− x3

3

)
+O(x5). The factor F1(x) and F2(x) are re-

duced to

F1(x) =
8

3
√

π
x3
(

1− 1
5

x2
)
+O(x7) as x → 0, (A.15)

F2(x) =− 16
45
√

π
x5
(

1− 3
7

x2
)
+O(x9) as x → 0, (A.16)

respectively. This indicates that the contribution from the cross diffusion terms in the small speed limit

is O(x2) smaller than that of the diagonal diffusion terms in Eq. (A.10). Correspondingly, an asymptotic
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value of the dragging factor in the bracket of Eq. (A.9) leads to

F1(x)+3F2(x) =
8

3
√

π
x3
(

1− 3
5

x2
)
+O(x7)∼ 8

3
√

π
x3 as x → 0. (A.17)

As a side note, the other asymptotic limit as x → ∞ yields F1(x)+3F2(x)∼ 2 that results in the dragging

coefficient approaches to 2/v3. Note that this factor is also related to Dab,M tensor in v-direction through

a following relation,

v′ ·Dab,M =Dab,M ·v′ = v2
T b

v′

v′3
[F1(x)+3F2(x)] =−v2

Tb
Rab,M (A.18)

that results in Maxwellian at equilibrium. Fig. A.1 shows global behavior of the functions F1(x), 3F2(x),

and their sum. Even though F2(x) is O(x2) smaller than F1(x) in the small speed limit, it is appreciable

around x ∼ 1 and comparable with F1(x) in the high tail.

Asymptotic expressions for dragging and diffusion coefficients in the small speed limit are

Rab,M ∼− v′

v′3
8

3
√

π

v′3

23/2v3
Tb

=− 4
3
√

2π

1
v3

Tb

v′, (A.19)

v̂′v̂′ : Dab,M ∼
v2

Tb

v′3
8

3
√

π

v′3

23/2v3
Tb

=
4

3
√

2π

1
vTb

=
4

3
√

2π

1
v3

Tb

v2
Tb

(A.20)

which agree with coefficients in the prototype of the Dougherty operator for the self-collision [6, 32],

C( f ) = ν
∂

∂v
·
{
(v−U) f + v2

T
∂ f
∂v

}
. (A.21)

Through this reduction process, we show that Dougherty operator neglects cross-diffusion (I− v̂′v̂′) :

Dab,M. Terms in the curly bracket of Eq. (A.21) are designed to have (shifted) Maxwellian at equilibrium

through diagonal drag-diffusion processes.

Although the well-known result ν ∝ v−3
T ∝ T−3/2 is recovered, the slow speed approximation delim-

its the validity regime of the Dougherty operator to v/vT ≪ 1. Dougherty pointed out that constant drag

coefficients cannot reflect the reduced collisionality for fast-moving particles [6, 9]. In other words, fast

ions in high tails cannot be correctly treated. The extent of discrepancy due to the approximation can be

observed in Figure. A.2. About 50% of the collision factor deviates near two times thermal speed ∼ 2vT

and the difference is getting significantly larger in higher speed of tails.

Under the strong magnetic field assumption, the cylindrical coordinates (v∥,v⊥) with a symmetry in

the gyroangle vθ is a natural choice, where v∥ and v⊥ are velocity components parallel and perpendicular

39



Figure A.2: Ratio of exact to asymptotic values as x → 0 (i.e., v → 0) for F1(x)+ 3F2(x), described in

Eq. (A.17)

to local magnetic field, respectively. Eq. (A.8) in the cylindrical coordinate can be explicitly written as

Cab( fa) =C( fa, fb,M)
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∂v∥
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. (A.22)

where v=v∥+v⊥, v′∥= v∥−U∥,b, v′=
√

v′2∥ + v2
⊥ and x= v′/(

√
2vTb). Here, ν̄ab is defined as nbΓab/{3(2π)3/2v3

Tb
}

and U∥,b is the parallel fluid velocity of the species b. Note that this equation retains cross-diffusion terms

as well as diagonal diffusion terms of the Dougherty operator. In addition, pulling out the mass ratio fac-

tor ma/mb from the dragging term explicitly reveals that standard deviation of Maxwellian at equilibrium

(i.e., Ta = Tb) depends on mass of the incident species rather than the target species. Furthermore, the

Γabma/mb ∝ 1/(mamb) factor gets symmetry with respect to species. Toward the Dougherty operator,

taking slow speed limit where x ≪ 1 yields

Cab( fa) =C( fa, fb,M)

= ν̄ab

[
∂

∂v∥

{
ma

mb
v′∥ fa + v2

Tb

∂ fa

∂v∥

}
+

1
v⊥

∂

∂v⊥
v⊥

{
ma

mb
v⊥ fa + v2

Tb

∂ fa

∂v⊥

}]
, (A.23)

where cross diffusion terms are ordered out because F2(x) is O
(
x2
)

smaller than F1(x).
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B Removal of the third order derivatives from the weighted equation

With the coefficients of the RMJ collision operator, V[ j,k] of the weighted equation, i.e., Eq. (74), contains

the third order derivatives of g. To improve the numerical convergence, it is beneficial to replace the third

order derivatives of g with the first order derivatives of h. With αi for the RMJ collision operator, Eq.

(74) can be written as

V[ j,k] (W ) = Γ

∫
Ω[ j,k]

d⃗z
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∂v∥
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∂v∥

+
1

J

∂

∂v∥

(
∂W
∂v∥

∂ 2g
∂v2

∥
J

)
+

B0

B
1
u

∂

∂u

(
∂W
∂v∥

∂ 2g
∂v∥∂u

u
)

+
B0

B
∂W
∂u

∂h
∂u

+
B2

0
B2

1
u

∂

∂u

(
∂W
∂u

∂ 2g
∂u2 u

)
+

B0

B
1

J

∂
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J

)]
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= Γ
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where

C1 ≡
B0

B
1
u

∂ 2g
∂v∥∂u

+
B0

B
∂ 3g

∂v∥∂ 2u
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,
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B
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∂v2

∥∂u
+
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B
1
u

∂ 2g
∂u2 . (B.2)

From Eq. (73), ∂h/∂v∥ and ∂h/∂u are given as

∂h
∂v∥

=
B0

B
1
u
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B
1
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∂u2 −
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B
1
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∂g
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. (B.3)

With Eq. (B.3), Eq. (B.2) can be rewritten as

C1 =
∂h
∂v∥

,

C2 =
∂h
∂u

+
B0

B
1
u2

∂g
∂u

. (B.4)

If we substitute Eq. (B.4) into Eq. (B.1), we obtain

V[ j,k] (W ) = Γ

∫
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which does not contain the third order derivatives of g, as desired.
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