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Abstract

A gyroaveraged nonlinear collision operator is formulated based on the Fokker-Planck operator in the
Rosenbluth-MacDonald-Judd (RMJ) potential form and implemented for the gyrokinetic simulations
with the discontinuous Galerkin scheme. The divergence structure of the original RMJ form is carefully
preserved throughout the formulation to guarantee the density conservation while neglecting the finite
Larmor radius effect. The B-spline finite element method is used to calculate the Rosenbluth potentials
for the nonlinear collision operator. In addition to the nonlinear collision operator, linear and Dougherty
collision models are also implemented to assess the benefits and drawbacks of each model. For the
conservation of the parallel momentum and energy, we adopt a simple advection-diffusion model which
numerically enforces the conservation of physical quantities. From bump-on-tail relaxation tests, the
monotonically increasing entropy in time and conservation properties are demonstrated for the developed
collision operator. Also, a few theoretical predictions for the neoclassical physics such as the neoclassical
heat flux, poloidal flow and collisional damping of zonal flow are successfully reproduced by numerical

simulations.



WUMNisT
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY



II

I

v

Contents

Introduction . . . . . . . ... 1
1.1 Backgrounds . . . . . ... 2
1.2 Motivation and objective . . . . . . .. ... oL 6
1.3 Thesisoutline . . . . . . . . . ... 7
Numerical method . . . . . . . . .. L 8
2.1 The gyroaveraged RMJ collision operator . . . . . . .. .. ... ... ..... 8
2.2 The weight evolution equations with DG basis . . . . . ... ... ... .... 10
2.3 Conservation of physical quantities . . . . . ... ... ... .......... 14
2.4 FEM solver for the Rosenbluth potential . . . . . . . .. ... ... ....... 18
Numerical properties of the developed model . . . . .. ... ... ... ........ 21
3.1 Numerical convergence test with the initially loaded Maxwellian distribution
function . . . . . . . L 21
3.2 Relaxation of the bump-on-tail distribution . . . . . .. ... ... ... .... 23
33 Anisotropic temperature relaxation . . . . . . ... ... 26
Verifications of the implemented collision modules . . . . . .. ... ... ....... 28
4.1 Neoclassical radial heat diffusivity . . . . . . .. ... ... ... ... . .... 29
4.2 Neoclassical poloidal flow . . . . . ... ... ... . . oL 30

4.3 Damping of residual potential . . . . . .. ... ... ... ... ........ 32



4.4 Collisional effects on GAM frequency and dampingrates . . . . . . .. ... .. 32

Vo Conclusion . . . . . .. e e e 35
A Relations between introduced collision operators . . . . . . . ... ... ... ..... 37
B Removal of the third order derivatives from the weighted equation . . . . . . ... . .. 41
References . . . . . . . . . o e 42

Acknowledgements . . . . . . . ... L L e 45



10

11

List of Figures

Schematic of a tokamak geometry [20]. . . . . . . . . . . ... .. ... ... ... 4
Single mesh cell QU4) in the phase space. . . . . . ... ... ... ... ... ..... 11

The residual of C(fy) with varying grid sizes. Av is the grid size of each velocity cell

for both of V| and u directions. . . . . . . . .. e e e 22

Relaxation of the bump-on-tail distribution function f with the nonlinear collision oper-

ator. All graphsare plottedatu=0. . . . ... ... ... ... . ... . ... . ..., 24

The evolution of (a) the maximum of negative f and (b) the normalized entropy differ-

ence AS. Here, Spisdefinedas S(r=0). . . . . ... ... .. ... ... . ... ... 24

Time evolution of (a) the density ny, (b) the parallel mean velocity U y, and (c) tem-

perature Tiy. . . . . o . e e e e e e e e e e 25
Temperature relaxation of each case with respect tothe time. . . . . . . ... ... ... 26

(a) A mesh in the configuration space and (b) the safety factor profile used for the veri-

fication. . . . . . . L e 28
(a): Ion temperature profile. (b): Ion density profileat v, =1.0. . . . . . ... ... ... 29

Comparison of the heat diffusivity at € = 0.1725 among numerical collision results and
theory. (O(red): the Dougherty operator, /A(yellow): the test particle operator, x (purple):
the linearized operator, [1(Green): the nonlinear collision operator, and —(a blue solid

line) : the Chang-Hinton formula . . . . . . .. ... .. ... ... ... ... .... 30

Comparison of the parallel flow coefficient at € = 0.1725 among numerical collision
results and theory. () (red): the Dougherty operator, /A (yellow): the test particle operator,
X (purple): the linearized operator, LI(Green): the nonlinear collision operator, and —(a

blue solid line) : the Sauter formula. . . . . . . . ... ... ... .. ... ....... 31



12

13

14

A.l

A2

Damping of residual potential at v, =0.1. . . . . .. ... ... .. .. 0oL,

Comparison of the real frequency (@gap) of GAM from simulations with the nonlinear
collision operator and the analytic formula. vy is defined as VRy/vy. (O(blue): ¢ = 1.4,
Cl(magenta): g = 3.0, A(red): g = 5.0, and —(a black solid line) : the analytic formula,
Eq. (98) [55]. Filled symbols represent values from the analytic formula Eq. (100) for
vy =0-cases [57,58]. . . . .. e

(a) the total damping rate (Ygan) of GAM as a function of the normalized collisionality
vy and (b) the change of damping rate Ay = y(vy) — y(vy =0). vy is defined as VR /vr.
O(blue): g = 1.4, O(magenta): g = 3.0, A(red): ¢ = 5.0, and —(a black solid line) :
the analytic formula, Eq. (99) [55]. Filled symbols represent values from the analytic
formula Eq. (101) for vy =0cases [57,58]. . . . . . . . . . . . . . .

Global behavior of Fi(x), 3F3(x) and theirsum . . . . . . ... ... ... .......

Ratio of exact to asymptotic values as x — 0 (i.e., v — 0) for Fj(x) + 3F,(x), described
inEq. (A17) . ..

31

34



List of Tables

Coefficients o; of Eq. (21) for each collision model. The detailed derivation for this table
isgivenin A. . . . ... e e e e e
Basis functions and their domain for f y =, f [[,j =/ and ﬂ[‘{/’k]. ............
Distribution of computing time for each collision model. Numbers without parentheses
represents the [N, ,N,| = [20,10] case and numbers inside parentheses are results with
[Ny, Nu] = [60,30]. The unit of time is normalized by the total computing time of the
Dougherty collision model with [N, ,N,] =[20,10]. . . ... ...............
The maximum time step Atpn,x from analytical estimation of Eq. (92) and anisotropic
temperature relaxation simulations when Av) = Au = 0.5v7 and max(|v|) = max(u) =

SVT. .............................................

Exponential fitting of residual potential behavior . . . . . ... .. ... ... ... ..



I Introduction

Coulomb collisions are one of the fundamental processes in magnetically confined plasmas. Governing
the classical and neoclassical physics of the confined plasmas, they also affect the anomalous transports
driven by micro-turbulences. As an essential ingredient for the physics of magnetized plasmas, Coulomb
collisions are described by Fokker-Planck operators. Basically, the description and formulation of the op-
erators rely on the characteristics of small angle scatterings. The formulation of the Coulomb collisions
has been developed in mathematically two different ways: 1) an integro-differential form by Landau [1]
and 2) a form with potentials by Rosenbluth, MacDonald, and Judd (RMJ) [2]. As dictated by physics,
the operators obey the H-theorem and also the conservations of mass, momentum, and energy.

Due to intractable nonlinearity of their original forms, however, approximated operators have been
developed in a few limiting cases of practical interests. One of widely used operators in practice is a
linearized collision operator developed under an assumption that probability distribution function f is
close to the Maxwellian distribution function fj; such that f = fy; + 8 f, where o f/fyy < 1. In deriv-
ing the linearized operators, it is important to make the operators analytically and numerically tractable
while retaining correct physical properties, i.e., the conservations of mass, momentum, and energy, and
the observance of the H-theorem which means the second law of thermodynamics. Starting from the
truncation of higher order terms ~ O(1/InA) [3] in the nonlinear Fokker-Planck operator, which cor-
responds to ~ 1/18 ~ 5.6% in conventional tokamak plasma, various physical arguments are applied
during the derivations. Here, In A denotes a Coulomb logarithm.

A variety of approximated collision operators have been developed along with continuing improve-
ment efforts - BGK operator [4], Lorentz operator, Lenard-Bernstein [5] or Dougherty operator [6],
Lenard-Balescu operator [7, 8], Hirshman-Sigmar operator [9], Abel operator [10] and Sugama opera-
tors [11, 12]. One way to approximate the nonlinear Fokker-Planck collision operator is linearization,
which splits the operator into a test particle collision part and a field particle collision part. The con-
servation for the linearized collision operator can be proved by self-adjointness property [3]. Due to
computational complexity, the field particle part is frequently ignored in practice. To preserve conserva-
tion property of the collision operator in the absence of the field particle part, free parameters are often
introduced with additional constraints, through which the conservations are enforced. The Hirshman-
Sigmar, Abel, and Sugama operators were derived following this approach. Also, we can reduce the
linearized collision operator to the Dougherty operator as shown in Appendix A by retaining only the
test particle part of the linearized collision operator in the small speed limit v/v7, — 0 and consequently
neglecting cross-diffusion terms. Here v and vz, = \/W are speed and thermal speed for species s,
respectively. Due to the approximation, it was pointed out that the friction of the operator for high energy

particles increases with velocity [6,9].



1.1 Backgrounds
1.1.1 Fusion concept

Currently, several countries including Korea, Japan and the European Union are aiming for carbon neu-
trality by 2050 to cope with climate change [13]. To this end, global energy consumption continues
to increase despite the need to reduce fossil fuels. Therefore, an eco-friendly energy source is needed
while satisfying this energy demand. It is expected that fusion power generation can play an important
role here. Of course, there are already base power source called nuclear power and eco-friendly renew-
able energy sources such as solar and wind power. Nevertheless, the reasons for achieving fusion power
generation are as follows. First, fission has the problem of storing spent nuclear fuel and the risk of
meltdown. Next, renewable energy is less sustainable because it is influenced by nature, or weather. On
the other hand, in the case of fusion, there is a problem that neutrons generated by fusion reactions acti-
vate wall materials, but it can be minimized by selecting appropriate materials. In addition, deuterium,
the main material of nuclear fusion, can be extracted from the sea, and tritium can be extracted from
lithium, although it does not exist in a natural state. Therefore, fusion has clear advantages over fission
and renewable energy.
The fusion method currently being targeted in the first generation nuclear fusion reactor is a Deuterium-

Tritium reaction, and the tritium is radioactive, but it is not a problem unlike that of fission because the

half-life is short and only a small amount is used [14]. The reaction formula is as follows.

B2 4 B — ,He* + jn' +17.6MeV (1)

where 1H2 (or D) is the nucleus of deuterium atom called a deuteron, 1H3 (or T) is the nucleus of tritium
atom called a triton, zHe4 (or just ) is the nucleus of helium atom and 0n1 (or just n) is the neutron.
Here, o has 3.5 MeV and n has 14.1 MeV, respectively. Tritium extraction from lithium for the D-T

reaction is possible with the following reaction.

;Li® +-n(slow) — a + T+ 4.8MeV, Q)
;Li’ +n(fast) — a+T+n—2.5MeV. 3)

Naturally, there are 7.4% of ;Li® and 92.6% of ;Li’, but since ;Li® reaction is easier, the reaction with
3Li6 is dominant [15]. Neutron multiplication methods are also needed to prepare for neutron losses that
may occur for any reason in fusion process. This is possible by reaction with beryllium or lead and more

suitable one is beryllium with the reaction equation as [16]
n+Be — 2n+2He* — 1.8MeV. 4

Various conditions are required for fusion reactions, typically temperature, confinement time and
density [17]. A very high temperature is required to overcome the repulsive force between atomic nu-
clei. For the DT reaction, a temperature of approximately 10keV or higher is required. Paradoxically,

as the temperature rises, the collision rate decreases because of shorter interaction time, and to solve



this problem, many atoms in the plasma state need to be confined for a long time. There are two typical
confinement methods: Magnetic and Inertial confinement. Here, the concept of a magentic confinement
device tokamak used in International Thermonuclear Experimental Reactor(ITER) and Korea Supercon-
ducting Tokamak Advanced Research(KSTAR) will be described.

The principle of magnetic confinement is as follows. Charged particles obey the Lorentz force F' =
q(E+v x B) where F is the electromagnetic force, ¢ is the charge, E is the electric field, v is the
velocity and B is the magnetic field. The idea of magnetic confinement can be found in the second term
of the right hand side. Charged particles under a magnetic field are free in a direction parallel to the
magnetic field, but are not free in a vertical direction and move in a circle around the magnetic field. The
radius of the circle formed at this time is called Larmor radius and is represented by r;, = % with mass
m and velocity perpendicular to B, v, . Therefore, under a magnetic field, charged particles perform
helical motion around a line of force. Here, to prevent the loss of particles in a direction parallel to the
field line, it is the torus-shaped tokamak that connects both ends of the field line.

In the case of the tokamak, the TF(Toroidal Field) coil existing outside creates a magnetic field in the

toroidal direction. However, a problem caused by the bent magnetic field occurs, which is a curvature

2
™I R.xB
q R2B?

curvature. In addition, the toroidal magnetic field(Br), which decreases as it becomes farther from the

BxVB
B2

plus sign for ion and minus sign for electron. In this way, both drifts cause charge separation between

electrons and ions, and the electric field generated at this time generates F x B drift vg = Eng

pushes the plasma outward. This problem can be resolved by creating a poloidal magnetic field(Bp). The

drift vg =

where v is the velocity parallel to the B and R, is the radius of the center of

with

center, has a gradient in the center direction, which generates a VB drift vyg = i%v LT

and

charges move along the poloidal direction and then the separated charges are mixed again. The method of
making a poloidal magnetic field is possible by electromagnetic induction between the tokamak-centered
solenoid and plasma, that is, Faraday’s law. The plasma has an electric current and this current creates a
Bp. Here, the problem is that the generation of plasma current through electromagnetic induction, i.e.,
the generation of Bp, is pulsed operation. Steady operation is required to serve as a base power source
and this can be achieved by the bootstrap current generated by plasma itself by the pressure gradient of
plasma [18, 19]. Despite the presence of Bp, there is a problem that plasma tries to go outside due to
internal pressure. To resolve this, additional external vertical field coils are used to suppress the internal
plasma pressure by the I x B, force and it also adjusts the shape of the plasma. Fig. 1 helps to visually
understand the explanation so far. Finally, the heating method of the plasma will be described.

First, there is an ohmic heating. It is a heating method using the resistance generated when a current
flows through the plasma to create a poloidal magnetic field. However, as the temperature increases, the
resistance decreases, so the heating resulting from this is limited to about 1keV. Therefore, additional
heating methods such as Neutral Beam Injection(NBI) heating and Radio Frequency(RF) heating are
required for a temperature of 10keV or higher. NBI heating is that neutralizes the accelerated ions using
voltage differences and shoots them into the tokamak, and the plasma heats up as these neutral particles
collide with the internal plasma particles. RF heating is a method using a resonance phenomenon, and

the wave emitted from outside using an antenna heats up the plasma at a region equal to the frequency
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Figure 1: Schematic of a tokamak geometry [20].

of the internal plasma which is @ = %.

1.1.2 Collisional transport

Despite various efforts to confine plasma using magnetic fields, the diffusion of particles and heat takes
place in tokamak. There are three main transports: classical, neoclassical and anomalous. It is known
that the first two are caused by collisions and the last by turbulence.

First, consider a fully ionized plasma in a straight magnetic field, where the transport of particles

and heat can be expressed by the following equations.

I'=—DVn :Fick’s law ®)]

q = —xVT :Fourier’s law (6)

where I is the particle flux, D is the diffusion coefficient, Vn is the density gradient, q is the heat flux,

Kk is the heat conductivity and VT is the temperature gradient. Collisional transports can be described as
(Ax)
T

2
a random walk argument such as D ~ “—~. Here, Ax is the step length and 7 is the time taken the step

length. In this case, each coefficient has the following relationship [3]

2 2
¥ nr

D ~2x Kk ~—ft=n 7

L~5 L~ XL )

where 7 is the collision time and ) is the heat diffusivity across the magnetic field. We can divide the
collision between particles into two cases which are the like-particle collision and the unlike-particle
collision. First, like-particle collision do not cause particle transport because collisions between the
same species do not change the center of the guiding centers. When a collision occurs between unlike-

particles, the particle transport rates of ions and electrons are the same due to the ambipolarity of the

4



plasma. On the other hand, in the case of heat diffusion, it occurs even in collisions between the like-
particles. In this case, the diffusion of heat by the ion-ion collision is the greatest, due to the difference in
mass between ions and electrons. Classically, D is inversely proportional to the square of the magnetic

field, but according to actual experimental results, D is inversely proportional to the magnetic field.

This is called Bohm diffusion and is expressed as D | = % 121? = Dp where K is the Boltzmann constant.

There are three main causes of this: the possibility of magnetic field errors, the possibility of asymmetric

electric fields and the possibility of oscillating electric fields arising from unstable plasma waves [21].
Now let’s think about tokamak, which is our interest, the structure where the magnetic field is bent.
Inevitably, the inner magnetic field becomes stronger than the outer one, which blocks the movement of
particles like a magnetic mirror device. The particles fail to circle in the poloidal direction and draw a
new orbit, which is called the banana orbit. Its characteristic length is called the banana width, dr, ~
pp\/€ where p, = % and € = r/R is the inverse aspect ratio with r is the minor radius and R is the
major radius. B, is usually ten times smaller than B, so D is increased than classical one by our random

walk argument and so is x| , and this is the neoclassical transport.

1.1.3 Discontinuous Galerkin method

The discontinuous Galerkin(DG) method is one of numerical methods to solve differential equations and
it can be thought as the combination of finite element method(FEM) and finite volume method(FVM).
DG method has some advantages compared to well known numerical methods such as finite difference
method(FDM), FVM and FEM. DG method is suitable for complex geometry unlike FDM, it has high-
order accuracy and hp-adaptivity contrary to FVM and explicit semi-discrete form in contrast to FEM.
Also, of course, it satisfies conservation laws and can be used for elliptic problems like other methods
[22] and can easily handle irregular meshes [23]. As the name suggests, the difference from continuous
Galerkin method is that DG can have discontinuous basis functions for each element. A simple example
follows for reader’s understanding from [22,24].

Consider a 1D wave equation

du n af(u)

ot ox

=0 on Q (8)

1

where f(u) = cu, Q ~ Q) = |Jy_, D is the domain and D¥ = [x"*% ,x’”f} is the kth element. Also, we

can approximate the solution u as follows

N
u(x,t) >~ up(x,t) @ul}‘l )
k=1

NP
xeDb up(x (x5 1)1 (x (10)
i=1
where @@ means the direct sum, N, is the local grid points and I¥(x) is the Lagrange interpolating

polynomial. Multiplying a test function w(x) to the Eq. (8) and integrating it over an element, we can



get the following equation.

du df(u) B
/( at+ " )dx-(). 11

Integrating the above equation by parts and substituting the approximate solution, it becomes

/ whaa idx . aav:1f(ulfl)dx—f(uﬁ <xk+%,t)>> Wy <xk_+£> —i—f(uﬁ (xk*%,t))> wy, < k= 2) )

(12)

Here, - and + mean left and right limits, respectively. Since DG allows discontinuity between elements,

it is necessary to uniquely determine the flux at the boundary. The numerical flux, f, is defined as

A A 1
f (u’;l (xk+% J))) =f <uﬁ <xk+2 ,t)) uk <x]f2 t)) > Usually, the upwind flux is chosen. In the case

of linear flux, the upwind flux is

o ca, ifc>0
fla,b) = (13)
ch, ifc<O0.

From this, we can construct matrix equation and obtain the solution. To do that, we set w;, = lf and use
Eq. (10) to Eq. (12). Then Eq. (12) becomes

M l"auhf;fk s - | ekt SLav=7 (uh (++.0) ) 1 <xk*5)

dx
4_]?(”;‘[(); )) < ) where i,j=1,2,---,N,. (14)

k
7/

1.2 Motivation and objective

For a whole device modeling (WDM) of tokamaks, however, it is very important to implement the non-
linear collision operator because the probability distributions in the edge and scrape-off region deviate
far from Maxwellian, i.e., the key assumption used in the derivation of the linearized collision operators
is no longer valid. There have been dedicated numerical works to solve multi-dimensional nonlinear
Fokker-Planck equation for fusion plasma in the Landau form and the RMJ form. The RMJ form was
employed by Chacén et al. [25,26] and Taitano et al. [27] using finite volume methods and by Pataki
et al. using a spectral method [28]. The numerical works discretizing the Landau form include a finite
volume method used by Yoon et al. [29] and Hager et al. [30] and a finite element method by Hirvijoki et
al. [31]. Also, recent works by Francisquez et al. [32] and Hakim et al. [33] employ the Dougherty oper-
ator using a discontinuous Galerkin (DG) method. At the time of peer review processes, we have noticed
that T. Shiroto et al. [34] published an article about RMJ form of the nonlinear Fokker-Planck operator
using a DG method for evolution of an isotropic probability distribution function and Rosenbluth po-
tentials. Since an exhaustive review on all past works related to collision implementation is not in the
scope of this thesis, there are other important researches we couldn’t mention here for the non-isotropic

probability distribution function.



In applying DG methods, there have been growing interests for gyrokinetic whole device model-
ing of tokamak [33, 35]. DG methods provide many advantages in the gyrokinetic WDM of tokamak
plasma. Just listing a few, the methods allow a flexible choice of basis functions to represent numerical
solutions, which can exhibit vastly different behaviors depending on simulation region. Especially, in
the edge or the scrape-off-layer (SOL) regions of the tokamak, the gradients of density or temperature
can be extremely stiff to be treated with the typical grid resolution. The usefulness of the DG method in
those stiff gradient regions is demonstrated in the previous gyrokinetic SOL simulations [33,36]. Also
allowing discontinuities of numerical solutions, the methods enable highly localized computing, which
can be exploited for an efficient parallelization of simulation. For instance, the core-to-core communi-
cation required for the equation of motions based on DG methods is limited to the local exchange of
data between neighboring grid cells, instead of the global communication which can be numerically
expensive. However, as DG methods are based on the weak form of gyrokinetic equation, terms with
derivatives higher than first order are not straightforward to deal with in standard DG methods. Careful
and consistent numerical treatments are required for the derivatives still present in the weak form. As
nonlinear Coulomb collisions are an essential ingredient in a comprehensive WDM of tokamak plasma,
it is highly desired to develop a formulation and numerical scheme for the nonlinear collisions using a
DG method.

1.3 Thesis outline

In this work, a nonlinear collision operator based on the Fokker-Planck RMJ form is formulated in
gyrokinetic variables and numerically implemented in the DG-based gyrokinetic code [35]. In addition
to the nonlinear collision operator, linear and Dougherty collision models are implemented as well to
assess the benefits and drawbacks of each model. Also, to analyze characteristics of each collision model
in tokamak geometry, a few neoclassical benchmark tests are performed.

The remainder of this thesis is organized as follows. In section II, we present the construction of the
gyro-averaged RMJ collision operator and its discretization using the DG method. Section III investi-
gates its numerical properties by comparing the newly implemented operator with the others based on
previously known formulations. Section IV shows results of neoclassical verification tests for the newly
developed DG collision module in a tokamak geometry. Lastly, conclusions and discussions are given in

the last section.



I Numerical method

2.1 The gyroaveraged RMJ collision operator

In the gyrokinetic formalism, the gyroangle is systematically eliminated with gyrokinetic coordinate
transformations. By removing the gyroangle, the total number of phase space dimensions is effectively
reduced from 6D to 5D. But, it is not trivial to construct collision operators with the finite Larmor
radius (FLR) effect and implement such operators numerically. While there are several researches about
collision models with FLR effects [11,37], a simpler model without the FLR effect is used in this work.
If we neglect the derivatives with respect to the gyroangle in the RMJ form of Fokker-Planck equation,

Eq. (A.1), the gyroaveraged RMJ operator for the self-collision of the ion species a is given as [28]

Cle) =T 9f|o [_ jvh;: ‘ 32;": ;vﬁzo 8v(|902§:l0 aavjilo]
+laa vi avalo [— (i}ivmfa + gii Vi aavi avf(agzm Vi 5 vf J : (15)
2
A AR
ha= vi aio [”" aaviaj " ?93:’ (17)

where T, = 1672 (%)zlnAM with the Coulomb logarithm InA,,. Here, Vijo» VLos Ga and m, are the
parallel velocity, the perpendicular velocity to the background magnetic field, the electric charge and the
mass of the species a, respectively. Also, &, and g, are the Rosenbluth potentials of the species a. Since
we only deal with the self-collision in this work, the species index a will be omitted in the rest of this
thesis.

To be implemented in the gyrokinetic simulations, Eq. (15) needs to be transformed from the original
coordinate (¥,7,) to a set of gyrokinetic variables 7 = (X ,v||,u) [38]. Here, X and V, are the position
and the velocity vectors of particles. On the other hand, X is a position vector of the gyrocenter and
v is a parallel velocity of the gyrocenter. Also, u is defined as \/W where  and By are the
magnetic moment of the gyrocenter and the equilibrium magnetic field at the magnetic axis of tokamak
geometry, respectively. Since du/dt o< du/dt = 0 in the Vlasov part of the gyrokinetic equation, u is
a natural choice for the velocity coordinate of the gyrokinetic simulation. With this set of variables,
the phase space volume dxdv, is expressed as (27 /BO)BT‘udZ, where Bﬁ =b- [B—i— %vHV X 13] with
the equilibrium magnetic field B and d7Z = dXd v|du. Here, b is the unit vector along the equilibrium
field and c is the speed of light. BH is the Jacobian of the velocity space, i.e., the density of the phase-
space volume element for the gyrokinetic coordinate. In the lowest order of the gyrokinetic ordering, v,

and v, , are approximated as v and u\/B/B, respectively. From Eq. (15) with this approximation, the



collisional change of (By/2m) fdXdV, can be written as

iaf(;;%)dfdvo =C <f ()?,VH,M>) Bﬁudz (18)

2 2
NruBl(;i [( oh agaf+B° i af)]dz
H

“aw’ T a2 av " B 9vjdu du

+FB|IZO§ K—gzuﬁgﬁ ?%*aigu”jvj,c)]dz (1>
= [T uBj (‘aavhﬁ* avg aaj; +§;Oaizégu§£>] “

+§ {FBI (‘B;gZ”f Bgogz‘g Ijaogf @Oaglzggf)]dz

T INEYICIPE N

Note that Eq. (20) is not in a divergence form in the phase space due to the last term which is propor-

tional to (vr/Bo) (83* / 8VH) In this work, the last term of Eq. (20) is neglected with the assumption

of negligible FLR effects, i.e., (vr/By) (8B*/8vn) ~ (vrmc) / (BogRo) = p/Ry < 1, where p is the
gyroradius and Ry is the major radius of tokamak geometry. With this approximation, Eq. (20) can be

written as

v o g= J * af af -
C(f (X,VH,M))BHMdZN aivH |:MB| < (le-l-OCza H +ajau>:| dZ

J * 0 af af -
o [MB ( o3 f+ 0y — B ou Gavlﬂ dz, (21)

— 1B 92 By 9> _ By 9? .
where o = Fg‘f’” 03 Fé’gz,a =I5 §,(x —FB"3§,055:056 FBOava;u are introduced for nota-
tional simplicity. Although Eq. (21) is an approxmlated form, two important properties of the original

RMJ operator are retained as follows.

1. The divergence form of the original RMJ operator is preserved. This is consistent to the previous
work which shows that the linearlized collision operator in the gyrokinetic coordinate can be
written in a divergence form when the FLR effect is neglected [39]. The numerical conservation

of gyrocenter density can be guaranteed more straightforwardly due to this property.
2. C(fu) =0 when fy is the Maxwellian distribution function defined as

2
" __exp |- (v —U)) +u’B/By
2r)/2 P 22 ’

fu= (22)

where n and U, are the density and the parallel fluid velocity, respectively.

In addition to the RMJ operator, two simpler models (i.e., the test particle collision and Dougherty
model) are also implemented for comparison. The detailed derivation of those models from the RMJ

operator is given in A. While the specific expressions for the coefficients ¢; are different for each model,



RMJ model Test particle collision Dougherty model

oh 3% -

aw  Tg —Vas (R43R) (v =U) —v(y-U)
2

g 5 3y 3(v=U)) o2
o FaTﬁ Ve T <F1 + P P A%
o Thd VI (F +3R)u —Vu

2 _3 2 2 —

oy ries % ‘g;T (F1 + zigx“%Fg) 2

By 9%g NNz
as. 06 TRgs  Vigshu (v —U)) 0

Table 1: Coefficients o; of Eq. (21) for each collision model. The detailed derivation for this table is

given in A.

all of operators share the same functional form of Eq. (21). Table 1 summarizes the coefficients for each

collision model. Here, x, F], F; and the collision frequency V are defined as

(v ~U})* +u2B/Bo

2v2. ’ (3)
Fi(x) = xde;fjfx) + (22— Derf(x), (24)
F(x) = (1 — §x2> erf(x) —xdecr;;(x) , (25)
4
V= 3(2:)5/2@ - 4\/23223TIHA’ 20
where erf(x) = % I e~ dt is the error function.

2.2 The weight evolution equations with DG basis

To be used in DG gyrokinetic simulations, collision operators need to be discretized with the DG basis.
While the DG formulation for the Dougherty operator is derived in [32], the generalized version for the
RMIJ operator is presented in this section. Although Eq. (21) can be discretized on any specific geometry,
we only consider the toroidally axisymmetric configuration of tokamak geometry in this work. The
cylindrical coordinate X = (R,Z, ¢) is used, where ¢ is an ignorable variable since the axisymmetry
is assumed in the toroidal direction. A poloidal plane in the (R,Z) space is used as the spatial domain
which is partitioned with the unstructured triangular mesh. Since the collision operator approximated as
Eq. (21) does not induce any flux in the spatial direction of the phase space, the numerical operation for
the collision can be performed separately on each spatial cell. Therefore, we formulate the discretization
of the collision operator for a single spatial cell 2, which has a triangular shape in the (R, Z) space. For

the velocity space, the following rectangular domain €, is used.
Q, = {(VH,M) V||, min < Y < VH,maXaO <u< umax}- (27)

This velocity domain Q, is divided with N"H X N, rectangular mesh, where Nv” and N, are numbers of

cells in the respective directions. Correspondingly, the total phase space Q = Q, x €, is partitioned with

10



QA defined as the Cartesian product Q, x Vi ji=j=15V||,j=j] X [Wpr=k—1,up—]. Here, j € {1,--- ’NVH}
and k € {1,---,N,} are cell indices for v and u directions, respectively. On the other hand, ;' and k' are
exclusively used as indices of vertices for v| and u directions. Also, v » and uy are the velocity values

at vertices and defined as

V| max = V||,min

V|I.j = V|min + NvH J > (28)
Umax ,
uy = —k'. 29
Y (29)
The structure of the single mesh cell QU4 is shown in Fig. 2.
(”u,j’=j—1-uk'=k) (Vll.j’:jvuk’:k)
(R2,Z2)
(Rll Zl)
(Ro, Zo)
(V7 =jm1 Ui’ =re=1) (V7> ' =re—1)

Figure 2: Single mesh cell QUA in the phase space.

In this work, we employ piecewise continuous quadratic polynomials as DG basis functions to rep-

resent f in Eq. (21). The corresponding basis function space for QUA ig given as

Vv, = { gLkl . gl

ain € P2, (30)

where Pp = {Rllzlzvl"ful4 chi+ 1 <2,03+14 <2,1; € Z>0} and Zx is a set of non-negative integers.
With Eq. (30), f can be approximated as

Z 11 G 31

U (2 1 Zf, (3, (32)

where 7 = (X ,V|;4). When we multiply Eq. (21) by an arbitrary function W (Z) and take [o;. X, the

following equation is obtained.

/Q[M’] az (MBW) WC(f) = e T an

_ 9 af af
= _ dZWTvH [/( OC1f—|—O£2a |+Ot5au>]

QUi
: P Bodf  of
s (a2 W) oy

11



where d7 = ddeHdu dX = 2nRdRAZ, and J = uB* If we integrate Eq. (33) by parts

j
/Q ﬁjan / dXdu[W/( Oﬂlf—l—Otzaf—l—O@gi)}

J=

> oaf
+ U dXdVH Wf( O£3f+OC4B a aVH

ow [ af  af
_ d TVH _/ (—(le+a2av|+a5(9u>:|

[ B
_ dZ on _/ <—(X3f—|—Ot4Bau—|—a(,av|>]

and do again and then apply Eq. (31), the weighted equation is obtained as

v g I e Kk |
/gm v Z[S[vf"k](w)} +{SL’“(W)} + VU (W), (34)

J'=j-1 K'=k—1

where we define the following functions:

Uy d ow
siowy= [ ax [ du[ {—Wa1f+Wazaf— zf—a6f}] )
Uy ——1 Vi V=V
-y - [VI./=i B 8f ow BO ow
si*! (w z/ ax [ 4 [ { —Wasf+W-La H . (36
(W) 0 h Vi osf+ - asf — v, ——0s5f . (36)
: ow 1 0 (oW 10 (oW
[/ K] = ~ 7 (27 2 (2
veEw) _/Q[/k [8v| S v (8V| 062/) + udu <8V| Ot5u>
oW 19 (oW By\ 1 9 [ow "
+au°‘3+m<a “p ) 7o, (au%/)]/ffl | GD

VU represents the volume integration term and can be evaluated by using quadrature rules. S[VH 4 and

SLJ I are surface integration terms at fixed v = v  and u = uy, respectively. For the calculation of
those surface terms, we mainly follow the method presented in [32] with some minor changes. For
completeness, models used in this work for calculation of surface terms are presented in the rest of
this section. Although f; is discontinuous at the boundaries between cells, single-valued functions are
required for these surface terms to conserve physical quantities. While there is no single definite way to
construct such a single-valued flux, how to model the flux is related to the numerical instability due to the
local negativity of f,;. In the DG formalism, it is not trivial to remove the local negativity completely [40].
Also, the local negativity does not necessarily lead to the numerical instability [36]. In [32], it was shown
that the upwind flux is effective to maintain the low level of the local negativity and enable numerically
stable simulations with Dougherty operator. Therefore, we approximate the advection parts (o< ¢, 03)
of surface terms with the upwind flux. The effectiveness of the upwind flux for controlling the negativity
in simulations with the nonlinear RMJ collision operator is more discussed in section 3.2. The diffusion
parts (o< 0, 04, 05, and o) of surface terms are evaluated with the continuous probability distribution

function reconstructed from f; of two adjacent cells. More specifically, S,[,J‘.‘l’k] is approximated as the

12



Basis functions Domain in the velocity space

J=J' K] 2 2
fi G &V x {1y u v’y vy iy S v <y
Jj=j'+1k 2 2
fég ] CzEVXX{I,vH,u,vH,vHu,u} V|
7 2 .3 4

< v < V|, j'=

J=i = J+1

f[/ K]

03 o oo Vl=iet SV S V=i
U, V||, VU, ViU U VU™, ViU }

Table 2: Basis functions and their domain for f; =74, fc[lj:jur] * and fv[ﬁ o

following model function :

74 ¢
sty ~ [ ax

Uy

du |:/ { Walfv” Jup +W(X2G1[;H g

ow ow i
- (aa2 + a“6> R/ H . (38)
VH u V”:VH /

In Eq. (38), different sets of definition for ( fv‘f Ml;],,FV[H’ o GLJH H) are used for the inner boundaries

and the outermost boundaries, as follows.

Uyl —j—1

1. At the inner boundaries between two cells (i.e., 0 < j < NVH) :

-/
fv[ﬁ 7;,];], represents the upwind flux which is given as

[ .:. ./7k] 1
. fd™ if Ot [y =y, <O,
T =\ pan &)
fd ’ lf a] ’VH:VHAJ-I Z 0'

Fv[{’k] stands for the higher-order polynomial fv[f/’k] which is differentiable with respect to v at
v = v}, In this work, fv[ﬁ "M is reconstructed from f égj =/ and f y AR by the L, minimization
on the interval [VH J=j—1V||,j= j+1] The maximal-order recovery polynomial [32] is used for the
basis of fVH I Basis functions for fi =7 s S =7*14 and fv[ﬁ 4 are shown in Table 2, where Vy is
the set of spatial basis functions, i.e., {R’lle ch 4+ 1 <2,1; € Z>o}. Coefficients for fv[{’k} can be
evaluated from

N le/:k va’:' 1 i
/Q dx du/ Ty g G (£ )] <o, (40)

U=k—1 V=)

where (; is a basis function for fv[(’k] with 1 <[ < 12. More detailed information about this

reconstruction can be found in [32]. Also, G[VJ‘.‘/’k] is defined as d fv[‘{,’k] / 8vH.

2. At the outermost boundaries (i.e., j/ = 0 or NVH) :

fv[ﬁ 7;,k,], and G[vj” | are set to zero, which effectively prevents any net particle flux across the outer-

most boundaries as shown in the subsection 2.3. On the other hand, unphysical accumulation of
particles is observed when F"[H] # are set to zero at the outermost boundaries. To avoid this numer-

. '/:NV ,k ':Nv 7k
ical difficulty, we use F"[H] =04 _ [[,]_l’k] and Fv[( A fg[lj 0

, as done in [32]. Even though
those terms do not affect the net particle conservation, they can induce the finite momentum and

energy flux across the outermost boundaries.

13



Similarly, SLj 1 i approximated as

S[ / dX/ W dV||: { W(X3fuju];] %O&;GE/’M
VlI.i'=j-1
ow Bo ow K]
s | F , 41
< 8u B 04+ 8v” 065) ( )
U=y

where we use the following definitions:

S0 < K < N, and 03)umy, <0,
i =3 K60 < K < N, and o P (42)
0 if K =0orN,,
(f[’k] 9 F! /au) if0 < k' <N,
< Al GLJ’k’]) _ ( f[] A=1] ) if K =0, (43)
( [£f~’<=NuJ,o) if K =

Here, f, P s the higher-order polynomial reconstructed from f; U*=K] 3nd fi A=K+ o1 the interval
U= [up—p_1,Up—x+1]- If we set W = CI[J " and substitute Eq. (32) into Eq. (34), the weight evolution

equations of fAI[/ 4] (¢) is obtained as

ofs IN1/=i 17\ TK =k ‘ .
Z M fz [SLJH « (Cz[”k]ﬂ i {Sy,ﬂ (Cl[hk])} R (Gxﬂ) 7 (44
j'=j—1 kK'=k—1
where M, l[lj,’k] = [oundZ 7§ l[j 4] Cl[/j * For the temporal discretization, a third-order SSP (Strong Stability
Preserving) Runge-Kutta method [41] is used. As shown in [32], the numerical stability of DG collision
operator with SSP is strongly affected by the grid size and the order of basis functions. Numerical

estimation for the maximum time step size of Eq. (44) is given in the section 3.3.

2.3 Conservation of physical quantities

Since one of principal objectives in this work is the development of collision operators for gyrokinetic
simulations, it is important to ensure that the operators satisfies the conservation of relevant physical

variables. We focus on 3 major conserved moments given as

M=Y [ dazsfit (4$)
Tk Qlik
— = [jvk] 4
L S 1 (46)
My=Y [ dzE_g I, (47)
I Qi

14



where E is defined as %(Vﬁ +u®B/By). From these moments, the parallel fluid velocity U, | and the thermal

velocity vy can be obtained as

M,
2 (M 1
2 2 1.0

My of Eq. (45) represents the total number of particles and dMp/dt can be evaluated from Eq. (34) with

W=1as

8M0 d7 [J K s ¥ (1 J=Ny K] gy K =N
YT U B M TS ME AT W
J
= Umax [Jl k] } J‘/:NVH
= dX/ dl/l {—/alf\;“’up + fOCvaH }
Q 0 VIFVILd jr=0
) 3 K'=N,
- ||,max st st
+/ dX dv| [{_/%fgg;;wf;mcy,u} ] =0, (50)
Qy V||, min u=uyr | p1_q
since v[“f:;ﬁ],, ,,[‘{;,I;,/], G‘[’H g and GL[{ ] are set to zero at the outermost boundaries. Therefore, the particle

number conservation is satisfied with any choice of ;. The momentum conservation constraint, i.e.,

dM,; /dt = 0, can be obtained from Eq. (34) with W = v as
Z / zy? 5 |
—Z[ 0oy } N +ZV“"] (v) = (51

8M1

Similarly, the energy conservation constraint, i.e., dM,/dt = 0, can be formulated from Eq. (34) with
W =E as

8M2

Z/Q[ . Z/a E []k]
Z[SL’“ a3 } ) :V‘ +Y [si (E)K/ +ZV”‘] 0. (52)
J

Since it is not guaranteed that Eqs. (51) and (52) are automatically satisfied, additional numerical op-
erations are required for the conservation of M; and M;. In the following subsections, two numerical

conservation methods used in this work are presented.
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2.3.1 Simple advection-diffusion model

With the coefficients for the Dougherty operator in Table 1, the conservation constraints, Egs. (51) and

(52), can be written as

oM J=N, B
e Zk: S8 on) } ” +WTZ/ avH = M- UMo] =0, (53)
oM, _ [j’,k =M [j.K] N
=] e e
-2 EAWIY = §2_% 1 M| _
+VVTjZk/QUk |:V| B v :|f +2VMy |:2VT My + ZUHMO =0. (54)

If we assume that d_7 / 8vH and the outermost boundary terms can be neglected, Egs. (53) and (54) can

be simplified as
oM -
5, =V (M~ UiM] =0, (55)
8M2 _ 3 2 M, 1 M,
—2VMo | 2V - ==L Uy, —=| =0 56
ot Vo 2VT M()+2 ”M() ’ (56)

which are well satisfied if U and v2. are given as Egs. (48) and (49). But, if 9 7/ avH and the outermost
boundary terms of Eqs. (53) and (54) have finite values, additional operations are required to satisfy the
momentum and energy conservation. In [32], U | and va are redefined from Egs. (53) and (54) to satisfy
the conservation automatically. In this work, instead of modifying the definitions for U) and vZ, a simple

advection-diffusion operator L, is introduced as

df /0t =C(f)+La(f), (57

- 19 (.. af\ 19 [ Byof
Ly (f) = ﬁlB*Bv (81r) +: Bl v, <B|3v|>+u8u( B8u)] %)

Here, B and B3, are free parameters used to ensure the conservation. This kind of methods introducing

where

free parameters has been widely used for the conservation property of collision operators. For instance,
iterative conservation approaches for particle-in-cell methods and finite difference methods (FDMs) are
suggested in [42] and in [43], respectively, and references therein. In addition, a non-iterative method is
introduced in [44]. Also, a more sophisticated model including multi-species cases is developed for finite
volume methods (FVMs) in [27]. The 1st term of the right hand side (RHS) of Eq. (58) is an advection
operator in v direction and the 2nd term of RHS is a diffusion operator. Since Ly4 is in the divergence
form, the particle conservation is affected little by introducing L. With Eq. (57), the weighted equation
Eq. (34) is modified as

3W/ _ k]
Q[/k]d dt - Q[jkdwj[ ( )+L (fd" )}
_ [l ]S K] K=k i (w
- {SV” <W)L’:.i—1+ [S“ (W)]k’ —k—1 Y +Zﬁ" W ) 59
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where

j'=i
LA g [ /4 SOW i
L (W):/ dx du Wi ] +/ di— 2 f;" (60)
Al Q T { S W, p}vl—vﬂ j=jo1 JQUA ‘9VH/ ¢
r J'=ij
. o U=k
LYY w) = / dxX / du { IWGHH / . J( "}
Qx Upr ——1 V ‘ VH_VH~ ! j,:j—l
o [VI7=i k] OW Bo ik )
X S
+/Q’d VIL./=i- ldVH/ { G du B u=uy
v p=k—1
1 oW 19 (oW B, i
+ Jud me <av|f>+uau(au B )]ff | ©b
With Eq. (59), dM; /dt = 0 and dM;/dt = 0 can be written as
oM, _ k] =Ny K
S =L s o], +LVE +ZZB" Anp = ©»

/kn

rl
NS S T et e

7
2

ZZ L[’ gy =o. (63)

jkn=1

Once B and 3, are calculated from Egs. (62) and (63), the weight evolution equations are obtained from
Eq. (59) with W = ¢/ as

ZMljk] fz/ [S[VJH k]( [1/«1)}1 , 1+[ Sli¥] (CM)L/ iy

Lyl (C,“’k]) N Z BLY (lek]) (64)
n=1

Although the Dougherty model is chosen as an example in this section, the L4 operator is also employed
to ensure the conservation properties of the nonlinear collision operator in the rest of this thesis, if not

explicitly stated otherwise.

2.3.2 Linearized field particle collision model

Unlike the Dougherty model, the test particle collision does not satisfy Eqs. (51) and (52), even if
d_7 /dv| and the outermost boundary terms are neglected. This is partially because the field particle
collision part is not properly accounted for. Therefore, we implement the linearized field particle colli-
sion L for the test particle collision, as well as L4. The functional form of Lz used in this work is given
as [42,43]

3
Lr= Y %ZL[;:], (65)
n=1  jk
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where

LY = At (66)
LEy = (v =U)y 00 fita- (67)
Ly =y <¢(y) i )>f[’k] (68)
~U))*+12B/B
y= ')2v BB (69)
T

Here, ¢(y) = f Jg e '\/tdr is the Maxwellian integral. f,B’ , is the Maxwellian function discretized
with the DG basis {C I k]} and recalculated at each collision time step. Also, ¥,’s are free parameters

used to enforce the conservation, as in the case of Ls. With L, the weighted equation, Eq. (34), can be

written as
oW / k]
daz = aw [ } LEN W), 70
Qi dt Qlik 4 + Z Talr 70)
where ]LE! }( = JoundZ [W 7 LY k] From Eq. (70), the constraints for conservation are given as
follows.
‘9M1’:/ daWP/ 10 2w /[ (f f"]]+ZyL“"] ) =0 (71)
ot QUi ik T " ’
where p € {0,1,2} and [wo, w1, w2] = [1,v|,E]. Note that a constraint for the particle number conser-

vation, i.e., dMy/dt = 0, is included in Eq. (71), since L is not in the divergence form of f. Unlike
the case of L, introduced in the previous section, the enforcement of dM,/dt = 0 is important for Lp
to guarantee the numerical stability of simulations. Once ¥,’s are calculated from Eq. (71), the weight
evolution for f d[j | can be calculated from Eq. (70) with W = Cl[j o distinguish [the test particle colli-
sion + Lg] from [the test particle collision + L4 ], we refer the former as “Linearized collision operator”,

while the latter is just called as “Test particle collision operator” in the rest of this thesis.

2.4 FEM solver for the Rosenbluth potential

In this section, the method used to calculate the Rosenbluth potentials is presented. With (VHU,V Lo) ~
(VH S U /B/Bo) , Egs. (16) and (17) can be approximated as

10 [By oh] 9°h
f=ou [Buau} “on (72)
10 [By dg 82g
" uou [B 814} Ton 8v| 73)

Since derivatives of & and g are required for the collision operator, the finite element method (FEM) with

continuous basis functions is used for 4 and g. In this case, the maximum order of the basis functions
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should be higher enough to deal with the derivative order required for coefficients ¢;’s in Egs. (35)-(37).
For the RMJ operator, Eq. (37) can be written as

lowon 1 9 [owad%g Byl d [OW d°g
—F/mj.k] az [avlaﬁ/avl (avlavlz/) " Budu (avlavlau“>
BooW oh Bi1 9 (oW d%g By 1 9 (W 9% Iz
B ouou Buon\ouar’) B 7o \uwaveu” )|/ Y
which contains the third order derivatives of g such as d3g/ 8vﬁ. When we replace those third order

derivatives of g with the first order derivatives of 4, Eq. (74) can be rearranged as

VI (W) =T / d’¢ 107 | oW 9% d°W By d’¢ o'W
K] aV” aVH / 8vH aV” 8v 8v B 8v‘|8u 8vH8u

oh 9% 10 By 1 dg) oW 292g 9*W ,
+{z LoLaa (85 e o

The detail of derivation of Eq. (75) is given in Appendix B. In [45], (h,g) are split into Maxwellian

u 8v‘|8uf 8vH B u?du

and non-Maxwellian parts to preserve the Maxwellian distribution function exactly at the equilibrium.
Similarly, we split (4, g) into the equilibrium parts (7, gar) and the residual parts (94, 0g) in this work.

Here, (hy, gy ) are the analytic solutions of following equations.

10 [By dohy]| 0%hy
M= [B au} o (70)
19 [By dgm 32gM
M= [Bu&u] 97 77

(ha,gm) are introduced to improve the numerical resolution when f is close to fj, and their specific
forms are given in Egs. (A.13) and (A.14). The effect of including (4, gp) is demonstrated in the
section 3.1. Since the maximum derivative order of Eq. (75) is the second order, cubic B-splines are
chosen as basis functions for (84, 5g). With those basis functions, 84 and §g for each spatial mesh Q,

can be expressed as follows.

N1 N, 41
=Y, Y hAi(vu), (78)

ii=—1ip=—1

N+l g
@)=Y Y agirilv,u), (79)

it=—1li=—1
where i = [i1, 1] is a set of indexes for the basis A;(v|,u) =Yy, (v)Yu, (u). Here, Xy 4 (v)) and Yy (u)
are cubic B-spline functions centered at V| = V||, =i\ and u = uy—;,, respectively. In Egs. (78) and (79),
we ignored the spatial variation of 84 and §g within a single cell to avoid numerical instability which
can occur where f; becomes locally negative within the spatial cell. If we take [ d7 Z”B =~ RuAy X to [Eq.

(72) — Eq. (76)] and integrate it by parts, the following equation is obtained.

2nB d8h|"W=t+2 ASh|"1i=i+2
/iRudzA (=) ==V [avuns S =V [amans S|
uk'*i/272 H VH‘.I'/:’-G )
dAy d0h dA;y dSh
—|—V/dv|‘duu % 9u —i—VB/deduu avH avH (80)
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where V = [, dX27R and Vz = Jo. d)?27rR%. With Egs. (31), (78) and (80), a set of linear equations
for h; can be expressed as

Y Nuihi = Y 051 (4 = 7. @81)

Jkl ’
where

dA;

le/ t,+2 aA \%
o ’ -V /duu/\v—'

Nyi= -V /deuA,

2Ar A
du du
ol = / 2;;BR N,

Here f}j is a coefficient of the discretized Maxwellian function f; LA M- Similarly, [dZ 2”3 Ru/\,v x [Eq.
(73) — Eq. (77)] can be written as

Y Niigi=Y Eiihi, (82)
i i
where

/ 2LBRudzA A;.

Boundary conditions required for Egs. (81) and (82) are calculated at the outermost vertices (vH,u) =
(v).cruc) as [25]

_2 Bafd7 (V” M)K[]
Oh(v|c,uc) = V;‘(’ QMd ZRu Be D ,
B . _
88(v).couc) = Z [ @R 81 v, ) ERID (83)

where
5f¢[lj f[J K] f[B 5] ,
B 2
D= B() (MC—I-M) (VH,C_VH) y
k= %x/4uucB/Bo.

Here, K [k] and E[k] are the complete elliptic integrals of the first kind and the second kind, respectively.
At u = 0, Neumann boundary conditions, d6h/du = d8g/du = 0, are used.
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III Numerical properties of the developed model

3.1 Numerical convergence test with the initially loaded Maxwellian distribution func-

tion

In this subsection, we present how accurately the developed collision operators can maintain the initially
loaded Maxwellian distribution function fj;. The velocity domain for the test is V| € [—10v7, 10v7] and
u € [0,10vr]. The explicit time step is set as Ar = 0.0017, where 7 is the ion self-collision time which is
defined as the inverse of V in Eq. (26). To measure the deviation of f from the initial fj;, the residual of
C(fum) is defined as

2

= |y / iy [fy’k](t:50‘c)— =0 (84)
Tk Qlik

Results with various grid size Av are shown in Fig. 3. Here, Av is a grid size of each velocity cell, i.e.,
Av| = Au = Av where Av| (Au) is the grid size in the v (u) direction. The overall convergence rate is
approximately (Av)1'6 which is a slightly degraded result, compared to the second-order convergence
reported for the finite volume method (FVM) case [27]. It is noticeable that L%V of the Dougherty op-
erator (the blue circle symbols) is an order of magnitude smaller than values from the other operators.
This difference is closely related to the cross-diffusion terms (e.g., 9%/ avH du) which are not included in
the Dougherty model. For instance, if we artificially remove the cross-diffusion terms in the linearized
collision model, Lﬁv’s from the linearized collision model (the green asterisk symbols) are at the same
level of L%V’s from the Dougherty model. While the specific choice of velocity space grids or the basis
functions might change the results, the detailed study on this issue is not in the scope of this work. The
linearized (the red cross symbols) and the nonlinear operators (the black square symbols) show almost
identical results, which is expected from that the «;’s from /h;, and g, are identical to ¢;’s for the test
particle collision. To demonstrate the effect of utilizing &, and gy, we test a modified nonlinear col-
lision model in which the total 4 and g are described by the cubic spline basis functions only, without
hyr and gy As shown in Fig. 3, the nonlinear case without /1y, and gy, (the magenta diamond symbols)
shows higher L%V than the values from the case with &, and gy, (the black square symbols). This result
indicates that the resolution of nonlinear collision operators can be improved by using /4y, and gy, espe-
cially when f is close to fy;. As mentioned in the preceding subsection 2.4, the separation of (s, g )
from (h, g) is previously studied in [45]. In [45], the advective and diffusive flux are also modified to
exactly preserve fys at the equilibrium. Although the flux modification is not implemented in this work,
overall effects of introducing (hs, gp) are consistent to the results presented in [45].

The computing time for each collision operator is summarized in Table 3. Currently, the code [35] in
which collision operators of this work are implemented is based on the C++ language and supplemented
by Intel MKL libraries. While the code is MPI-parallelized for multi-core simulations, a single CPU
is used for this benchmark, since each spatial cell is assigned to a single CPU core and the velocity
space is not MPI-parallelized. The model of CPU used in this test is the Intel Xeon Platinum 8260.
Two cases with different velocity dimensions, i.e., [Ny, N,] = [20,10] and [60,30], are tested for this
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Figure 3: The residual of C(f,) with varying grid sizes. Av is the grid size of each velocity cell for both

of V| and u directions.

benchmark. In Table 3, numbers without parentheses represent [N, ,N,] = [20,10] case, while numbers
inside parentheses are results with [N, ,N,] = [60,30]. ‘Boundary conditions for 6/ and §¢’ is the time
needed to calculate the boundary conditions for the Rosenbluth potentials, i.e., Eq. (83). For this part of
calculation, the ratio between the required times from [N, ,N,] = [60,30] and [N, ,N,] = [20,10] cases
is 1.96/0.07 ~ 28 which is close to N2 = 93/2 = 27. Here, Nrario is Nigo,301/No.10] = 9 When Nigo 30
and Ny, 1] are the total number of grid cells for [N, , N,,| = [60,30] case and the [N, ,N,] = [20, 10] case,
N2

ratio

respectively. While is an expected scaling law for Eq. (83) [26], there have been several researches
to improve the scaling. For instance, a fixed number of boundary points and interpolation are used
in [27]. Also, an adaptive spline technique is introduced in [46] to achieve the desired accuracy under
any circumstances. Although these methods are directly applicable to our model, the implementation
is left as a future work. ‘Source terms for 64 and 8¢’ is the time required to evaluate the right hand
side of FEM equations, i.e., Egs. (81) and (82). ‘Solver for 64 and 8¢’ means the time to solve Egs.
(81) and (82). As mentioned in section 2.4, a direct LU factorization with the Intel MKL PARDISO
library is used for the FEM solver. ‘Field particle collision model’ is the calculation of the conservation
model for the linearized collision operator. The most time-consuming part is the calculation of ‘Source
terms for the weight evolution” which represents the calculation for the right hand side of Eq. (44). The
computing cost of this part for linearized and nonlinear operators is about 60% ~ 80% higher than that
of the Dougherty operator, since more computation is required to evaluate the coefficients ¢;’s for the
linear and nonlinear models. ‘Solver for the weight evolution’ is the procedure of solving Eq. (44) once
the source terms are evaluated. The total computing time of the nonlinear collision operator is about

70% ~ 90% higher than that of the Dougherty operator.
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Dougherty Linearized  Nonlinear

Boundary conditions for 64 and dg 0 0 0.07 (1.96)
Source terms for 64 and dg 0 0 0.04 (0.44)
Solver for 6h and &g 0 0 0.03 (0.37)
Field particle collision model 0 0312259 0

Source terms for the weight evolution 0.83 (7.52) 1.30(11.51) 1.32(13.53)
Solver for the weight evolution 0.14 (1.54) 0.13(1.54) 0.152.12)
Total 1.00(9.8) 1.77(15.8) 1.64(18.6)

Table 3: Distribution of computing time for each collision model. Numbers without parentheses repre-
sents the [N, ,N,| = [20,10] case and numbers inside parentheses are results with [N, ,N,] = [60,30].
The unit of time is normalized by the total computing time of the Dougherty collision model with
[NVH,NM] =[20,10].

3.2 Relaxation of the bump-on-tail distribution

In this subsection, the benchmark test on the collisional relaxation of the bump-on-tail distribution is

presented. More specifically, the initial condition f(r = 0) is given as follows.

fuu=0 % 3 [1 —i—cos(%) if v >0,

finput = (85)

fuu=o if v <0,
where fM,UH:o is the Maxwellian distribution function with the zero mean drift velocity. The velocity
domain for the test is v € [~5vr,5vr| and u € [0, 5v7]. The velocity grid size Av is 0.25v7 and the total
simulation time is 107 with the time step At = 0.0017.

The blue solid line in Fig. 4 represents the initially loaded f;(v|,u = 0, = 0), while the red dashed
line shows fi,,u of Eq. (85). Note that there are some regions with f; < 0 due to the grid-scale gradient
length of finpu, even though fi,,., itself is non-negative for the whole domain. When the nonlinear
collision operator is applied, the distribution function is relaxed to the Maxwellian distribution function
with the finite drift velocity and modified temperature, after a few collision times. The resulted f;(r =
107) is represented as a solid black line in Fig. 4. Qualitatively similar results are obtained when we
perform the same test with linearized and Dougherty operators.

To study the positivity-preserving property of each collision model, the maximum negative values
of f; in time are plotted in Fig. 5(a).

In the case of the Dougherty operator, the negative part of f; is completely eliminated after ~0.02 7.
For the linearized and nonlinear collision models, the negative value of f; is significantly reduced within
~0.1 7 and remains small for the rest of the simulation. In [32], the upwind flux is shown to be helpful in
maintaining the low level of negativity induced by Dougherty collision operator. Although the absolute
level of the negativity from the nonlinear collision operator is higher than the values from the Dougherty
operator case, it seems that the upwind flux is still effective for controlling the negativity from the

linearized and nonlinear collision operators. The evolution of entropy difference AS[= S(z) — S(t = 0)]
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Figure 4: Relaxation of the bump-on-tail distribution function f with the nonlinear collision operator.

All graphs are plotted at u = 0.
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Figure 5: The evolution of (a) the maximum of negative f and (b) the normalized entropy difference AS.
Here, Sy is defined as S(t = 0).
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is also plotted in Fig.5(b). Here, the entropy S is defined as
S——Z/ 4z g £ | 7). (86)

The Dougherty operator shows the fastest time scale and the nonlinear operator exhibits the slowest
time scale for the relaxation. Despite the different relaxation rate for each model, the entropy increases

monotonically in time and converges to the same value for all cases, as expected.
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Figure 6: Time evolution of (a) the density ny, (b) the parallel mean velocity U y, and (c) temperature
Ty.
Fig. 6 shows time evolution of conserved quantities with the nonlinear collision operator. In Fig. 6,
Any(t), AU|| n(t) and ATy (t) are defined as

M()(t) —M()(t = 0)

Al’lN(t) = M()(t — 0) s (87)
AUy (1) = MliT)MO](‘ffS 0 (88)
AT (1) = M2 1\)/12 (IMZZ(S): 0, (89)

where My, M, and M, are evaluated from Eqs. (45)-(47) with a time variable ¢. Here, ny, Uy and
Ty correspond to the density, the parallel mean velocity and the energy, respectively. For comparison,
cases with and without the conservation operator L4 are plotted. Both cases show excellent density
conservation since the collision operator is in the divergence form. Note that it is possible to improve
the density conservation further, if one more free parameter f3;f is added to Eq. (58) and dMy/dt =

is enforced. The numerical benefit of enforcing the density conservation directly, however, might not
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be huge, since the level of the density error accumulation is tolerable in most simulation cases and the
similar amount of density error is already generated through the collisionless part of the gyrokinetic
equations. The momentum and energy from simulations without L4 increase gradually in time, while
the case with L4 maintains the conservation properties. Without Ly4, the rate of the temperature change,
i.e., dTy/dt,is about 2 x 107°(/7).

3.3 Anisotropic temperature relaxation

For a given bi-Maxwellian probability distribution with 7 # 7|, the temperatures of each direction are
relaxed to the same value via the collisional process. Here, T| = 5. [ v2 fdv and Ty =%/ vﬁ fdv are
temperatures perpendicular and parallel to the magnetic field, respectively. In Fig. 7, numerical results
with Dougherty, linearlized and nonlinear collision models are compared with the following analytic
formula [47].

dr, 1 dTH o
R — L 90
dr 2 di 7 (T =T)), G0
where
2y/mninAg* A+3)tan~ 'A%
Vi = \/ﬁn;ll.sq AT [_3+( u 24(2)[.15l ]
v,
3 T\'° (A+3)tan~ 'A%
=— V(=] A?|-3+ } : 91
() o
Here, the initial 7 (t = 0) is set as 1.3 x 7jj(t = 0) and A(t) is defined as Tﬁ((tt)) — 1. The velocity grid

size is set as 0.5v7 and the time step size Ar is 0.001(7). Also, the velocity domains for the test are

v € [=5vr,5vr] and u € [0,5vr]. Although all of three operators show the relaxation process toward

13 T T T T
\
N
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Figure 7: Temperature relaxation of each case with respect to the time.

T|(t) = T_(t) = 1.2T| (¢t = 0), the relaxation rates are different for each collision operator. The relaxation

rate of the nonlinear operator is slightly smaller than that of the linear operator [29], but closely follows
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Estimation from Eq. (92) Dougherty Linearized Nonlinear
Atpax /T 5.0x 1073 33x107% 42x107° 42x1073

Table 4: The maximum time step Afyax from analytical estimation of Eq. (92) and anisotropic tempera-

ture relaxation simulations when Av| = Au = 0.5vr and max(|v||) = max(u) = Svr.

the analytic formula over the simulation time. On the other hand, the relaxation rate of the Dougherty
operator is about 2.5 times bigger than the analytic formula.

The numerical stability with different time step sizes is also tested for each collision operator. The
maximum time step Afmay sheo fOr the Dougherty collision operator with the SSP3 time integration can

be estimated as [32]

max(|v)|)  max(u)

Atma)gtheo/r ~ Ap |:2Cadv,p (21? + 1) { AVH + ALl
1 1 B

+ 4C4ip 2 (p4+ 1) —— + —— , 92)

" (av)* " (aw?

where Av| and Au are the grid sizes in v and u directions. Also, Ap, Cuay,, and Cy;y , are functions of the
basis order p. With p = 2 in this work, A, Cuqy, and Cy;r , are 2.512, 1.2 and 0.92, respectively. When
Av| = Au = 0.5v7 and max(|v)|) = max(u) = 5vr, Afmax sheo from Eq. (92) and Aty from simulations
shown in Fig. 7 are given in Table 4. The level of agreement between the estimation and simulation
results seems to be reasonable. Since SSP3 is an explicit method, numerical costs might be prohibitive
at high collisionality regimes such as tokamak edge regions. Note that several implicit methods were
developed for collision operators with the finite difference method [26] or the finite volume method [27],
previously. Whether they can be directly applicable for DG collision operators will be tested as a future

work.
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IV Verifications of the implemented collision modules

In this section, we present neoclassical benchmark results for the various collision models introduced in
the preceding sections. More specifically, numerical properties of each collision module are investigated
for test cases of neoclassical heat diffusivity, poloidal flow, and Rosenbluth-Hinton residual potential

with the collisional damping.

(a) st (0)

0 0.2 0.4 0.6 0.8 1

r/ao

Figure 8: (a) A mesh in the configuration space and (b) the safety factor profile used for the verification.

All verification tests in the following subsections are carried out under the concentric circular mag-
netic geometry with a configuration space mesh of 5,846 vertices, as shown in Fig. 8(a). The number
of cells used in velocity space is NVH =30 and N, = 10. The velocity domains are v € [—5vr,5vr] and
u € [0,5vr]. Basic physics parameters commonly used in the following verifications are a major radius
Ro = 1.7m, a minor radius agp = 0.6m and magnetic field strength at the center By = 1.1T. A concentric
circular geometry without the Shafranov shift is used for the magnetic field geometry. The radial profile
of the safety factor ¢ is set as shown in Fig. 8(b) and only Deuteron-Deuteron collisions are considered
for all test cases. Electrons are treated as fixed at a given initial state that electron profiles for density and
temperature are same as corresponding initial ion profiles over an entire simulation. A set of gyrokinetic
equations [38] without the FLR effect is used for the collisionless part of the simulation. Without the
FLR effect, the equations of motion are effectively reduced to the drift kinetic model. Although these
equations are not suitable for the quantitative micro-turbulence study, they are sufficient to investigate
neoclassical physics in the drift kinetic limit. More details about the implementation of these equation
for DG simulations are given in [35]. The third-order SSP3 Runge-Kutta method [41] is used for the
time integration of gyrokinetic equations, as well as the collision operator. The normalized time step is

defined as df = RoA[W’ where Af = min (0.001 V/27,0.002R / vT> and R /vr is ion transit time. With this

setup, parameter scans over normalized ion collision frequency, v, = v/ (\@63/ szVH 9) , is carried out

by changing density, where € = r/R is inverse aspect ratio and V|8 = 1/gRy is used.
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Figure 9: (a): Ion temperature profile. (b): Ion density profile at v, = 1.0.

4.1 Neoclassical radial heat diffusivity

Chang and Hinton [48] predicted the ion thermal conductivity, L;, for the arbitrary aspect ratio, plasma

shaping and collision frequency as

Li— niel/zﬁkq, 93)
V21

where pjo = % is an ion poloidal gyroradius with the poloidal magnetic field By, k, is a dimension-

less thermal conductivity coefficient [49]

0.66+1.88¢'/2—1.54 1 0.58v, 1
kg = + 52 €<32><2>_|_v£3/2<<32><2>_1>’ (94)
14 1.03v,’“+0.31v, B 140.74v.e B

*

and the angle bracket denotes flux surface averaging operation for a given parameter. In this thesis, we
used thermal diffusivity y; for comparison by a relation y; = L;/n;.

Parameter scans are conducted for normalized ion collision frequencies v,=0.05, 0.1, 0.5, 1, 5, and
10. Initial density and temperature profiles are monotonically decreasing linear functions with flat buffer
regions around the radial boundaries. At center of the radial domain (r/ayp = 0.5), density and tempera-
Ly - and Ly, = ‘%%
Temperature at the radial center is fixed to 7; = 2keV while density changes according to a parameter of

ture gradients are set to R/L,, = 1 and R/Ly, = 1, respectively, where L,, = ‘

the normalized ion collision frequency. Fig. 9(a) and 9(b) show the temperature and density profiles at
v, = 1.0. Total simulation time is decided by a criterion f,,; = max (\@T, 20Ry/ vT>.

Fig. 10 shows numerical heat diffusivities for each collision module of the test particle, linearized,
nonlinear, and Dougherty collision operators against the Chang-Hinton analytic formula. The numerical
values are obtained by moving average over 500 time steps of window in (0.9%,t, ), Where back-
ground profile change is comparatively mild after its relaxation. We observe that all numerical results
follow analytic trend that radial heat diffusivity increases as the collision frequency increases. In addi-
tion, all collision models except the Dougherty show reasonable agreement with the analytic formula.
Particularly, the maximum difference between the analytic formula and the nonlinear collision result
is about 20% at v, = 5.0. Furthermore, we found that y;s for the Dougherty operator are 2 or 3 times

higher than y;s of the other numerical operators, which would be because of enhanced collisionality for
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Figure 10: Comparison of the heat diffusivity at € = 0.1725 among numerical collision results and the-
ory. (O(red): the Dougherty operator, A(yellow): the test particle operator, x(purple): the linearized
operator, [1(Green): the nonlinear collision operator, and —(a blue solid line) : the Chang-Hinton for-

mula

the high energy ions in the Dougherty model. Lastly, the nonlinear operator exhibits slightly smaller heat

diffusivity J; than the linear operator as observed in [50].

4.2 Neoclassical poloidal flow

To verify the developed collision operators against neoclassical poloidal flow theory, we conducted
parameter scans over the same set of collisionality with the same simulation setup for the neoclassical
heat diffusivity illustrated in the preceding subsection 4.1. In this poloidal flow test, a dimensionless

flow coefficient k| is inferred by poloidal velocity obtained in a simulation via relation as follows.
Vo = kjcIBg (Ze (B*)) ™' dT;/dy, (95)

where I = RB; and By is the toroidal magnetic field.
Fig. 11 shows the parallel flow coefficient k| evaluated from numerical collision operators and the
Sauter formula [51],
1 —1.17f,
1+0.5y/vy \1—-0.22f, —0.19f?

where f; = 1 — f, is trapped fraction of particles. The values of the numerical results in the figure are

k= +0.25(1—f7) W) +0.315vff,6} (96)

14+0.15v2f5’

obtained using the moving average as done in the subsection 4.1. All numerical collision operators
clearly exhibit sign flip of the coefficient k| in increasing collision frequency as predicted by the theory.
Also it is noticeable that the k| for the Dougherty operator is negatively shifted over most frequency

domain and consequently transition of the sign flip occurs at smaller frequency than the others.
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Figure 11: Comparison of the parallel flow coefficient at € = 0.1725 among numerical collision re-
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formula.

v, =0.1 v, =1.0

Y b V4 b
Dougherty 0.032 0.014 | 0.12 0.012
Test Particle 0.026 0.017 | 0.10 0.013
Linearized 0.026 0.016 | 0.10 0.012
Nonlinear 0.025 0.017 | 0.096 0.012
Xiao (YX)etal. | 0.023 0.016 | 0.22 0.016

Table 5: Exponential fitting of residual potential behavior
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Figure 12: Damping of residual potential at v,, = 0.1.
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4.3 Damping of residual potential

In this subsection, the benchmark results for the collisional damping of zonal flow are presented. Since
the zonal flow can have crucial impacts on regulating the turbulent heat flux, the collisional damping
of zonal flow is an important issue. In the collisional case, initially loaded potential perturbations will
be damped to the certain residual value Bf, / B? [52] which is different from the residual value of the
collisionless case. For the benchmark, we compare the simulation results with the analytic formula of

Xiao et al. [53] as follows.

2/ 2
O/ Pi(t =0) = € /4

=T 7
1+£2/q2>< OD

1-© {_3ﬁ(1+e2/q2)wr}]

02/ P 4(0+e2/q?)

where © = 1.6356%/2 + €2 /24 0.360e>/2 and y = 0.4 (1.46,/€ + 1.32¢).

To investigate the collisional effect on the zonal flow, a sinusoidal radial electric field with k,.p; ~
0.12 is applied as an initial condition. Here, p; = % is the ion gyroradius and the ratio of the initial
ExB flow velocity to the vr is 0.015. Also, flat density and temperature profiles are used as initial inputs.
To separate initial GAM oscillations from the collisional damping, the collision modules are turned on
att =t;,; = 30(Ro/vr) when the E, reaches the steady state after the collisionless neoclassical damping.
Two cases with v, = 0.1 and 1.0 are tested and we compare ®(7) = E,(t) — Vp(t) /ne, instead of ¢ (1),
with the analytic formulas to exclude contributions from the pressure gradients and the boundary effects.

Fig. 12 shows long time behavior of ®(¢) with v, = 0.1. All results from different collision mod-
els do not deviate much during the relaxation phase and converge asymptotically - In the figure, a
line from the test particle model is mostly overlaid by the line from the linearized model. Maximum
difference of the residual ratio over 200 transit time is 9.34% for v, = 0.1 and 9.14% for v, = 1.0
between Dougherty and the nonlinear operator. For easier comparison, we fit the data with y(¢) =
[ (tinir)/P(0) — b]exp [—Y(t —tinit)] + b, where 7 is the damping rate and b is the residual value after
long term simulation. The results from the fitting are summarized in table 2. From the data, we can see
that all b values from the simulation and Xiao closely agree within ~ 4 % relative error range of the
potential at ¢ = #;,;;. Note that this residual value is closely related to the energy conservation between
electric field and toroidal angular momentum, as well as the radial force balance. In addition, we found
that the collisional damping rate y from the Dougherty operator is about 20 percent higher than the val-
ues from the other numerical models. This is consistent with the results of previous sections in which

the Dougherty model exhibits the enhanced collisionality. Also, we observe that the numerical y does

not linearly increase with the collision frequency while that from the analytic formula in Eq. (97) does.

4.4 Collisional effects on GAM frequency and damping rates

Previously, collisional effects on GAM were studied with fluid models and kinetic models [54]. From
those studies, it has been known that the real frequency of GAM (@gays) decreases to the frequency

of the fluid limit as the collisionality increases, since collisions weaken the pressure anisotropy. On the
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other hand, the damping rate of GAM (Ysanm) increases with the increasing collisionality at the low col-
lisionality regime, while Y545 decreases back to the collisionless level at the high collisionality regime.
To verify that those behaviors can be reproduced with the collision model of this work, benchmark re-
sults of the collisional GAM damping are presented in this subsection. For the benchmark, we compare
the simulation results to the following theoretical formula based on the number and energy conserving

Krook operator [55].

1/2
vr 7 (371/32) vy?
=Vl iar,—
DGAm RO\[ 1 T 747+ (07/8) W2 (98)
T/4)v,
Yoam = - (vV7/4) v (99)

Ro 14+ 8T, + (97 /4) vy?’
where 7, is the ratio between the electron temperature and the ion temperature. Vy is a normalized
collisionality and defined as VR /vr. Since the adiabatic electron model is used in this work, we only
present the results with 7, = 0, i.e. no kinetic electron effect. The k,.p; of the initial perturbation is 0.12.
Note that there is no safety factor dependence in Egs. (98) and (99), since they are derived in the infinite
g limit. Also, several collisionless mechanisms such as the Landau damping and finite orbit effects [56]
are missed as well. Fig. 13 shows @wgap from simulations and analytic formulas with varying vy. Since
it is impractical to perform a simulation with an infinite g, several simulations with different safety
factors are performed to examine the change of w as the g increases. As shown in Fig. 13, @4y tends to
decrease as g increases. For collisionless cases, the following formulas of Wy and Ygap with varying

q were derived in [57, 58].

% 7 46
= /= /1+— 1
OGAM Ry \/;/ + 2942 (100)
12 T 46

—1
T A2 ~4 ~2
Yoam = &I\ 2 [1 + 49q2} [exp(—05) { &G + &G }
! 2 -2 OF B,
+ ﬁ (\/Eqkrpl> CXp(—(OG/4) R + 7 +30)G , (101)

where @ is defined as gRoWcanm/ (v2vr). Analytic values of g4y from Eq. (100) are plotted in Fig. 13
as filled symbols and show good agreements with simulations results. Therefore the decrease of Wgay
with increasing g can be explained by the collisionless part of the simulations. As shown in Fig. 13, wgam
decreases with increasing vy, as predicted by the analytic formula Eq. (98). Also, wgay approaches to
the analytic formula as ¢ increases, which is consistent to the fact that the analytic formula is based on
the infinite ¢ assumption.

The total Ygap which is affected by both of collisionless and collisional damping mechanism is shown in
Fig. 14(a). Analytic predictions from Eq. (101) for vy = 0 are also plotted in Fig. 14(a) as filled symbols.
Theoretically, Ysas tends to decrease, although not monotonically, with increasing ¢ since the number of
resonant particles becomes smaller with higher g. [56,59] Ygam values from simulations with vy = 0 are
qualitatively consistent to the theoretical prediction, although the level of agreement with the analytical
prediction Eq. (101) is less satisfactory than @gap cases shown in Fig. 13. At the low collisionality,

Yoam increases as Vy increases, while it decreases with increasing vy at the high collisionality. This
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Figure 13: Comparison of the real frequency (wgay) of GAM from simulations with the nonlinear
collision operator and the analytic formula. vy is defined as VRy/vy. O(blue): g = 1.4, O(magenta): g
= 3.0, A(red): g = 5.0, and —(a black solid line) : the analytic formula, Eq. (98) [55]. Filled symbols

represent values from the analytic formula Eq. (100) for vy = 0 cases [57,58].

result agrees with the theoretical prediction qualitatively. To focus more on the collisional effects on
Ycam, the change of damping rate Aygay defined as y(vy) — y(vy = 0) is plotted in Fig. 14(b). Like
the case of Wgam, AYsam approaches to the analytic formula as g increases. As a partial summary of
this subsection, the collisional effects on GAM from the simulations with the newly developed collision

module are consistent to the theoretical prediction, although the quantitative verification is not available.
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Figure 14: (a) the total damping rate (Ygan) of GAM as a function of the normalized collisionality vy
and (b) the change of damping rate Ay = y(vy) — Y(vv = 0). vy is defined as VR /vr. O(blue): g = 1.4,
C(magenta): g = 3.0, A(red): g = 5.0, and —(a black solid line) : the analytic formula, Eq. (99) [55].
Filled symbols represent values from the analytic formula Eq. (101) for vy = 0 cases [57, 58].
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V Conclusion

A nonlinear collision operator is formulated and implemented for the gyrokinetic simulations with the
discontinuous Galerkin (DG) scheme. For better numerical efficiency, the Rosenbluth-MacDonald-Judd
(RMJ) form is implemented instead of the Landau integral form. In addition to the nonlinear collision
operator, linearized and Dougherty collision models are also implemented to assess the benefits and
drawbacks of each model. In this work, we only consider the self-collisions of a single ionic species.

Conservation properties of collision models are important for the stability and reliability of the long
time gyrokinetic simulations. Due to the divergence structure of the formulation, the density conser-
vation is guaranteed numerically. For the conservation of the parallel momentum and energy, a simple
advection-diffusion model, i.e., L4, with two free parameters is adopted for the Dougherty and nonlin-
ear collision operators. By using L4, the conservation of the momentum and energy is enforced up to
the machine accuracy. In the case of the linear collision operator, the linearized field particle collision
operator is adopted as another way to enforce the conservations.

While the DG method is used to describe the particle distribution function f, the finite element
method (FEM) with the cubic B-spline basis is applied to evaluate the Rosenbluth potentials / and g,
since the 2nd order derivatives of & and g are required for the nonlinear collision operator. Especially, the
analytic solutions for the equilibrium parts of /4 and g are utilized to improve the numerical resolution
for the case where f is close to the Maxwellian distribution function fj,.

Several benchmark problems are solved to test the numerical properties of the developed collision
models. The residuals of C(fy), i.e., L%V, are evaluated for each collision model with the initial condition
of f = fu. All models show similar convergence rates of L5" o< (Av) 16 with varying grid sizes Av. While
linearized and nonlinear operators exhibit the same level of L5", L%V from the Dougherty operator is
smaller than those from the other operators. L%v of the linearized operator without cross-diffusion terms
(< 9%/ dvdu) is close to that of the Dougherty operator, which indicates that L5" of the current model
is sensitive to the cross-diffusion in the velocity space. In terms of the numerical cost for each model,
the computing times for the linear and nonlinear operators are about 70% ~ 90% higher than the time
required for the Dougherty operator for the range of parameters tested in this work.

As another benchmark problem, the collisional relaxation of f from the bump-on-tail distribution
to fy is tested. From the test, the numerical stability with the locally negative f, the monotonically in-
creasing entropy in time and the conservation properties are verified for the developed nonlinear collision
model. In the anisotropic temperature relaxation test with 7, # 7 as an initial condition, the results from
the linear and nonlinear models agree well with the analytic prediction, while the Dougherty operator
tends to overestimate the relaxation rate by ~ 2.5 times.

To analyze characteristics of each collision model in tokamak magnetic geometry, a few neoclassical
benchmark tests are performed. The neoclassical heat flux and poloidal flow from linear and nonlinear
collision models show a good agreement with theoretical values. On the other hand, the heat flux from
the Dougherty operator is about 2 or 3 times bigger than results from the other operators, which can be

explained by the neglected velocity dependency in the Dougherty operator. The collisional damping of
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zonal flow is also tested with initial electric field perturbations. For v, = 0.1, the damping rates from
linear and nonlinear collision models are ~ 15% bigger than the analytic formula. On the other hand, the
damping rates from simulations for v, = 1.0 are about 50 % of the theoretical prediction. In both cases,
the damping rates from the Dougherty model are ~ 20% higher than those from other collision models.
In terms of residual E, after the collisional damping, all collision models show similar results close to the
theoretical values. In addition, the collisional effect on the GAM frequency and damping rate is tested.
From the test, it is shown that the simulation results agree with the analytic formula qualitatively in the
relevant limit.

Since the multi-species collision is not included in this work, a natural direction for further re-
search would be the implementation of inter-species collision operators. Contrary to the self-collision,
the velocity domains of different species can be significantly disparate from each other if the mass ratio
between species is not of order unity. In this case, additional numerical operations might be required
to interpolate the Rosenbluth potentials from one velocity space to another. We can leverage work by
Taitano et al. [60] that introduces multipole expansion with adaptive mesh to treat the different scales.
Also, the conservation of momentum and energy for inter-species collisions is not a trivial problem.
These issues related to multi-species collisions with the DG scheme will be reported separately in near
future.

Most test cases in this work show similar numerical behavior among the linear and nonlinear col-
lision models. This is partially because the distribution function stays near fj; in closed magnetic field
line system used in those tests. On the other hand, the distribution can deviate significantly from f3; with
open field lines, since ions suffer the ion orbit loss and the electrons stream into the machine wall along
the field lines. Therefore, more noticeable differences between linear and nonlinear models are expected
at the tokamak edge region where the closed and open field lines are present together. Quantitative

analysis on the nonlinear collisional effect at the edge region is left as a future work.
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A Relations between introduced collision operators

The linearized collision operator, the test particle collision operator, and the Dougherty operator can be
derived in order from the Fokker-Planck collision operator. Rosenbluth, MacDonald, and Judd intro-

duced a potential theory to Fokker-Planck-Landau equation [2],

Afa\ _ my+my 0 dhy 9% 9%gy

< ot > —§—Fab [ my, v <f” > T dvov (f“avavﬂ @D

B Ma o\ 9 [(df. [ g
=L T [m,, PP (f“ >_av'{ v '(%%)H’ (A-2)

= Z faafb
b

Vihy = —fy, (A.3)
Vigs = hy, (A4)

where the coefficient 'y, is {47q,q5 /ma}2 InAgp in CGS (or {qaqp/(ma€9)}>In Ay in MKS [3,47,61]
with the vacuum permittivity &), and In A, is the Coulomb logarithm for an incident species a and a
target species b. g and m; are charge and mass for species s, respectively. In this appendix, v represents
the original velocity coordinate which is not transformed into gyrokinetic variables. Here, Rosenbluth

potentials are defined as
1 -1
hy = E/dv’fb('v’) lv—'|", (A.5)
1
_ %/dv’fb(v’) lv—v/|. (A.6)

Splitting the probability distribution function f into equilibrium part fy and perturbed part 6 f as f =

fo—+ &1, the collision operator can be decomposed based on its bilinearity as

Cav(far f5) = Cap(fa0, f50) + Can (8 fu, f50) + Cap(fa0, 0.f) + Ca, (0 fu, 6 f)- (A7)

The first term is contribution from two equilibrium distribution, which vanishes when f,o and f( are
Maxwellian distribution functions with same mean velocity and temperature. The second and third terms
are called a test particle collision operator and a field particle collision operator, respectively. The last
term is a nonlinear part, which is usually neglected on the assumption of 6 f < fy in linearization
process. Considering the validity regime of the approximation, the assumption would limit the region of
simulation domain in Tokamaks and consequently hinder a whole device modeling.

By introducing Maxwellian distribution function fj; as an equilibrium distribution function, fy = fis
into Egs. (A.3) and (A.4), we can make further progress with the Rosenbluth potentials to be analyti-

cally expressed in the first and second terms of Eq. (A.7). The resulting test particle collision operator
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Figure A.1: Global behavior of Fj(x), 3F;3(x) and their sum

including the equilibrium part contribution becomes [61]

Carlfr firat) = g2 ["m’h Rassafa—Davt- Vfa] , (A8)
Rapt = —:’,; A (x) + 3R ()], (A.9)
Dy = ng [IFl (x)+3 UVI;’IFZ (x)} , (A.10)

Fi(x) = xdezfx(x) + (222 — Derf(x), (A.11)
P (x) = (1 - §x2> erf(x) —xde;i(x) : (A.12)

where x = V—l, VT, =4/ n%, and v’ = v — Uy, Here, ng, U and Ty are the density, mean fluid velocity

V2vr,
and temperature for the species s, respectively. Also, erf(x) = % I e~"’dt is the error function. The
Rosenbluth potentials in this context [45] correspond to
n, 1 erf(x)
hppy = — ) A.13
bM = g N (A.13)
np vy, 1 derf(x) )
= ——=— 14 2x")erf . A.14
8bM = o Jax [x Ix + (1+2x7)erf(x) (A.14)

These expressions for the Rosenbluth potentials contain additional factors in front to Hazeltine and
Waelbroeck [61] with correcting typos - See the factors in Egs. (A.5) and (A.6).

By taking a small speed limit x — O, we can analytically proceed further with Eq. (A.8) using asymp-
totic expansion of the error function, erf(x) = % (x - %) + O(x°). The factor Fi(x) and F>(x) are re-

duced to
Fi(x) = 5 of1-le +0(x") asx—0, (A.15)
37 5
16 s 3 9
Fz(x):—45ﬁx 1—7)( +0(x’) asx—0, (A.16)

respectively. This indicates that the contribution from the cross diffusion terms in the small speed limit

is O(x?) smaller than that of the diagonal diffusion terms in Eq. (A.10). Correspondingly, an asymptotic
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value of the dragging factor in the bracket of Eq. (A.9) leads to

F(x)+3FR(x) = 8 x3<1—3x2>+0(x7) asx — 0. (A.17)

8 3
= ~—x
NG 5 NG
As a side note, the other asymptotic limit as x — oo yields Fj (x) + 3F»(x) ~ 2 that results in the dragging
coefficient approaches to 2/v3. Note that this factor is also related to Dy, tensor in v-direction through
a following relation,

/

v
V' Dypps = Dgp - v' = vava3 [F1(x)+3F(x)] = _V%‘hRab,M (A.18)

that results in Maxwellian at equilibrium. Fig. A.1 shows global behavior of the functions Fj (x), 3F>(x),
and their sum. Even though F>(x) is O(x*) smaller than F(x) in the small speed limit, it is appreciable
around x ~ 1 and comparable with Fj (x) in the high tail.

Asymptotic expressions for dragging and diffusion coefficients in the small speed limit are

o 8 3 4 1
R ~ —— = — 7’0/7 A.19
ab,M V33T 23/2V3Th 3\2¢ V%, ( |
v%, 8 V3 4 1 * 1,

0'0": Dapys ~ (A.20)

VE3AZP,  3amvn  3vamv,

which agree with coefficients in the prototype of the Dougherty operator for the self-collision [6, 32],

0 0
C(f)—va~{(v—U)f+v%a£}. (A21)

Through this reduction process, we show that Dougherty operator neglects cross-diffusion (I —&'9") :

D, p- Terms in the curly bracket of Eq. (A.21) are designed to have (shifted) Maxwellian at equilibrium
through diagonal drag-diffusion processes.

Although the well-known result v o< v}3 oc T3/2 is recovered, the slow speed approximation delim-
its the validity regime of the Dougherty operator to v/vy < 1. Dougherty pointed out that constant drag
coefficients cannot reflect the reduced collisionality for fast-moving particles [6,9]. In other words, fast
ions in high tails cannot be correctly treated. The extent of discrepancy due to the approximation can be
observed in Figure. A.2. About 50% of the collision factor deviates near two times thermal speed ~ 2vr
and the difference is getting significantly larger in higher speed of tails.

Under the strong magnetic field assumption, the cylindrical coordinates (v, v, ) with a symmetry in

the gyroangle v is a natural choice, where v and v, are velocity components parallel and perpendicular
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Figure A.2: Ratio of exact to asymptotic values as x — 0 (i.e., v — 0) for Fj (x) + 3F>(x), described in
Eq. (A.17)

to local magnetic field, respectively. Eq. (A.8) in the cylindrical coordinate can be explicitly written as

Cab(fa) = C(faafb,M)

0 1 |my, i dfa Vﬁvi dfa
[ { (F1+3F2)V\|fa <FI+3F )Tbav|+3F2V2Tb 2 9y,

87r v V3 %
1 ) Vi v fa VJ-VT\ afa
Fi +3F 4 | FL+3h—=% 3F
S v { “(FL+3R)v fat ( 1+ Zvlz> Vi gy, 2, V2 dv
_ 3\F 1 VH °F dofe 3P ) 9fa
— Fi +3F ° F
Vab 8 [8v| Il { ~(Fi+ z)va +va ( 1+ 2v %x2 8vH T2 2x2 VLY v,

1 o Vi 2 afu 3R afa

v v, X3 2%

where v = v + v, vh =V =Ujp.V =V Vi 2412 andx=V'/(v/2vy,). Here, ¥, is defined as n;,Fab/{3(27r)3/2v
and U ;, is the parallel fluid velocity of the species b. Note that this equation retains cross-diffusion terms
as well as diagonal diffusion terms of the Dougherty operator. In addition, pulling out the mass ratio fac-
tor m, /my, from the dragging term explicitly reveals that standard deviation of Maxwellian at equilibrium
(i.e., T, = T) depends on mass of the incident species rather than the target species. Furthermore, the
Lopmg/my, o< 1/(mgumy) factor gets symmetry with respect to species. Toward the Dougherty operator,

taking slow speed limit where x < 1 yields

Cab(fa) = C(faafb,M)
s i my o 2 Bfa d my > Ofa
e el e

vL8vL

where cross diffusion terms are ordered out because F(x) is O (x?) smaller than F (x).
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B Removal of the third order derivatives from the weighted equation

With the coefficients of the RMJ collision operator, VU of the weighted equation, i.e., Eq. (74), contains
the third order derivatives of g. To improve the numerical convergence, it is beneficial to replace the third
order derivatives of g with the first order derivatives of 4. With ¢; for the RMJ collision operator, Eq.

(74) can be written as

ow ah 1 9 [JdWad%g Bol 0 [OW 0?

Jk] I Sol o (oW o8

F/ k] [8v| avH / aVH <8v 8\) /> + B Mal/t (aV| 8v|8uu>
mowon B0 (W N m1 0 (oW T
B Ouodu B2udul\ du 8u B 7 avH u avH&uj S Ja

2 2 2 2 2
:F/ dz[{&lz+8g18/ C}aw g *W By 9% W
Q

8VH Tvﬁ?TvH avH ton avH 8VH B 8v“8u 8\1H8u

By [oh g 137 By’ d%g *W flid
+ B{(?bt+8v8u/ v TG } du +<B> ou? du? AIi ®.1)

where

_Bol 9% By d’g I’
'=B udvidu B dvjd2u d3v’
Bypd’g 3¢ Byld’g

‘EEE*aﬁa/“Eaaﬁ' (B.2)

C, =

From Eq. (73), dh/dv| and dh/du are given as

oh _Bol g By g | g
8vH N B u&vH&u B 8vH82u 33\)H7
oh Byd’g ¢ Bolod’g Byl g

ou” Bow avou Bude  Biau ©

With Eq. (B.3), Eq. (B.2) can be rewritten as

dh
(Cl _TVH7
_ dh By 1 dg
R PR (B.4)

If we substitute Eq. (B.4) into Eq. (B.1), we obtain

2 2 2 2 2
HW):r/kdszah ag1a/}aw Pg W By 9% W

TvH T"H?TVH 8vH 8v‘ 8v‘ BavH&quH(?u

oh  9%g 197 Byldg\ oW (By\>d%¢*W| _ i
+{%ﬁwwwfaw+3mw}w+(3>wum Sl B

which does not contain the third order derivatives of g, as desired.
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