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Abstract

With the massive increase in the amount of semi-structured and unstructured web data,
big data analytics platforms have emerged and started to evolve rapidly. Apache Hadoop has
been developed for batch processing on a large dataset, and systems for interactive and general-
purpose applications have been developed alongside NoSQL databases. Numerous efforts have
been made to improve the performance of Hadoop and NoSQL databases, including utilizing a
new device called NVMM for NoSQL databases. Nonetheless, their performance is still far from
satisfactory due to inadequate granularity for tasks and I/O. In this dissertation, we present
novel techniques to improve the performance of Apache Hadoop and NVMM-based LSM-tree
by adjusting task and I/O granularity.

First, we analyze YARN container overhead and present dynamic input split size adjustment
scheme, which can logically combine multiple HDFS blocks and increase the input size of each
container, thereby enabling a single map wave and reducing the number of containers and
their initialization overhead. Experimental results shows that we can avoid recurring container
overhead by selecting the right size for input splits and reducing the number of containers.

Second, we present a novel HDFS block coalescing scheme that mitigates the YARN con-
tainer overhead. Our assorted block coalescing scheme combines multiple HDFS blocks and
creates large input splits of various sizes, reducing the number of containers and their initializa-
tion overhead. Our experimental study shows the block coalescing scheme significantly reduces
the container overhead while it achieves good load balancing and job scheduling fairness without
impairing the degree of overlap between map phase and reduce phase.

Third, we discuss design choice of using NVMM for indexing structure in NoSQL databases
and present ZipperDB, a key-value store that redesigns LSM-tree for byte-addressable persistent
memory. To benefit from the byte-addressability of persistent memory, ZipperDB employs byte-
addressable persistent SkipLists and performs Zipper Compaction, a novel in-place compaction
algorithm that merges two adjacent persistent SkipLists without compromising the failure-
atomicity. The byte-addressable compaction helps mitigate the write amplification problem,
which is known to be the root cause of the write stall problem in LSM-tree.

Finally, we present ListDB, a write-optimized key-value store for NVMM to overcome the
gap between DRAM and NVMM write latencies and thereby, resolve the write stall problem.
ListDB consists of three novel techniques: (i) byte-addressable Index-Unified Logging, which
incrementally converts write-ahead logs into SkipLists, (ii) Braided SkipList, a simple NUMA-
aware SkipList that effectively reduces the NUMA effects of NVMM, and (iii) NUMA-aware
Zipper Compaction. Using the three techniques, ListDB makes background flush and com-
paction fast enough to resolve the infamous write stall problem and shows 1.6x and 25x higher
write throughputs than PACTree and Intel Pmem-RocksDB, respectively.
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I Introduction

A big data analytics platform refers to an integrated computing solution that consists of
software systems, hardware, tools, data storage, data processing engine, programming model,
etc. for large-scale data analysis. Since the early 2000s, semi-structured and unstructured data
has been increasing explosively due to the increase in Internet use due to online stores and
social media, the spread of mobile devices, and the emergence of the Internet of Things (IoT).

Traditional data analytics solutions are designed to rely on relational database management
systems (RDBMS) that process structured data in structured query language (SQL). Big data
analytics platforms began to develop as it is required to develop new storage systems and
analytics tools to effectively collect, store, and extract meaningful information from this massive
amount of semi-structured and unstructured data.

Big data analytics platforms started to become widespread with the advent of Apache
Hadoop [1]. Hadoop is an open-source implementation of Google’s MapReduce framework [2],
which allows for the distributed processing of large data sets across clusters of computers using
simple programming models. Since its initial release that resembled Google’s MapReduce frame-
work, Hadoop was extended to a more generic resource management framework - YARN [3].
YARN provides a container abstraction that isolates computing tasks from physical computing
resources. However, there is a downside of such a generic resource manager. It is often less
efficient because it is ignorant of application-specific semantics and it trades the fined-grained
control of a specific high-level framework for the versatility.

Hadoop is well-suited for data analytics where the typical process of applications is batch
operations on massive amounts of data. Modern big data analytics platforms are built not
only for batch analytics on static data, but also for interactive applications on ever-growing
data. For these general-purpose applications, many big data analytics platforms use NoSQL
database systems. Most NoSQL databases, including LevelDB [4], RocksDB [5], HBase [6], and
Cassandra [7], use log-structured merge-tree (LSM-tree) for their underlying data structure [8].

Many NoSQL databases that use LSM-trees suffer from write-stall problem for sustained
massive incoming writes. An LSM-tree buffers multiple write operations in an in-memory
data structure and flush it into persistent storage like SSD when the size of the in-memory
index reaches to a certain threshold. Due to the performance gap between DRAM and SSD,
memory usage will be high for write-intensive workloads. To prevent unacceptably high DRAM
usage, most LSM-tree set artificial governors to block incoming write queries until there is
enough space for new DRAM buffer. If write stall problem occurs, the insertion throughput is
bounded by persistent storage performance, failing to benefit from the fast write buffer (DRAM)

performance.
Non-Volatile Main Memory (NVMM) is a new tier in the memory/storage hierarchy that

has latency similar to DRAM, but ensures non-volatility of data, similar to secondary storage.
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NVMM’s high performance opens up new possibilities for improving traditional disk-based
database systems. Many studies proposed leveraging non-volatile main memory for traditional
disk-based NoSQL databases, including LSM-trees. However, they still suffer from write stall
problem due to the latency gap between DRAM and NVMM.

Although there have been many efforts to improve the performance of big data analytics
platforms, such as Apache Hadoop and LSM-tree-based NoSQL databases, there still exists
room for further improvement. In this dissertation, we analyze that Hadoop and LSM-tree
have similar problems, and we present our research work that supports the following statement.

Thesis Statement: Improving the performance of big data analytics platforms requires
data structures and task schedulers that consider hardware characteristics and adaptively adjust
the IO and task granularity to suit the workload characteristics.

The followings are the summary of each work:

• Mitigating YARN Container Overhead with Input Splits [9]

We analyze YARN container overhead and present the results of reducing its overhead
by dynamically adjusting the input split size. YARN is designed as a generic resource
manager that decouples programming models from resource management infrastructures.
We demonstrate that YARN’ s generic design incurs significant overhead because each
container must perform various initialization steps, including authentication. To reduce
container overhead without changing the existing YARN framework significantly, we pro-
pose leveraging the input split, which is the logical representation of physical HDFS blocks.
With input splits, we can combine multiple HDFS blocks and increase the input size of
each container, thereby enabling a single map wave and reducing the number of containers
and their initialization overhead. Experimental results shows that we can avoid recurring
container overhead by selecting the right size for input splits and reducing the number of
containers.

• Coalescing HDFS Blocks to Avoid Recurring YARN Container Overhead [10].

Although combining multiple HDFS blocks and enabling a single map wave can help
minimize the container overhead, it makes concurrent applications suffer from the prob-
lems of coarse-grained task scheduling. More specifically, if we increase the size of input
splits, YARN suffers from mainly three problems — i) load imbalance, ii) low degree of
overlap between map and reduce phases, and iii) unfair job scheduling. To resolve the
coarse-grained task scheduling problem, we propose assorted block coalescing scheme that
combines multiple HDFS blocks and creates large input splits of various sizes, reducing
the number of containers and their initialization overhead. Our experimental study shows
the assorted block coalescing scheme reduces the container overhead by a large margin
while it achieves good load balance and job scheduling fairness without impairing the

2



degree of overlap between map phase and reduce phase.

• Braiding SkipLists for Byte-addressable Persistent LSM-Tree

We propose ZipperDB - a key-value store that redesigns LSM-tree for byte-addressable
persistent memory. To benefit from the byte-addressability of persistent memory, Zip-
perDB employs byte-addressable persistent SkipLists instead of sorted arrays. With the
byte-addressable persistent SkipLists, ZipperDB performs zipper compaction, which is a
novel in-place compaction algorithm that merges two adjacent persistent SkipLists with-
out compromising the failure-atomicity. The byte-addressable compaction helps mitigate
the write amplification problem, which is known to be the root cause of the write stall
problem in LSM-tree. In our performance study, we show that ZipperDB shows up to
3.8x higher random write throughput and up to 6.2x higher random read throughput than
the state-of-the-art NoveLSM.

• Union of Write-Ahead Logs and Persistent SkipLists for Incremental Check-
pointing on Persistent Memory [11]

Due to the latency difference between DRAM and non-volatile main memory (NVMM)

and the limited capacity of DRAM, incoming writes are often stalled in LSM tree-based
key-value stores. We design and implement ListDB, a write-optimized key-value store for
non-volatile main memory (NVMM) to overcome the gap between DRAM and NVMM
write latencies and thereby, resolve the write stall problem. As in conventional LSM tree-
based key-value stores, ListDB maintains a write buffer cache (MemTables) to absorb bulk
insertions in fast DRAM, and runs background compaction threads to merge MemTables
into a NUMA-aware persistent SkipList in NVMM. To close the gap between in-memory
processing throughput and storage flush throughput and thereby, resolve the write stall
problem, we propose Index-Unified Logging for byte-addressable NVMM, which is a union
of write-ahead logs (WAL) and SkipLists. ListDB uses Braided SkipList, a simple NUMA-
aware SkipList that effectively reduces the NUMA effects of NVMM. By storing write
ahead logs and a NUMA-aware persistent index in the same memory locations, ListDB
eliminates the necessity of explicit cache line flush (storage flush) and mitigates the write
stall problem, which leads to a throughput comparable to DRAM-only index while pro-
viding durability and benefiting from larger capacity.

The rest of the paper is organized as follows. In Section II, we present the background
of Apache Hadoop, LSM-tree, and non-volatile main memory. In Section III, we describe
the method that adjusts the HDFS input split size for different applications and evaluate the
performance. In Section IV, we present the design of our HDFS Block Coalescing Scheme and
evalute the performance. In Section V, we present the design of ZipperDB and evaluate the
performance. In Section VI, we present the design of ListDB and evaluate the performance.
Finally, we conclude this paper in Section VII
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II Background

2.1 Apache Hadoop YARN

Apache Hadoop is designed to run fault tolerant distributed tasks for large scale datasets stored
in HDFS. Since its initial release that resembled Google’s MapReduce framework [2], Hadoop
has been continuously developed and improved. As Hadoop has become one of the most popular
distributed job processing frameworks, it has transitioned from a dedicated cluster environment
into a shared cluster environment.

In order to run with other applications in a shared cluster, Hadoop had to be used along
with generic job schedulers such as Torque [12]. With such external job schedulers, each Hadoop
job specifies the configuration of a small-sized compute cluster and the schedulers create a new
Hadoop cluster for each job. However, these job schedulers do not account for the locality of
HDFS blocks. Hence, it has been reported that Hadoop version 1 in large scale data centers
fails to leverage data locality [3].

Appusmay et al. [13] analyzed the job sizes from real-world MapReduce deployments and
demonstrated that most jobs are under 100 GB in size and the median job size is just 14 GB.
Since such medium-sized datasets are replicated in a relatively small number of HDFS nodes
compared to the total number of nodes in the data centers (i.e., 900,000 servers in Google
data centers), traditional job schedulers rarely allocate servers that contain replicas of input
datasets. As a result, the lack of locality requires remote data access, degrades scalability, hurts
the cluster utilization, and causes many other critical performance problems.

In order to resolve this problem, Hadoop was extended to a more generic resource manage-
ment framework — YARN [3]. YARN provides a container abstraction that isolates comput-
ing tasks from physical computing resources. YARN container is a process that executes an
application-specific task using constrained computing resources. With the container abstrac-
tion, YARN could expand its scope to support more diverse programming models such as Hive,
Giraph, REEF, and many others.

For such various programming models, YARN splits up the functionality of JobTracker and
TaskTracker of old Hadoop version 1 into a generic resource manager, per-node slave node
managers, per-application application masters, and per-task containers running on each node
manager. That is, YARN delegates scheduling functionalities to application-specific compo-
nents, but arbitrates resource contention between tenants.

However, there is a downside of such a generic resource manager. It is often less efficient
because it isignorant of application-specific semantics and it trades the fined-grained control
of a specific high-level framework for the versatility. For instance, Kim et al. [14] reported
that MapReduce programming model in YARN suffers from the high overhead of container
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initialization which repeats for each map or reduce task. We will discuss more detail about
YARN container overhead in Section 3.1.

2.2 Non-Volatile Main Memory

Intel’s Optane DC Persistent Memory Module (DCPMM) provides an order of magnitude lower
latency than NAND flash memory and comparable latency to DRAM. DCPMM is installed
on the memory bus. Thus, applications can avoid read-modify-write overhead as it is byte-
addressable like DRAM. Compared to NAND, DCPMM is known to be significantly more
resistant to wear issues. Despite all these benefits, the cost per GB of DCPMM is much lower
than DRAM. Therefore, DCPMM is expected to sit between DRAM and NAND to bridge the
performance and durability gap.

Optane DCPMM supports two modes — app-direct mode and memory mode. In memory
mode, DCPMM behaves as a large main memory that does not support persistence as in DRAM.
Unlike memory mode, app-direct mode shows DCPMM as an independent persistent memory
device that can be accessed by load/store instructions. Since the app-direct mode provides
persistence that is required by key-value stores, we only consider the app-direct mode in this
work.

For DCPMM in app-direct mode, failure-atomicity needs to be guaranteed such that a
system can recover to a consistent state following a power or system failure. I.e., logging,
cacheline flush, and memory barriers need to be appropriately used to enforce the order of
memory operations. Without a correct order of memory operations, a system may not be able
to roll back to its previous consistent state. However, it is not always easy for programmers
to guarantee the failure-atomicity using low-level hardware instructions. To help developers
implement applications that ensure the failure-atomicity, Persistent Memory Development Kit
(PMDK) was developed to provide high-level APIs, which deal with low-level hardware-specific
instructions.

2.3 Using NVMM for Key-Value Stores

Many big data platforms are built for interactive applications on ever-growing data. For
these general-purpose applications, modern big data platforms use NoSQL database systems.
NoSQL database system is divided into four major categories: key-value store, column-oriented,
document-oriented, and graph databases. In this dissertation, we focus on key-value store which
is the most generic type of NoSQL database systems.

The indexing structure is an essential component that significantly affects the performance
of a key-value store. The advent of non-volatile main memory opens up new opportunities
to improve the indexing performance of key-value stores. There have been many studies that
apply NVMM to various types of indexing structures. For the rest of this section, we explore
the design choices of the indexing structure of NVMM-based key-value stores.
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2.3.1 NVMM-Resident Index

To leverage the high performance and byte-addressability of DCPM, various indexing structures
have been recently proposed [15–22]. While NVMM-resident indexing structures such as FAST
and FAIR B+tree [17], WORT [18], CCEH [19], etc, provide orders of magnitude higher per-
formance than disk-based indexing structures, NVMM-resident indexing structures suffer from
i) latencies higher than DRAM, ii) bandwidth lower than DRAM, iii) expensive cacheline flush
instructions that accompany store instructions, and iv) a higher NVMM access granualrity
due to 256 byte internal buffer, which is often referred to as XPLine. Besides, v) NVMM-
resident indexes are more sensitive to the NUMA effect compared to DRAM-resident index-
ing structures [23–25]. Furthermore, byte-addressable persistency complicates failure-atomicity
(i.e., reusability after a system crash) because the CPU cache replacement mechanism may evict
dirty cachelines that are not ready to be persisted. When a system recovers, such prematurely
written cachelines may corrupt data structures. To guarantee failure-atomicity despite such
unexpected cacheline flushes, NVMM-only data structures carefully order machine instructions
using memory fence instructions and call expensive clflush instructions frequently to persist
dirty cachelines, which incurs significant overhead in NVMM [17,21,26].

2.3.2 Hybrid DRAM+NVMM Key-Value Store

In order to utilize DRAM performance and avoid the shortcomings of NVMM, several hybrid
DRAM+NVMM indexing structures and key-value stores have been proposed. For example,
NV-tree [22] and FP-tree [20] are variants of B+tree that store internal tree nodes in DRAM and
leaf nodes in NVMM. The internal nodes are lost upon a system crash but can be reconstructed
from persistent leaf nodes. With this approach, writes to internal nodes do not need to be
failure-atomic.

FlatStore [27] takes a rather radical approach, i.e., NVMM is used only as a log space where
key-value objects are appended in insert order rather than key order, whereas the index resides
in DRAM. Therefore, FlatStore has to reconstruct a volatile index from persistent log entries
after a system crash.

However, existing hybrid DRAM+NVMM indexing structures have several limitations. First,
the size of DRAM is often small due to its high cost and a limited number of DIMM slots, where
DCPMs are also installed. If a dataset is huge and its index does not fit in small DRAM, or
if DRAM is used not just for the index but also for working sets of other processes, the exist-
ing hybrid DRAM+NVMM indexing structures may suffer from memory swapping due to ever
growing index size. Second, the volatile indexing components need to be reconstructed from
scratch upon system failures. If the index size is very large and datasets are stored without
being organized in NVMM, the recovery time can be significant [27]. To mitigate the expensive
recovery overhead, FlatStore proposes to checkpoint the DRAM index onto NVMM periodi-
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cally. However, a naive synchronous checkpointing, as in FlatStore, takes a global snapshot
while blocking incoming writes, leading to unacceptably high tail latency.

2.3.3 Asynchronous Incremental Checkpointing

A better approach is asynchronous incremental checkpointing [28], which checkpoints only the
difference between the current checkpoint and the last checkpoint state. Log-Structured Merge
(LSM) tree [8] is a classic index that consolidates checkpoint data over time [4–7, 29–31]. We
will discuss more detail about LSM-tree in the following section(§2.4).

2.4 Log-Structured Merge-Tree (LSM-Tree)

2.4.1 Write in LSM-Tree

An LSM-tree buffers multiple write operations in an in-memory buffer space called MemTable,
which sorts key-value objects using an ordered index such as SkipList [4–7, 29–31]. Since a
MemTable is volatile, a key-value object is written to a write-ahead log (WAL) for crash consis-
tency before it is inserted into the MemTable. If the MemTable size exceeds a certain threshold,
it is marked as immutable and a new MemTable is created so that the new MemTable can serve
incoming clients’ requests while a background thread transforms the immutable MemTable into
a sorted array called SSTable (Sorted String Table), flushes it to disk, and then deletes the
corresponding log entries. This design leverages the high performance of DRAM for random
writes and the high sequential write bandwidth of block devices.

2.4.2 Write Amplification Problem

The key range of a MemTable is not disjoint with those of SSTables on disk. If a large num-
ber of MemTables are converted into SSTables and the overlap between SSTables increases,
background threads merge-sort them to incrementally construct fewer, eventually into one large
sorted array for fast search. This process, called compaction, is the most significant performance
bottleneck because the same key-value object is repeatedly written to new SSTables [32–42].
The high write amplification problem, one of the most well-known limitations of LSM-tree, not
only causes the wear issues but also hurts the write throughput because write operations to
MemTable can be stalled due to slow compaction. I.e., if a compaction (disk I/O) cannot keep
up with the incoming write requests (memory copy), possibly due to a temporary write burst,
the MemTable fails to buffer incoming requests, and they are blocked.

7



2.4.3 Search in LSM-Tree

For a read query, an LSM-tree looks up a mutable MemTable, immutable MemTables, and then
SSTables from level 0 to the upper levels, i.e., the recently stored objects are searched first.
The search performance of LSM-trees is affected by the degree of overlap between SSTables
within and across levels because a read query searches all SSTables whose key range overlaps
the search key until it finds a matched key. To reduce the overlap and improve the search
performance, compaction threads merge-sort SSTables despite the high cost. Due to overlap
and multiple levels, the read performance of LSM-trees is worse than B+trees [43]. Nevertheless,
LSM-trees are more popular than B+trees in NoSQL systems because simple caching techniques
can improve read performance. However, improving write performance is not easy.

2.4.4 Side Effect of Write Buffer: Write Stall

The in-memory MemTable is effective in buffering writes. However, despite buffering write
bursts in the MemTable, tail latency can be very high if the workload is write-intensive because
incoming writes can be blocked by artificial governors [44]. For instance, if compaction is slow,
immutable MemTables will not be flushed to storage fast enough and the number of immutable
MemTables will increase. Similarly, if SSTables are not merge-sorted quickly, the number of
overlapping SSTables will increase, and search performance will degrade. Most LSM-tree-based
key-value stores [4–7, 29–31] block clients from inserting new objects into the MemTable until
compaction finishes and makes space for a new MemTable. This write stall problem occurs
frequently in disk-based LSM-tree-based key-value stores because of the high latency of the
disk. If the write stall problem occurs, the insertion throughput is bounded by persistent
storage performance, failing to benefit from the fast write buffer (DRAM) performance.

2.5 NUMA Effects of NVMM

NVMM is more sensitive to NUMA effects than DRAM because of its lower bandwidth (1/6
for writes and 1/3 for reads) [23–25]. As such, state-of-the-art persistent indexes, such as FAST
and FAIR B+tree [17] and CCEH [19] do not scale with the number of threads due to irregular
cacheline accesses and NUMA effects [25,45].

To mitigate the NUMA effects, Daase et al. [24] suggest limiting the number of write threads
to 4-6 per socket. Nap [25] hides NUMA effects by overlaying a DRAM index on top of NVMM-
resident indexes such that the DRAM index can absorb remote NUMA node accesses. However,
data stored in NVMM is already in the memory address space, and NVMM has latency compa-
rable to DRAM. Therefore, using DRAM as a fast cache layer over NVMM and copying data
between DRAM and NVMM back and forth can be wasteful. For example, NVMM file systems
such as EXT4-DAX and NOVA [46] do not use the page cache but directly access NVMM.
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To mitigate NUMA effects in DRAM, various approaches, including Delegation with hash-
based sharding [47–50] and Node Replication (NR) [48] methods, have been investigated. In
Delegation methods, a designated worker thread is assigned for all operations on a specific
range of keys. Therefore, client threads have to communicate with worker threads and delegate
operations using message passing. Due to the significant message passing overhead, Delega-
tion performs sub-optimal, especially for lightweight tasks such as indexing operations [48].
Node Replication (NR) [48] implements a NUMA-aware shared log, which is used to replay the
same operations for the data structures replicated across NUMA nodes. However, this con-
sumes memory for replicating the same data structure across multiple NUMA nodes. Besides,
the performance falters due to cross-node communication, as the number of NUMA nodes in-
creases [48]. Considering that the bandwidth of Optane DCPMM is much lower than that of
DRAM [23], replication can aggravate the low bandwidth problem.
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III Mitigating YARN Container Overhead with Input Splits

The initial design of Apache Hadoop resembled Google’s MapReduce framework [2], which was
designed to run fault tolerant map and reduce tasks for large scale datasets stored in Google
file systems [51]. However, since Hadoop has become a de facto software platform for processing
large scale data, its scope has expanded to support more diverse programming models, such as
Hive, Giraph, and REEF.

To decouple these programming models from the resource management infrastructure, YARN [3]
was designed to provide general resource management services for various workloads. YARN
divides functionalities of JobTracker and TaskTracker of Hadoop (version 1) into a more generic
resource manager, per-node slave node managers, per-application application masters, and per-
task containers running on each node manager. In particular, the generic YARN resource
manager delegates scheduling functionalities to application-specific components and focuses on
arbitrating resource contention between tenants. However, it is often less efficient because
it is not aware of application-specific semantics and trades fined-grained control of a specific
high-level framework for versatility.

In our Hadoop cluster, we investigated the overhead of the generic YARN resource manger.
We observed that YARN containers suffer from high overhead incurred by initialization and
authentication operations. Moreover, we found that container initialization overhead was up
to 1.7 times higher than the pure task execution time and 5.1 times higher than the task
scheduling overhead. For example, map tasks in a grep application require less than 3.85s for
a 128 MB HDFS block. Since we repeat the initialization of each container per HDFS block,
the cumulative initialization overhead becomes a dominant fraction of the job execution time.
Even if we consider that failures can occur at the task level, 6.58s initialization overhead for a
128 MB block is very high.

The lifespan of a task can vary dramatically. If a job is computationally intensive and its
execution time is longer than hours, container initialization overhead can be ignored. However,
Appusmay et al. [13] reported that most jobs in real-world MapReduce deployments process
datasets that are less than 100 GB, e.g., the median job size is 14 GB in a Microsoft data center.
For such short-lived Hadoop jobs, container initialization overhead can account for a dominant
portion of its execution time.

There are various ways to mitigate this problem. We could re-design Hadoop frameworks to
reuse containers, as in Spark [52]. Alternatively, we could improve YARN by reducing container
initialization overhead with ad-hoc optimizations. Both approaches are feasible. However, they
require significant effort to restructure the existing Hadoop ecosystem frameworks. In this work,
we propose a simple but effective approach that adjusts the HDFS input split size for different
applications.

The basic idea of the proposed HDFS input split size adjustment scheme is that we can
hide container initialization overhead by logically combining multiple HDFS blocks. A single
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Figure 1: YARN task execution procedure

container is created to process each combined input split. This approach gives the illusion of
reusing containers for multiple HDFS blocks and reducing container overhead.

The contributions of this study are as follows. First, we analyze YARN container overhead
and demonstrate it is a dominant performance factor that significantly reduces Hadoop perfor-
mance. Second, we propose tuning of the input split size for each application such that only a
single YARN container is created per slot. Finally, we show that tuning the input split size can
improve the job execution time by up to 13.7%.

3.1 Anatomy of YARN Container Overhead

A YARN container is a process that executes an application-specific task using constrained
computing resources. In YARN, a client job sends a request to a resource manager to find a
node that can start an application master. The resource manager then sends the request to a
YARN scheduler, which allocates a container for the application master. Once the container is
active, it is managed by the container’s node manager.

The role of the application master depends on the application. MRAppMaster, the YARN
MapReduce application master, retrieves the HDFS block split information and creates a map
task object for each HDFS block and a set of reduce task objects specified by the job configura-
tion. Then, MRAppMaster requests containers for all map and reduce tasks from the resource
manager. The resource manager hands the request to the YARN scheduler. With a given list
of containers, MRAppMaster contacts the node managers of distributed nodes to start the con-
tainers. MRAppMaster initially requests the map task containers. The reduce task containers
are requested later.
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Figure 1 shows the overhead incurred when starting a YARN container in a 32 node testbed
cluster. The configuration of this cluster is described in Section 3.3.1. When a grep application
for a 250 GB file is submitted, it takes approximately 1.51s to launch the MRAppMaster.
After MRAppMaster is launched, i) it spends 1.28s communicating with the ResourceManager
to determine where to start the map and reduce tasks (Figure 1, step 1). After MRAppMaster
receives the information of available slots, ii) it sends a request to start a container to each worker
node where tasks should run (Figure 1, step 2). iii) It takes 1.35s for each work node’s node
manager to write the container credentials and run the scheduled containers as Java applications
- YarnChild (Figure 1, step 3). iv) YarnChild loads the job configuration, configures resource
limits, initializes user group information, i.e., the authentication mechanism in YARN and its
related classes, initializes performance metrics to monitor Java virtual machine (JVM) status,
and loads credentials from the user group information instance. Then, v) YarnChild creates and
configures a JvmTask, which runs on a dedicated JVM. Next, vi) it initializes JVM metrics,
creates the user group information for the JvmTask, and adds delegation tokens to the user
group information instance that allows access to HDFS blocks. Finally, vii) YarnChild launches
the JvmTask. Steps iv–vii correspond to step 4 in Figure 1, which takes 5.16s for completion in
our testbed cluster.

In total, scheduling and initializing a container requires approximately 7.86s (1.28s + 6.58s).
Considering that each map task in the grep application requires less than 3.85s to process a
128 MB HDFS block on local disks, container overhead (6.58s) is equivalent to 170% of the map
task execution time and 84% of the total per-task overhead.

3.2 Enabling Single Map Wave with Input Splits

3.2.1 Input Split

HDFS blocks have a fixed size. A single line in a text file block can spill over into another
block. Because a map task often needs to access data across multiple blocks, Hadoop provides
a logical representation of partitioned data blocks, which is referred to as an input split.

When a Hadoop job is submitted, the job submitter calls the getSplits() method of the
InputFormat class, which generates logical input splits based on data-specific logical boundaries.
The default behavior of the getSplits() method is to find the next logical boundary of physical
HDFS blocks. With the input split, Hadoop can access the truncated data in the next block by
determining the location of the next block that completes the record.

Each input split contains the location information of HDFS blocks and their replicas along
with the block offset information. Using the split information, the YARN scheduler attempts
to schedule tasks such that they can process the input splits locally.
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3.2.2 Enabling Single Map Wave

Unlike the physical HDFS block size, the size of input splits can be configured dynamically and
arbitrarily because they are logical partitions. Furthermore, input splits can contain discontigu-
ous HDFS blocks. Creating a large logical block with discontiguous HDFS blocks can arbitrarily
increase the workload of each container. With the logical input split, a single container can
process multiple HDFS blocks without repartitioning and uploading a file to the HDFS. By
increasing the size of logical input splits, we can effectively reduce the number of map waves
and containers.

In the proposed input split size adjustment scheme, we maximize the input split size such
that only a single wave of map tasks can complete the entire map phase. In other words, the
input split size is set to the input file size divided by the total number of slots (equation 1).

totalNumBlocks
numSlotsPerNode×numNodes

(1)

With the maximum input split size, no more than a single input split is assigned to each slot.
Therefore, each job creates only one container per slot and minimizes container overhead.

3.3 Evaluation

Reoccurring container initialization overhead is closely related to the HDFS block size because
MRAppMaster creates a task for each HDFS block. To evaluate the performance implication of
HDFS block sizes and container overhead, we conducted experiments with varying HDFS block
sizes.

3.3.1 Experimental Setup

We run Hadoop 2.7.2 compiled with java 1.7 in a Hadoop cluster that comprised of one NameN-
ode and 32 DataNodes. We set the replication factor of the HDFS to 3 and the default HDFS
block size to 128 MB. Each node runs CentOS 5.5 and has two quad-core 2.13 GHz Intel Xeon
CPUs, 20 GB RAM, and two 7200 RPM HDDs (one HDD for the OS partition and one for the
HDFS). In each node, we set the number of slots to be equal to the number of cores (eight).
The NameNode and 19 DataNodes are connected by a gigabit Ethernet switch, and the other
13 DataNodes are connected by another gigabit Ethernet switch. The two gigabit switches are
connected by a third gigabit Ethernet switch, thereby forming a two-level network hierarchy.

3.3.2 Experimental Results

In the experiments shown in Figure 2, we run WordCount for a 250 GB text file while varying
the default HDFS block size. With Hadoop’s default input split creation method, the number of
input splits (map tasks) varies from 7989 to 125 as we increase the HDFS block size from 32 MB
to 2 GB. With the help of the Combiner class in Hadoop, WordCount can summarize the map
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Figure 2: Job Exec. Time vs Block Size (WordCount)

outputs of the same key. Thus, the volume of data to shuffle is significantly smaller than the
input file size. Because the reduce phase of WordCount accounts for a very small portion of the
job execution time, the map phase execution determines the overall job execution time.

Figure 2 shows that the WordCount application runs faster as we increase the HDFS block
size from 32 MB to 1 GB. When the HDFS block size is 1 GB, each slot runs a single map wave,
which minimizes container initialization overhead. Therefore, WordCount runs 1.7x and 1.16x
faster compared to when the HDFS block size is 32 MB and 128 MB, respectively. This confirms
that container initialization overhead accounts for approximately 16–70% of job execution time.

However, when the HDFS block size is 2 GB, WordCount runs approximately twice slower
than when the block size is 1 GB because the number of input splits becomes smaller than the
number of available slots, i.e., approximately half of the slots are idle and the average number
of map waves across the cluster is 0.488.

For various default HDFS block sizes, we run the same experiments again. However, this
time, we set the size of the logical HDFS input splits to 1 GB, which reduces the number of
map waves down to one for all HDFS block sizes. As expected, no matter how small the default
HDFS block size is, similar job execution times are demonstrated when the default HDFS block
size is 1 GB, i.e., the proposed input split size adjustment scheme can effectively make the job
execution time independent of the HDFS block size.

In the experiments shown in Figure 3, we measure the average resource usage pattern across
32 data nodes using dstat while a WordCount job that processes a 250 GB text file is running
with two different HDFS block size configurations. For memory usage, we show the fluctuations
in memory usage over time, however, for CPU time, disk access, and network traffic, we show
the cumulative resource usage.

When the default HDFS block size is 32 MB, YARN schedules a large number of map tasks
and we observed that memory usage fluctuates because a large number of containers allocate
and de-allocate memory spaces. When we formatted the HDFS with 1 GB blocks, the data
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Figure 3: Resource usage pattern for map tasks in WordCount

nodes use more memory, and the disk transfer rate is higher. However, it uses less CPU time
owing to the lower container overhead. The total cumulative CPU time with the 1 GB HDFS
blocks is approximately 43% less than that of the 32 MB HDFS blocks (400 seconds vs 700
seconds).

For the network traffic, a larger block size uses more network resources because owing to
load imbalance. When a 250 GB file is partitioned into fine-grained small blocks (i.e., 32 MB),

it is easy to schedule a similar number of tasks across nodes (250 tasks per node). Since each
node has 8 cores and we set the number of slots per node to 8, each slot processes 32 tasks,
i.e., the number of map waves is 32 on average. A map wave is a group of map tasks running
concurrently on available slots of the same node. Even if file blocks are not distributed evenly
across the nodes in the HDFS, processing a few more map waves will not affect the overall job
response time significantly because each map wave processes only 32 MB data. However, when
the block size is 1 GB, it becomes difficult to distribute tasks evenly and some nodes will fetch
many remote blocks. Figure 3b shows that 1 GB blocks result in higher network traffic than
32 MB blocks.

Overall, WordCount application runs 44% faster when the block size is 1 GB than when
the block size is 32 MB. This result explains why container initialization overhead is as high
as 44% of the job execution time and why creating a large input split that combines multiple
HDFS blocks can help avoid recurring container initialization overhead.

3.4 Summary

In this work, we have demonstrated that YARN container overhead accounts for a significant
portion of the MapReduce job execution time. To reduce container overhead, we must tune
the HDFS block sizes. However, choosing an optimal HDFS block size is difficult because it
varies widely for different applications, and changing the HDFS block size requires formatting.
This work proposes to employ logical input splits that logically combine multiple HDFS blocks,
thereby, effectively reducing the number of containers and avoiding recurring container overhead.
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Our experimental results show that tuning the right input split size can significantly reduce
container overhead.
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IV Coalescing HDFS Blocks to Avoid Recurring YARN Con-
tainer Overhead

As discussed in Section III, the proposed input split size adjustment scheme maximizes the
input split size such that only a single wave of map tasks can complete the entire map phase.
Enabling a single map wave by tuning the right input split size can significantly reduce YARN
container overhead. However, enabling a single map wave suffers from coarse-grained task
scheduling problems.

In this section, we first analyze the problems of maximum input split size for a single map
wave. To address the challenges, we propose another input split size adjustment scheme called
assorted block coalescing scheme, which combines multiple HDFS blocks and creates large input
splits of various sizes, reducing the number of containers and their initialization overhead. To
distinguish between the two adjustment schemes, we will call the proposed scheme in Section III
maximum coalescing scheme.

The contributions of this work are summarized as the following. First, we propose a novel
assorted block coalescing scheme that creates large input splits of various sizes, which helps
effectively reuse YARN containers for multiple HDFS blocks. The proposed assorted block
coalescing scheme does not require major modifications to the current YARN design. Second,
through extensive performance study, we show HDFS block coalescing improves the average job
response time of concurrent jobs by up to 36%.

4.1 Problems of Coarse-Grained Task Scheduling

Although the maximum coalescing scheme can minimize the container overhead, it is vulnerable
to the problems of coarse-grained task scheduling. If we increase the size of input splits, YARN
suffers from mainly three problems - i) load imbalance, ii) low degree of overlap between map
and reduce phases, and iii) unfair job scheduling.

First, the job scheduler fails to balance the loads due to the unevenly distributed coarse-
grained HDFS blocks. With a fewer number of large blocks, load imbalance results in a large
variation in task completion time. Besides, the execution time of each task can vary depending
on the characteristics of computation and the contents of each block. With a large number of
waves that process small blocks, YARN can resiliently react to the dynamic load change by
scheduling the rest of tasks to available slots. But, in contrast, if there are a small number
of large tasks, it becomes hard to balance the load. For example, if we have a single task per
each slot, there is no opportunity to balance the load even if one task finishes much earlier than
the other tasks. Figure 4 shows the resource usage patterns of Grep application with different
HDFS block sizes. 1 GB block size helps access more data in a shorter time, i.e., about 90%
of input data are processed within 100 sec, but Grep with 128 MB HDFS block size processes
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Figure 4: Resource usage pattern for map tasks in Grep application

only 75% of input data within 100 sec. However, due to the variance of map task completion
time, 1 GB block size results in a longer execution time.

Second, the degree of overlap between map phase and reduce phase will become low. If there
are multiple waves of map tasks, shuffle phase starts when the progress of the map phase exceeds
5% in Hadoop’s default configuration. That is, when a map task completes, the intermediate
results of the map task is transferred to reduce tasks while the next map tasks are running.
However, as we increase the size of input splits, the number of map waves will be decreased and
the starting point of shuffle phase will be moved back in time. For an instance, if there is only
a single map wave, the map phase and reduce phase cannot overlap at all.

Third, large HDFS blocks may negatively impact job scheduling fairness. YARN does not
schedule a larger number of tasks than the fixed number of slots and it does not preempt running
tasks. Hence, new tasks need to indefinitely wait until previous tasks release slots. That is,
increasing the input split size results in long running tasks, and the long running tasks will
make waiting tasks longer and it will hurt the job scheduling fairness.

Due to these challenges, choosing the right input split size is a hard problem. Even if we
reduce the container overhead, the load imbalance, the low degree of map reduce pipelining,
and the unfair scheduling can hurt the job response time and the system throughput.

4.2 Assorted Coalescing for Fine-Grained Task Scheduling

Although the maximum coalescing scheme minimizes the container initialization overhead, it can
suffer from the problems caused by large input splits - load imbalance, job scheduling fairness,
and poor degree of map and reduce pipelining. In addition to these problems, increasing logical
input split sizes causes another critical performance problem - poor data locality.

Due to the mismatch between the physical block size and logical input split size, there can be
data nodes that do not have an enough number of local blocks for a large input split. Suppose a
node needs to merge N HDFS blocks to create a single map wave but it has only L local HDFS
blocks (where N > L). In the maximum coalescing scheme, N−L HDFS blocks must be fetched
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from remote data nodes.
In order to mitigate these drawbacks of the one-size-fits-all strategy, we propose an alter-

native HDFS block coalescing scheme - assorted coalescing. In the assorted coalescing scheme,
we generate input splits of various sizes and use the assorted large and small input splits.

With various input split sizes, we can assign various workloads to each node. By mixing
up various input split sizes, small tasks can start shuffle phase early and the small tasks can
yield their slots to other tasks waiting in the queue. As a result, varying input split sizes helps
improve job scheduling fairness. Furthermore, we can avoid reading remote blocks even if a
node does not have an enough number of local blocks.

Algorithm 1 Geometric Progression for Various Input Split Sizes
1: function getSplitTypes
2: maxSplitSize← totalNumBlocks/(numSlotsPerNode∗numNodes);
3: splitSize←maxSplitSize
4: numRemainingSlots← numSlotsPerNode;
5: numSlots← numSlotsPerNode/2;
6: typeList.initialize();
7: while numSlots > 0 do
8: if splitSize < 2 then
9: break;

10: end if
11: typeList.add(<splitSize, numSlots>);

12: numRemainingSlots -= numSlots;
13: splitSize /= 2;
14: numSlots← numRemainingSlots/2;
15: end while
16: return typeList;
17: end function

The detail algorithm is shown in Algorithm 2. The algorithm starts from calling getSplitTy-
pes() in line 2, which generates an array of various input split sizes using a geometric progression
as shown in Algorithm 1. Again, the maximum input split size that getSplitTypes() generates
is totalNumBlocks/(numSlotsPerNode×numNodes). If we use this split size for all available slots,
the number of map waves will be one. If we use the geometric progressive sequence for the
smaller input sizes, the next split size will be totalNumBlocks/(2 ·numSlotsPerNode×numNodes)

and the number of map waves will be two and its subsequent split size will be toalNumBlocks/(k ·
numSlotsPerNode×numNodes). With each split size and its corresponding number of map waves,
the getSplitTypes() function returns an array of splitTypes structure that includes the num-
ber of demanded slots for each size.

In the first iteration of the outermost loop shown in line 5, we process the maximum input
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Algorithm 2 Assorted Coalescing: Creating Input Splits of Various Sizes
1: function createSplits
2: splitTypes← getSplitTypes();
3: numCoalescedBlocks← 0;

4: splitList.initialize();
5: for i = 0; i < splitTypes.size(); i++ do
6: <splitSize, numSlots>← splitTypes[i];
7: sortNodesForLoadBalancing(nodes); // Nodes with fewer blocks come first
8: for all node ∈ nodes do
9: atLeast = 0.9;

10: n = MIN(numSlots, node.numAvailableSlots)× (maxSplitSize/splitSize);
11: for all i = 0; i < n; i++ do
12: blocks ← getLocalBlocks(node,splitSize);
13: if blocks.size()< (splitSize×atLeast) then
14: break;
15: end if
16: while blocks.size()< splitSize do
17: blocks.add(getRemoteBlock(nodes));
18: end while
19: split ← createSplit(blocks);
20: splitList.add(split);
21: numCoalescedBlocks += splitSize;
22: end for
23: end for
24: end for

// Create single block splits for remaining blocks.
25: if numCoalescedBlocks < totalNumBlocks then
26: createDe f aultSplitsForRemainings(splitList);
27: end if
28: end function
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split first. In the assorted coalescing, a configurable number of slots in each node are used
for the maximum input splits. In our implementation, 50% of available slots are used for the
maximum input splits by default. But the number of slots used for each input split size can
be configured according to workload and an application type. In the next iteration, the second
largest input splits will use another group of slots, and we keep this iteration for all split sizes
until all slots become busy.

On each iteration, given the number of demanded slots, we create input splits of the current
size across data nodes in a greedy fashion. Note that it is not desirable to create a large input
split if a data node does not have an enough number of local blocks for the current input split
size. Since HDFS blocks are replicated and it is not guaranteed that each data node has an
equal number of blocks, we sort data nodes according to the number of local HDFS blocks for
the current input file (line 7) and we give a higher priority to those nodes that have a less
number of data blocks so that they can select their local blocks for their input split first. This
greedy strategy increases the probability of creating larger input splits. If we allow data nodes
that have a large number of blocks to choose first, the data nodes that have a less number of
blocks may find out that their local blocks have been already taken by other data nodes. Hence,
the data node will fail to create a large input split using local blocks. This problem can cause
the load imbalance problem.

In the for loop shown in line 8– 23, each data node selects the next candidate block to
coalesce for its current input split size. During the iterations of the for loop, the selected
candidate blocks are temporarily stored in the blocks array. If a data node fails to create an
input split of a specific size, the data blocks stored in blocks[] will be released so that they
can be used for the next smaller input split size.

In our implementation, we allow 10% of remote blocks to be included in each input split and
this ratio can be configured. If more than 10% of remote blocks are needed, we abort creating
input splits of the current size and move on to the next smaller input splits. If there exist HDFS
blocks that are not included in any input split at the end of the assorted coalescing scheme, we
fall back to the default input split creation algorithm for them as shown in line 26.

Figure 5 shows an example of input splits generated by the maximum coalescing scheme and
the assorted coalescing scheme. Suppose a file consists of 36 physical HDFS blocks and they
are distributed over three data nodes with replication factor 2. When each node has 2 slots,
the total number of available slots is 6. In maximum coalescing scheme, we create two input
splits for each node. Thus, a single map wave will process 6 HDFS blocks without re-creating
containers.

In the assorted coalescing scheme, we create the maximum input split for one slot. But the
size of the rest of the input splits progressively decreases by half (or other configurable common
ratio). With varying input split sizes, we allow Yarn to schedule multiple concurrent tasks in a
more fair way while mitigating the container initialization overhead.
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Figure 5: An Example of Input Splits with Maximum Coalescing and Assorted Coalescing

4.3 Performance Evaluation of Assorted Coalescing

4.3.1 Load Balance

In the experiments shown in Figure 6, we run Grep using the maximum coalescing scheme
while varying the number of the coalesced maximum size input splits. Although the maximum
coalescing scheme creates the largest input splits for all slots, for this experiments, we vary the
number of the largest input splits so that some input splits are of the default HDFS block size.

As we discussed in Section 4.1, a large input split can hurt the load balance and it can
delay the data transfer from map tasks to reduce tasks. When the number of the coalesced
input splits is 8 (the number of the slots per node), all slots process a single map wave as in the
default maximum coalescing scheme. When the number of the coalesced input splits is 0, its
performance is no different from the performance of the default Hadoop. Unlike WordCount
application, Grep application shows worse performance when we use the maximum size input
splits for all slots. This is because the grep is computation intensive and each task spends
various amount of time on the computation even if we assign the same amount of input data to
each task.

Figure 6a shows the total job execution time over various numbers of the coalesced input
splits, and Figure 6b shows the execution time of the fastest node that completed its all tasks
for Grep. As the number of coalesced input splits increases, the task completion time of the
fastest node decreases since the container overhead is reduced. The shortest completion time is
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Figure 7: Degree of Overlap between Map Phase and Shuffle Phase vs. Container Overhead
(Sort)

92 seconds when the maximum size input splits are used for all slots. But, if we do not coalesce
any HDFS blocks, the shortest completion time is 123 seconds. Although some tasks run faster
when we use more maximum size input splits, the standard deviation of task completion times
increases as shown in Figure 6b. This result shows that the maximum coalescing scheme can
suffer from the load imbalance severely because it fails to adaptively balance the load during
the task executions.

This result implies that we need to take both the container overhead and the load balance
into account at the same time. When we create the maximum size input splits only for half
of the slots, i.e., when the number of coalesced input splits is 3 or 4 in the example, we can
compromise the container overhead reduction and the load balance. The slots that process the
maximum size input splits benefit from the reduced container overhead, while the slots that
process small input splits help balance the system load. This results validate the proposition of
the assorted coalescing scheme.

23



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  500  1000  1500  2000  2500  3000

T
as

k 
ID

Elapsed Time (sec)

job1
job2
job3
job4
job5
job6
job7
job8
job9

job10

(a) Default

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  500  1000  1500  2000  2500  3000

T
as

k 
ID

Elapsed Time (sec)

job1
job2
job3
job4
job5
job6
job7
job8
job9

job10

(b) Maximum Coalescing

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  500  1000  1500  2000  2500  3000

T
as

k 
ID

Elapsed Time (sec)

job1
job2
job3
job4
job5
job6
job7
job8
job9

job10

(c) Assorted Coalescing

Figure 8: Lifespan of Tasks with Multiple Concurrent Jobs (10 Jobs)

4.3.2 MapReduce Pipelining

Another downside of a large input split size is that the starting time of data transfer between
map tasks and reduce tasks is delayed because the execution time of the first map wave becomes
longer. For the applications that generate small map outputs, the low degree of overlap between
map phase and reduce phase does not degrade overall job execution time. But if applications
generate large outputs in map phase as in Sort, the shuffle phase constitutes a critical bottleneck
and the delayed shuffle phase can hurt the performance.

In the experiments shown in Figure 7, we limit the number of maximum size input splits
and set the size of the rest of the input splits to the default HDFS block size as in the previous
experiments. We measure the job execution time and the cumulative network usage while we
vary the number of the maximum size input splits per node.

With the default HDFS block size (the number of maximum size input splits = 0), Sort
application finishes in about 1550 sec, but when we create a single maximum size input split,
the job execution time decreases down to 1400 sec. However, as we increase the number of
maximum size input splits, the job execution time slightly increases but it is still faster than
the default HDFS block size unless the number of large input splits is larger than 5. If the
number of maximum size input splits is larger than 5, the cluster suffers from burst transfers of
map outputs in the delayed shuffle phase.

Figure 7b shows the cumulative amount of transferred data during the job execution. As
the number of slots that process maximum size input splits increases, we find map outputs are
transferred in a shorter time. When all slots process the maximum size input splits, the shuffle
phase is delayed for about 600 seconds, which explains why the job execution time increases for
about 600 seconds.

4.3.3 Job Scheduling Fairness

In order to evaluate the fairness of job schedules that the assorted block coalescing schemes
generates, we ran experiments with varying the number of jobs and input files using the Hadoop
fair scheduler. The fair scheduling algorithm assigns resources to all jobs such that all jobs get
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Figure 9: Lifespan of Tasks with Multiple Concurrent Jobs (4 Jobs)

an equal share of resources over time on average.
In the experiments shown in Figure 8 and Figure 9, we submit 10 jobs at the same time and

4 jobs with varying the submission times (0 sec, 10 sec, 1000 sec, 1200 sec), respectively. The
10 jobs consists of 4 WordCount applications, each of which reads a different 64 GB input file,
5 Grep applications, each of which reads its own 250 GB input file, and one Sort application
that accesses a 64 GB input file. And the 4 jobs consists of one WordCount, one Sort, and two
Grep applications. Again, each job accesses a different input file.

Figure 8a and Figure 9a show the lifespan of map and reduce tasks when the default HDFS
block size (128 MB) is used for input splits without block coalescing. The default Hadoop
creates about 14,000 tasks and 7,000 tasks in each experiments. The jobs share the available
slots and make progress concurrently. With the fine-grained block sizes, the default Hadoop
achieves fairness although they suffer from the container overhead.

Figure 8b and Figure 9b show the lifespan of tasks when we employ the maximum coalescing
scheme. Since it minimizes the number of tasks, the total number of tasks in the experiments is
less than 3,000 and 1,400. The maximum coalescing scheme does not consider the job scheduling
fairness. But, since we submit all jobs at the same time in Figure 8b, each slot in a node is
used for different jobs. In Figure 8b, we observe some jobs suffer from increased waiting time
due to its unfair scheduling. Because of the low container overhead, each task finishes earlier
than when we use the default Hadoop. However, some tasks in both experiments suffer from
the longer waiting time, the delayed shuffle phase, and the load imbalance problems. Hence we
observe their job execution times are higher than that of the default Hadoop.

4.3.4 Performance of Assorted Coalescing

In order to resolve these problems of the single map wave, we implemented the assorted coa-
lescing scheme that balances strengths and weaknesses of maximum coalescing. The assorted
coalescing scheme allows to use various geometric progressions to generate input splits of various
sizes. In the experiments, we create maximum size (maxSize) input splits for half of the available
slots, and the half of the rest of the slots process input splits of maxSize/2, the half of the rest
of the slots, maxSize/4, and so on. In Figure 10, we show the normalized job execution time of
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each standalone run.
For WordCount, the maximum coalescing scheme shows the fastest performance and the

default Hadoop with 1 GB blocks shows a comparable performance. The assorted coalescing
scheme outperforms the default Hadoop with 128 MB HDFS blocks by 10% but it is slightly
slower than the maximum coalescing because of the larger container overhead.

For Grep application, the assorted coalescing shows the fastest performance. Since Grep
is a computation intensive job and it often suffers from load imbalance as we discussed, the
maximum coalescing scheme and the default Hadoop with 1 GB HDFS blocks shows even worse
performance than the default Hadoop with 128 MB blocks. However, the assorted coalescing
scheme reduces the container overhead while it achieves good load balancing, which explains
7% performance improvement over the default Hadoop.

For Sort application, the assorted coalescing also outperforms the default Hadoop by at least
14% because it reduces the container overhead while overlapping map phase and reduce phase
using small input splits.

We also evaluate the job scheduling fairness of the assorted coalescing scheme in the exper-
iments shown in Figure 8c. The results show that the assorted coalescing scheme has better
fairness than the maximum coalescing scheme. With the good load balancing and the reduced
container overhead, the assorted coalescing scheme improves the job execution time by 36.3%
on average in Figure 8.

4.4 Summary

In this work, we showed YARN container overhead accounts for a significant portion of MapRe-
duce job execution time. In order to reduce the container overhead, we need to choose the
right HDFS block size, but it is a hard problem to choose the optimal HDFS block size as it
varies widely among applications. Our proposed block coalescing scheme combines multiple
HDFS blocks to generate a logical large input split. Thereby, it effectively reduces the number

26



of containers and the container overhead. Our experimental study shows the assorted block
coalescing scheme reduces the container overhead while it achieves good load balancing and
job scheduling fairness without impairing the degree of overlap between map phase and reduce
phase.
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V Braiding SkipLists for Byte-addressable Persistent LSM-Tree

With the advent of Intel’s Optane DC Persistent Memory (DCPM), which offers a higher
capacity than DRAMs and shows a higher performance than SSDs, various data structures
such as B+tree [15, 17, 21, 22], and hash tables [19, 53] have been redesigned to exploit the
device characteristics. Although byte-addressable persistent B+trees have impressive read/
write performance in PM [17, 37], B+tree is sub-optimal for write-intensive workloads. That
is, although random access to PM has much lower latency than disks, sequential access to PM
is still much faster because it benefits from locality and hardware prefetchers [17]. However,
B+tree requires each query to traverse the tree structure to find a leaf node in a non-sequential
fashion, and the performance degrades as the index size grows.

Log-Structured Merge-tree (LSM-tree) is being widely used in various NoSQL systems in-
cluding LevelDB [4], RocksDB [5], HBase [6], and Cassandra [7]. LSM-tree is a data structure
designed for a high volume of inserts or updates. Since the most efficient operation on block
device storage systems, such as SSD and HDD, is sequential access, LSM-tree is designed to
store data as in transactional logs so that slow random access can be avoided. Nonetheless, to
provide indexed access to huge amounts of accumulated data, LSM-tree performs background
compactions to organize data in a tree-like structure.

To transform random writes into sequential writes, LSM-trees stack small indexing structures
such as B+trees, SkipLists, or sorted arrays called SSTables in multiple layers. By layering
multiple indexing components, LSM-tree sorts a small set of new writes in a volatile buffer and
sequentially persists them to avoid random I/Os. The persisted sorted runs are merged into
larger upper level components gradually by a compaction process, which runs in the background
so that it does not affect the write latency of foreground threads. As a result, LSM-tree exhibits
a significantly lower write latency than B+tree, which makes LSM-trees suitable for write-
intensive workloads.

However, LSM-tree often suffers from the so-called write stall problem. I.e., although the
compaction thread runs in the background, it may block foreground write operations from
inserting new records into an in-memory buffer if there are too many SSTables to be compacted.
It has been widely reported that the background compactions frequently block foreground write
operations, which not only hurts the throughput but also significantly increases the tail latency
of queries [32–34].

The write stall problem occurs because of the write amplification and the unmatched high
latency of block device storage, which makes the compaction thread runs slow. Recently, there
have been numerous research efforts that try to address this problem and improve various aspects
of LSM-trees [27, 32–41, 54–56]. However, these previous works focused on the performance of
LSM-Trees in block device storage systems.

Given the high-performance, byte-addressability, and persistency of PM, recent studies have
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redesigned LSM-trees to explore the possible resolution of write amplification and write stall
problems while maintaining the advantages of LSM-trees [57–59]. However, we find the per-
formance of these state-of-the-art PM-based key-value stores are far from satisfactory, and
they do not sufficiently exploit the desirable properties of PM. Our performance study shows
that the read performance of NoveLSM [58] is not significantly faster than PM-based LevelDB.
SLM-DB [37] also has performance problems with random writes and sequential reads.

In this work, we design and implement ZipperDB, a novel key-value store that employs log-
structured persistent SkipLists. SkipList is relatively easy to leverage the byte-addressability
of PM and guarantee the failure-atomicity due to its simple structure. Besides, SkipLists are
widely-used in concurrent production environments [60] as highly efficient lock-based and lock-
free SkipList implementations are available [60–62].

The main contributions of this work are as follows. First, ZipperDB employs persistent
SkipList in all levels of LSM-trees to take advantage of the byte-addressability of PM. With
persistent SkipLists, we propose a zipper compaction algorithm that merge-sorts two adjacent
levels of SkipLists in-place without blocking read operations. With the in-place merge sort, the
zipper compaction algorithm effectively resolves the write amplification problem. Second, we
implement ZipperDB using PMDK and evaluate its performance on Optane DCPMM. In our
performance study, ZipperDB shows up to 3.8x higher random write and 6.2x higher random
read throughput than the state-of-the-art NoveLSM. Also, ZipperDB shows up to 4.7x higher
random write throughput than SLM-DB. Such high-performance gains come from the reduction
of write amplification factor by 1/7.

5.1 ZipperDB: Design and Implementation

ZipperDB is a fork of LevelDB [4]. ZipperDB employs volatile MemTables as in LevelDB but
replaces persistent SSTables with persistent SkipLists. Figure 11 shows the system architecture
of ZipperDB. When a new record is inserted into a MemTable, ZipperDB writes its mutation in a
log file as in LevelDB so that we can recover volatile MemTables upon a system crash. However,
unlike stock LevelDB, the log file is stored on NVMM instead of disks. In LevelDB, each level
has multiple disjoint (except L0) SSTables, but ZipperDB has a single persistent SkipList at
each level. We note that ZipperDB manages a single SkipList even in level 0. The rationale
behind this design is that the write latency of NVMM is comparable to DRAM. I.e., before
the foreground thread fills up a volatile MemTable with new records, a background compaction
thread can merge an immutable MemTable into a persistent SkipList. When we insert 8 byte
random key and 1 KB value pairs into a 64 MB MemTable in DRAM, it took about 696 msec
to fill the MemTable in our testbed machine. However, when we merge a 64 MB MemTable
into a 1 GB persistent SkipList on NVMM, it took only 550 msec. I.e., the I/O throughput
of the background compaction thread is even higher than that of the foreground thread. This
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Figure 11: ZipperDB Architecture

is because the foreground thread has to search a SkipList from head to tail for each insertion.
But, a background compaction thread only needs to scan each SkipList only once to merge
sort them. I.e., the complexity of insertion into a MemTable is O(log(N)×N), where N is
the number of insertions (the number of SkipList nodes in the MemTable). In contrast, the
complexity of merge sort is O(N +M), where N is the number of the number of SkipList nodes
in the MemTable and M is the number of nodes in the next level SkipList (M = k×N where k is
a constant level size increase factor in LSM-tree, which is 10 by default in LevelDB). Besides,
each insertion into a volatile MemTable writes a log entry in a log file on NVMM. Therefore,
instead of creating overlapping SSTables in level 0, ZipperDB merges an immutable MemTable
directly into L0 SkipList in-place.

We implement a persistent SkipList using PMDK’s libpmemobj library. To allocate a per-
sistent memory pool (a memory-mapped file), we use the fail-safe atomic memory allocator of
libpmemobj, such that memory leaks can be avoided. We note that the fail-safe atomic memory
allocator employs two redo logs, one for the metadata about memory allocation and the other
for the pointer assignment. Since the logging is an expensive operation, we do not allocate indi-
vidual SkipList node using the allocator, but store a large number of nodes in a single persistent
object pool. As such, a SkipList node is not pointed by a 16-byte persistent pointer but by an
8-byte offset in the pool. Using the 8-byte offsets, we can leverage the failure-atomic 8-byte
store instruction to manage SkipLists in a failure-atomic manner without relying on expensive
logging methods.

ZipperDB stores multiple levels of SkipLists in a single persistent object pool. To locate the
head nodes of multiple SkipLists in a pool, ZipperDB manages a directory file that consists of an
array of 16-byte persistent pointers. While LevelDB manages various metadata about SSTables
in the MANIFEST file, ZipperDB does not use the MANIFEST file but only persistent pointers.
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(a) Step 1: Create a new node

(b) Step 2: Update the next pointer of predecessor via 8-byte store in-
struction

(c) Upper level pointers are probabilistic shortcuts that do not affect the
correctness of search

Figure 12: Failure-Atomic Insertion into SkipList

One of the challenges in a dynamic index is that it is hard to know how large a SkipList can
grow or shrink. Besides, key-value stores must support variable-length records. If we allocate
a too large persistent object pool for small SkipLists, its unused space will hurt the utilization
of NVMM. To walk around this problem, PMDK provides the auto-growing directory-based
poolset. If a directory is specified as the pool path, multiple memory-mapped files of 128 MB
are dynamically created in the directory, and the pool grows in 128 MB increments on demand.
With the auto-growing directory-based poolset, a large number of SkipLists of arbitrary sizes
can be dynamically mapped to a single pool ID, and 8-byte offsets can be used to locate SkipList
nodes.

Failure-atomic object allocation and deallocation inside a pool is also an expensive operation
in PDMK. Therefore, ZipperDB employs arena-based SkipLists. I.e., ZipperDB allocates a large
64 MB object called arena via POBJ_ALLOC() and stores multiple SkipList nodes in it. ZipperDB
guarantees the SkipList nodes in the same arena are in the same level of LSM-trees. Therefore,
when a background compaction thread merges a SkipList into the next level SkipList in a
different pool and the merged SkipList in the low level is no longer used by other transactions,
it can be freed via POBJ_FREE(). For this purpose, ZipperDB manages a reference counter for
each SkipList.
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(a) Scan Phase (b) Merge Step 1 (c) Merge Step 2

(d) Merge Step 3 (e) Merge Step 4, 5 (f) Merge Step 6

(g) Merge Step 7, 8 (h) Merge Step 9, 10 (i) Compaction Done

Figure 13: Zipper Compaction: Merging SkipLists from Tail to Head

5.1.1 Failure-Atomic Insertion into SkipList

Various lock-free SkipLists have been studied in the literature [61,62], and Java TM SE Concurr-
entSkipListMap class has been proven to perform well in practice [60]. However, a lock-free
SkipList implementation is quite complicated [62]. If we have to consider failure-atomicity
and persistency together with lock-freedom, the challenge becomes even harder. Lock-free data
structures for DRAM cannot be simply converted into persistent index unless processors support
a memory persistency model, i.e., an extension of consistency models for persist ordering [63,64].
Fortunately, a persistent SkipList in LSM-tree does not need a delete operation. It does not
need a lock-free insertion either because there is no concurrent writers, i.e., only one background
thread can merge two SkipLists. Therefore, the persistent SkipList for LSM-tree needs to
support only lock-free read operations and lock-based crash-consistent write operations, which
considerably simplifies the challenges. For ZipperDB, we focus on implementing a failure-atomic
persistent SkipList that enables lock-free search but not lock-free insertion.

When an immutable MemTable is merged into L0 SkipList, a background compaction thread
adds each key-value record of the immutable MemTable into L0 SkipList one by one. Since the
compaction inserts key-value records in the increasing order of keys, we traverse both SkipLists
only once, i.e., the complexity of compaction is O(N×(k+1)), where N is the number of records
in low-level SkipList and k is the level size increase factor.

Figure 12 shows an example of a single key-value record insertion. After we find where to
insert a new node (12 in the example), we update its predecessor’s next pointer (pointer e of
Node 10) using 8-byte atomic store instruction. However, in SkipList, upper layer pointers also
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need to be updated.
Therefore, the SkipList shown in Figure 12b appears to be inconsistent because the pointer

c is not pointing 12 but 17. However, it should be noted that such a transient inconsistency
does not affect the invariants of SkipList. The principal invariant of SkipList is that the list at
each layer is a sub-list of the list at the bottom layer. Unless this invariant is violated, correct
search results are guaranteed [61,62]. For example, suppose the write thread is suspended, and
another read thread traverses the SkipList to find key 14 in the SkipList shown in Figure 12b.
The read thread will visit Node 7 and follow pointer b, and then c, to find out that Node 17
has a greater key than the search key. Then, it will move down to the bottom layer and follow
pointer d, e, and f to find Node 14.

Even if an upper layer pointer is missing the next node with the same or higher height
(for example, pointer c of Node 7 is not correctly pointing to Node 12), it does not affect the
correctness of search results because the upper layer pointers are just probabilistic shortcuts
to some remote nodes with larger keys. If a search key is smaller than a shortcut node’s key,
we move one layer down and follow the next layer pointer. Therefore, only if the bottom layer
pointers are correctly connected in the increasing order of keys, SkipList guarantees correct
search results.

Consider an example shown in Figure 12c where upper layer pointers are messed up, and
key ranges of upper layer pointers overlap with each other. If a system frequently crashes while
we insert new nodes, ZipperDB may have a SkipList like this example. Even if pointers are
tangled like this example, the bottom layer pointers guarantee we visit each key in ascending
order and find the search key. We note that overlapping key ranges of shortcut nodes may
degrade the look-up performance. During normal compactions, such overlapping shortcuts
are transient, but if a system crashes before we update all upper layer pointers, overlapping
shortcuts can become no more transient. However, such non-transient overlapping shortcuts do
not last long since background compaction threads keep updating upper layer pointers when
merging SkipLists. That is, the zipper compaction that we will describe in Section 5.1.2 helps
correct some overlapping upper layer pointers and the log-structured compaction that we will
describe in Section 5.1.3 does not reuse existing SkipList nodes but creates new SkipList nodes,
which eliminates overlapping shortcuts.

Another transient problem that can occur in ZipperDB is the duplicate records in adjacent
levels of SkipLists. ZipperDB does not delete an immutable MemTable until all the records
from the immutable MemTable are inserted into L0 SkipList. Therefore, while a compaction
thread is merging an immutable MemTable into L0 SkipList, the same key-value records can
exist on both levels. However, we note that such duplicate records do not affect the consistency
of ZipperDB because stock LevelDB is designed to ignore duplicate records in the upper-level
SSTables. That is, ZipperDB is not the only key-value store that allows having duplicate records
in multiple levels, but also LevelDB and RocksDB allow duplicate records in multiple levels.
Therefore, ZipperDB uses the duplication detection mechanism of stock LevelDB and considers
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that key-value records in low levels are more recent than those in upper levels.
The only case where recovery is needed is the case shown in Figure 12a. We defer our

discussion on a recovery algorithm to Section 5.1.4.

5.1.2 Zipper Compaction: In-Place Merge

The major performance problem of LSM-trees is known to be the overhead of background
compaction. The compaction is expensive because it performs copy-on-writes. As new records
continue to be inserted, old records are repeatedly copied from a low-level SSTable to an upper-
level SSTable. Lu et al. reported that the write amplification of moving a record across two
levels could be up to 10 in LevelDB [34].

ZipperDB mitigates the write amplification problem by leveraging the byte-addressability
of NVMM. That is, ZipperDB does not rewrite the same key-value records but updates only
pointers of SkipList nodes so that two SkipLists can be merged in-place. We refer to this in-place
merge sort of two SkipLists as zipper algorithm since it works similar to closing a zipper.

To guarantee the correct search results and to enable lock-free search, we zip two SkipLists
from tail to head while concurrent read transactions are accessing them from head to tail.
Algorithm 3 shows the pseudo-code of zipper compaction. The zipper algorithm works in two
phases. In the first phase, we traverse two SkipLists from head to tail and find out where
each low-level SkipList node should be inserted in the upper level SkipList. However, in the
first phase, the zipper algorithm does not make any change to SkipLists, but it makes notes of
changes we need to make, i.e., it stores necessary pointer updates on a stack. In the second
phase, we pop the pointer updates from the stack and apply the updates to the upper-level
SkipList. Thereby, we merge two SkipLists in the reverse order.

Figure 13 shows a walking example of zipping up two SkipLists. To avoid confusion, we
use the term layer for SkipList pointers and level for LSM-tree levels. In the scan phase, we
scan the low level (LK−1) SkipList following its bottom layer pointers. For the first node (node
3 in the example), we search the upper level (LK) SkipList to find out where to insert it. While
searching the upper level SkipList, we keep track of which next pointer in each layer should be
updated to point to the new node (rightmost[], line 15 in Algorithm 3. However, we do not
update the pointers but store the information on the stack (line 18). In the example, H0 and H1
of LK SkipList need to be updated to point to node 3. Hence, we push H0 and H1 along with
node 3 on the stack.

Then, we follow the bottom layer pointer of low-level SkipList to visit the next node 12
(line 19) and find out where to insert node 12 in the upper-level SkipList. While searching the
upper-level SkipList, the rightmost node in each layer, positioned before the search key, is stored
together with node 12 on the stack. In the example, R3, R2, R1, and R0 are stored with node
12. Then, we visit node 14, following the bottom layer pointer of node 12. We note that we do
not need to repeatedly search the upper-level SkipList from the head node since the previous
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Algorithm 3 ZipperCompaction(lowSkipList, upperSkipList)
1: lowNode ← lowSkipList.head.next[0];
2: rightmost[]← upperSkipList.head.next[];
3: curLevel ← MaxLevel;
4: upperNode ← upperSkipList.head;
5: // I. scan phase: from head to tail
6: while lowNode ̸= NULL do
7: while curLevel ̸= 0 or (upperNode.next[curLevel] ̸= NULL and
8: upperNode.next[curLevel].key ≤ lowNode.key) do
9: if upperNode.next[curLevel] = tail or

10: upperNode.next[curLevel].key > lowNode.key then
11: curLevel–;
12: else
13: upperNode ← upperNode.next[curLevel];
14: // update the rightmost for the current level
15: rightmost[curLevel]← upperNode;
16: end if
17: end while
18: stack.push(lowNode, rightmost[]);
19: lowNode ← lowNode.next[0];
20: upperNode ← rightmost[MaxLevel];
21: curLevel ← MaxLevel;
22: end while
23: // II. merge phase: from tail to head
24: while stack is not empty do
25: (lowNode, rightmost[])← stack.pop();
26: for h←0 ; h< lowNode.height; h++ do
27: if rightmost[h].next[h].key < lowNode.next[h].key then
28: lowNode.next[h]← rightmost[h].next[h];
29: if h = 0 then
30: persist(lowNode.next[h]);
31: end if
32: rightmost[h].next[h]← lowNode;
33: if h = 0 then
34: persist(rightmost[h].next[h]);
35: end if
36: end if
37: end for
38: end while
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search key (12 in the example) is smaller than the current search key (14). Therefore, searching
from the head node is not necessary. Instead, we backtrack to the rightmost node in the top
layer. I.e., in the example, we start searching for key 14 from R3 (line 20).

In the next merge phase, we pop pointer mutations from the stack (line 25) and apply those
pointer updates to merge two SkipLists from tail to head. In the example shown in Figure 13b,
we set the bottom layer pointer of node 14 to the offset of node 17 and call clwb to persist it. At
this point, the upper layer pointer (next[1]) of node 14 is not pointing to node 17. However, as
we described earlier, upper layer pointers are probabilistic shortcuts to remote nodes. Therefore,
they do not affect the correct search results, and they do not need to be updated atomically.

After we update the bottom layer pointer of node 14, we update its upper layer pointers,
as shown in Figure 13c. Then, we pop the next node 12 from the stack and update its next
pointers (line 28), as shown in Figure 13e. In the next step, we update the next pointers of the
rightmost node in each layer (line 32), as shown in Figure 13f. In the following steps shown in
Figure 13g,13h and 13i, we pop node 3 from the stack, update the next pointers of node 3 and
the rightmost node in each layer.

Failure-atomic 8 byte store instructions used by the zipper compaction algorithm guarantee
that no read thread will ever miss its target SkipList node even if a background compaction
thread fails while making changes to SkipLists. For example, even if concurrent read threads
access SkipLists in any state shown in Figure 13, it is guaranteed that they return correct
results. We note that Figure 13 shows all the steps of how a sequence of 8-byte store instructions
merges two SkipLists. On the contrary, read transactions can be suspended while a background
compaction thread is making changes to SkipLists from tail to head. Suppose a read transaction
is suspended while it is accessing a low-level LK SkipList node. When it resumes, the node could
have been merged into the next level LK+1 or even a higher level SkipList. But the read thread
does not know its level has changed. If the read thread does not find a key, it will traverse
to a tail node, which can be either the tail of LK , LK+1, or a higher level SkipList. But, the
read thread will consider it is done with LK SkipList and start searching LK+1 SkipList, which
some of all LK SkipList nodes have been merged into. Still, the read transactions will be able
to return correct search results, although they may visit the same nodes multiple times.

5.1.3 Log-Structured Compaction

The directory-based poolset can accommodate an arbitrary number of key-value records and
SkipLists. Therefore, we can store all levels of SkipLists in a single persistent object pool so that
we eliminate duplicate writes of key-value records and improve the compaction performance.
However, the in-place zipper algorithm places adjacent SkipList nodes far from each other in
the pool. For example, in Figure 13, node 3 and node 7 are adjacent in the keyspace, but they
are not likely to be stored in the same or adjacent cacheline. As such, zipper compaction hurts
the memory locality. As the height of LSM-tree grows and the SkipList level increases, the
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(a) Compaction Between Pools

(b) Physical Layout of SkipLists in NVMM Pools

Figure 14: Log-Structured Compaction

uppermost level SkipList will consist of a vast number of arenas (memory chunks) allocated by
POBJ_ALLOC() and the memory locality will be very low. As a result, the zipper compaction
hurts the search performance, as we will show in Section 5.2. I.e., there is a trade-off between
compaction performance and search performance.

To mitigate the poor memory locality problem of ZipperDB, we limit the number of levels
per a persistent object pool. With this limitation, a compaction thread has to copy SkipList
nodes from one pool to another. Consider a walking example shown in Figure 14. If LK SkipList
in pool P reaches its size limit, a compaction thread merges LK SkipList into LK+1 SkipLists
in the next pool P+1 using the insertion algorithm described in Section 5.1.1. When we copy
each SkipList node from one pool to another, SkipList nodes are accessed in the order of keys
and stored in the next pool in the same order. As shown in Figure 14b, compaction between
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pools creates a sorted run and stores the sorted run in a contiguous space in the next pool. In
the example, LK+1 SkipList has three sorted runs, which means a background thread performed
compactions from level K to K+1 three times. If we set the size of LK+1 SkipList 10x larger
than the previous level K, LK+1 SkipList can have up to 10 partially sorted runs.

5.1.4 Lock-Free Search and Crash Consistency

Memory management of data structures that support lock-free insertion and deletion is quite
challenging because concurrent read transactions can still access deallocated objects. To deal
with the ABA problem [61], various solutions, such as quiescent-state-based reclamation, epoch-
based reclamation, and hazard-pointer-based reclamation, have been proposed for lock-free data
structures in the literature [65–67].

In ZipperDB, persistent SkipList nodes are deallocated only when the log-structured com-
paction has finished merging SkipLists, which, again, considerably simplifies the problem. In-
stead of using complicated lock-free reclamation methods, ZipperDB defers the deallocation
of an entire SkipList if its reference counter is not zero. While some concurrent SkipList im-
plementations need a reference counter or other flag per individual SkipList node, ZipperDB
requires one reference counter for each SkipList. Therefore, the overhead of reference counting
in ZipperDB is not significant.

Key-value stores need to guarantee a consistent database state in the event of power loss
or a system crash. Using libpmemobj library, ZipperDB allocates and deallocates a SkipList
arena in a failure-atomic transaction. However, ZipperDB does not use the PMDK transactional
memory allocator for individual SkipList node allocations. Therefore, SkipList nodes can be
lost upon a system crash. For example, suppose a system crashed after creating a new SkipList
node but before the node is added to the bottom layer list, as shown in Figure 12a. When a
system restarts, the new node will be lost. This problem can occur when we merge a MemTable
into a persistent L0 SkipList and when the log-structure compaction copies a SkipList from a
low-level pool to its upper-level pool. Fortunately, we do have a duplicate copy of the lost node.
Since we have a persistent log file for MemTables, we can reconstruct MemTables and restart
the compaction. The lost node in a persistent arena will not be found and treated as free space.
When a compaction thread selects two SkipLists to merge, it performs logging to keep track of
which SkipLists are being merged. When a system restarts, ZipperDB checks the compaction
log to redo unfinished compactions.

We note that duplicate records in two adjacent SkipLists do not affect the correctness of
search results since duplicate records can be detected by checking their version numbers. We
note that stock LevelDB and RocksDB also check duplicate records and ignore one of them.
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5.2 Evaluation

We implemented ZipperDB by overhauling disk-based SSTables and the MANIFEST file
from LevelDB and implementing byte-addressable persistent SkipLists using PMDK . We also
implemented ZipperDB algorithms in HyperLevelDB, which is known to be more scalable than
LevelDB. But because both implementations - ZipperDB and HyperZipperDB, share the same
persistent components of LSM-trees, they do not make much difference in performance. Hence,
in this section, we only show the performance of ZipperDB against the state-of-the-art Nov-
eLSM [58] and SLM-DB [37] using DBBench [4] and YCSB cloud benchmark [68].

NoveLSM [58] places a PM-based MemTable in between volatile MemTables and persistent
SSTables. NoveLSM proposes two variants of PM-based MemTables. The first design places a
single immutable persistent MemTable in between a mutable volatile MemTable and SSTables.
This design is not very different from the stock LevelDB except that an immutable MemTable
is stored in PM instead of DRAM. In the other design, NoveLSM lets a mutable MemTable and
a large persistent MemTable to take turns. In this design, when the mutable MemTable is full,
subsequent insertions store key-value records in the persistent MemTable so that the incoming
queries do not have to wait for the MemTable to be serialized and flushed to SSTables. In
this design, the mutable persistent MemTable is not an intermediate level between volatile
MemTable and SSTables. But, it behaves as a back-up MemTable to serve clients’ requests
while the primary MemTable is busy. In both designs, NoveLSM provides an option to store
higher-level SSTables in the remaining PM space. Since Kannan et al. [58] reported the second
design - NoveLSM with the mutable persistent MemTable and PM-based SSTables, performs
better than other designs, hereafter we refer to NoveLSM as the one with the mutable persistent
MemTable and PM-based SSTables.

SLM-DB [37] employs a byte-addressable FAST and FAIR B+tree in PM while managing
a flat list of partitioned SSTables in disks. We obtained the authors’ SLM-DB implementation
and modified it for PM using PMDK. However, since the FAST and FAIR B+tree in SLM-DB
does not support keys larger than 8 bytes, we evaluate SLM-DB’s performance only for 8-byte
numeric keys, but not for variable-length string type keys. For fair comparisons, we made small
modifications to SLM-DB to store the flat list of partitioned SSTables in PM pools instead of
disks since ZipperDB and NoveLSM do not use disk-based components. Similarly, we also made
small modifications to stock LevelDB so that it stores SSTables in PM pools as in NoveLSM.
We refer to this variant of LevelDB as LevelDB-PM.

5.2.1 Experimental Setup

We run experiments on a workstation with two Intel Xeon Gold 5215 CPU (2.50 GHz, 20 vCPUs
with hyper-threading enabled, and 13.75 MB L3 cache), 94 GB of DDR4 DRAM, and 256 GB
Optane DC Persistent Memory interleaved on NUMA nodes. Please note that the memory
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Figure 15: Performance Effect of Zip-
per Compaction

Figure 16: Performance Effect of L0

SkipList Size

interleaving can degrade the PM access latency and bandwidth significantly. Also, we have only
one DC PM on each NUMA node, so the PM bandwidth of our testbed is not high.

For all three key-value stores, we set the MemTable size to 64 MB. For NoveLSM, we set
the size of mutable persistent MemTable to 4 GB, as was done in [58]. While NoveLSM and
LevelDB-PM use bloom filters for SSTables, ZipperDB does not use bloom filters because a
persistent SkipList in ZipperDB is an index by itself. For LevelDB and NoveLSM, we use the
default table cache and block cache size so that they can cache a maximum 32 GB of SSTables
in DRAM. However, since ZipperDB replaced SSTables with persistent SkipLists, ZipperDB
does not use the DRAM-based table cache and block cache.

SLM-DB is very sensitive to various performance tuning parameters and value sizes. Hence,
we use the parameter values for SLM-DB, as suggested in [37]. LevelDB and NoveLSM also
use various artificial compaction governors such as L0Compaction, L0SlowDown, L0Stop, and
SeekCompaction. For the experiments, we set the default values to all governors for LevelDB-
PM, NoveLSM, and ZipperDB. However, due to the high-performance of PM, L0Stop governor
is never triggered, i.e., the maximum number of overlapping L0 SSTables is 9 in our experiments
while the default L0Stop is 12. This result shows that high-performance PM is effective in
resolving the write stall problem of LevelDB.

5.2.2 Experimental Results

5.2.2.1 Zipper vs. Log-Structured Compaction In the first set of experiments, we eval-
uate the performance of ZipperDB using DBBench to quantify the performance effect of zipper
compaction and log-structured compaction. In Figure 15, we show the normalized throughput
of DBBench workloads while varying the number of levels per pool. In 1 Level, ZipperDB does
not perform zipper compactions but only log-structured compactions. In 2 Level, the zipper
compaction and the log-structured compaction take turns per level. In All Levels, ZipperDB
performs only zipper compactions without using log-structured compactions. The total size of
key-value records we insert into ZipperDB is 50 GB. The key size is 16 bytes, and the value
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(a) FillRandom (b) FillSeq

(c) ReadRandom (d) ReadSeq

Figure 17: DBBench Results

size is 1 KB. We set the L0 SkipList size to 400 MB and increase the SkipList size by a factor
of four per level, i.e., 1.6 GB, 6.4 GB, and so on.

The experimental results show that there is a trade-off between insertion throughput and
search throughput as we vary the number of levels per pool. As we increase the number of levels
per pool, a larger number of zipper compactions are triggered and the insertion throughput
increases. However, the search throughput decreases because the zipper compaction does not
preserve the memory locality of SkipList nodes. All Levels shows up to 1.79x higher random
write throughput than 1 Level because it eliminates the redundant writes of key-value records.
However, All Levels suffer from poor memory locality, and the random read throughput of
All Levels is only 1/6 compared to the throughput of 1 Level. The number of LLC loads
and the number of LLC misses of All Levels that we measured with perf are 21x and 3.7x
larger than those of 1 Level.

While LSM-trees target write-intensive workloads, we cannot afford 6x lower performance.
Therefore, for the rest of the experiments, we set the number of SkipLists per pool to two
because ZipperDB with two levels of SkipLists per pool shows good performance for both reads
and writes.
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5.2.2.2 L0 SkipList Size The size of L0 SkipList in ZipperDB needs to be determined con-
sidering the latency difference between DRAM and PM, such that a background compaction
thread can keep up with the insertion throughput of an in-memory MemTable. In the experi-
ments shown in 16, we vary the size of L0 persistent SkipList. We increase the size of upper-level
SkipLists by a factor of ten, which is the default in LevelDB.

As we increase the size of L0 SkipList larger than 512 MB, the insertion throughput increases
because a fewer number of log-structured compactions occur. However, if L0 SkipList is larger
than 1 GB, the random read throughput degrades because of poor memory locality. I.e., the
log-structured compactions are triggered less frequently and read operations suffer from a larger
number of LLC misses.

However, unlike the random read throughput, the sequential read throughput improves as we
increase the size of L0 SkipList. This is because the sequential read workload in DBBench does
not call Get() method that jumps over SkipList nodes. Instead, the workload calls DBIterator,
which accesses SkipList nodes sequentially. That is, when there are total K levels of SkipLists in
an LSM-tree, the DBIterator compares the smallest key of each SkipList, returns the globally
smallest key, and moves its cursor forward to the next smallest key. With this access pattern,
the number of levels in LSM-tree is the dominant performance factor because it determines the
number of comparisons. In our experiments, 2 GB L0 SkipList shows about 2x higher sequential
read throughput than 256 MB L0 SkipList. However, due to its poor random read throughput,
we set the size of L0 SkipList to 1 GB for the rest of the experiments.

5.2.2.3 DBBench Results In the experiments shown in Figure 17, we compare the per-
formance of ZipperDB against LevelDB-PM, NoveLSM, and SLM-DB using DBBench. In this
experiment, we fix the key size to 8 bytes because the SLM-DB implementation supports only
8-byte numeric keys. While the other implementations compare keys using strcmp(), SLM-DB
relies heavily on 8-byte integer operations not only for B-trees, but also for other parts. We
vary the value size from 256 bytes to 10 KB. With 256 byte, 1 KB, and 10 KB values, we
insert 200 million, 50 million, and 5 million records, respectively. The total database size of
each workload is 50 GB. But, we note that SLM-DB hangs if we insert 200 million records.
Therefore, for 256 byte values, we show the throughput of SLM-DB with a half-size workload,
denoted as SLM-DB(Half), which is not fair but in favor of SLM-DB.

For FillRandom workload shown in Figure 17a, ZipperDB consistently outperforms other
key-value stores. When the value size is 1 KB, the write throughput of ZipperDB is 1.8x,
4.7x, and 4.9x higher than that of NoveLSM, SLM-DB, and LevelDB-PM. This is because the
zipper compaction significantly reduces the write amplification. While ZipperDB writes a total
of 97.5 GB of data, NoveLSM writes 255.5 GB, and LevelDB-PM writes 622.9 GB, which is
7x larger than ZipperDB writes. Compared to LevelDB-PM, NoveLSM also reduces the write
amplification by 60% because its large mutable persistent MemTable effectively reduces the
number of compactions. We note that the performance gap between ZipperDB and other key-

42



value stores increases as the value size increases. This is because a larger value size aggravates
the write amplification problem.

Although ZipperDB shows superior performance for random writes, it is outperformed by
NoveLSM and LevelDB-PM for sequential write workload, as shown in Figure 17b. Overall,
LevelDB-PM shows the highest write throughput because LevelDB implemented an optimiza-
tion for sequential writes. That is, if inserted keys monotonically increase, SSTables never
overlap and a compaction thread does nothing but updates the MANIFEST file to promote
SSTables to upper levels. Since NoveLSM benefits from the same optimization, its sequential
write throughput is similar to LevelDB-PM when the value is 256 bytes. However, interestingly,
the sequential write throughput of LevelDB-PM is higher than that of NoveLSM when the value
size is 1 KB and 10 KB. This is because the mutable persistent MemTable in NoveLSM is not
optimized for sequential writes. I.e., each insertion has to traverse a 4 GB of SkipList, which
increases the number of L1 cache loads. The number of L1 cache loads and L1 cache misses
of NoveLSM is about 20% and 12% higher than those of LevelDB-PM while they do not make
much difference in the number of LLC misses.

For ReadRandom workload, ZipperDB and SLM-DB show comparable performances, and they
show about 2x higher read throughput than NoveLSM. SLM-DB shows a similar performance
with ZipperDB not because it accesses a fewer cachelines but because it avoids expensive string
comparisons and benefits from more efficient numeric comparison operators. Unlike LevelDB-
PM and NoveLSM, ZipperDB does not use the table and block caches. Even without a DRAM-
based block cache, ZipperDB shows 2.2x, 3.2x, and 6.2x higher random read throughput than
NoveLSM, when the value size is 256 bytes, 1 KB, and 10 KB, respectively. This is because
LevelDB-PM and NoveLSM perform a 4 KB block copy from an SSTable to the block cache
if a cache miss occurs. Although DRAM read/write latency is lower than PM read latency,
copying 4 KB block into DRAM block cache incurs non-negligible overhead. Therefore, such
a DRAM-based cache must be used carefully in PM environment. If a cache hit ratio is low,
DRAM-based cache may not help reduce the latency for reading data in PM.

As NoveLSM stores a larger number of records, the proportion of records stored in the
persistent MemTable is relatively reduced, and the cache hit ratio becomes low. We note that
this result is consistent with the results reported in [58]. It is noteworthy that NoveLSM shows
a lower random read throughput than LevelDB-PM. This is because SSTables in LevelDB-PM
benefit from the table cache and the block cache, but NoveLSM does not cache its persistent
MemTable in DRAM. When an LLC miss occurs, LevelDB-PM can benefit from cached data in
the table cache and block cache. However, NoveLSM has to traverse the persistent SkipList from
the head node. Therefore, the number of LLC load instructions of NoveLSM is 52% larger than
that of LevelDB-PM in the random read workload (221.3 vs. 145.8 loads per query) Another
reason for the NoveLSM’s poor random read performance is because its persistent SkipList
implementation is not well optimized for PM. For example, NoveLSM’s persistent MemTable
does not consider the cacheline alignment nor memory locality, i.e., adjacent SkipList nodes are
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(a) Uniform Distribution (b) Zipfian Distribution

Figure 18: YCSB Throughput

scattered across 4 GB of PM space. Hence the number of accessed cachelines in NoveLSM is
much larger than that of ZipperDB.

For ReadSeq workload, SLM-DB shows the worst performance because SLM-DB does not
store key-value records in sorted order. NoveLSM and LevelDB-PM show comparable perfor-
mances with ZipperDB when the value size is 256 bytes or 1 KB. This is because a larger
number of records can be stored in a single SSTable as the record size becomes smaller. There-
fore, the fixed-sized table and block caches can hold more records, and they benefit from a high
cache hit ratio in the sequential read workload. However, SkipList does not benefit from the
memory locality as much as SSTables. Although it is not as serious as the persistent SkipList
in NoveLSM, the zipper compaction in ZipperDB also scatters adjacent SkipList nodes across
multiple arenas. Therefore, the sequential read throughput of ZipperDB is less sensitive to the
record size than other key-value stores.

5.2.2.4 YCSB Results: Throughput While DBBench workloads measure the perfor-
mance of a single type of batch operations, YCSB benchmark workloads are mixes of read and
write operations. In each of Load A and Load E workload, we insert 50 million records (50 GB)

into key-value stores. For the other workloads, we submit 10 million read/write queries. We use
a single client thread for the experiments since NoveLSM’s PMDK version crashes if multiple
threads concurrently access a database We do not show the performance of SLM-DB in YCSB
experiments because SLM-DB does not support variable-length keys of YCSB. Even if we set
the key size to 8 bytes, it crashed in most workloads.

Figure 18 shows that ZipperDB consistently and significantly outperforms NoveLSM and
LevelDB-PM for both uniform and Zipfian distributions. For Load A workload, ZipperDB
shows a 4x higher throughput than LevelDB-PM because its Zipper compaction algorithm
reduces the write amplification. NoveLSM also shows a higher throughput than LevelDB-PM
since its mutable persistent MemTable has the effect of extending the volatile MemTable and
absorbs a significant number of write requests. The total numbers of written bytes are 245 GB,
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Write, 50% Read)

(b) Tail Latency of Workload C (100%
Read)

Figure 19: YCSB Latency CDF

874 GB, and 1954 GB for ZipperDB, NoveLSM, and LevelDB-PM for the workload in uniform
distribution. In Zipfian distribution, 241 GB, 827 GB, and 1876 GB are written in ZipperDB,
NoveLSM, and LevelDB-PM.

In Workload A, a heavy update workload (50% writes and 50% reads), the read throughput
of NoveLSM is up to 33% higher than that of LevelDB-PM. Although 33% performance im-
provement is not small, it appears to be relatively a minor improvement if we compare it to the
throughput of ZipperDB, which shows about 3x higher throughput than LevelDB-PM. Such
a significant performance improvement is because SkipList is more effective than the MANI-
FEST file in handling not only write requests but also read requests. Workload B and C are read
dominant (90%) and read-only workloads. In such read-intensive workloads, ZipperDB shows
up to 4x higher throughput than LevelDB-PM. Workload F is the read-modify-write workload
that updates an existing record. In this workload, NoveLSM shows 56% higher throughput than
LevelDB-PM since its mutable persistent MemTable reduces the cost of logging and compaction
overhead. But, ZipperDB shows a 2.5x higher throughput than LevelDB-PM. In Workload D,
95% of queries access recently inserted records, which results in a high hit ratio in low-level
SSTables or SkipLists. Consequently, NoveLSM benefits from the large mutable persistent
MemTable achieving a 57% higher throughput than LevelDB-PM. But it is again outperformed
by ZipperDB, which shows a 4x higher throughput than LevelDB-PM. Load E is another write-
only workload. Hence, its throughput is not very different from the results of Load A. Finally,
Workload E is a scan-intensive workload. In this workload, LevelDB-PM and NoveLSM keep
reading a single record in each level, return the smallest key-value record, and move forward to
fetch the next record. It is known that SSTables are efficient for such scan operations and they
take advantage of the large table/block caches. Hence, LevelDB-PM and NoveLSM perform
similar to ZipperDB.

It is noteworthy that the read performance differences between ZipperDB and other key-
value stores for the read-intensive Workload B and C are much larger than the DBBench results.
This is because YCSB workloads are run in batch mode. That is, when Load A workload finishes,
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(a) Workload A (b) Workload B (c) Workload C

(d) Workload D (e) Workload E (f) Workload F

Figure 20: YCSB Throughput with Concurrent Clients

we have a large number of SSTables or SkipLists to be compacted. Therefore, when Workload
A and B are running, the compaction thread becomes busy and it keeps merging low-level
SSTables or SkipLists into upper-level components. While Workload C is running, ZipperDB
finishes the compaction and it has only one large persistent SkipList at the uppermost level.
In contrast, NoveLSM and LevelDB-PM still perform background seek compactions and have
multiple levels. LevelDB and its variants perform compactions not only for write requests but
also for read requests as well. This is because the seek compaction reduces overlaps between
SSTables on different levels and improves the look-up performance of subsequent transactions.
Although LevelDB-PM outperformed NoveLSM in DBBench experiments, NoveLSM shows a
higher read throughput than LevelDB-PM in YCSB read-intensive workloads because NoveLSM
reduces the compaction overhead.

5.2.2.5 Tail Latency In the experiments shown in Figure 19, we evaluate the tail latency of
Workload A and C workloads. Overall, ZipperDB shows much lower latency than LevelDB-PM
and NoveLSM by a factor of 1/4 up to the 99th percentile. While most of 10 million Workload
A queries took less than 1,000 usec in ZipperDB, 580 queries took more than 1,000 usec and
78 queries took more than 10,000 usec. This is because insertion queries are blocked when the
in-memory MemTable is full and wait for a compaction thread to merge into L0 SkipList. For
the same reason, about 25,900 and 21,800 queries took over 1,000 usec and 11,600 and 12,800
queries took over 10,000 usec in LevelDB and NoveLSM. We note that unlike LevelDB-PM
and NoveLSM, ZipperDB does not employ the artificial governor - L0Stop, which stops the
foreground thread if there are too many overlapping L0 SSTables. LevelDB-PM and NoveLSM
support this governor because if the number of overlapping L0 SSTables increases, the read
performance degrades. However, on the contrary, Figure 16 shows that the search performance
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of ZipperDB improves as the size of L0 SkipList increases up to 1 GB. However, if the size of L0

SkipList is larger than 2 GB, the search performance degrades. Therefore, ZipperDB supports
L0SlowDown governor and makes the foreground thread sleep for 1 msec if the size of L0 SkipList
becomes twice larger than its soft limit. The tail latency of ZipperDB is due to the L0SlowDown
governor.

5.2.2.6 Concurrency In the final set of experiments shown in Figure 20, we run YCSB
benchmark with multiple client threads. Since NoveLSM PMDK version crashes if multi-
ple threads concurrently access a database, we evaluate the scalability of ZipperDB against
LevelDB-PM. It has been reported that LevelDB does not scale with multiple clients since it
requires even read queries to acquire a global lock to access or update the MANIFEST file [54].
As a result, the throughput of LevelDB-PM does not increase as we increase the number of
concurrent clients. However, since ZipperDB eliminated the MANIFEST file and persistent
SkipLists support lock-free search, ZipperDB scales well with multiple clients except Workload
A, which is a write-intensive workload (50% writes).

5.3 Summary

In this work, we design and implement ZipperDB - a novel key-value store that leverages the
byte-addressability and high-performance of persistent memory to resolve the write amplifica-
tion and write stall problem. ZipperDB employs multiple levels of byte-addressable persistent
SkipLists and alternates the in-place zipper compaction and the log-structured compaction to
strike a balance between read and write performance. Our experiments show that ZipperDB
shows up to 3.8x higher random write and 6.2x higher random read throughput than the state-
of-the-art NoveLSM. Also, ZipperDB shows up to 4.7x higher random write throughput than
SLM-DB. We also show that ZipperDB reduces the write amplification by 1/7 compared to
LevelDB-PM.
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VI Union of Write-Ahead Logs and Persistent SkipLists for In-
cremental Checkpointing on Persistent Memory

In Section V, we showed that ZipperDB helps reduce the write-amplification by its persistent
SkipList and the zipper compaction, an in-place merge-sort algorithm. Both the persistent
SkipList and the zipper compaction algorithm are enabled by leveraging byte-addressability
and non-volatility of NVMM. However, even with the zipper compaction, write-stall problem
still remains due to the latency difference between DRAM and NVMM, and the limited capacity
of DRAM.

In this work, we advocate asynchronous incremental checkpointing, merging small, high-
performance DRAM indexes into a persistent index in the background for data recovery. We
present ListDB — a write-optimized LSM (log-structured merge) tree-based key-value store
for NVMM. ListDB employs a volatile write buffer cache (i.e., MemTable) to absorb bulk
insertions in DRAM, and gradually merge sort MemTables into byte-addressable persistent
SkipLists. A potential downside of employing fast MemTables is that insertions can be stalled
if background compaction threads cannot drain MemTables to NVMM fast enough. That is, if
the compaction throughput is lower than the MemTable insertion throughput due to the latency
difference between DRAM and NVMM, the MemTable continues to grow, and eventually its
size may exceed the DRAM size. To prevent this problem, conventional key-value stores often
block insert queries. If the so-called write stall problem occurs, the insertion throughput is
bounded by NVMM performance, not by DRAM performance; i.e., the write-back buffer cache
becomes useless. To accelerate the background compactions, we may employ a large number of
compaction threads [69]. However, if we run a large number of background compaction threads,
it may result in starvation of foreground client threads, which also hurts the overall throughput.

ListDB aims to resolve the write stall problem. Since NVMM has latencies comparable to
DRAM, there is a chance to make the compaction throughput as high as or even highr than
the MemTable insertion throughput, such that a MemTable size can be bounded and insertions
into MemTables are never stalled.

Specifically, ListDB proposes the following three novel techniques - Index-Unified Logging,
Zipper Compaction, and Braided SkipList. Our contributions are as follows.

• Fast Write Buffer Flush: ListDB unifies the write-ahead log with SkipList. Using
Index-Unified Logging (IUL), ListDB writes each key-value object to NVMM only once,
as a log entry. Taking advantage of NVMM’s byte addressability, IUL converts a log
entry into a SkipList element in a lazy manner, which masks the logging and MemTable
flush overhead. Therefore, it makes the MemTable flush throughput higher than the write
throughput of the DRAM index, thus resolving the write stall problem.

• Reducing NUMA Effects: Braided SkipList effectively reduces the number of remote
NUMA node accesses by making the upper layer pointers point only to the SkipList
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Figure 21: Two-Level LSM-Tree without Level 0 Buffer Indexes

elements on the same NUMA node.

• Fast Compaction with In-Place Merge-Sort: Zipper compaction merge-sorts two
SkipLists in-place without blocking read operations. By avoiding copy, Zipper compaction
alleviates the write amplification [32–34] problem and reduces the number of SkipLists fast
and efficiently to improve read and recovery performance.

Our performance study shows that the write performance of ListDB outperforms state-of-
the-art NVMM-based key-value stores. For read performance, ListDB relies on classic caching
techniques.

6.1 Write Amplification in LSM-Trees

6.1.1 Multi-Level vs. Two-Level Compaction

As SSTables accumulate in storage, LSM-trees perform compaction to merge-sort SSTables
and reduce the overlap. Compaction is particularly expensive in disk-based key-value stores
because they copy key-value objects between SSTable files. That is, compaction threads select
a set of overlapping SSTables at level k and another set of SSTables that overlap at the next
level k + 1, and merge-sort them to create a new set of SSTables at level k + 1. Such copy-
based compaction allows concurrent read queries to access old SSTables while new SSTables
are being created. However, copy-based compaction requires the same objects to be repeatedly
copied to new SSTables. The number of times a key-value object is copied to a new file,
called write amplification factor, has been reported to be as high as 40 [33, 34, 42]. The write
amplification is particularly serious if key-value stores use leveled compaction and a large number
of levels [33,42]. The leveled compaction limits the number of SSTables per level and prevents
any overlap between the SSTables at the same level.

NVMM allows byte-addressable updates. Therefore, there is an opportunity to avoid write
amplification and improve compaction performance by replacing multiple levels of SSTables with
a high-performance single-level persistent index. In particular, SLM-DB [37] uses two levels,
i.e., MemTables and a single persistent B+tree in NVMM. Using the two-level design (shown
in Figure 21), MemTables buffer multiple key-value objects and later insert them into a large
persistent index in ascending order of keys, such that the large persistent index is traversed only
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Figure 22: Three-Level LSM-Tree with Level 0 Buffer Indexes

once for multiple writes and it yields a higher write throughput than a single persistent index.

6.1.2 Decoupling Merge-Sort from Flush

The main problem with the two-level design is that the size of the persistent index affects
the performance of merging volatile indexes into a persistent index, i.e., it fails to make write
performance independent of NVMM performance. This is because MemTables are not flushed1

as-is, but merge-sorted into the large, slow persistent index. Because NVMM has higher latency
than DRAM, merge-sort throughput is much lower than insert throughput of volatile indexes,
especially when the persistent index is large.

To alleviate this problem, most key-value stores including LevelDB [4] and RocksDB [5]
employ an intermediate persistent buffer level (level 0, L0) in storage. That is, they flush
MemTables to the intermediate buffer level without doing merge-sort. Figure 22 shows such a
three-level design. By separating merge-sort from flush, MemTables can be flushed to NVMM
faster; the flush throughput becomes independent of the database size.

A drawback of this design is that it results in a large number of overlapping SSTables, which
hurts search performance. Given its poor indexing performance, the intermediate persistent
buffer level does not appear to be very different from write-ahead log. Furthermore, key-value
objects are written to storage at least twice, i.e., once for WAL and once again for MemTable
flush.

TRIAD [70], WiscKey [34], and FlatStore [27] prevent the same key-values (or just values)
from being repeatedly written. TRIAD is particularly inspiring because it considers the commit
log as an unsorted L0 SSTable. To enable efficient search in the unsorted L0 SSTables (the
commit log), TRIAD creates a small index file for each L0 SSTable. The index file does not
store keys and values, only the offsets for each object in sorted order of the keys. Although
TRIAD reduces the I/O traffic, each MemTable flush creates an index file and calls the expensive
fsync() to make it durable. However, given the high overlap between L0 SSTables and also
the fact that L0 SSTables will be quickly merged into L1 SSTables, it is questionable whether a
separate index file for each L0 SSTable should be created and persisted at a very high cost.

1To avoid confusion with the cacheline flush instruction (e.g., clflush), writing a MemTable to NVMM is
henceforth referred to as flush, and the cacheline flush is referred to as persist.
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Figure 23: ListDB Architecture

6.2 Design of ListDB

ListDB is a write-optimized key-value store with an LSM tree structure that resolves the
write stall problem. This section and the following sections provide a detailed description of
ListDB’s key designs. First, the overall architecture of ListDB is presented (§6.2.1). Then, its
key designs, i.e., Index-Unified Logging (§6.3), NUMA-aware Braided SkipList (§6.4), in-place
Zipper Compaction (§6.5), lookup cache (§6.6), and recovery algorithm (§6.7) are presented.

6.2.1 Three-Level Architecture

Figure 23 shows the three-level architecture of ListDB- volatile MemTables, and L0 and
L1 Persistent MemTables (PMTables). MemTables and PMTables are essentially the same
SkipLists, but the node structure of PMTable has additional metadata that MemTable does
not need because PMTable is a data structure transformed from the write-ahead log. ListDB
uses SkipList as the core data structure for all levels because it enables byte-addressable in-place
merge-sort and avoids the write amplification problem [32–34], as will be presented throughout
the paper.

ListDB employs an intermediate persistent buffer level - L0 (level 0) in NVMM. With level
0, a MemTable is flushed to NVMM without being merge-sorted, making the flush throughput
independent of the next level persistent index size. MemTables accumulated at L0 (L0 PMTa-
bles) are gradually merged into the large L1 PMTable by compaction. To manage multiple
PMTables, ListDB uses a metadata object called MANIFEST to point to the beginning of each
SkipList.
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Figure 24: Index-Unified Log Entry Layout

6.3 Index-Unified Logging

ListDB aims to flush MemTables to NVMM without copying key-value objects. As discussed
in Section 6.1.2, all key-value objects in MemTables are already persisted in the commit log
in NVMM [70]. Besides, L0 indexes are known to have very poor indexing performance due to
large overlap.

6.3.1 Conversion of IUL into SkipList

Index-Unified Logging (IUL) unifies write-ahead log entries and SkipList elements by allo-
cating and writing log entries in the form of SkipList elements. Figure 24 shows the structure
of an IUL entry, which serves both as a log entry and as a SkipList element. When a key-value
object is inserted into a MemTable, the object and its metadata (i.e., operation code op_code
and log sequence number LSN) are written and persisted as a log entry in NVMM with SkipList
pointers initialized to NULL (Algorithm 4). Later, when a compaction thread flushes its cor-
responding MemTable from DRAM, the log entry is converted into a SkipList (L0 PMTable)
element, reusing the key and value stored in the log entry.

Algorithm 4 Put(kvObject)
1: mutex.lock();
2: iul_entry ← iul_tail;
3: iul_entry.LSN ← GetNextLSN(); /* log sequence number */
4: iul_entry.height ← RandomHeight(); /* SkipList element height */
5: iul_tail ← iul_tail + sizeof(kvObject)+ height∗8 + 8;
6: mutex.unlock();
7: iul_entry.op_code ← OP_INSERT; /* operation type (insert, delete) */
8: iul_entry.kvObject ← kvObject;
9: iul_entry.next[0..height]←NULL; /* initialize pointers */
10: pmem_persist(iul_entry, sizeof(iul_entry)); /* calls clwb */
11: memTable.Insert((SkipListElement)iul_entry); // classic SkipList insert

The information that L0 PMTable needs, but the log does not have, is the sorted order
of keys, which is managed as SkipList pointers in MemTables. When converting the log into
an L0 PMTable, the addresses of the corresponding MemTable elements are simply translated
into NVMM addresses, i.e., the log entry offsets, as shown in Algorithm 5. When the SkipList
pointers in IUL entries are set to NVMM addresses, the IUL entries become SkipList elements.
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Figure 25: Index-Unified Logging

Finally, the MANIFEST is updated to validate the new L0 PMTable and invalidate the
immutable MemTable in a failure-atomic transaction.

Algorithm 5 FlushImmutableMemTable(memTable)
1: element ← memTable.head[0].next[0]; // smallest MemTable element
2: while element̸=NULL do
3: L0_element ← element.iul_address;
4: lookup_cache.Insert(L0_element);
5: for layer ← 0; layer < element.height; layer++ do
6: L0_element.next[layer]← element.next[layer].iul_address;
7: /* no need to persist */
8: end for
9: end while
10: new_L0.iul_address ← memTable.head[0].next[0].iul_address;
11: new_L0.next ← MANIFEST.L0List().GetFront();
12: MANIFEST.L0List().PushFront(new_L0); /* CAS */
13: freeMemTable(memTable);

6.3.2 MemTable Flush without clflush

When writing SkipList pointers to log entries, there is no need to call persist instructions
(e.g.,clflush) because the key-value objects are already persistent in the log, and because the
order of keys can be recovered without difficulty in case of a crash. Instead of explicitly persisting
cachelines for updated pointers, Index-Unified Logging leaves that to the CPU cache replacement
mechanism, i.e., it waits until the CPU evicts updated pointers from its cache. Through the
CPU cache replacement mechanism, multiple pointer updates to the same 256-byte XPLine can
be buffered and batched. That is, each 8-byte small write is not eagerly transformed into a
256-byte read-modify-write operation. Not only does it defer the read-modify-write problem,
but also prevents background compaction threads from being affected by the read-modify-write
problem and high NVMM write latency.
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(a) NVMM Layout Before Checkpointing

(b) NVMM Layout After Checkpointing

Figure 26: NVMM Layout of Index-Unified Logging

6.3.3 Walk-Through Example

Let us walk through MemTable flush illustrated in Figure 25. Suppose foreground client threads
insert keys into the currently mutable MemTable in the order of 503, 912, and 3. Each client
thread persists the object, its metadata, and NULL pointers in the log before it commits. Then,
a background thread marks the MemTable as immutable and creates a new MemTable. Client
threads insert two more keys, 716 and 217, into the new mutable MemTable.

When a background compaction thread flushes the immutable MemTable, i.e., (3, 503,
912), the pointers of each MemTable element are simply translated into the IUL offsets of the
corresponding log entries and the NULL pointers are replaced with the IUL offsets so that
the log entries become a SkipList, as shown in Figure 26a. As described in Section 6.3.2, the
updated pointers in the new L0 PMTable may remain in the CPU cache and may be lost upon
a system crash, but the pointers are not required for crash consistency.

6.3.4 Checkpointing L0 PMTable

Although the log entries are now converted to L0 PMTable elements, the boundary between
logging space and L0 PMTable space (denoted as a thick dotted line in Figure 26a) has not
moved, because it is not guaranteed that the pointers of the new L0 PMTable are persistent.
The boundary can only move if clflush instructions are explicitly called for the updated
pointers. In our implementation, a background thread persists dirty cachelines for L0 PMTables
in batches. This operation is referred to as checkpointing. Figure 26b shows the NVMM layout
after the pointers are explicitly persisted. Once a PMTable is checkpointed, it is possible to
move the boundary of the logging space to reduce the number of log entries to recover, as shown
in Figure 26b.
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6.3.4.1 Lazy Group Checkpointing
Checkpointing reduces recovery time. However, ListDB defers checkpointing as much as

possible, because calling clflush instructions is very expensive. Even if L0 PMTables are not
persisted at all, it does not affect crash consistency because all the elements in all L0 PMTables
will be treated as log entries if the system crashes, and the key order of L0 PMTable elements
can be reconstructed from the log.

In our implementation, multiple L0 PMTables are grouped and dirty cachelines for them
are persisted in batches. We call this lazy group checkpointing. Note that there is a trade-off
between lazy group checkpointing and recovery time. Infrequent checkpointing increases the
log size and it takes longer to recover. In contrast, if checkpointing frequency is high, recovery
will be fast, but flush throughput degrades.

Zipper compaction, which will be described in Section 6.5, persists pointers fast enough to
prevent the number of L0 PMTables from increasing. That is, even if IUL does not persist any
L0 PMTable, Zipper compaction persists pointers fast when merging an L0 PMTable into the
L1 PMTable, and the recovery time of IUL is much shorter than synchronous checkpointing, as
will be shown in Section 6.8.

6.4 NUMA Effects for SkipList

ListDB employs a NUMA-aware data structure, which is more scalable and effective in mini-
mizing NUMA interconnect contention than Delegation and Node Replication [48].

6.4.1 NUMA-aware Braided SkipList

A SkipList has the invariant that the list at each layer2 is a sorted sub-list of the bottom
layer [71]. Unless this invariant is violated, correct search results are guaranteed because the
upper layer pointers are probabilistic shortcuts, which do not affect the correctness of search
results. However, an upper layer does not need to be a sub-list of the next layer, as long as it
is a sub-list of the bottom layer. Even if a search does not find a key closer to the search key in
an upper layer, the search falls back to a lower layer and eventually to the bottom layer which
contains all sorted keys.

The Braided SkipList of ListDB leverages this property to mitigate NUMA effects in a simple
and effective way. Upper layer pointers ignore SkipList elements in remote NUMA nodes; i.e.,
upper layer pointers of each element point to an element with a larger key in the same NUMA
node. Compared to NUMA-oblivious conventional SkipLists, Braided SkipList reduces the
number of remote memory accesses to 1/N, where N is the number of NUMA nodes, as will be
shown in Section 6.8.

Figure 27 illustrates an example (The upper layers in NUMA node 1 are illustrated upside
down for ease of presentation). Observe that the second layer pointer of element 3 on NUMA

2To avoid confusion with the level of LSM trees, the level of SkipList will be referred to as layer.
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Figure 27: NUMA-aware Braided SkipList

node 0 points to element 7 on the same NUMA node, instead of element 5 on NUMA node 1.
Nonetheless, a correct search is guaranteed. For example, suppose a client thread running on
NUMA node 0 searches for element 5. It will follow the top layer to element 3, then 9. Since
9 is greater, the thread moves down one layer in element 3, and then the search visits element
7. Since 7 is greater than 5, the thread moves down again and follows the bottom layer pointer
to element 4. Since the search key is greater than 4, it follows the bottom layer to a remote
SkipList element 5. The search then completes.

In our implementation of Braided SkipList, a NUMA ID is embedded in the extra 16 bits
of the 64-bit virtual address, as in pointer swizzling [72], such that it can use 8-byte atomic
instructions instead of expensive PMDK transactions [73]. For direct reference, Braided SkipList
restores the virtual memory address of a SkipList element by masking the extra 16 bits.

6.5 Braided Zipper Compaction

The basic mechanism of Braided Zipper Compaction is the same as the zipper compaction
in ZipperDB (§5.1.2). The only difference between two algorithms is that the braided zipper
compaction supports merging two NUMA-aware Braided SkipLists.

Algorithm 6 shows the pseudo-code of Zipper compaction. For NUMA-aware Braided
SkipLists, Zipper compaction requires a two-dimensional array - rightmost[numa_id][layer]
to keep as many rightmost elements in each layer as the number of NUMA nodes for Braided
SkipList. But, note that a Braided SkipList element does not need more pointers than a con-
ventional SkipList element as it embeds NUMA node ID in the 8-byte address.

6.5.1 Scan Phase

In the forward scan phase, a compaction thread traverses L0 and L1 PMTables from head to
tail and determines where each L0 PMTable element should be inserted in the L1 PMTable.
However, in this phase, it does not make any change to the PMTables but pushes necessary
pointer updates on a stack. The backward merge phase pops the stack to apply and persist the
updates to the L1 PMTable.

The scan phase follows the bottom layer of L0 PMTable. For each L0 element, it searches
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Algorithm 6 BraidedZipperCompaction(L0SkipList, L1SkipList)
1: LogZipperCompactionBegin(L0SkipList); // micro-logging
2: L0_element ← L0SkipList.head[0].next[0]; // smallest L0 element
3: local_numa_id ← DecodeNumaId(L0_element); // not always 0
4: for i ← 0; i <NumNUMA; i++ do
5: rightmost[i][]← L1SkipList.head[i].next[]; // array copy
6: end for
7: bottom_L1_element ← L1SkipList.head[0].next[0];
8: L1_element ← L1SkipList.head[local_numa_id]; // local head
9: // I. scan phase: from head to tail
10: while L0_element̸=NULL do
11: // NUMA-aware local search for upper layer pointers
12: for layer ← L0_element.height−1; layer > 0; layer−− do
13: while L1_element.next[layer] ̸=NULL && L1_element.next[layer].key < L0_element.key do
14: L1_element ← L1_element.next[layer];
15: // update the rightmost for the current layer
16: rightmost[local_numa_id][layer]← L1_element;
17: end while
18: end for
19: // NUMA-oblivious search for bottom-layer pointer, i.e., layer = 0
20: L1_element ← bottom_L1_element;
21: <<same while loop with line 13–17 >>

22: // push an array of NUMA local upper-layer pointers and a NUMA-oblivious bottom layer pointer
23: stack.push(L0_element, rightmost[local_numa_id][]);
24: // fetch the next L0_element and update local NUMA ID
25: L0_element ← L0_element.next[0];
26: local_numa_id ← DecodeNumaId(L0_element);
27: bottom_L1_element ← L1_element;
28: L1_element ← rightmost[local_numa_id][L0_element.height−1];
29: end while
30: // II. merge phase: from tail to head
31: while stack is not empty do
32: (L0_element, rightmost2update[])← stack.pop();
33: for layer ← 0; layer < L0_element.height; layer++ do
34: // Pop and apply the updates without worries about NUMA IDs
35: L0_element.next[layer]← rightmost2update[layer].next[layer];
36: if layer = 0 then
37: persist(L0_element.next[layer]);
38: end if
39: rightmost2update[layer].next[layer]← L0_element;
40: if layer = 0 then
41: persist(rightmost2update[layer].next[layer]);
42: end if
43: end for
44: second_chance_cache.Insert(L0_element);
45: end while
46: MANIfEST.L0List().PopBack(); /* CAS */
47: LogZipperCompactionDone(L0SkipList); // micro-logging
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(a) Scan Phase (b) Merge Step 1 (c) Merge Step 2 (d) Merge Step 3,4

(e) Merge Step 5 (f) Merge Step 6 (g) Merge Step 7,8 (h) Compaction Done

Figure 28: Zipper Compaction: Merging SkipLists from Tail to Head

the L1 PMTable to find where to insert the L0 element. For this, it keeps track of the rightmost
element smaller than the current search key (L0 element) in each layer to avoid repeatedly
traversing L1 PMTable. Since keys are sorted in both PMTables, the next larger key in L0

PMTable can reuse the previous rightmost elements, and backtrack to the top-layer rightmost
element for the next search. Therefore, the complexity of the scan phase is O(n0+ logn1) where
n0 and n1 are the sizes of L0 and L1 PMTables, respectively.

Figure 28a shows an example of Zipper scan. For ease of presentation, all SkipList elements
are assumed to be on the same NUMA node. The first element A in L0 will be placed in the first
position in L1. Hence, H0 and H1 of the head element in L1 are the current rightmost pointers
that need to be updated for A. This information is stored on the stack. Note that A0 and A1
need to point to B, but they are not pushed onto the stack because B is pointed by the current
rightmost elements that are already pushed on the stack. Each L0 element is inserted between
two L1 elements and only the previous (i.e., rightmost) element in each layer needs to be pushed
on the stack because the next element can be found from the previous elements. Next, the scan
phase visits the second element D in L0 and searches L1. Inserting D requires updating B2, C1,
and C0. Again, they are pushed onto the stack. Finally, it visits the last element E in L0 and
searches L1. Note that L1 PMTable has not changed and the current rightmost pointers are
still B2, C1, and C0. Thus, the scan phase pushes C1 and C0 on the stack to make them point
to E.

6.5.2 Merge Phase

The merge phase applies pointer updates from tail to head. When a compaction thread pops
a pointer update XN → Y from the stack, the Nth layer pointer in element Y is updated to the
current value of XN . Then, XN is set to the address of Y . In the example, shown in Figure 28b,
the compaction thread pops C0→E and sets E0 to F, which is the current value of C0. At
this point, the upper layer pointer of element E (E1) is not pointing to element F. However,
as described earlier, upper layer pointers are probabilistic shortcuts, which do not affect the
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correctness of search. Therefore, there is no need to update E0 and E1 atomically. In the next
step, shown in Figure 28c, the compaction thread sets C0 to the address of E. In the next step,
shown in Figure 28d, the compaction thread pops C1→E, sets E1 to F, and makes C1 point to E.
Each pointer update is removed from the stack one by one, and is applied in order, as shown in
Figures 28e, 28f, 28g, and 28h. Zipper compaction assumes 8-byte pointer updates are atomic.
To make the updates failure-atomic, it persists each bottom layer update immediately using
memory fence and cacheline flush instructions. In the final step, the compaction thread deletes
the head element of L0 PMTable from the MANIfEST object, thus completing compaction.

6.5.3 Updates and Deletes

An update in LSM trees duplicates the same key because writes are buffered in MemTables
and gradually flushed to the last level. ListDB does not eagerly delete the older version in
L1. Instead, when a compaction thread scans L0 and L1 levels for Zipper compaction, it marks
the older version in L1 obsolete. Similarly, a delete in ListDB does not physically delete an
object but inserts a key-delete object into the MemTable. If an LSM tree physically deletes the
most recent version of a key from MemTables or L0 PMTables, older versions of the key will
come back to life. Zipper compaction places a more recent key-value or key-delete object before
its corresponding old objects. Therefore, a read query always accesses the more recent object
before older ones, and thus returns a correct search result.

6.5.4 Fragmentation and Garbage Collection

Using libpmemobj library [73], ListDB allocates and deallocates a memory chunk (e.g., 8 MB)

for multiple IUL entries in PMDK’s failure-atomic transaction so that the number of calls
to expensive PMDK transactions can be reduced. ListDB deallocates a memory chunk if all
elements in the chunk are marked obsolete or deleted. Note that ListDB does not relocate
SkipList elements for garbage collection. To address the lasting fragmentation, a compaction
thread may perform CoW-based garbage collection. We leave this optimization for our future
work.

Memory management for lock-free data structures is a hard problem because there is no easy
way to detect whether deallocated memory space is still being accessed by concurrent reads [65–
67]. ListDB employs a simple epoch-based reclamation [65]; ListDB does not deallocate memory
chunk immediately but waits long enough for short-lived read queries to finish accessing the
deallocated memory chunk. A background garbage collection thread periodically checks and
reclaims a memory chunk if all objects in the memory chunk are obsolete or deleted. For
obsolete objects, the garbage collection thread checks its newer version’s LSN. If it is also old
enough, it considers the obsolete objects are not accessed by any reads, removes them from L1

PMTable, and physically deallocates the memory chunk.
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6.5.5 Linearizability

Theorem 1 Zipper compaction is linearizable with a single writer and multiple readers.

Proof 1 For some element e, there is a single linearization point [61] for a writer when its
level changes from L0 to L1, by atomic update of the bottom-layer next pointer. We denote this
linearization point as e.merge_to_L1.

There are two linearization points e.search_L0 and e.search_L1 for a reader, as it searches
L0 and then L1 PMTable in order. Let a→ b if an event a happens before another event b.
There are three cases to consider.

1. e.merge_to_L1→ e.search_L0→ e.search_L1

2. e.search_L0→ e.merge_to_L1→ e.search_L1

3. e.search_L0→ e.search_L1→ e.merge_to_L1

In case 1, e.search_L1 will find e in L1. In case 2, e.search_L0 will find e in L0. If
the search does not stop after finding e in L0, e.search_L1 will also find e in L1. In case 3,
similarly, e.search_L0 will find e. Since all three cases succeed in finding e, Zipper compaction
is linearizable, meaning a read always succeeds in finding an element if the element was inserted
by a committed write transaction, regardless of whether the element is in L0 or L1 PMTable.

6.6 Look-up Cache

ListDB requires that a read query accesses at least two indexes, i.e., a mutable MemTable and
L1 PMTable. Therefore, the read throughput of ListDB is significantly lower than a highly-
optimized persistent B+tree, as we show in Section 6.8.

To mitigate this problem, ListDB uses a lookup cache in DRAM. Flushing a MemTable
hashes each element into a fixed-sized static hash table. Unlike disk-based designs, the lookup
cache does not duplicate the element in it, but only stores its NVMM address because the
element in NVMM is already in the memory address space and its address never changes.
Hence, regardless of the level at which the PMTable element is present, the lookup cache can
locate the PMTable element. SkipList pointers are frequently updated by compaction threads
in ListDB. By caching immutable addresses, not mutable content, the lookup cache can avoid
frequent cache invalidation. If a hash collision occurs on a bucket, the old address is overwritten
(i.e., FIFO replacement policy).

ListDB constructs a SkipList in DRAM as a second chance lookup cache for tall elements
evicted from the hash table. The purpose of the second chance lookup cache is to accelerate
PMTable search. Even if a key is not found in the second chance cache, a query can start the
search from the closest PMTable element found in the cache. Algorithm 7 shows how a read
query uses the lookup caches. Suppose a read searches for key 100 but finds element 85 is
the closest smaller element in L1. Then, the search continues from element 85 in L1 PMTable
instead of the beginning of L1. ListDB does not use the second chance lookup cache for L0
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search because small L0 PMTables are merged into L1 fast, and L0 elements are mostly cached
in the lookup hash table, The second chance lookup cache uses the SIZE replacement policy [74],
i.e., it compares heights and evicts elements with shorter heights.

Algorithm 7 Get(key)
1: iter ← MANIFEST.GetTableIterator();
2: table ← iter.GetTable(); // get mutable MemTable
3: while table ̸= NULL && table.IsPMTable()= false do
4: value ← table.Search(key); // SkipList lookup
5: if value ̸= NULL then return value; // Found: return value
6: end if
7: table ← (++iter).GetTable(); // immutable MemTables
8: end while
9: /* L0 Cache Lookup */
10: cached ← lookup_cache.Lookup(key);
11: if cached ̸= NULL && cached.GetElement().key = key then return cached.GetElement().value;
12: end if
13: /* L0 Search */
14: while table ̸= NULL && table.Level()= 0 do
15: value ← table.Search(key); // SkipList lookup
16: if value ≠ NULL then return value; // Found: return value
17: end if
18: table ← (++iter).GetTable(); // L0 PMTables
19: end while
20: /* L1 Search */
21: rightmost ← second_chance_cache.Lookup(key);
22: value ← table.SearchFromElement(key, rightmost);
23: if value ̸= NULL then return value; // Found: return value
24: end ifreturn NOT_FOUND;

6.7 Recovery

A system may crash while L0 and L1 PMTables are being merged by Zipper compaction. To
recover from such failures, a compaction thread performs micro-logging to keep track of which
L0 PMTable is being merged into L1 PMTable. When a system restarts, ListDB checks the
compaction log to redo unfinished compactions. For redo operations, Zipper compaction has
to check duplicate entries since many entries in the tail of L0 PMTable can be shared with L1

PMTable.
The recovery algorithm of ListDB, shown in Algorithm 8, is similar to that of conventional

LSM trees. First, a recovery process locates the boundary of WAL, which is recorded by
compaction threads in the compaction log. Then, it sorts log entries and restores L0 PMTables.
At this point, the system returns to the normal execution mode and starts processing clients’
queries. Compaction between L0 and L1 will be done in the background as normal.

As for the lookup cache, ListDB can process clients’ queries without restoring the cache
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Algorithm 8 RecoverDB()
1: ScheduleUnfinishedZipperCompactionJob();
2: curr_table ← NULL;
3: while log_iter.Valid() do
4: iul_entry ← log_iter.GetIULEntry();
5: table_id ← GetTableIdByLSN(iul_entry.LSN);

6: if curr_table = NULL || table_id ̸= curr_table.Id() then
7: curr_table ← MANIFEST.GetTableById(table_id);
8: curr_table.ResetSkipListHead();
9: end if
10: curr_table.InsertEntry(iul_entry); /* SkipList Insert */
11: log_iter.Next(); /* from old to latest */
12: end while

although the search performance will be poor until the cache is populated. By avoiding the
reconstruction of DRAM cache and index, the recovery performance of ListDB is superior to
synchronous checkpointing [27], as we show in Section 6.8.

6.8 Evaluation

6.8.1 Experimental Setup

Experiments are conducted on a four-socket NUMA server with Intel Xeon Gold 5215 CPU (2.50
GHz, 20 vCPUs) per socket, 256 GB of DDR4 DRAM (16x 16 GB), and 2 TB (16x 128 GB)

Optane DCPMM (4 DCPMM’s and 4 DRAM’s per each socket) in app-direct mode. Our
testbed server supports only the directory coherence protocol, but not snoop protocol, despite
its known NUMA bandwidth meltdown issues [45].

All implementations are compiled using gcc 7.5.0 with -O3 optimization. Using PMDK [73],
ListDB creates an auto-growing directory-based persistent memory poolset (pmempool) on each
NUMA node [73]. For NUMA-oblivious designs, we use the device mapper to create a single
persistent memory poolset interleaved on four sockets.

We evaluate the performance of ListDB using two individual sets of experiments. First,
the performance effects of each part of the design of ListDB are quantified. Second, the perfor-
mance of ListDB is compared against that of state-of-the-art persistent indexes, including FAST
and FAIR B+tree [17] and PACTree [45], and LSM tree-based key-value stores for NVMM,
i.e., NoveLSM [58], SLM-DB [37], and Intel’s industry-optimized Pmem-RocksDB [75]. Pmem-
RocksDB [75] is a variant of RocksDB for NVMM that Intel has optimized in two respects.
First, Pmem-RocksDB separates keys and values to mitigate write amplification issues, as in
WiscKey [34]. Second, Pmem-RocksDB mmaps SSTables and writes directly to NVMM by
using non-temporal stores (i.e., ntstore) to bypass the cache hierarchy and eliminate context
switching.
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Figure 29: Low Flush Throughput Results in Write Stalls

Our experiments use YCSB [68] and the Facebook benchmark [76]. The Facebook bench-
mark generates more realistic workloads than YCSB as it emulates real-world RocksDB work-
loads in Facebook/Meta datacenters. Specifically, the Facebook benchmark adds mathematical
models (e.g., sine distribution) to db_bench [77] such that it can vary key sizes, value sizes, and
query arrival rates over time.

6.8.2 Evaluation of Index-Unified Logging

6.8.2.1 IUL vs. WAL: Flush Throughput This section compares the performance effect
of IUL to standard WAL with respect to write stalls. For the experiments shown in Figure 29,
a single YCSB [68] client thread (Load A) and a single compaction thread are used to evaluate
how fast a MemTable absorbs bursts of 20 million writes (8-byte key and 8-byte value objects),
and how fast a single background compaction thread flushes MemTables to NVMM. To prevent
memory usage from increasing indefinitely, the maximum number of immutable MemTables is
set to 4. Zipper compaction threads are disabled to evaluate only the effect of IUL, i.e., L1 is
not used. put denotes the client’s query processing throughput over time (i.e., the number of
records inserted into MemTables per second), and flush denotes how many records are flushed
from MemTables to NVMM by the compaction thread.

Figure 29 (a) shows that with standard WAL, put throughput is higher than flush through-
put because inserting key-value objects into a SkipList in DRAM is much faster than flushing
(i.e., copying key-value objects from DRAM to NVMM) and persisting a SkipList in NVMM.
Each spike in put throughput indicates that a new empty mutable MemTable was created; it
takes about 5 seconds to fill a 64 MB MemTable. In 40 seconds, the number of MemTables
exceeds the threshold, and subsequent writes are blocked. Even if the threshold is set to a higher
value than four, it is only a matter of time before a write is stalled, because flush throughput
is lower than put throughput.

In contrast, Figure 29 (b) shows that with IUL, flush throughput is much higher than
put throughput. flush throughput of IUL fluctuates because each flush takes less time than
filling a MemTable, i.e., the compaction thread becomes idle. This high flush throughput is
because IUL does not copy key-value objects from DRAM to NVMM and does not call cacheline
flush instructions. So, write stalls do not occur and the compaction thread often becomes idle,
allowing the CPU to perform other work.

63



(a) Load A (b) Workload A (c) Workload B

(d) Workload C (e) Workload D

Figure 30: Performance Effect of Index-Unified Logging

6.8.2.2 Evaluation of IUL using YCSB The experiments shown in Figure 30 compare
the performance of IUL to standard WAL with varying the number of client threads for YCSB
workloads. The number of background compaction threads is set to half the number of client
threads. The MemTable size and the maximum memory usage for MemTables are set to 256 MB
and 1 GB, respectively, i.e., a maximum of 4 MemTables are allowed. We set the lookup cache
size to 1 GB (979 MB hash-based lookup cache and 45 MB for the second chance lookup cache).
For the experiments, Braided SkipList and Zipper compaction are enabled so that L0 PMTables
are merged into L1 PMTable and read queries can run faster. The Load A workload populates
the database with 100 million records (8-byte keys and 8-byte values). All other workloads
submit 100 million queries each.

Figure 30a shows that increasing the number of client threads increases the write throughput
of both logging methods, up to 80 threads. With 80 client threads, the throughput of IUL
(14.513 million ops/sec) is approximately 1.8x higher than that of WAL (8.101 million ops/sec).
However, when the number of client threads exceeds the number of logical cores throughput
degrades due to the high overcommit rate. That is, 100 client threads and 50 background
compaction threads compete for 80 logical cores. Still, the throughput of IUL is 99% higher
than WAL.

For Workload B (95% reads), Workload C (100% reads), and workload D (read latest), WAL
has similar or slightly better performance than IUL because WAL does copy-on-writes to store
records in ascending order of keys, and read operations benefit from higher memory access
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(a) Memory Access Count (b) Response Time Breakdown

Figure 31: PUT Performance (80 Clients)

(a) Memory Access Count (b) Response Time Breakdown

Figure 32: GET Performance (80 Clients)

locality than IUL. Nevertheless, IUL outperforms WAL in Workload A (50:50 Read:Write) due
to its better write performance.

6.8.3 Evaluation of Braided SkipList

This section evaluates NUMA effects in NVMM using a single PMTable. The performance of
the NUMA-aware Braided SkipList (denoted as BR) is compared with three other methods that
were discussed in Section 2.5; i.e., (i) NUMA-oblivious SkipList (denoted as Obl), (ii) delegating
client queries to a worker thread, using shared memory (denoted as Deleg), and (iii) a write-
optimal local SkipList (denoted as Local), which manages a SkipList per NUMA node. BR
and Obl manage one large PMTable, whereas Deleg and Local create four smaller PMTables.
Deleg partitions key-value records according to hash keys, but Local allows a write client to
insert data into the SkipList on its local NUMA node regardless of the key. Consequently, a
read query has to search all four SkipLists. Even if a key is found in the local index, it must
search remote indexes because a remote index may have a more recent update. Therefore, when
there are n NUMA nodes, the ratio of local accesses is always 1/n.

Our experiments, shown in Figures 31 and 32, run YCSB Load A (100 million inserts, 5-25
bytes string keys, 100-byte values) and Workload C (10 million queries).

PUT: Figure 31b shows that Local has the lowest write response time because it always
inserts into the local PMTable. This eliminates remote NUMA node access for writes as shown
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in Figure 31a. Braided SkipList (denoted as BR) has a higher write response time than Local
because BR accesses remote NVMM via bottom layer pointers. Figure 31a shows that most
NVMM accesses using BR are local, unlike NUMA-oblivious SkipList (20.1% vs. 74.1% remote
accesses). Obl and BR access NVMM more than Deleg and Local.

Similar to Local, Deleg also completely removes remote NVMM access, but the write re-
sponse time is significantly higher due to delegation overhead. That is, threads use slow atomic
instructions to access the shared queue and make a memory copy for queries and results. Fig-
ure 31b shows that the queueing delay accounts for 77.1% of query response time with 80 client
threads. Because put/get operations on a lock-free index are very lightweight, the synchroniza-
tion overhead incurred by delegation dominates the overall response time.

GET: Figure 32a shows that the response time of BR for read queries is lower than the other
methods. While Local outperforms BR for writes, the read response time of Local is about
4x higher than BR because Local must search all 4 PMTables. Although BR avoids visiting a
more efficient search path that follows remote elements, Figures 31a and 32a show that it has
almost no effect on the traversal length. Deleg shows the fewest memory accesses. However,
due to synchronization overhead, its query response time is about 2x higher than BR, so its
performance is even lower than Obl.

6.8.4 Putting It All Together

Figure 33 presents a factor analysis for ListDB. 3 We enable and disable each design feature
of ListDB and measure write throughput (denoted put), flush throughput (MemTable → L0

PMTable, denoted flush), and compaction throughput (L0→ L1 PMTable, denoted comp.)
over time. We run 80 client threads and 40 background compaction threads for YCSB Load
A, inserting 500 million 8-byte keys and 8-byte values. Figure 33a shows that disabling all
three optimizations causes client threads to stall for more than 50 seconds. Enabling Zipper
compaction improves the L0→ L1 compaction throughput as shown in Figure 33b, but the write
stall problem still occurs because of the memory copy overhead for flushing the MemTable. If
Braided SkipList is used, accessing remote NUMA nodes can be avoided when flushing the
MemTable. Therefore, flush throughput doubles, which results in less frequent write stalls, as
shown in Figure 33c. Enabling both Zipper compaction and Braided SkipList results in shorter
write stall times, and the workload completes in less than 120 seconds (Figure 33d)

If IUL is used instead of WAL, flush throughput becomes comparable to put throughput,
as shown in Figure 33e. By avoiding expensive memory copy, write stalls are less frequent
than WAL. However, note that compaction throughput is much lower than flush throughput.
This increases the number of L0 PMTables and degrades search performance. As shown in
Figure 33f, if additionally IUL and Zipper compaction are enabled, the NVMM bandwidth
improves by reducing the number of memory copies. Thus, it improves compaction and flush

3Note that the scale of the x axis differs between the subfigures.
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(a) WAL (b) WAL+Zipper

(c) WAL+Braided (d) WAL+Zipper+Braided

(e) IUL (f) IUL+Zipper

(g) IUL+Braided (h) IUL+Zipper+Braided

Figure 33: Put/Flush/Compaction Throughput over Time (YCSB Load A)
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Figure 34: Recovery Performance

throughput. Enabling IUL and Braided SkipList, as shown in Figure 33g, avoids NUMA effects,
which improves both compaction and flush throughput. Finally, with all three optimizations
enabled, the workload completes in under 65 seconds with virtually no write stalls (Figure 33h)
compared to 300 seconds in figure 33a.

6.8.5 Recovery Performance

We evaluate the recovery performance of asynchronous incremental checkpointing for ListDB
and periodic synchronous checkpointing. Using the Facebook benchmark, we populate a database
with 100 million objects and measure the time to recover using a checkpoint and write-ahead
log entries. Despite using the same workload, the recovery performance of synchronous check-
pointing is affected by the checkpointing interval, whereas asynchronous checkpointing is only
affected by the query arrival rate. This is because the number of the log entries varies with
asynchronous checkpointing, which background compaction threads have not yet merged into
L1. If the query arrival rate is higher than the Zipper compaction throughput, the number of
the IUL entries increases and the recovery process has to create a larger L0 PMTable with more
log entries.

Figure 34 shows that a synchronous checkpointing takes about 90 seconds to serialize and
flush the in-memory B+tree using the binary_oarchive class from the Boost library. This
causes concurrent queries to block for 90 seconds while the checkpointing is being performed,
resulting in unacceptably high tail latency. To alleviate the problem, checkpointing can be
performed less frequently, but that increases the recovery time (i.e., the time to restore the
checkpointed index and insert log entries to it) as more log entries accumulate.

In contrast, Figure 34 (b) shows that ListDB recovers instantly if it crashes when the write
query arrival rate is lower than 3 million insertions/sec. If the query arrival rate varies between
7 and 9 million insertions/sec, ListDB takes about 19 seconds to recover. With a higher query
arrival rate, the recovery time of ListDB increases.
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Figure 35: Comparison with Other Designs
Figure 36: Comparison with
NoveLSM and SLM-DB

6.8.6 Comparison with Other Designs

The experiments shown in Figure 35 compare the performance of ListDB with state-of-the-art
persistent indexes; i.e., BzTree [78],FP-tree [20],FAST and FAIR B+tree [17], and PACTree [45],
We run the experiments on a two-socket machine, because PACTree is hardcoded for two sock-
ets. The two-socket machine has the same Intel Xeon Gold 5215 CPUs (40 logical cores in
total), 128 GB DRAM (8x 16GB), and 1 TB (8x 128 GB) DCPMM. The database is pre-loaded
with 100 million key-value records and then 40 clients submit 10 million queries with uniform
distribution (generated from YCSB Workload A) with various read-write ratios. These tree-
structured indexes are not optimized for (or do not support) large variable-length string keys
and values. Therefore, we generated 8-byte numeric keys and 8-byte pointer values for the
workload, which is favorable for tree-structured indexes with large fanouts.

Figure 35 shows that ListDB outperforms tree-structured persistent indexes for write-intensive
workloads. For the write-only workload, ListDB(0GB) shows 79x, 17x, 2.3x and 1.6x higher
throughput than BzTree, FPTree, FAST and FAIR B+tree, and PACTree, respectively. How-
ever, for the read-only workload, tree-structured indexes benefit from faster search perfor-
mance. In particular, FAST and FAIR B+tree and PACTree show 3.88x and 4.61x higher
search throughputs, respectively, than ListDB(0GB). With the lookup cache enabled, ListDB
outperforms or shows comparable performance to tree-structured indexes. The numbers in
parentheses in the graph key show the lookup cache size. With a lookup cache larger than
768 MB, ListDB outperforms PACTree unless the read ratio is higher than 80%.

These results confirm that standard caching techniques can easily improve read performance.
However, the lookup cache that indexes the location of key-value records cannot be used for
PACTree, FAST FAIR B+tree, FPTree, etc. because they frequently relocate key-value records
to different tree nodes due to tree rebalancing operations. That is, employing a DRAM cache
for a tree-structured persistent index is not as simple as our address-only lookup caching. For
example, Nap [25] has a very complicated caching mechanism.
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6.8.6.1 Write Amplification Although LSM trees have better write performance than
tree-structured indexes, they have higher write amplification, as a critical limitation in block
device storage [32–34]. To compare write amplification, we used Intel PMwatch [79] to measure
the total number of accessed bytes in the experiments shown in Figure 35. All indexing methods
suffer from high write amplification. DCPMM’s internal write combining buffer transforms a
small write (8-byte key and 8-byte value) into a 256-byte read-modify-write operation, resulting
in at least 16x write amplification. In ListDB, the writes are further amplified by merge-sort
operations in L0 and L1 PMTables. However, the write amplification of ListDB (104.4) is lower
than that of FAST and FAIR B+tree (126.789) and comparable to that of PACTree (91.5)
because ListDB merge-sorts SkipLists in-place.

6.8.7 Comparison with NoveLSM and SLM-DB

Figure 36 shows the single-threaded read and write throughput of NoveLSM, SLM-DB, Pmem-
RocksDB, and ListDB. The experiments run a single client thread (db_bench, 100 million
random 8-byte keys and 1 KB values) because NoveLSM crashes when multiple threads con-
currently access the database. NoveLSM and SLM-DB were designed to use NVMM as an
intermediate layer on top of the block device file system, but our experiments store all SSTables
in NVMM formatted with EXT4-DAX for a fair comparison.

NoveLSM shows the worst performance, not because of its design but because it is im-
plemented on top of LevelDB, which is known to have poor performance. SLM-DB is also
implemented on top of LevelDB but shows better performance because it uses FAST and FAIR
B+tree as its core index. Since SLM-DB is not yet ported to use PMDK, it has no over-
head imposed by run-time flushing or transactional updates, i.e., it shows DRAM performance
and does not survive a system crash. Nonetheless, SLM-DB does not show better perfor-
mance than Pmem-RocksDB, a fully persistent key-value store. Compared to Pmem-RocksDB,
ListDB(0GB) shows twice the write throughput, but read performance is slightly worse unless
the lookup cache is enabled. This is because Pmem-RocksDB benefits from memory locality by
storing keys contiguously in NVMM in sorted order, whereas ListDB does not relocate data.

6.8.8 Comparison with Pmem-RocksDB

Finally, we compare the performance of ListDB with Intel’s Pmem-RocksDB using the Prefix
Dist workload in the Facebook benchmark. The experiments shown in Figure 37 run 80 client
threads and use the default key and value sizes of the benchmark (48-byte string keys and
variable-length values ranging from 16 bytes to 10 KB). The workload submits queries according
to a query arrival rate (QPS parameter) that follows a sine distribution with a noise factor of
0.5. The put/get ratio of the workload is 3 to 7.

For various parameter settings, ListDB consistently outperforms Pmem-RocksDB. The
results of two different settings are presented in Figure 37 - an idle workload (0.1–0.3 million
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(a) Pmem-RocksDB (idle) (b) ListDB (idle)

(c) Pmem-RocksDB (heavy) (d) ListDB (heavy)

Figure 37: Throughput over Time (Facebook Benchmark)

write queries and 0.2–0.7 million read queries arrive per second; 200 million queries in total), in
which the throughput of Pmem-RocksDB is saturated, and a heavy workload (2.4–7.2 million
write queries and 5.6–16.8 million queries arrive per second; 5 billion queries in total), in which
the throughput of ListDB is saturated. The lookup cache is disabled for ListDB while setting
the maximum DRAM usage for both key-value stores to 1 GB and allowing Pmem-RocksDB
to use the default 8 MB block cache.

For the idle workload, Pmem-RocksDB suffers from excessive NVMM writes, so its put
throughput saturates at 200 Kops. For the Facebook benchmark, a get query has to wait for
its previous put query to commit. Therefore, the get throughput of Pmem-RocksDB saturates
at 400 Kops in the experiment. In contrast, Figure 37b shows that the throughput of ListDB
follows the sine distribution, i.e., the query arrival rate, without blocking queries.

For the heavy workload, Pmem-RocksDB’s throughput is still saturated. On the other
hand, the put throughput of ListDB is 25x higher than that of Pmem-RocksDB, i.e., 5 million
ops. Similarly, the get throughput of ListDB is up to 22x higher than that of Pmem-RocksDB
(i.e., 13 million vs. 0.6 million ops). As such, ListDB completes the workload 19.4x faster than
Pmem-RocksDB (i.e., 380 vs. 7400 seconds).

6.9 Summary

In this work, we design and implement ListDB - a key-value store that leverages the byte-
addressability to avoid data copies by restructuring data in-place and high-performance of
NVMM to reduce the write amplification and avoid write stalls. We show that ListDB signif-
icantly improves write performance via asynchronous incremental checkpointing and in-place
compaction. With its three-level structure, ListDB outperforms state-of-the-art persistent in-
dexes and NVMM-based key-value stores in terms of write throughput. A standard lookup
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cache can help mitigate the problem of having multiple levels. For future work, we are explor-
ing the possibility of improving search performance by introducing another level, namely L2
PMTable, to opportunistically rearrange L1 PMTable elements for spatial locality and garbage
collection.
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VII Conclusion

In this dissertation, we investigate the performance issues of Apache Hadoop YARN and
LSM-tree-based NoSQL databases, which are widely used technologies in modern big data
analytics platforms. We show that improving the performance of Apache Hadoop YARN and
LSM tree-based NoSQL databases requires proper control over the granularity of tasks and I/O,
which requires introducing emerging hardware and a new design of data structures.

First, we show that YARN container initialization overhead took up a significant portion
of MapReduce job execution time. Choosing the right HDFS block size is essential to reduce
container initialization overhead. However, choosing the optimal HDFS block size is not trivial
because it varies widely from application to application. Our proposed block size adjustment
scheme combines multiple HDFS blocks to create a large input split. Enabling a single map
wave reduces the number of containers and container initialization overhead.

Second, we showed that enabling a single map wave has problem in coarse-grained task
scheduling problem. There is a trade-off between container overhead and fine-grained task
scheduling. We propose a novel block coalescing scheme that create various size of input splits.
Our experimental studies show that different block integration schemes reduce container over-
head while achieving good load balancing and job scheduling fairness without compromising
the degree of overlap between map and reduce phases.

Third, we showed that ZipperDB helps reduce the write-amplification by its persistent
SkipList and the zipper compaction, an in-place merge-sort algorithm. Both the persistent
SkipList and the zipper compaction algorithm are enabled by leveraging byte-addressability
and non-volatility of NVMM.

Finally, we design and implement ListDB - a key-value store that leverages the byte-
addressability to avoid data copies by restructuring data in-place and high-performance of
NVMM to reduce the write amplification and avoid write stalls. We show that ListDB signif-
icantly improves write performance via asynchronous incremental checkpointing and in-place
compaction with a NUMA-aware data structure. With its three-level structure, ListDB outper-
forms state-of-the-art persistent indexes and NVMM-based key-value stores in terms of write
throughput. A standard lookup cache can help mitigate the problem of having multiple levels.
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