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Biophysical modelling and graph
theory identify key connectivity
hubs in the Mediterranean
marine reserve network

David Abecasis*, Eliza Fragkopoulou, Bruno Claro
and Jorge Assis

Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
Connectivity plays a key role in the effectiveness of MPA networks ensuring

metapopulation resilience through gene flow and recruitment effect. Yet,

despite its recognized importance for proper MPA network functioning,

connectivity is not often assessed and is very seldomly used in marine spatial

planning. Here, we combined biophysical modelling with graph theory to

identify Mediterranean marine reserves that support connectivity between

different ecoregions through stepping-stone processes, thus preventing

network fragmentation, and those that have an important role as propagule

source areas contributing to the recruitment and rescue effects. We identified

19 reserves that play a key role towards the functioning of the network, serving

either as stepping-stones or as propagule sources, yet with distinct patterns

between ecological groups with contrasting propagule duration (PD). The Côte

D’Azur marine reserves are important both as stepping-stones and propagule

sources for several ecological groups. Also, key is the Capo Rizzuto and

Plemmirio marine reserves due to their role as stepping stones between

different marine ecoregions, particularly for species with longer PD (Pisces,

Crustacea and Echinodermata). These results provide stakeholders and

managers with crucial information for the implementation and management

of an efficient marine reserve network in the Mediterranean.

KEYWORDS

marine protected areas (MPAs), biodiversity conservation, resource management,
propagule dispersal, stepping-stone, recruitment
Introduction

The implementation of marine protected area (MPA) networks has been encouraged

as these can accommodate key features, such as replication and representativity, without

the need to encompass very large areas (Gaines et al., 2010). A successful network of

MPAs should operate synergistically with its benefits being more than just the sum of the
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individual benefits of single MPAs (Hamilton et al., 2010;

Grorud-Colvert et al., 2014; Roff, 2014). In this sense,

connectivity plays a key role in ensuring metapopulation

resilience (Kininmonth et al., 2011) and the successful

functioning of an MPA network (Magris et al., 2014). Marine

connectivity, i.e., the exchange of individuals among

geographically separated populations, is strongly influenced by

species’ behavioural and demographic characteristics (e.g.,

propagule duration, migratory patterns) as well as

oceanographic processes (Magris et al., 2018; Balbar and

Metaxas, 2019). Well-connected MPAs are able to facilitate

metapopulation persistence and reverse species decline (Bonin

et al., 2016), improve MPA effectiveness (Goetze et al., 2021),

and better cope with climate change and stochastic events such

as heatwaves or environmental disasters (Micheli et al., 2012;

Bates et al., 2019).

The Convention on Biological Diversity Aichi target 11

states that conservation should be based on effectively and

equitably managed, ecologically representative, and well-

connected systems of protected areas (CBD, 2010). Most

connectivity studies have focused on single species (e.g.,

Nolasco et al., 2022) or several species of the same taxonomic

group (e.g., Faillettaz et al., 2018) with very few studies exploring

MPA connectivity for a wide range of taxonomic groups and/or

large geographic scales (but see Romero-Torres et al., 2018;

Roberts et al., 2021). The incorporation of connectivity in

marine spatial conservation planning has become more

accessible with the development of systematic conservation

planning frameworks that allow the inclusion of such data

(Balbar and Metaxas, 2019; Daigle et al., 2020; Virtanen et al.,

2020). Various tools have been used to estimate connectivity (for

a review, see Calò et al., 2013). Depending on the spatial and

temporal scale of the study, and on the species’ life stage, these

can include population genetics (Jenkins and Stevens, 2018),

natural tags (e.g., otoliths, Gillanders, 2005) and biotelemetry

(e.g., Abecasis et al., 2009). A more recent approach to estimate

the extent to which metapopulations are connected is the use of

bio-physical models coupled with centrality measures from

graph theory, which can predict potential connectivity at large

spatial and temporal scales (Ospina-Alvarez et al., 2020). These

models simulate the dispersal of propagules advected by ocean

currents adding biological traits such as propagule duration

(PD) or larval mortality to increase the realism of connectivity

processes (Treml et al., 2012; Assis et al., 2018). The use of

centrality indices from graph theory allows the identification and

sorting of nodes (MPAs) in a network according to their

ecological relevance (Ospina-Alvarez et al., 2020; Keeley et al.,

2021). Two centrality indices can provide relevant information

in the context of networks of protected areas: the Betweenness

and the Out-Strength. The Betweenness centrality identifies the

nodes that act as bridges or stepping-stones and thus preventing

network fragmentation (Freeman, 1977; Ospina-Alvarez et al.,
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2020). The Out-Strength centrality identifies the nodes with the

highest probability of spreading their propagules to other nodes

thus acting as essential spawning habitats (source areas) for the

network (Barrat et al., 2004; Ospina-Alvarez et al., 2020),

translating into a higher recruitment effect. Understanding the

overall structure of the MPA network and knowing the

connectivity role each MPA plays is key to the successful

planning and management of MPA networks (Balbar and

Metaxas, 2019; Ospina-Alvarez et al., 2020).

The Mediterranean Sea is a marine biodiversity hotspot

facing some of the highest anthropogenic impacts (Myers

et al., 2000; Coll et al., 2012). Yet, current conservation

management measures are insufficient and largely ineffective

(Pérez-Ruzafa et al., 2017; Claudet et al., 2020). The existing

MPAs are unevenly distributed across regions and

underperforming as a network (Calò et al., 2013; Claudet

et al., 2020). Indeed, low connectivity has been anticipated for

the European marine reserves network, particularly striking for

species with limited dispersal capacities, such as ecosystem

structuring species of corals and seagrasses (Assis et al., 2021b)

and some fish species (Andrello et al., 2013), highlighting the

possible conservation implications. Although potential

connectivity was identified for the Western Mediterranean

marine reserves it is practically nonexistent among the Eastern

Mediterranean marine reserves (Assis et al., 2021b). In such a

context of low connectivity, identifying key MPAs acting as

connectivity hubs promoting crucial links between otherwise

isolated regions and/or areas acting as important propagule

sources for the network provides stakeholders and managers

crucial information for the implementation and management of

an efficient marine reserve network.

Considering international initiatives calling for highly

protected and well-connected MPAs (Convention on

Biological Diversity Aichi Target 11), here, we identify the

key Mediterranean marine reserves enhancing stepping-stone

connectivity and increasing recruitment effect for distinct

biodiversity groups. The estimates were aimed at the

strongest protection level provided by marine reserves

(MPAs with the strongest protection level, i.e., fully

protected), owing to the higher conservation value for

biodiversity (e.g., higher density of organisms; Giakoumi

et al., 2017; Sala and Giakoumi, 2017) and to the lower

anthropogenic impact (e.g., trawling; Sala and Giakoumi,

2017) relative to additional areas with lower protection levels

(Zupan et al., 2018). Together, these traits allow reducing/

removing confounding effects while inferring connectivity

estimates (Eigaard et al., 2016; Sala and Giakoumi, 2017;

Dureuil et al., 2018; Assis et al., 2021b). Our findings provide

key insights on the individual role of marine reserves,

particularly important in the scope of MPA resource

management, and climate change adaptation and resilience

(Almany et al., 2009; Pascual et al., 2017).
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Methods

The Atlas of Marine Protection (Marine Conservation Institute,

2020) and the Database of Marine Protected Areas in the

Mediterranean (MAPAMED, 2022) were used as a starting point

for the compilation of the marine reserves database, as these contain

the most up to date information on MPAs. To ensure that every

existing marine reserve was included a further web search was

conducted for each country as in Zupan et al. (2018). For each

marine reserve, we gathered information on its location, size, shape,

and marine ecoregion as defined in Spalding et al. (2007).
Marine taxa and ecological groups

To examine the potential connectivity of Mediterranean

marine reserves across multiple taxa and ecological groups, we

considered four ecological groups based on the similarity of their

PD following Assis et al. (2021b). Group 1 (G1) as representative

of Cnidaria, Tunicata and Porifera (mean PD of 2 days), group 2

(G2) representing Macroalgae and Seagrass (mean PD of 6 days),

group 3 (G3) representing Bryozoa, Mollusca and Polychaeta

(mean PD of 17 days) and group 4 (G4) representing Pisces,

Crustacea and Echinodermata (mean PD of 36 days). Empirical

PD data was compiled from published literature as in Assis et al.

(2021b). To ensure a representative sample and given the low

number of species with PD information this compilation

comprised marine species from all oceans.
Connectivity model and graph theory

Estimates of connectivity between the Mediterranean marine

reserves were inferred with a bio-physical numerical model

(Assis et al., 2015; Buonomo et al., 2017; Assis et al., 2021a)

that simulated the spatial and temporal distribution of drifting

propagules (i.e., planktonic dispersal stages such as larvae,

spores, gametes, seeds and drifting fragments) with

information on ocean currents derived from the Hybrid

Coordinate Ocean Model (HYCOM), a high-resolution

hindcast of three-dimensional velocity fields (spatial resolution

of 0.08°, approximately 7 km in the Mediterranean Sea, with 40

depth levels). The HYCOMmodel is forced by wind stress, wind

speed, precipitation, and heat flux (Chassignet et al., 2007) and

assimilates data from an array of satellites, bathythermographs,

Argo floats and moored buoys (for additional information please

refer to Chassignet et al., 2007; see Supplementary Figure S1 for a

representation of the surface circulation in the Mediterranean

Sea). Within its spatial resolution, orders of magnitude lower

than reserve distances, it mimics key oceanographic processes

such as meandering currents, oceanic eddies, filaments, and

fronts (Lett et al., 2008). Currently, there is no validation of
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the HYCOM model for the Mediterranean Sea against empirical

observations (like in Domingues et al., 2012; Nolasco et al., 2018;

Nolasco et al., 2022), however, studies comparing its

performance elsewhere (e.g., Southern Pacific and Northern

Atlantic) found accurate estimates of the prevalent

oceanographic features (Fossette et al., 2012; Kendall et al.,

2013). When used in bio-physical modelling, such as the

current approach, HYCOM has recurrently explained the

patterns of population connectivity estimated from

independent genetic data of macroalgae, mussels, limpets, fish,

crustaceans, echinoderms, and seagrass (Assis et al., 2015; Assis

et al., 2018, Assis et al., 2022; Klein et al., 2016; Cunha et al.,

2017; Ntuli et al., 2020). In particular, one of the studies,

focusing on the Mediterranean Sea, showed HYCOM

explaining > 75% of the variability found in population genetic

data of a macroalgae (Buonomo et al., 2017).

The bio-physical model released individual particles

simulating the passive drifting propagules from sites located

1km apart at the borders of each reserve every 24 hours,

throughout a complete year. In the simulation, landmass was

defined with a high-resolution polygon (Haklay and Weber,

2008). The geographic position of each particle was determined

every hour of simulation by using bilinear interpolation over the

eastward and northward components of the HYCOM’s velocity

fields. The particles drifted until eventually ended up on a

reserve or land (e.g., Assis et al., 2015; Assis et al., 2018;

Buonomo et al., 2017; Cunha et al., 2017). Given the general

absence of comprehensive information on key ecological traits

for most species (e.g., fecundity, larval mortality, larval vertical

migrations, and onset of swimming abilities) only the species PD

was considered. To account for interannual variability,

simulations were run individually for each year for a 10-year

period (2008-2017) and a connectivity matrix between all pairs

of sites was produced by the aggregated trajectories.

Asymmetrical pairwise probabilities of connectivity between

reserves were determined by dividing the number of particles

released from reserve i that reached reserve j, by the total

number of particles released from reserve i, thus accounting

for the relative effect of reserve size, as larger reserves imply a

greater amount of source sites, and therefore higher contribution

to the connectivity estimates.

A graph theory approach (also referred to as network

analysis) was implemented to infer and visualize stepping-

stone connectivity processes between reserves (e.g., Assis et al.,

2021b; Buonomo et al., 2017). To this end, the reserves defined

the nodes of the graph and the pairwise connectivity matrix,

averaged for the 10-years of simulation, defined the strength of

its edges. Individual results were produced per ecological group,

sharing similar dispersal ecology. To address the role of each

marine reserve towards the functioning of the network we

estimated two centrality measures of the graph, namely

Betweenness and Out-Strength. To facilitate interpretation,

centrality measures were normalized between 0 and 1, with 1
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representing the highest values. For the Betweenness measures

this normalization was performed by considering the maximum

and minimum values retrieved by component (cluster), to

capture the less/more central reserves, at the scale of each

network aggregation. Reserves whose Betweenness or Out-

Strength values were above the 95th percentile of the

distribution were considered as key.

Two additional metrics were computed to characterize

network structure, namely, number of components (clusters)

and the relative size of the largest component. The first

represents the number of disconnected subgraphs, while the

second represents the ratio between the number of reserves

existing in the largest component (subgraph) and the number of

reserves in the entire graph (Urban & Keitt, 2001; David et al.,

2022). Lastly, to examine the potential effect of losing one or

more reserves (e.g., through perturbation) in network structure

we performed an analysis of sequential reserve (node) deletion

(Urban & Keitt, 2001; David et al., 2022), which allowed testing

the importance of individual reserves to the overall coherence of

the network. To this end, reserves (and all associated

oceanographic connections) were removed iteratively from the

network (69 iterations; considering the total number of reserves)

under 3 scenarios: (1) from the highest to the lowest betweenness

centrality, from the highest to the lowest out-strength centrality

and randomly with 999 permutations, with no replacement. On

each iteration, the number of components and relative size of the

largest component metrics were computed.

All the analyses were performed in R (Team, 2021), graph

analyses were produced using the ‘igraph’ package (Csardi and

Nepusz, 2006).
Results

We identified a total of 70 marine reserves in the

Mediterranean Sea, distancing on average 1187.63± 772.18 km

from each other (median: 1040.56km) and summing an area of

644.46 km2 representing less than 0.2% of the Mediterranean Sea

(Table S1). Most of the marine reserves are located in Western

Mediterranean European countries with very few in North

African countries or in the Eastern Mediterranean (Table S1).

This is also evident when assessing their distribution by marine

ecoregions with the vast majority located in the Western

Mediterranean (65.7%), and few marine reserves in the

Adriatic (8.6%), Aegean (7.1%), Alboran (7.1%), Ionian

(8.6%), and Levantine seas (2.9%), and none in the Tunisian

plateau (Table S1).

The biophysical modelling estimating connectivity over a

10-year period released a total of 3,280,394 particles from 898

sites located at the edges of marine reserves, resulting in

1,263,927 connectivity events (38.52% of all possible events).
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Increasing PD per ecological group produced more distant

connectivity events between reserves. Average distances of

connectivity spanned from 6.95km (range: 0-44.07km),

10.68km (range: 0-186.12km), 20.01km (range: 0-530.79km)

and 46.73km (range: 0-695.53km), for G1, G2, G3 and G4,

respectively. Such contrasting distances driven by the PD of

the 4 ecological groups correlated with the potential

connectivity between reserves, with the two groups with

shorter PD (G1 and G2) structuring a fragmented network

(Figures 1, 2; Supplementary Figures S2-S5) with 9 and 15

components and relative size of the largest component of 0.13

and 0.11, respectively. The two groups with longer PD (G3 and

G4) are able to link reserves at larger spatial scales and

structuring a more coherent network (Figures 1, 2;

Supplementary Figures S6–S9) with 3 and 6 components and

relative size of the largest component of 0.75 and

0.94, respectively.

Graph theory using pairwise connectivity estimates showed

that 19 out of 70 reserves (~27%) play a key role towards the

functioning of the network (above 95th percentile of

Betweenness or Out-strength), acting as stepping-stones,

propagule source areas or both, for one or more ecological

groups (Table 1). The marine reserves with the highest

Betweenness centrality, contributing for stepping-stone

connectivity, are spread throughout the Ligurian and

Tyrrhenian Seas for the low dispersive groups G1 and G2,

which in general display poor network connectivity (Table 1;

Figure 1). As the network expands with increasing PD, new links

are formed and the reserves with highest Betweenness centrality

are found in the Balearic Islands and the Ionian Sea. Particularly,

the Plemmirio and Capo Rizzuto reserves play an important role

for G4 (Table 1), supporting stepping-stone connectivity

between the western and eastern Mediterranean basins

(Figure 1). The marine reserves with the highest Out-Strength

centrality (Table 1; Figure 2), are located in Gibraltar and the

Ligurian and Tyrrhenian Seas for G1 and G2. For G3 and G4,

highest Out-Strength centrality was found in the Ligurian Sea,

particularly in the Côte D’Azur area (Calanques, Port Cros and

Cote Bleue reserves; Table 1), where the network of reserves is

denser and therefore more connectivity events occurred

(Table 1; Figure 2).

The tests examining the potential effect of losing reserves in

network structure allowed us to verify that reserves with higher

betweenness and out-strength centrality are particularly

important to the overall coherence of the network. When

these reserves were iteratively removed from the network, the

number of components (i.e., isolated subgraphs) increased and

the size of the largest component decreased in a more

pronounced way than when reserves were removed randomly,

particularly for G3 and G4 (Figure 3; Supplementary Figures

S10–S15).
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Discussion

Using theoretical bio-physical modelling coupled with graph

theory, we evaluated the current network of marine reserves in

the Mediterranean Sea and identified 19 reserves that can play a

key role towards the functioning of the network, serving either as
Frontiers in Marine Science 05
stepping-stones linking biogeographic regions or as propagule

sources securing gene flow along the network, yet with distinct

patterns for the different ecological groups. For instance, the

reserves found in the central region of Côte D’Azur (Ligurian

Sea) can support connectivity, either as stepping-stones or

propagule sources, for numerous ecological groups with
FIGURE 2

Out-strength centrality estimated for the Mediterranean network of marine reserves. Reserves are depicted as circles, with their size and colour
reflecting the normalized value of out-strength. Higher out-strength, above the 95th percentile of the distribution of values, is indicated in each
legend by a vertical line in the colour scale. Isolated reserves are shown in white. Mean propagule duration (± standard deviation) is shown per
ecological group.
FIGURE 1

Betweenness centrality estimated for the Mediterranean network of marine reserves. Reserves are depicted as circles, with their size and colour
reflecting the normalized value of betweenness. Higher betweenness, above the 95th percentile of the distribution of values, is indicated in each
legend by a vertical line in the colour scale. Isolated reserves are shown in white. Mean propagule duration (± standard deviation) is shown per
ecological group.
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contrasting PD, while the Capo Rizzuto and Plemmirio reserves

(Ionian Sea) are key hubs supporting connectivity between the

western and eastern Mediterranean basins, particularly for

biodiversity groups with longer PD. In general, groups with

lower dispersal potential tend to be more isolated and would

benefit from a denser network of marine reserves, as only 0.2% of

the Mediterranean Sea is fully protected. The expansion of the

current network to include currently unprotected areas that

may hold high biodiversity, could improve connectivity,

and should be considered for future conservation and

management strategies.

Previous studies had already identified the Mediterranean

Sea poor network connectivity (Andrello et al., 2013; Ospina-

Alvarez et al., 2020; Assis et al., 2021b), particularly for low

dispersal ecosystem structuring species like macroalgae,

seagrasses and corals (Assis et al., 2021b). These connectivity

patterns expose the uneven distribution of reserves throughout

the Mediterranean Sea, with a low number in the Adriatic,

Ionian, Aegean and Levantine Sea and a total lack of reserves
Frontiers in Marine Science 06
in the Tunisian plateau, leading to a highly fragmented and

poorly connected network, adding to the lack of habitat

representativity (Abdulla et al., 2009). Thus, this generally low

potential connectivity of the Mediterranean network of marine

reserves undermines its overall resilience and reveals its poor

capacity to perform as a proper network.

Against this background of poor connectivity, we identified

those marine reserves that may standout in supporting

connectivity, acting as stepping-stones between different

components (high Betweenness centrality), hence securing

links between different regions (Ospina-Alvarez et al., 2020)

and/or acting as propagule source (high Out-strength centrality)

hence representing spawning areas that play an important role

towards recruitment and rescue effects (Eriksson et al., 2014;

Ospina-Alvarez et al., 2020; Roberts et al., 2021). We found that

19 of the 70 Mediterranean marine reserves presented such key

roles (Betweenness or Out-strength value above 95th percentile

of the distribution) for at least one group of species (Table 1).

However, the spatial extent of the links depended on the PD. For
TABLE 1 Marine reserves on the 95th percentile for Betweenness (B), Out-Strength (O) and both (BO) for each of the ecological groups (G1 -
Cnidaria, Tunicata and Porifera; G2 - Macroalgae and Seagrass; G3 - Bryozoa, Mollusca and Polychaeta; G4 - Pisces, Crustacea and
Echinodermata).

Marine Reserve
G1 G2 G3 G4

Ecoregion
B O BO B O BO B O BO B O BO

Albufera des Grau X W Med

Archipelago Cabrera X X W Med

Calanques X X X W Med

Carry le Rouet X W Med

Port Cros X X X W Med

Cap de Creus X W Med

Cote Bleue X X Alboran

Rosia X X Alboran

Capo Rizzuto X Ionian

Parco sommerso di Gaiola X W Med

Regno di Nettuno X W Med

Cinque Terre X W Med

Arcipelago de la Maddalena W Med

Isole Egadi X W Med

Bouches Bonifacio W Med

Plemmirio X Ionian

Zembra and Zembretta X W Med

Isla Pianosa X X W Med

Isola di Capraia X W Med

Marine ecoregions according to Spalding et al. (2007).
f
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species with low PD (G1 and G2), connectivity links were limited

in spatial scale, occurring almost exclusively with nearby marine

reserves, thus failing to ensure links between different

oceanographic regions. This is the case of the Gibraltar marine

reserves where their proximity to each other and the local

oceanographic characteristics, favour the exchange of

propagules between them for the G1 and G2 species. An

increase in the number of (stepping-stone) marine reserves is

required to guarantee overall connectivity, particularly across

different oceanographic regions. Adding new sites to expand the

current network of marine reserves should be done by

identifying sites that are highly connected to, but currently are

not part of, a marine reserve (Magris et al., 2018). This would be

crucial in transitional areas between marine ecoregions,

especially in those underrepresented (e.g., Tunisian plateau,

Levantine Sea) to ensure gene flow. Additionally, enhancing

connectivity of G1 and G2 ecological groups, which include

species such as gorgonians, sponges, and seagrass, is particularly

relevant given that these species form essential habitats for other

biodiversity (Pascual et al., 2017; Magris et al., 2018). In contrast,

for species with longer PD, propagule flow between different

marine ecoregions (e.g., Western Mediterranean, Ionian and

Adriatic Seas) was partially ensured, preventing further network

fragmentation. The marine reserves acting as connectivity hubs

have a greater probability of spreading the genes of the local

populations throughout the network thus ensuring a higher gene

flow (Pascual et al., 2017). For example, the marine reserves of
Frontiers in Marine Science 07
Capo Rizzuto and Plemmirio possibly assume a key role for

connecting metapopulations between the Ionian and the

Adriatic and Western Mediterranean regions, respectively. The

simulated scenarios where marine reserves were sequentially

removed, representing hypothetical perturbations, emphasised

the role of these marine reserves acting as key connectivity hubs

towards the coherence of the Mediterranean network. When

marine reserves with high betweenness (or high out-strength)

were removed from the network this resulted in a drastic

fragmentation of the network, compared to random removal

of reserves.

The approach used in the present study provided key

knowledge unknown until now, however, it may have some

degree of oversimplification that needs to be addressed. First,

marine reserves are not the exclusive source of propagules or

stepping-stone locations of marine biodiversity throughout the

Mediterranean Sea, as regions outside protected areas may have

an important role as well. Thus, our results provide a what-if

scenario, where marine reserves are the unique source and sink

locations serving connectivity (Assis et al., 2021b). Only

considering such effective conservation areas is somewhat

unrealistic; however, the approach is supported if we consider

the increasing rate of potential threats to marine biodiversity and

the need to provide adequate protection and recover ecosystems,

i.e., highly protected and well-connected MPA networks. In fact,

Dureuil et al. (2018) found that 59% of European MPAs are

commercially trawled, precluding the expected benefits of MPA
A

B

FIGURE 3

Effect of removing marine reserves (nodes) on (A) the number of components of the network (i.e., number of clusters) and (B) the relative size
of the largest component, under the 3 scenarios of sequential node deletion from the highest to the lowest betweenness centrality (highBetw.),
from the highest to the lowest out-strength centrality (highOut-S.), and randomly with 999 permutations, with no replacement (Random).
Network tests are related to G4 (Pisces, Crustacea, and Echinodermata). Independent figures for the additional groups (G1, G2, and G3) are
available in supplementary information (Figures S10-S15).
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implementation such as increased productivity and spillover.

This is particularly true in the Mediterranean Sea, where (over)

fishing may be targeting the larger individuals that are the main

spawners and source of propagules (Cardinale and Arrhenius,

2000; Vielmini et al., 2017). Secondly, despite integrating key

ecological traits (i.e., propagule duration) and oceanographic

processes (e.g., fronts and eddies; Manel et al., 2019), as well as

the actual spatial arrangement of marine reserves, it did not

consider population dynamics or larvae behaviour (Anadón

et al., 2013; Faillettaz et al., 2018). For example, spawning

seasonality is known to affect propagule dispersal and

consequently connectivity (Kough and Paris, 2015; Torrado

et al., 2021). Additionally, some species exhibit ontogenetic

shifts in habitat use and/or large migrations during adult

phases (e.g., Abecasis et al., 2009; Vandeperre et al., 2014).

Our goal was to provide an overall view across a wide range of

taxa and therefore it would be impractical to consider population

dynamics (e.g., fecundity, size structure, spawning seasonality,

propagule mortality) or larvae movements (e.g., vertical

migrations, chemical attraction) given the general lack and

inter- and intra-specific variability of these parameters (e.g.,

Endo et al., 2019), as well as the challenges imposed on the

modelling task. Numerous studies using the same bio-physical

modelling approach systematically provided evidence on how

propagule duration alone coupled with oceanographic transport

can explain independent genetic and demographic data, from

macroalgae and corals, to fish and invertebrates (e.g., Buonomo

et al., 2017; Lourenço et al., 2017; Assis et al., 2018; Nicastro

et al., 2020; Ntuli et al., 2020). This is particularly true for low

dispersive structuring species, such as those represented by G1

and G2, but not only, as the propagule phase represents the

major dispersive phase for most marine species (Calò et al.,

2013). Lastly, we assume that the ecosystem health of the marine

reserves is intact allowing them to fulfil the potential

connectivity roles identified by the bio-physical model. If that

is not the case, then connectivity patterns among the

Mediterranean network of marine reserves can be compromised.

Network connectivity and its effectiveness to provide ecological

benefits can be compromised by inadequate management or poor

enforcement (Edgar et al., 2014; Gill et al., 2017). Therefore,

ensuring that the reserves identified here benefit from adequate

compliance is key to ensure the entire network efficiency. For

example, the marine reserves in the Côte D’Azur area play a key

role as propagule sources for most ecological groups. Thus, ensuring

their adequate management and strong enforcement is

fundamental for maintaining gene flow along the network. The

19 marine reserves identified as key connectivity hubs (Table 1)

present a medium to high enforcement level (Guidetti et al., 2008;

Giakoumi et al., 2017; Di Lorenzo et al., 2020) fulfilling two key

attributes, no-take and well enforced, that are known to influence

MPA performance (Claudet et al., 2008; Di Franco et al., 2016).

Increasing the size of these reserves could contribute to further

maximizing network connectivity, as larger marine reserves are able
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not only to supply but also to capture more propagules emanating

from other marine reserves (Assis et al., 2021b). Local stressors such

as marine invasions (Giakoumi and Pey, 2017) and water pollution

(Abessa et al., 2018), as well as global climate change (Hannah et al.,

2002) can further compromise the effectiveness of the network and

should be managed and controlled a priori, as impacts may be

impossible to prevent once established (Abessa et al., 2018). For

example, if the marine reserve of Capo Rizzuto is affected by some

disaster and its role is compromised this could lead to connectivity

loss between the Ionian and Adriatic Seas for G4 (fish, echinoderms

and crustaceans) eventually resulting in biodiversity loss (species

and genetic). Therefore, safeguarding the identified key reserve

areas might be particularly relevant to ensure network resilience in

the long-term, as these can function as propagule sources to

replenish other regions in case of catastrophic events causing

mass mortalities, such as localized pollution or heatwaves

(Eriksson et al., 2014; Bonin et al., 2016; Fung et al., 2017).

Climate change is expected to impact network connectivity (Lima

et al., 2021) and therefore its efficiency, by altering species

distributions (Ramos Martins et al., 2021) and by affecting

propagule duration and ocean hydrodynamics (Connor et al.,

2007). Thus, the inclusion of connectivity and its potential shifts

due to climate change in conservation planning is highly

recommended (Andrello et al., 2013; Álvarez-Romero et al., 2018).

Until recently, conservation prioritization in the

Mediterranean Sea was based on estimates of biodiversity

distribution and anthropogenic threats (Myers et al., 2000; Coll

et al., 2012), while connectivity was overlooked. Here, we identify

the key connectivity hubs (stepping-stones and propagule sources)

of the current network of the Mediterranean reserves. In line with

the ongoing efforts to increase protection to 30% by 2030 and

considering the low reserve coverage of the Mediterranean Sea and

the fragmentation of the current reserve network, future studies

should focus on identifying additional areas (currently

unprotected) that may be key in improving network

connectivity. Including such areas in the network, particularly in

the Eastern and Southern Mediterranean, could contribute to a

more efficient and resilient network. The overall Mediterranean

connectivity should then be included in systematic conservation

planning to optimize the design and efficiency of the network

(Schill et al., 2015; Balbar andMetaxas, 2019), transforming it from

a group of isolated MPAs to a truly functional reserve network

(Albert et al., 2017; Roberts et al., 2021).
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Assis, J., Serrão, E.Á., Coelho, N. C., Tempera, F., Valero, M., and Alberto, F.
(2018). Past climate changes and strong oceanographic barriers structured low-
latitude genetic relics for the golden kelp laminaria ochroleuca. J. Biogeogr. 45,
2326–2336. doi: 10.1111/jbi.13425

Assis, J., Zupan, M., Nicastro, K. R., Zardi, G. I., Mcquaid, C. D., and Serrão, E.
A. (2015). Oceanographic conditions limit the spread of a marine invader along
southern African shores. PloS One 10, e0128124. doi: 10.1371/journal.pone.
0128124

Assis, J. (2022). Biophysical modelling framework to estimate oceanographic
connectivity, GitHub repository. Available at: https://github.com/jorgeassis/
biophysicalModelling.

Balbar, A. C., and Metaxas, A. (2019). The current application of ecological
connectivity in the design of marine protected areas. Global Ecol. Conserv. 17,
e00569. doi: 10.1016/j.gecco.2019.e00569
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