
An Integrated Formal Methods Tool-Chain and
its Application to Verifying a File System Model

Miguel A. Ferreira1 and José N. Oliveira2

1 Software Improvement Group, The Netherlands
m.ferreira@sig.nl

2 Universidade do Minho, Portugal
jno@di.uminho.pt

Abstract. Tool interoperability as a mean to achieve integration is
among the main goals of the international Grand Challenge initiative. In
the context of the Verifiable file system mini-challenge put forward by
Rajeev Joshi and Gerard Holzmann, this paper focuses on the integra-
tion of different formal methods and tools in modelling and verifying an
abstract file system inspired by the IntelR© Flash File System Core. We
combine high-level manual specification and proofs with current state
of the art mechanical verification tools into a tool-chain which involves
Alloy, VDM++ and HOL. The use of (pointfree) relation modelling pro-
vides the glue which binds these tools together.

1 Introduction

There is a healthy trend in formal methods for computer science driven by
the idea of a Grand Challenge (GC). Hoare [19] revisited an old challenge in
computer science: a verifying compiler, capable of performing extended static
analysis of the programs it compiles. Hoare’s paper defines a set of criteria for
an international effort to drive research in computer science forward towards
automatic software verification. Hoare et al [20] proposed that the conditions
set in [19] were met, and that the time to start such a long term international
research project had arrived.

The GC project is expected to “deliver a comprehensive and unified theory of
programming”, “prototype for a comprehensive and integrated suite of program-
ming tools”, and “deliver a repository of verified software”. [20, Section 2]

The current paper is focused on the integration of both programming and
logical tools [20, Section 2.2] that aid in the verification of formally specified
operations. We propose to combine different formal specification languages, and
make their tool sets interoperate, to form a tool-chain supporting a development
and verification life cycle process that yields checked specifications. We assume
our target audience to be already using formal specification and verification
techniques, thus benefiting from a structured approach to break down software
complexity through design, backed up by automated verification tools. The tool-
chain should fulfil the following requirements:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55616421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– promote incremental development and verification of specifications;
– be agile enough to encourage users to verify even the smallest unit of their

specifications;
– be capable of producing immediate feedback to unveil problems;
– be capable of performing fully automated consistency proofs;
– be amenable to automatic code generation.

As a case study for checking the proposed tool-chain life cycle, a formal model
of an abstract file system was developed [6, 7], inspired by the “mini-challenge”
proposed in [24]. Although not yet covering the robustness or hardware require-
ments of [24], the model built in [6, 7] is realistic while following the API of the
File System Layer of the architecture for flash file systems designed by Intel Cor-
poration [4, Section 4.14]. Such a model is given in the current paper stripped
of its many details so as to convey the basic idea and method rather than not
so relevant technicalities.

Paper structure Sections 2 and 3 address the integration of languages and tools in
an agile tool-chain. Section 4 presents the basics of our abstract modelling strat-
egy, based on diagrams expressing model constraints. In Section 5 the abstract
(pointfree) model of Section 4 is converted to Alloy, where it is model checked for
the correctness of the operations. Section 6 describes the refinements to which
the Alloy model is subject to so as to render it as a VDM++ executable spec-
ification. Section 7 introduces a proof system for VDM++ that uses the HOL
theorem prover to discharge proof obligations. Section 8 addresses limitations of
the tool-chain and a possible implementation. Finally, some concluding remarks
are given in Section 10.

It is assumed that the reader has basic knowledge of the Alloy and VDM++
languages, model checking and theorem proving.

2 Tool-chain

The main motivation for the proposed tool-chain is to combine formal method
tools for model checking, theorem proving, model animation, etc, in a way such
that each tool is placed in the “right” step of the given life-cycle. The version of
the tool-chain which has been the subject of our experimentation involves the
following languages and tools.

Relational PF-notation. Following Tarski’s formalization of set theory without
variables [35], relation algebra has emerged as a language for expressing and
reasoning about logical formulae in a very concise, pointfree (PF) way. References
[29, 30] show how to reason about data models using PF-notation, in a typed
way supported by categorial diagrams. This paper exploits the same approach
by regarding PF-notation and diagrams as the starting point of the proposed
verification life-cycle.



Alloy. This is a lightweight modelling language for software design developed
by the Software Design Group at MIT [22]. Its foundations are first order logic
and relational calculus. Alloy’s lemma “everything is a relation” makes the lan-
guage very simple, highly declarative, and well integrated with the relational
PF-notation, as will be explained later. Alloy’s tool support is provided by the
Alloy Analyzer that supports both development and verification of models.

VDM. The Vienna Development Method [2] is a mature formal method whose
origins go back to the IBM Vienna Laboratory in the 1970s. The use of VDM
associated languages to specify and guide the development of software has been
widely described in the literature [10, 11]. VDM++ [31] is a widespread VDM di-
alect which, compared to ISO standard VDM-SL [32], introduces object oriented
and concurrency features in the language. Tool support is one of the key strengths
of VDM in general. From the wide variety of tools available we single out the
Overture [26] Automatic Proof System (APS) [36] and the VDMTools [12] for
type checking, interpretation and code generation.

HOL. This theorem prover [16, 34] (a descendant of the LCF theorem prover)
was developed with hardware verification in mind. It is an interactive proof
assistant designed for higher order logic, with a vast set of ready to use theories
and proof tactics. Its function definition mechanism provides termination proofs
for recursive functions for free.

3 “All-in-one” strategy

To effectively build a tool-chain it is necessary to have a strategy for each com-
ponent as well as for the overall set of tools. The main goal of the strategy is to
provide better verification techniques for formal development of software.

Better development means that the first steps in specifying a given problem
should be taken at the most abstract level possible, capturing all the key aspects
of the artifact under specification. This should be followed by incremental re-
finement of the specification in order to obtain an executable version, that can
be used to validate functional requirements with stakeholders. Once verified,
the executable specification is translated to source code in some mainstream
programming language. The leap from abstract specification to executable spec-
ification must allow for early detection of failing functional requirements.

Better verification means that before tackling full-fledged proofs, confidence
in the specification should be gained. In this way, one avoids attempting proofs
that could be demonstrated impossible by counterexamples, or that add no value
to the development since they fail the user requirements.

The kind of proof which is illustrated in the remainder of this paper is known
as satisfiability [23]: for every operation Op whose input is of type A and whose
output is of type B, proof obligation (PO)

∀ a · a ∈ A ∧ pre-Op a⇒∃ b · b ∈ B ∧ post-Op(b, a) (1)



should be discharged. Because a ∈ A and b ∈ B check for the data type invariants
associated to A and B, respectively, this PO is also referred to as invariant
preservation [23]. Since in our case all our operations are total and deterministic,
the POs we have in hands are actually simpler:

∀ a · a ∈ A ∧ pre-Op a⇒Op(a) ∈ B . (2)

The following situations can take place:

1. While specifying the overall architecture of a system, several interests are
at stake. Often these interests are contradictory. A well founded notation
which is paradigm-, platform- and technology-independent is welcome to
enable reasoning about the high level design.

2. During the design phase, several experiments are performed to assess differ-
ent design options for Op. A model checker able to automatically generate
counterexamples to (2) and thus suggest how to improve Op is welcome.

3. Op satisfies (2) but is semantically wrong, for it ends up not behaving ac-
cording to the requirements. To prevent this situation, running the model as
a prototype in an interpreter is welcome.

4. Both the model checker and the test suite above do not find any flaws. In
this case, a theorem prover is welcome to mechanically check (2).

5. PO (2) is too complex for the theorem prover. In this situation, the ultimate
hope is a pen-and-paper manual proof, or some kind of exercise able to
decompose the too complex PO into smaller sub-proofs.

This 5-step design scenario calls for a PO discharge strategy based on, respec-
tively:

1. A highly abstract mathematical notation, providing for agile algebraic ma-
nipulation and diagrammatic representation of data models — we have cho-
sen the PF-transform [30] and associated calculus of binary relations.

2. A model checker for timely generation of uninterpreted, unexpected coun-
terexamples — we have chosen Alloy for this purpose.

3. An interpreter enabling one to carry out semantically meaningful animation
and testing — for this purpose we have chosen the VDMTools.

4. A theorem prover — HOL in our case, thanks to the Overture proof system.
5. A pen-and-paper proof strategy regarding POs as “mathematical objects”

which can be calculated upon. For this stage we have been using the PO
calculus described in [30], where POs are represented by arrows which can
be put together or decomposed into simpler ones.

This “all-in-one” strategy is depicted in Figure 1. The process starts from a
highly abstract model of the architectural design of the target system, either
in relational pointfree notation or directly in Alloy. Note the dashed line of the
topmost box in Figure 1 (PF-notation), meaning that it is an optional stage.
Although Alloy is not able to prove properties, it is very useful in finding coun-
terexamples spotting where and why these properties fail.



Alloy
Design & Model 

"Checking"

VDM
Prototyping & Testing 

HOL
Proof of correction

PF-calculus
Proof simplification

OK

OK

Design validated

Requirements
validated

Unproved goal

Found flaw

Success

Success

Found 
flaw

Goal
simplified

PF-notation
Architectural Design

Architecture defined Found flaw

Fig. 1. Tool-chain operation.

After validating the design in
Alloy, the model is translated to
VDM++, where more detail is in-
troduced. (Due to Alloy’s notational
compactness, the equivalent VDM++
specification becomes more verbose.)
In the VDM++ stage it is already
possible to validate all functional re-
quirements, since the specification be-
comes executable. Validation can be
carried out through unit tests [11, Sec-
tion 9.5], combinatorial tests [27], or
by interpreting (animating) the speci-
fication. Should dynamic analysis per-
formed at VDM++ level detect any
design flaw, the process goes back
to the Alloy stage to suppress de-
fective behaviour. Once the specifica-
tion looks adequate and captures all
functional requirements, the Overture
APS is used to generate all the POs
arising from the VDM++ model and
attempt to mechanical discharge them
in HOL.

The last stage (pen-and-paper
proof) caters for POs which HOL
could not prove and Alloy could not
refute: the worst scenario. The idea is to use PF-calculation at this stage, aim-
ing at simplifying POs or dividing them into smaller goals, which are fed back
to HOL.

4 Relational model of a (simplified) file system

At the highest level of abstraction, a file system model should only capture the
top level relationships among its main components. Capturing the properties
which constrain the system’s overall state is an essential part of This exercise.The
challenge is doing so in a way which helps in reasoning about operations over
such constrained state. At this level, the less detail the better, as long as no key
aspect is overlooked.

Path Path
dirNameoo

A very abstract relational model of a file sys-
tem is presented using PF-notation. Relational point-
free models are built by depicting binary relations
as arrows between data types in diagrams. The
diagrams have a strong formal semantics, based on category/allegory the-
ory [14], thus ensuring the move from diagrams to symbols, back and forth.



At such an abstract level, a file system stores files in a way such that
their data becomes accessible through paths. Paths play the double role of
identifying files and revealing the hierarchy under which they are stored.
Following POSIX terminology, we define the relation dirName that for a given
path yields its parent path. This relation establishes the hierarchy of files within
a file system: a file a is said to be the parent of a file b if, in the hierarchy, b lies
exactly underneath a, that is, (path a)dirName(path b) holds.

Path File
(fileStore s)o

Just by thinking of paths one pictures a file
system as an hierarchic structure, in fact a tree
like structure, provided some properties of dirName
hold. This does not necessarily mean that a file store
must be a tree structure. As long as it is possible to navigate throughout it,
any structure can implement a file store. Given a file system s, its file store
component fileStore s is abstractly specified as a partial function.

FileHandle F ileDescriptor
(table s)o

Partial functions are often termed
simple relations [1], and we shall
use this terminology too. Simple re-
lations are so important in our data
models (as elsewhere) that we use special harpoon looking arrows to depict them
in diagrams, as above. Files can be handled by applications through the file sys-
tem API, provided that all applications relying on files can reach them, and the
files they are using do not get moved or removed. Applications do not handle
files directly, instead they do it through file handlers. It is the file system’s task
to manage the relation between file handlers and the corresponding file descrip-
tors. These descriptors keep relevant run-time information about files that are
open, and in use by applications.

FileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File

Path

dirName

OO

This leads us to a file
system model with two sub-
components: a file store, and
an open-file table. The file
system requires from the file
store the ability to find a file
given its path, and that the
open-file table keeps track of the files requested by applications.

Files are the basic unit of a file system, and POSIX [21, Section 3.163] defines
several types of files: regular file, directory, character special file, block special
file, fifo special file, symbolic link and socket. Only regular files and directories
are of interest at this topmost level of abstraction, and to distinguish these two
types of file we introduce the fileType relationship, cf.:

FileDescriptor

path
��

FileHandle
table so

Path
fileStore s

/ File
fileType

// FileType

Path

dirName

OO



The next step in the modelling consists of “gluing” the data structures in the
diagram with constraints spelling out their static semantics (data type invariants,
in the VDM terminology). The following pair of constraints is easily extracted
from [4]:

– Referential integrity: non existing files cannot be handled by applications.
– Paths closure: parent directories always exist and are indeed directories.

In diagrams, constraints take the shape of rectangles, each labelled by the
appropriate relational inclusion symbol 3:

FileDescriptor

path

��

FileHandle
table so

>
��

⊆

Path
fileStore s

/ File
(fileStore s)◦oo fileType// FileType

id

��

⊆

Path
fileStore s

/

dirName

OO

File
Directory

// FileType

A

R

��

B
Soo

V

��
⊆

C D
U

oo

The diagram above depicts the two constraints that
were identified: referential integrity (ri) is the top
rectangle, paths closure (pc) is the bottom rectan-
gle. Let us explain the meaning of these diagrams.
A rectangle as displayed aside depicts PF-formula
R · S ⊆ U · V . Once the meaning of relational composition is spelt out, this
PF-formula becomes predicate

∀ c ∈ C, b ∈ B · (∃ a ∈ A · cRa ∧ aSb) =⇒ (∃ d ∈ D · cUd ∧ dV b) .

Should any of R,S, U, V be the top relation >, the corresponding conjunct
is deleted from the formula above because y>x always holds, for any choice
of x and y. Should it be a converse relation, say R◦, then the variables of the
corresponding conjunct are swapped, because yR◦x means the same as xRy.
Finally, should it be a function f , then y f x means the same as y = f x, thus
cancelling quantification over y. In the particular case of f being the everywhere-
k constant function k, y f x shrinks to y = k.

In this way, the rectangle picturing referential integrity — which in symbols
is path · (table s) ⊆ (fileStore s)◦ · > — unfolds (for all b ∈ FileHandle) into
predicate:

(∃ a ∈ FileDescriptor · a(table s)b) =⇒ (∃ d ∈ File · d(FileStore s)(path a)) .

Drawing constraints in this fashion, as rectangles in diagrams, allows for
great notation economy while providing for the visualization of the design in a
“UML-like” style. The interested reader will want to do the exercise of spelling
out the predicate which is pictured by the other rectangle in the diagram.
3 In category/allegory terminology, these rectangles are referred to as “commutative

squares”.



System× Path
open // System× FileHandle

System× Path× FileType
create // System

Regarding the file system
API, we specify operations as
arrows again. Aside we consider the two operations open and create, which open
a given (regular) file and create a new (regular or directory) file, respectively.
Opening files results in a new state with a new entry in the open-file table and
a file handle referring to it. Creating a file only modifies the file store, by adding
the new file.

In the next section the relational pointfree diagrammatic specification is
translated to Alloy in an almost effortless exercise.

5 From PF diagrams to Alloy

Transposing the above relational specification to Alloy is almost direct, since
Alloy relations are first class citizens. Still, more detail is required in the Alloy
specification to more accurately specify the file system state and operations.
Once the specification is transliterated to Alloy, and the Alloy Analyzer is asked
to instantiate it, it will display instances where: (a) there are cycles in paths; (b)
there are directories being referenced in the open-file table. Both these situations
should be avoided either because they are erroneous states of the file system (a)
or because they display undesired behaviour (b). To overcome this situation,
more constraints must be added to the specification, and to a certain extent
more detail has to be introduced in signatures (Alloy data types). Considering
the file store only an additional constraint should be enforced:

Paths structure: the dirName relation should be such that: (a) the root di-
rectory is its own parent; (b) it is acyclic for all paths other than the root
directory (thus no links are allowed in the file system).

Regarding the open-file table, one more constraint should be enforced:

Files table: only regular files can be opened, ie. no entry in the open-file table
should refer to a directory.

sig System {

fileStore: Path -> lone File ,

table: FileHandle -> lone FileDescriptor

}

The two simple re-
lations of the diagrams
lead to the Alloy top-
level signature aside.
In the system defini-
tion, the harpoon ar-
row of the relational
diagram becomes the lone (one or less) multiplicity factor. Hence simplicity
is ensured.

We specify dirName as a simple and total relation on paths, thus a function
from Path to Path. Both simplicity and totality of the relation are specified
with the one multiplicity factor in the range of the relation. This means that no
path has more than one parent path and that, at the same time, every path (in
the relation) has a parent path.



abstract sig Path {dirName: one Path}Note the use of the
abstract keyword in declaring
the Path signature, meaning that there can be no instances of Path. Using this
keyword only makes sense if one extends the signature later on. In Alloy, the
extension mechanism is similar to OO-extension in the sense of inheriting the
structure and properties of the extended entity. Furthermore, by extending an
abstract signature one creates a partition of that signature.

one sig Root extends Path

sig FileNames extends Path {}

The root path is different from any
other path, and this reflects the hier-
archy of a file system, where the root
is the topmost element. To differentiate
the root from the other paths, we intro-
duce it as an extension to Path. Fur-
thermore, the root path is declared to be unique, through signature multiplicity
factor one. The remaining paths are instances of the FileNames signature. Upon
root path differentiation, separate properties can be specified for each type of
path present in the dirName relation, namely:

pred ps[] {

Reflexive[id[Root].dirName ,Root]

Acyclic[id[FileNames ].dirName ,FileNames]

}

The path structure (ps) predicate enforces the paths structure constraint, by
declaring that: (a) dirName is reflexive on the root path, ie. root is parent of
itself; (b) dirName is acyclic for all other paths.

sig File {fileType : one FileType}

To specify the remaining con-
straint (files table) it is necessary
to differentiate files by their type.
Although we have already intro-
duced file types in the relational specification, we left room for choice on this
matter.

abstract sig FileType {}

one sig RegularFile , Directory extends FileType {}

pred ft[s: System] {

(s.table ).path.(s.fileStore ). fileType

in (FileHandle -> RegularFile)

}

pred inv_System[s: System] {

ri[s] and pc[s] and ft[s] and ps[]

}

One way to make such
differentiation explicit is
to partition files, as done
before concerning paths.
However, in this case, it
is not necessary to define
separate relational proper-
ties for each type of file,
and therefore, it suffices to
use a flag as differentiation
mechanism. File types are
defined as a partition composed of regular files and directories.



The files table (ft) constraint predicate (above) enforces that only (regular)
files can be requested by applications to read and write. (Without prejudice of
directories being browsable.) The overall invariant for the system is then defined
as a conjunction of the two constrains referential integrity (ri) and paths closure
(pc) defined in the relational specification, and the above described constraints
files table (ft) and path structure (ps).

Once the state of the system is defined we proceed to the specification of the
operations. Each operation is specified as n-ary relation Op between an initial
system s and a final state s′, for instance:

pred openFile[fh ’: FileHandle , s’,s: System , p: Path] {

s’. fileStore = s.fileStore

fh’ !in s.table.dom

(one fd: OpenFileInfo {

fd !in s.table.ran and fd.path = p

s’. table = s.table + (fh’ -> fd)

})

}

. The operation openFile does not affect the file store and produces a new entry
in the open-file table. It is guarded by a precondition made of two conjuncts.
The first is meant to preserve referential integrity, and the second to preserve
the open-file table invariant.

pred pre_openFile[s: System , p: Path] {

p in s.fileStore.dom

p.(s.fileStore ). fileType = RegularFile

}

With the Alloy Analyzer it is possible to start verifying this operation straight
away, and we do so by first simulating and afterwards verifying. Either because
the scope is too narrow, or because a predicate is a contradiction, verifying
assertions will always succeed if there is no possible instantiation. To detect these
situations, we make sure that the predicate can be instantiated by simulating it.
Simulation with Alloy Analyzer can easily reveal problems as the instances of
the model are depicted in simple (but expressive) diagrams. We have checked the
openFile operations for satisfiability, with a scope of 10 elements4, and found
no counterexamples.

The create operation creates a new file, of a given type, in the file store.

pred create[s’,s: System , p: Path , ft: FileType] {

s’. table = s.table

one f: File {

f.fileType = ft

s’. fileStore = s.fileStore + (p -> f)

}

}

4 In Alloy the state space is limited by the scope. The scope defines how many elements
will be used for each top level signature. Top level signatures are those which do not
extend other signatures.



The operation is guarded by a precondition again made of two conjuncts. The
first prevents from creating files that already exist in the file store. The second
is composed of a disjunction of two other sub-clauses. The first of these allows
one to create the root directory (note that this is only possible if the file store is
empty due to the first clause). The second preserves the paths closure invariant,
in case a path other than the root is passed as argument.

pred pre_create[s: System , p: Path , ft: FileType] {

p !in s.fileStore.dom

((p = Root and ft = Directory)

or

(p.dirName in s.fileStore.dom and

p.dirName .(s.fileStore ). fileType = Directory ))

}

After simulation and verification, no counterexamples where found for the create
operation, also for a scope of 10 elements.

6 From Alloy to VDM++

Model translation to VDM++ involves additional effort and increases the steep-
ness of the learning curve. However, it helps in further refining the specification,
while giving access to a comprehensive set of tools.

VDM++ translation is guided by the rules described in [7, 6]. The outcome
is a sizeable VDM++ model of which we only address an example of where the
abstraction level is lowered, in order for the specification to become executable.

The refinement that has greater impact in the model relates to paths. Paths
in the Alloy model are so abstract that it suffices to differentiate the root and
declare a relation (dirName) recording the path-hierarchy. There are two obvi-
ous models for paths in VDM++: either as a linear recursive data type, or as a
sequence of file names.

Path = <Root > | seq1 of token;

dirName : Path -> Path

dirName(p) ==

cases p:

<Root > -> <Root >,

[-] -> <Root >,

others -> allButLast(p)

end;

The first option would clash with the
mapping we chose to use for the file
store, because it would introduce in-
ductive reasoning (which we decided to
avoid). The second option, which was
chosen, allows us to avoid inductive
reasoning, but introduces some more
constraints. The resulting VDM++
data type that specifies paths is de-
fined as a co-product of root and re-
maining paths, as in Alloy. The differ-
ence resides in the specification of the
remaining paths, now sequences of tokens.

The refinement of paths introduces a new constraint preventing paths, which
are sequences, from being empty. The relation that navigates through paths



(above) must also be refined according to the changes in the data type, where
the alternative pattern [−] matches any singleton sequence.

Recall, from the specification of openFile, that the entry to be created in
the open-file table should consist of a new file handle and a new file descriptor.
In Alloy it was possible to declare that the file handle should not belong to the
original table; in VDM++ it is necessary to operationalize this behaviour.

open: System * Path -> System * FileHandle

open(s,p) ==

let newFh = newFileHandle(dom s.table),

entry = { newFh |-> mk_OpenFileInfo(p) },

table ’ = s.table munion entry in

mk_(mu(s, table |-> table ’),newFh)

pre p in set dom s.fileStore and

s.fileStore(p). fileType = <RegularFile >;

In the above definition a new file handle is mapped to a new open-file element us-
ing the binary operator |->. The initial state is mutated using the mu operator,
whereby the original table field is replaced by the newly created table′.

7 From VDM++ to HOL

For each PO arising from the specification, the Overture proof system can yield
three different results:

1. the PO evaluates to true (discharged) — no inconsistency found;
2. the PO evaluates to false — a design inconsistency exists;
3. the PO evaluates to an unproven goal — no conclusion from proof.

In the case of a discharged PO (Item 1) the life cycle is over for this particular
PO. If, on the contrary, the PO evaluates to false (Item 2) then it is clear that a
flaw exists in the specification and some action must be taken to correct it. At
this stage the adequate corrective action depends on the kind of flaw detected. It
might be the case that the proof failed because of some error introduced in one
of the previous stages, Alloy or VDM++. So the process should go back to the
appropriate stage to correct the specification. The last possible outcome (Item
3) might result from a proof that stopped before reaching any of the Boolean
values, or from a proof that times out.

Through the Overture proof system the specification was analysed to generate
the two satisfiability proof obligations for the specified operations [6]. A HOL
theory was automatically translated from the VDM++ specification, and a proof
script produced. (Neither the theory nor the proof script are described in this
paper, due to space constraints — see [6] for details.) It followed that the proof
system was able to mechanically discharge the satisfiability proof for

inv inv
openoo (3)



but not for

inv inv
createoo (4)

(We adopt the arrow notation of [30] for satisfiability proof obligations.)
Recall that inv is a conjunction of four predicates: referential integrity, paths

closure, files table and path structure. The last is no longer necessary because it
is ensured by the dirName function once refined to the VDM level. Following
the splitting by conjunction rule of the PO-calculus of [30, Section 15], (4) splits
into:

ri inv
createoo (5)

pc inv
createoo (6)

ft inv
createoo (7)

Sub-goals (5) and (7) were mechanically discharged by the proof system, whereas
(6) produced an intermediate goal. Further decomposition applied to (6) branches
the proof into: (a) the case where the argument path is the root directory; (b) the
remainder cases. By manipulating the theorems made available to the prover for
term rewriting, the two branches of (6) where interactively discharged in HOL.

The success of the proof was due to initially limiting the theorems used
by the re-writing procedures. The first attempt to discharge this proof used all
available theorems from the specification theory to re-write and simplify the goal.
However, this approach lead to an intermediate goal whose semantics could only
be perceived by inspecting every proof step to identify all relevant decisions that
took place.

By not allowing the prover to use the theorems for dirName and pc (paths
closure invariant), and re-invoking the same proof tactic we obtained branches
(a) and (b). In this way, goal (6) was split in two sub-goals (one per branch),
the theorems for dirName and pc were made available for the re-writing tactics,
and the remaining proof was carried out automatically by the APS.

8 Discussion

This paper presents a formal methods tool-chain that promotes tool interoper-
ability while transforming abstract models through an iterative process of de-
velopment. The tool-chain disciplines the use of different tools and techniques
ranging from simulation, model checking, testing, interpretation and code gen-
eration, to mathematical proof of correctness.

For the tool-chain to be applicable in the verification of large and complex
models some issues have to be addressed. First of all, not every step in the
tool-chain is automated. Although the Overture APS automates the connection
between VDM++ and HOL, the one between Alloy and VDM++ is still man-
ual. First steps towards this automation have been taken in [7, 6] by defining a



set of rules to translate VDM++ data types into Alloy signatures. In the cur-
rent paper similar rules are applied, however from Alloy to VDM++. We agree
that the agility of the tool-chain is compromised until all steps are fully auto-
mated. Although code generation was not addressed in the paper, the tool-chain
“borrows” this capability from the VDMTools.

Of the tool-chain requirements set up in Section 1, only fully automated
proofs are still far from being a reality. These should eventually include those of
the refinements implicit in translating from one notation (eg. Alloy) to another
(VDM++). It is our intention to experiment with the presented tool-chain to
verify the different refinements it promotes. Extending the verification capabil-
ities of the tool-chain to support refinement proofs would indeed increase its
usefulness and soundness. Surely, there is much work to be carried out in this
respect.

With the file system case study we show how a small model can be fully
verified in a multi-stage process. Stage after stage (Figure 1), more confidence
is gained on the consistency of the model. Throughout this case study care was
taken to independently check small units of models, by constructing the model
piece by piece on a tight loop of development and verification. However, when
verifying models whose development is out of the verifier control, slicing tools
[37] are of great value, since they can isolate the smallest sub-model that accom-
modates some target property, operation or data type. This is another aspect
which calls for automation: operation-wise manual slicing carried throughout the
project [7, 6] proved to be very time-consuming.

Both the languages and principles adopted in devising the tool-chain are
generically applicable to software development and verification. We therefore
envisage its integration in the Overture platform in the near future. Overture
includes a framework for generation of abstract syntax trees (ASTs) for lan-
guages modelled in VDM++. This framework is supported by the AST gen-
erator (AstGen) tool, which (for example) was used to generate the Overture
Modelling Language (OML) AST from a VDM specification. OML AST is the
pillar that supports all other Overture tools that manipulate VDM dialects. Both
OML AST and surrounding tools can be automatically implemented in Java (or
C++) [17]. The Overture proof system stands as an example of such automated
implementation. Adding to these features, efforts are currently under way to
integrate the complete Overture tool set in the Eclipse platform, where Alloy
is already integrated [28]. All these conditions together with the fact that the
VDM++ connection to HOL is a component of the Overture tool set, make this
the most interesting option to foster the tool-chain put forward in this paper.

9 Related and future work

Verifiable file system. Since the VFS mini-challenge was put forward, contri-
butions have been made at different levels, either focusing on verification or
refinement [25, 13, 5]. Reference [25] already contemplates NAND flash memory
peculiarities, such as wear levelling, erase unit reclamation, and tolerance to



power loss. More recently, new papers [33, 18] on file system formalization have
become available. Theorem proving is used in [18], which follows a top down
approach in formalizing a hierarchical file system. [33] reports on the bottom up
verification of the UBIFS implementation for Linux.

Other file system implementations have also been mechanically verified by
model checking [15, 38]. [38] found several errors in widely used file system imple-
mentations that were reported back to the respective developers. [15] analysed a
concurrent model of the Linux Virtual File System, which bridges between the
Linux kernel and the miscellaneous file system implementations that it supports.

Integration of formal tools. There has been a proliferation of independent lan-
guages and tools that support formal specification and verification. However,
it is already possible to see the results of the effort made towards integrating
these tools in development environments that are more agile and sophisticated.
Good examples of such integration are Alloy4Eclipse [28], the Rodin [3] tool for
Event-B and the Overture tools for VDM.

Part of the tool-chain presented in the current paper is already implemented
in the Overture project, thanks to our work on the APS workflow [9]. Current
efforts go into improving interoperability among Overture internal components,
the VDMTools and HOL. This will hopefully produce a cross platform proof
system, capable of mechanically discharging all VDM-standard POs.

On flash-level refinement. As for current work on the VFS project itself, our
implementation (refinement) strategy is based on the following design princi-
ple: whatever abstract model one writes for file systems, it can be refined into
diagrams of “atomic” (1NF) simple relations using data transformation by calcu-
lation [29]. Inspired by [33], one just has to consider a further, generic refinement
step in moving towards the flash level: that of implementing every simple rela-
tion by a 4-tuple made of the relation itself, the corresponding RAM and flash
indices and the journal. We are currently busy in proving the correctness of this
refinement strategy [8].

10 Summary

The research described in this paper is intended to contribute to the GC trend
while focusing on tool interoperability as a means to obtain an integrated veri-
fication tool-chain taking advantage of the capabilities of each tool in the chain.

The integration of formal language tool sets in modern development environ-
ments such as Eclipse is today a reality. We propose that communities take an
extra step towards interoperability. This can be done through translators based
on public ASTs, that can be distributed to developers of other communities as
open source code, or binary libraries. However, the soundness of such integration
still needs to be demonstrated through refinement proofs.

This paper shows how the principles of abstraction, iterative development
and proof decomposition help in overcoming the difficulties implicit in verifying



complex operations on states subject to elaborate invariants. Operation can be
broken down in sub-operations that are independently verified. Invariants can
be factored into sub-invariants. In the case study reported in this paper [6,
7], decomposition helped in identifying properties and sub-operations that were
preventing the proof system from automatically discharging the proof.

In retrospect, the improvements in verification obtained following our “single-
PO, multiple-proof-technology” approach need to be balanced against the fact
that the learning curve becomes steeper and steeper as new technologies are
added to the system. This can only be avoided via automation and transparent
integration.

References

1. R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997. C.A.R. Hoare, series editor.

2. D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, 1978.

3. J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna. RODIN
(Rigorous open Development Environment for Complex Systems). In WORDS,
pages 23–26. IEEE Computer Society, 2005.

4. Intel Corporation. IntelR© Flash File System Core Reference Guide. Technical
report 304436-001, Intel Corporation, 2004.

5. K. Damchoom, M. Butler, and J. Abrial. Modelling and Proof of a Tree-Structured
File System in Event-B and Rodin. In S. Liu, T.S.E. Maibaum, and K. Araki,
editors, ICFEM, volume 5256 of LNCS, pages 25–44. Springer, 2008.

6. M. Ferreira. Verifying IntelR© Flash File System Core. Master’s thesis, Minho
University, Jan. 2009.

7. M. Ferreira, S. Silva, and J.N. Oliveira. Verifying Intel Flash File System Core
Specification. Fourth VDM/Overture Workshop, (CS-TR-1099), May 2008.

8. M.A. Ferreira and J.N. Oliveira. Verifying the (generic) flash memory implemen-
tation of abstract mappings, 2009. In preparation.

9. Miguel A. Ferreira. Implementing the Overture Automatic Proof System, 2009.
Submitted for publication.

10. J. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques
in Software Development. Cambridge University Press, 1998.

11. J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated
Designs for Object-oriented Systems. Springer, New York, 2005.

12. J. Fitzgerald, P.G. Larsen, and S. Sahara. VDMTools: advances in support for
formal modeling in VDM. SIGPLAN Notices, 43(2):3–11, 2008.

13. L. Freitas, Z. Fu, and J. Woodcock. POSIX file store in Z/Eves: an experiment
in the verified software repository. In ICECCS ’07, pages 3–14, Washington, DC,
USA, 2007. IEEE Computer Society.

14. P.J. Freyd and A. Ščedrov. Categories, Allegories, volume 39 of Math. Lib. North-
Holland, 1990.

15. A. Galloway, G. Lüttgen, J.T. Mühlberg, and R. Siminiceanu. Model-checking
the linux virtual file system. In N.D. Jones and M. Müller-Olm, editors, VMCAI,
volume 5403 of LNCS, pages 74–88. Springer, 2009.

16. Mike Gordon. From LCF to HOL: a short history, pages 169–185. MIT Press,
Cambridge, MA, USA, 2000.



17. The VDM Tool Group. The VDM++ to Java Code Generator. Technical report,
CSK Systems, January 2008.

18. W.H. Hesselink and M.I. Lali. Formalizing an Hierarchical File System, 2009.
Submitted to FM 2009.

19. C.A.R. Hoare. The verifying compiler: A grand challenge for computing research.
J. ACM, 50(1):63–69, 2003.

20. T. Hoare and J. Misra. Verified Software: Theories, Tools, Experiments Vision of
a Grand Challenge Project. In VSTTE, pages 1–18, 2005.

21. IEEE and The Open Group. Standard for information technology - POSIXR©. Base
Definitions, Issue 6. IEEE Std 1003.1-2001. The Open Group Tech. Std, 2004.

22. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
Heyward Street, Cambridge, MA02142, USA, April 2006.

23. Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall In-
ternational, Englewood Cliffs, New Jersey, second edition, 1990.

24. R. Joshi and G. J. Holzmann. A Mini Challenge: Build a Verifiable Filesystem. In
VSTTE, pages 49–56, 2005.

25. E. Kang and D. Jackson. Formal Modeling and Analysis of a Flash Filesystem in
Alloy. In E. Börger, M. Butler, J.P. Bowen, and P. Boca, editors, ABZ, volume
5238 of LNCS, pages 294–308. Springer, 2008.

26. P.G. Larsen, N. Batle, J. Fitzgerald, K. Lausdahl, and M. Ferreira. The Overture
Initiative Integrating all VDM tools, 2009. In preparation.

27. P.G. Larsen, K. Lausdahl, and N. Batle. Combinatorial Testing for VDM++, 2009.
Submitted for publication.

28. D. Leberre and F. Delorme. An eclipse plugin for the alloy4 tool. Website:
http://code.google.com/p/alloy4eclipse/.

29. J.N. Oliveira. Transforming Data by Calculation. In GTTSE’07, volume 5235 of
LNCS, pages 134–195. Springer, 2008.

30. J.N. Oliveira. Extended Static Checking by Calculation using the Pointfree Trans-
form. In A. Bove et al., editor, LerNet ALFA Summer School 2008, volume 5520
of LNCS, pages 195–251. Springer-Verlag, 2009.

31. Larsen P.G, J.S. Fitzgerald, and S. Riddle. Practice-oriented courses in formal
methods using VDM++. Formal Asp. Comput., 21(3):245–257, 2009.

32. Nico Plat and Peter Gorm Larsen. An overview of the ISO/VDM-SL standard.
SIGPLAN Notices, 27(8):76–82, 1992.

33. A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif. Abstract Specification of the
UBIFS File System for Flash Memory, 2009. Submitted to FM 2009.

34. K. Slind and M. Norrish. A Brief Overview of HOL4. In O.A. Mohamed, C.M., and
S. Tahar, editors, TPHOLs, volume 5170 of LNCS, pages 28–32. Springer, 2008.

35. A. Tarski and S. Givant. A Formalization of Set Theory without Variables. Amer-
ican Math. Soc., 1987. AMS Colloq. Pub., v. 41, Providence, Rhode Island.

36. S. Vermolen. Automatically Discharging VDM Proof Obligations using HOL. Mas-
ter’s thesis, Radboud University, Computer Science Department, 2007.

37. M. Weiser. Program slicing. In 5th Int. Conf. on Software Eng., San Diego,
California, March 1981.

38. J. Yang, P. Twohey, D.R. Engler, and M. Musuvathi. Using model checking to find
serious file system errors. ACM Trans. Comput. Syst., 24(4):393–423, 2006.


