
Modelling the Impact of Software Components on
Wireless Sensor Network Performance

Óscar Gama, Paulo Carvalho
Department of Informatics

University of Minho, Braga, Portugal
e-mail:{osg,pmc}@di.uminho.pt

P. M. Mendes
Department of Industrial Electronics
University of Minho, Braga, Portugal
e-mail:paulo.mendes@dei.uminho.pt

Abstract— Network Simulators are often used to study
multiple aspects of data communications in distinct
scenarios, including wireless sensor networks (WSN).
However, the performance of the software components
running in the network nodes is normally neglected by the
simulators. This aspect is particularly important in WSNs,
as nodes have very limited computing resources. In order
to study the impact of software components on WSN
performance, a simulated WSN and a physical WSN were
setup in the IEEE 802.15.4 domain. Tests revealed that the
simulator must take into account the software components
of the WSN to produce realistic results. To achieve this,
new parameters are proposed to model the impact of the
software components on a physical WSN. Tests measuring
the packet round-trip delay, delivery error ratio, and
duplicated packet ratio showed that the inclusion of this
model in a simulator improves significantly the accuracy
of the results when compared with those obtained in a
physical WSN.

I. INTRODUCTION
A wireless sensor network (WSN) is composed of tiny

resource-constrained devices owning communication and
sensing capabilities. WSNs have a wide range of potential
applications, such as, environment monitoring, smart buildings,
medical care, and industrial control [1].

Many studies have been carried out in the WSN research
community, where algorithms and protocols are carried out
mostly in simulators. A review based on 151 wireless network
articles from a five-year-period reported that 76% from those
works used simulations [2]. The preference for simulation tools
is justified by the difficulty of deploying real networks, as
programming a lot of motes, gathering the performance metrics
of the motes, and managing the power sources is tedious and
time-consuming. The economical costs required to build a real
testbed is another obstacle. Because WSNs use distributed
programming, and debuggers are hard to use in the motes,
software errors are harder to detect and correct in a testbed than
in a simulator. Testbeds also impose strong constraints on the
topology and size of the network. On the other hand, simulators
allow building and modifying network scenarios easily, the
models are easily monitored from the global view of the

simulator, and the experiments are reproducible. A comparison
of simulators for WSNs is provided in [3, 4].

WSN simulation studies use frequently unrealistic
assumptions, such as, flat physical environment, circular radio
transmission area, equal range for all radios, channel with
bidirectional symmetry, simple relation of signal strength with
distance, and no fading or shadowing phenomena. A large set
of measurements showed that these assumptions cause
simulation results to differ significantly from experimental
results [5].

Since simulators can use different models to represent the
same physical phenomenon, appreciable divergences in the
results may be obtained using distinct simulators. The
performance results of a simple algorithm using diverse
simulators proved this fact [6]. Furthermore, models cannot
represent reality with absolute accuracy [7]. Simulation
scenarios can also ignore diverse hardware and software
aspects that may influence the final results. Examples of these
aspects are the time required by the base-station (BS) and the
motes to process the incoming or outgoing packets, the queuing
delay in the transmission and receiving buffers, the time
required to switch channels or between transmitter and receiver
mode, and the link speed between the BS and the decision
center, as explained later. Moreover, simulation tests usually do
not consider any external interfering traffic on the WSN. This
aspect is important when the WSN operates in license-free
bands. For example, an IEEE 802.15.4 WSN operating in the
2450 MHz band may have to share channels with IEEE 802.11
networks. These aspects may lead to simulation results
significantly different from those obtained in a real WSN.

Studies presenting experimental validation tests of
simulators against results obtained in real networks are not
abundant, because of the difficulty of implementing a real
testbed.

The accuracy of the ns-2 simulator is evaluated in [8]. The
authors compare the network characteristics of a simulated, an
emulated, and a real IEEE 802.15.4 multi-hop mesh network
with sixteen stations in a static indoor environment. The results
showed that the packet delivery ratios, the connectivity graphs,
and the packet latencies are represented in the simulated model
with an average error of 0.3%, 10%, and 57% respectively.

The experimental validation results for the SWAN
simulator showed that the simulations with the two-ray ground

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55616407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

radio propagation model differ from reality with around 80%,
while with the shadowing model differ about 10% in an
outdoor mobile IEEE 802.15.4 network [5][9].

The reliability of OMNeT++ is evaluated in [10]. The
authors consider an experimental setup made of six motes to
test the performance of the flooding algorithm. The results of
the testbed are compared with the results of the simulations of
the same scenarios on OMNeT++. Experiments showed that
simulation results tend to over-estimate the metrics collected in
the testbed. The authors do not present any explanation for the
difference noted in the results.

To validate some high-level aspects of Castalia [11], the
authors of this WSN simulator deployed a real network
involving nine motes [12]. Important differences in the results
from the real network and the simulation were noted. The
authors of these works were unable to justify satisfactorily the
registered differences.

Aware of the difficulty that a simulator may have in
presenting accurate results, this work studies software-related
aspects of a WSN that contribute to the differences found in
simulation results against real measurements. This is an
important topic that is usually neglected in WSN simulations.
First, it is evaluated in the IEEE 802.15.4 domain how different
the results obtained in a simulated WSN are from those
obtained in an analogous physical scenario. Then, the causes of
the divergences in the results are identified. At last, a model
using empirical software-related parameters to improve the
accuracy of the simulation results is proposed. Instead of trying
to present accurate values for the model parameters, which are
necessarily specific to each testbed, this work intends to model
software-related issues which have influence on the testbed
results, and which may also occur in another WSN testbed. The
main contribution of this paper is to present a parameterized
model reflecting the impact of the software components on a
physical WSN. The proposed model is generic to be easily
implemented in current WSN simulators, being also an
important contribution for future development of simulation
tools.

The remaining of this paper is structured as follows: the
simulated and physical platforms, as well as the test conditions
used in the experiments are presented in Section II; the results
obtained in the tests are shown in Section III; new parameters
are proposed for the simulator in Section IV; the simulation
results using the new parameters are presented in Section V;
finally, the conclusions are discussed in Section VI.

II. EXPERIMENTAL PLATFORMS
The physical and simulated experimental platforms, as well

as the test conditions used in this work are presented next.
The reference testbed is composed of sixteen ZigBit-A2

motes placed statically in a semi-circle around the BS, about
one meter away from the BS. To evaluate the impact of
software components in the performance of a WSN, a static
small-area WSN was adopted to minimize the effects of
additional source of errors, such as, nodes mobility and fading
phenomena. The reference testbed cannot admit more than
sixteen motes due to the RAM memory limitation of the BS.

Indeed, a minimum amount of memory in the BS is required to
hold data for packet statistical analysis, and this memory is
dependent on the number of active motes in the WSN.

The ZigBit-A2 mote is an IEEE 802.15.4/ ZigBee-
compliant module operating in the 2.4 GHz frequency band.
Motes contain one AT86RF230 transceiver coupled to a dual
chip antenna, and one ATmega1281V microcontroller
comprising 128 kB flash memory, 4 kB EEPROM, and 8 kB
SRAM. Motes run the TinyOS operating system. This testbed
uses the BS included in the kit available from the
manufacturer. Since the BS is built in around a ZigBit-A2
module, in terms of software performance the BS is identical to
a mote. The IEEE 802.15.4 standard defines the physical layer
and medium access control (MAC) layer specifications for low
data rate WSNs. It specifies a maximum physical packet size of
133 B.

To study the validity of the model proposed in this paper at
a different test scenario, controlled traffic from another IEEE
802.15.4 WSN is admitted on the channel used by the reference
testbed. The reference WSN and the interfering WSN have
distinct personal area network identifications, and are close
enough to sense the carrier signals mutually.

The scenario described for the physical testbed was equally
implemented in the Castalia simulator. Castalia is an open-
source, discrete event-driven simulator, programmable in C++,
and designed specifically for WSNs. It uses the communication
model proposed in [13]. Castalia provides parameters to model
the physical layer in accordance with the transceiver
characteristics, and packet buffers to all communication layers.
Castalia also features clock drift, sensor bias, sensor and CPU
energy consumption, and monitors resources such as memory
usage and CPU time.

A. Test Conditions
In the reference WSN, each mote transmits to the BS a

packet with a total length of 107 bytes (B) (17 B of physical
and MAC overhead plus 90 B of MAC payload) every 250 ms
approximately. In the interfering WSN, a mote sends a packet
of fixed size (100 B of MAC payload) to the BS every 50 ms
approximately.

The non-slotted CSMA-CA MAC protocol described in
IEEE 802.15.4 standard was used in the reference WSN and
interfering WSN. In the reference WSN, the CSMA-CA
algorithm used the default parameters: the minimum backoff
exponent is three, the maximum number of backoffs is four,
and the maximum number of frame retries is three. The
interfering WSN also used these parameters except the
maximum number of frame retries, which is zero to guarantee
that the CSMA algorithm execution ends before fifty
milliseconds.

The reference WSN was configured to operate in a wireless
channel free of IEEE 802.15.4 traffic. For this purpose, a
channel analyzer was used to find free channels. It was selected
the channel 25 of the IEEE 802.15.4 spectrum. To reduce the
impact of spurious interferences on this channel, motes
transmit at maximum power (3 dBm).

The BS of the reference WSN is connected to the serial port
of a computer. The serial link rate is 500 kbit/s. It was noted
that when the BS is sending data to the computer, the capacity
of the BS to receive or transmit packets becomes significantly
reduced. To reduce the influence of this aspect on the final
results, the BS sends to the computer every two minutes only
the relevant statistics of the traffic flow received from each
mote relative to this time period.

The tests were carried out in the physical testbed and in the
simulator for an increasing number of active motes in the
WSN, with and without IEEE 802.15.4 interfering traffic in the
selected channel. The test duration was sixteen minutes for
each set of active motes. The results obtained are presented
next.

III. EXPERIMENTAL RESULTS
The results for round-trip (RT) delay, and Delivery Error

Ratio (DER) obtained both in the physical testbed and in the
simulator are discussed in this section. Both metrics are
considered from the perspective of the application layer. In the
context of this paper, round-trip delay is defined as the time
spent between sending an application data packet from a mote
and the success confirmation of the operation, which occurs
after receiving the MAC acknowledgement frame from the BS.
As the round-trip delay of a packet is calculated using only the
clock of the source mote, no time synchronization mechanism
is required. Each packet carries in the payload the round-trip
delay of the packet sent previously. DER expresses the
probability of failing the delivery of an application data packet
sent from a mote to the application layer of the BS. The results
for the duplicated packet ratio will be shown in section V.

A. Tests without interfering traffic
Figures 1 and 2 present the results obtained when IEEE

802.15.4 interfering traffic was not present. Represented in a
logarithm scale, the graphical curves of Fig. 1 show the
simulation results for the DER when increasing the number of
motes sending packets to the BS. The graphical bars
correspond to the DER obtained in the physical testbed. For
each number of active motes in the WSN, it is represented the
maximum, average, and minimum DER values. For example, if
five motes are active in the physical testbed, the DER
considering all packets received by the BS from all motes is
0.8% (average value); the DER considering only the traffic
flow from the mote that presented more undelivered packets is
1.0% (maximum value); the DER considering the traffic flow
from the mote that presented less undelivered packets is 0.5%
(minimum value). Figure 2 shows the maximum and average
round-trip delays obtained in the simulator and in the physical
testbed.

In Figure 1, while the simulation results reveal a WSN
scaling up to 16 nodes with a maximum DER always below
1%, the physical testbed results show that above six active
motes the maximum DER becomes higher than 1%. Figure 2
reveal that maximum and average round-trip delays obtained in
the simulator are significantly distinct from the real results.

Figure 1. DER without interferences

Figure 2. RT delay without interferences

B. Tests with interfering traffic
Figures 3 and 4 present the DER and round-trip delay

results obtained in presence of interfering traffic. The results
shown in both figures were obtained in the simulator and in the
physical testbed. As expected, the network performance
degrades before the presence of interfering traffic. The
differences in the results registered in the physical testbed and
in the simulator are considerably distinct.

Figure 3. DER with interferences

Figure 4. RT delay with interferences

IV. NEW SIMULATION PARAMETERS
In this section, the main causes for the divergence in the

results obtained in the simulator and in the physical testbed are
identified and discussed. As result of this analysis, new
parameters are proposed for the simulator in order to minimize
the differences to the testbed results.

The first reason for the differences observed in the results is
that the simulator does not take into account the time to process
the protocol layers software code, as well as the behavior of the
operating system used in the network devices. As TinyOS can
only schedule and handle single events, and computing
resources are very limited, significant delays may occur in
scheduling and processing those events.

This overhead in terms of delay may be responsible for
packet loss. To understand why, let us suppose that a packet
has been received by the BS transceiver. After processing it,
the physical layer software triggers events to forward the
payload to the upper protocol layers. Since the delivering time
to the application layer is not null, another packet may be
received by the BS transceiver during this transactional phase.
In this case, the operating system cannot attend the hardware
interrupt from the transceiver indicating that a new packet is
ready to be transferred to the microcontroller. Consequently,
the new received packet is dropped. This situation was
confirmed experimentally.

To implement this behavior in the simulator, a delivery
time parameter was introduced: Tmacapp. This parameter
indicates the time required to process the packet at MAC layer
and deliver the data to the application layer. Therefore, this
parameter reflects both the event scheduling delay and the
packet processing delay imposed by the link, network, and
transport layers. The delivery time parameter Tphymac was also
implemented to reflect the time required to process the packet
at physical layer and deliver the payload to the MAC layer. The
process time parameter Tapp indicates the time required for the
application layer of the BS to process the received payload. So,
an incoming packet is completely processed by the application
layer of the BS after a time interval TBS totRX(n):

 TBS totRX = TBS phymac + TBS macapp + TBS app (1)

Analogously, TtotTX is the total time required for a mote to
transmit an application packet. Hence, the application packet
delay comes increased by the sum of TtotRX and TtotTX.

The computing performance of the BS in the physical
testbed is similar to a mote. This situation is not normally
found in a WSN, since a BS presents typically stronger
computing resources and a more efficient operating system
than motes. In this case, the value of TtotRX and TtotTX may be
negligible. However, in a multi-hop WSN the packets may be
routed through the motes, and so the value of these parameters
can influence significantly the network performance.

The second reason for the differences in the results is that
the motes present an appreciable time drift. The cause of this
time drift is distinct of the CPU clock time drift, which is
typically a few microseconds per second. While the latter is
due to physical characteristics of the semiconductor
components, the former is mainly due to the CPU internal
software performance running under limited computing
resources. To reflect this feature, the drift parameter Dab was
introduced in the simulator. To set this parameter correctly,
measurements were carried out using the BS and pairs of
motes. Generically, if the drift between mote a and the BS is
Da, and the drift between mote b and the BS is Db, then the drift
between mote a and mote b is Dab= Da - Db. This means that if
mote a and mote b start to transmit separated in time by Tab
seconds, and if Da > Db, then both motes will contend for the
wireless channel after sending Tab / Dab packets. The Dab value
can be calculated experimentally through the relation:

Dab = ((Tai+1 - Tbi+1) - (Tai - Tbi)) / (Tbi+1 - Tbi) (2)
where Tai, Tai+1, Tbi, and Tbi+1 express the local time of the BS
when this received packet i and packet i+1 from mote a and
mote b, respectively. It is assumed that packet i from mote b
arrives after packet i from mote a, as well as all successive
received packets from both motes during the period Tbi and
Tbi+1. Since Tab < 250 ms in the physical testbed, and assuming
Dab = 0.1%, channel contentions between a pair of motes may
occur whenever 250 packets are sent at maximum. However,
no channel contention occurs if Dab is zero and Tab is above the
full-loaded packet transmission time. In this situation, the
simulator results presented a null DER in a WSN with more
than sixteen active motes. To prevent this unrealistic situation,
the simulation results in Figures 1 to 4 were taken using a Dab
equal to 0.005%.

The discussion above shows that the mismatch in the
results derives from the limited performance of the software
running in the network devices. Since this software
performance behaviour is inherent to motes of any WSN, the
presented discussion applies generically to all WSNs,
especially to WSNs running event-based operating systems.

A. Setting of the new parameters
Whenever possible, the tuning of the new parameters was

accomplished based on experimental measurements performed
in the physical testbed. The values for those parameters are
proposed below.

Physical to MAC Layer Delivering Time (Tphymac)

Since the IEEE 802.15.4 standard is implemented in the
firmware of the transceiver, the time required to deliver a
packet from the physical layer to the MAC layer is very hard to
measure experimentally. This time includes the period required
for the transceiver to send the MAC frame to the
microcontroller through the serial peripheral interface. In a
ZibBit mote, this period is about 0.29 ms for a full-load MAC
frame (127 B). Considering the results of Fig. 1, a delay of 1.2
ms were estimated for Tphymac, for data packets carrying 90 B
of payload. Tests revealed that this parameter depends on the
packet size.

MAC to Application Layer Delivering Time (Tmacapp)
Measurements done with an one-millisecond resolution

timer revealed that the time required to deliver a payload of 90
B from the MAC layer to the application layer presented a
value of 1 ms, 2 ms, and 3 ms in 10%, 83%, and 7% of all
packets delivered to the application layer, respectively. These
percentages depend on the payload size. Indeed, the time
required to deliver a payload of 30 B from the MAC layer to
the application layer presented a value of 1 ms, and 2 ms in
77%, and 23% of all packets delivered to the application layer,
respectively. The simulator was programmed so that Tmacapp
varies randomly according to a uniform distribution through
these delays in accordance with the respective percentages, and
payload size.

Packet Processing Time at Application Layer (Tapp)
Measurements revealed that the time required for the

application layer of the BS to process the received payload was
around 1.2 ms. Therefore, Tapp was set to this value.

Total Transmission Time (TtotTX)
It was assumed that the time required for a mote to deliver

an application packet to the transceiver (TtotTX) is equal to the
time of delivering a packet from the transceiver to the
application layer (TtotRX). Recall that TtotRX is the sum of
Tphymac, Tmacapp, and Tapp (see Eq. 1).

Software Time Drift (Dab)

Measurements showed that the software time drift between
motes may have values up to 0.3%, depending on the pair of
motes used. Therefore, the simulator was programmed so that
each mote at the start-up chooses randomly a Dab up to 0.3%.

V. SIMULATION RESULTS WITH THE NEW PARAMETERS
Figures 5 and 6 show the simulation results using the new

parameters when IEEE 802.15.4 interfering traffic was not
present. It is observed that the DER simulation results
approximate closely to the DER values found in the physical
scenario (the corresponding physical testbed results are also
replicated for better comparison). The results of the maximum
and average round-trip delays become also close to those
obtained in the physical scenario.

Figures 7 and 8 present the simulation results when IEEE
802.15.4 interfering traffic was present. The DER results keep
close to the DER values found in the physical scenario. The
results of the average and maximum round-trip delays are also
identical to those obtained in the physical scenario.

Figure 5. DER without interferences

Figure 6. RT delay without interferences

Figure 7. DER with interferences

With the CSMA-CA algorithm, a mote may send a
duplicated packet if the acknowledgement packet from the BS
is not received by the mote. Duplicated packets must be
avoided to save bandwidth and energy consumption. Figure 9
shows the average Duplicated Packet Ratio (<DPR>) obtained
with and without the presence of IEEE 802.15.4 interfering
traffic, not considering the use of the proposed parameterized
model. Figure 10 presents de average DPR considering this
model. In this last case, the simulation results are very identical
to those obtained in the physical testbed.

Figure 8. RT delay with interferences

Figure 9. <DPR> without the proposed model

Figure 10. <DPR> with the proposed model

VI. CONCLUSIONS
Since motes present typically very limited computing

resources, the performance of the operating system and high-
level software running inside the motes impose significant
constrains to the overall performance of a WSN. This paper has
showed that if such software performance limitations are not
taken into account, the simulation tests may produce results
significantly more optimistic from those obtained in real
conditions. Indeed, tests showed that it is very difficult to

obtain satisfactory simulation results using uniquely the
parameters of the wireless channel, the physical layer, and the
MAC layer provided by the WSN simulator. This very
important aspect is often neglected in many works presenting
WSN evaluation studies carried on simulators.

 In order to obtain satisfactory simulation results, distinct
software-related parameters were proposed, measured, and
included in the simulator. Simulation tests showed that the
average values of the results obtained with the new parameters
get satisfactory match to those obtained in real conditions.
Therefore, the inclusion of the proposed parameters in the
model of a WSN simulator helps to improve the confidence on
the simulation results.

ACKNOWLEDGMENT
Óscar Gama work is supported by FCT

(SFRH/BD/34621/2007), Portugal.

REFERENCES
[1] J. Yick, B. Mukherjee, D. Ghosal, "Wireless sensor network survey",

Computer Networks, Vol. 52, No. 12., pp. 2292-2330, 2008.
[2] S. Kurkowski, T. Camp, M. Colagrosso, “Manet simulation studies: the

incredibles,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 9, no. 4, pp. 50–61, 2005.

[3] C. Singh, O. Vyas, M. Tiwari “A Survey of Simulation in Sensor
Networks.” In Proceedings of the International Conference on
Computational intelligence For Modelling Control & Automation.
CIMCA. IEEE Computer Society, Washington, DC, 867-872, 2008.

[4] M. Korkalainen, M. Sallinen, N. Kärkkäinen, P. Tukeva “Survey of
Wireless Sensor Networks Simulation Tools for Demanding
Applications.” In Proceedings of the 5th International Conference on
Networking and Services - Volume 00. ICNS. IEEE Computer Society,
Washington, DC, 102-106, 2009.

[5] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott.
Experimental evaluation of wireless simulation assumptions. In MSWiM
’04: Proc. of the 7th ACM international symposium on Modeling,
analysis and simulation of wireless and mobile systems, pages 78–82,
New York, ACM Press, 2004.

[6] D. Cavin, Y. Sasson, A. Schiper. On the accuracy of manet simulators.
In POMC ’02: Proc. 2th ACM international workshop on Principles of
mobile computing, pp. 38–43, New York, ACM Press, 2002.

[7] J. Banks, J. Carson, B. Nelson, “Discrete-Event System Simulation”, 2nd
ed. Prentice Hall, 1996.

[8] S. Ivanov, A. Herms, G. Lukas. “Experimental validation of the ns-2
wireless model using simulation, emulation, and real network” 4th
Workshop on Mobile Ad-Hoc Networks, 2007.

[9] J. Liu, Y. Yuan, D. Nicol, R. Gray, C. Newport, D. Kotz, L. Perrone,
“Simulation validation using direct execution of wireless ad-hoc routing
protocols,” in PADS ’04: Proceedings of the eighteenth workshop on
Parallel and distributed simulation. New York, NY, USA: ACM Press,
pp. 7–16, 2004.

[10] U. Colesanti, C. Crociani, A. Vitaletti, “On the accuracy of OMNET++
in the wireless sensor networks domain: simulation vs. testbed,” in PE-
WASUN ’07: Proc. 4th ACM workshop on Performance evaluation of
wireless ad hoc, sensor and ubiquitous networks, New York, pp. 25–31,
ACM press, 2007.

[11] Castalia: A Simulator for WSN, http://castalia.npc.nicta.com.au.
[12] H. Pham, D. Pediaditakis, A. Boulis , “From Simulation to Real

Deployments in WSN and Back”, In IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks, 2007.

[13] M. Zuniga, B. Krishnamachari, “Analyzing the transitional region in low
power wireless links,” 1st IEEE Annual Conf. on Sensor and Ad Hoc
Communications and Networks, 2004.

