
An OGC/SOS Conformant Client to Manage
Geospatial Data on the GRID

António Esteves1, Marco Caldas1, António Pina1, Alberto Proença1

1 Informatics Department, University of Minho, Braga, Portugal
{esteves,marcocaldas,pina,aproenca}@di.uminho.pt

Abstract. This paper describes a Sensor Observation Service (SOS) client
developed to integrate dynamic geospatial data from meteorological sen-
sors, on a grid-based risk management decision support system. The present
work is part of the CROSS-Fire project, which uses forest fires as the main
case study and the FireStation application to simulate fire spread. The me-
teorological data is accessed through the SOS standard from Open Geospa-
tial Consortium (OGC), using the Observations and Measurements (O&M)
standard encoding format. Since the SOS standard was not designed to di-
rectly access sensors, we developed an interface application to load the SOS
database with observations from a Vantis Weather Station (WS). To inte-
grate the SOS meteorological data into the FireStation, the developed SOS
client was embedded on a Web Processing Service (WPS) algorithm. This
algorithm was designed to be functional and fully compliant with SOS,
SensorML, and O&M standards from OGC. With minor modifications to
the developed SOS database interface, the SOS client works with any WS.
This client supports spatial and temporal filters, including the integration
of dynamic data from satellites into FireStation, as described.

Keywords: OGC stantards, SOS, WPS, geospatial data, grid civil protec-
tion applications.

1 Introduction

The CROSS-Fire project aims to develop a grid-based risk management decision
support system, using the Enabling Grids for E-sciencE (EGEE) infrastructure,
for the Civil Protection (CP) authorities, using forest fires as the main case study
and FireStation (FS) as a standalone CAD application to simulate the fire spread
over complex topography [12]. The CROSS-Fire architecture includes information
models, encodings, and metadata that represent the scientific knowledge associ-
ated to FireStation execution models and standards to enable the discovery and
access of Web services, data repository, sensor networks and data processing facil-
ities [16]. To achieve the desired integration of information and services we use: (i)
EGEE to provide raw technological capability provision, including data manage-
ment and storage, access to meta-data data bases and high-performance computing
and (ii) a Geospatial Information Infrastructure based on OGC-WS and Sensor
Web Enablement (SWE) services to provide the access and management of remote
geospatial data from remote or in-situ sensors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55616349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.1 FireStation and G-FireStation

FireStation integrates a module for wind field generation, as well as a module
for the computation of the Fire Weather Index (FWI). FS needs three different
kinds of input data to simulate fire propagation: (i) the terrain divided into cells,
each one characterized by its altitude and fuel type [13], (ii) the wind conditions,
affecting that terrain and (iii) some control parameters, such as the ignition points
and the stopping simulation criteria (see figure 1). The information about the wind
conditions affecting the terrain is previously generated by a Wind Field Module.

Fig. 1: Components of FS Simulation model.

The FireStation is being ported to work on grid, resulting in the G-FireStation
(gFS) application. G-FireStation includes: (i) a standard-based Spatial Data In-
frastructure (SDI) layer, based on Geoserver, to exploit/enable geospatial services
for data access/processing, (ii) a 52North’s implementation of a OGC/SWE con-
formant layer, to address sensors CP data sources, such as meteorological stations
data and satellite images and (iii) a graphical user interface to access the platform
facilities.

To provide FireStation with dynamic geospatial and meteorological data needed
for computing the wind field (wind direction and speed) and FWI (precipita-
tion, temperature, and humidity) we are developing a Web-interface for Remote
Weather Stations (RWS). The implementation is based on a Sensor Observation
Service (SOS) server from 52North that manages the access to a database that
conforms to SOS from OGC/SWE initiative. The Web-interface is being tested
with a Davis VantagePro2 Weather Station (WS). A simple SOS client retrieves

the data from a RWS that is connected to a FTP server, performs the necessary
processing and uses an insertObservation client operation to insert data in the
SOS database. The functionality of the SOS client is used to implement a Web
Processing Service (WPS) algorithm that runs as a core service of the CROSS-
Fire. Concretely, the algorithm is be based on the developed GetObservation class
that allows WPS (i) to request, from the SOS, the list of WSs available on a cer-
tain spatial window, and (ii) to retrieve observations from sensors belonging to a
specific station included on the previous list.

1.2 Cross-Fire Platform

The CROSS-Fire platform is composed of a central core, a WPS layer, and two
external infrastructures: a SDI platform and the GRID. The core WPS, a 52North
implementation of this OGC standard layer, is divided in three parts: Business
Logic, Grid Services and Geospatial services. The Business Logic is an abstract
layer configured to handle the specific algorithms that provide all the functional-
ity of FireStation, namely forest fire propagation, wind field and FWI calculation.
The Grid Services is the component that interfaces with the GRID infra-structure.
Amongst its responsibilities one can find proxy delegation, job creation and man-
agement, and data movement to and from the GRID. The Geospatial Services
act as an interface between the clients who request geo-referenced data and the
available collection of SDIs. Web services are one of the fundamental layers of the
CROSS-Fire platform, implemented as a set of WPS algorithms that deal with
most of the functionalities of the three components of the platform.

The paper is organized as it follows. In section 2 we summarize some available
clients for the 52North implementation of the SOS. Section 3 describes the integra-
tion of meteorological dynamic data on Firestation. It is presented an overview of
OGC/SWE standards, especially the Sensor Observations Service and the Obser-
vations&Measurements. In section 4 it is given a brief description of the weather
station used to test the SOS. Section 5 details the application developed to pop-
ulate the SOS database with observations from this weather station. Section 6
describes an SOS client implementation. This client allows WPS to retrieve geo-
referenced spatial data from SOS. Finally, section 7 points out some conclusions
and ideas for future work.

2 Related Work

There are available several client applications for the 52North’s implementation of
the SOS service [1]. Most of them are implemented on top of the OX-Framework
that facilitates the access to OGC web services.

The Rich OX client is a Java Swing frontend of the OX-Framework. Its focus
is on the visualization of O&M-encoded sensor data requested from an SOS. This
client also interfaces with WMS, WCS and SAS services, offering basic GIS func-
tionalities such as: display information on a map, as a diagram, or as an animation,
manage map layers, zooming and panning of a spatial area, perform interpolation
over the available data and display the result on a map.

The Thin SWE client is a web-based client with a user friendly interface.
This client visualizes sensor data on maps, diagrams and tables. In order to be
a platform independent application, it was developed as a web-based thin client,
runs on a browser and uses web technologies like AJAX. The user can access data
from different SOS instances. Besides giving access to sensor observations, this
application also presents metadata about the sensor.

The ArcGIS SOS extension couples SOS instances to ArcGIS. With this ex-
tension, the users can apply the full range of ArcGIS processing and visualization
capabilities to real-time and stored sensor data. The ArcGIS extension requires
the ArcGIS and Arc Hydro tools.

The uDig SOS client is a GIS application written in Java. uDig is a free and
open source project. This client allows the uDig system to access SOS data. The
information retrieved from the SOS can be displayed on a map, using a uDig layer,
or as a table. It is also possible to perform data rendering. In the present stage of
development, the client does not implement temporal filtering on data.

The Commonwealth Scientific and Industrial Research Organization (CSIRO),
an Australia’s national science agency, is investigating how OGC/SWE standards
can be applied to the hydrological domain, especially to the South Esk river. They
also developed a SOS client to access the sensor’s observations and a Google Maps
GUI to display the localization of the available sensors.

3 Integrating Meteorological Dynamic Data on Firestation

3.1 OGC/SWE Standards

To access the weather information it was decided to adopt the standards developed
by the Sensor Web Enablement (SWE) initiative of the OGC. Concretely, we based
our solution on the most commonly used implementation on the scientific commu-
nity, and which was developed by the 52North company [19]. The SWE initiative
provides models, services and encoding schema that allow an access to web sensors
through a common interface and encoding. The objective of this initiative is the
standardization of all the process of accessing web sensors, which includes: the de-
scription of sensors, the register of sensors and their measurements, the discovery
of sensors and how to interact with them, and the access to the observations pro-
vided by sensors. To achieve this objective, the SWE initiative defined 3 standards
for data encoding and 4 standards for interaction with web services: SensorML [4],
Observations&Measurements (O&M) [6, 7], Transducer Markup Language (TML),
and Sensor Observations Service (SOS) [14], Sensor Planning Service (SPS) [18],
Sensor Alert Service (SAS), Web Notification Service (WNS).

We can setup various scenarios for interaction between SWE services and en-
codings, some simple and others quite complex. In the scenario we want to explore
in CROSS-Fire, the user (a Civil Protection application, i.e. the WPS) is not usu-
ally interested in all observations generated by the sensors, only the observations
associated with specific situations. For example, we just want to know when the
wind direction, or speed, had a significant change. In this case, the user wants to
be notified by an SAS when this change occurs (figure 2).

To implement a interaction scenario of this kind, the user searches, on a cata-
logue service, for SAS services that meet the requirements of scenario in question.
Later, it can connect to one of the SAS found, in order to be notified when the men-
tioned change occurs. SAS replaces the SOS in the task of monitoring continuously
the sensor(s). This means that the sensor registers and publishes the observations
into the SAS. The best way to implement this kind of asynchronous interaction,
is using an SPS. Then, the user must also connect to an SPS and schedule on it
the task appropriate to the scenario in question. For example, the task can specify
that when occurs a significant change in wind, the WNS should be notified. Af-
ter this occurrence, the WNS is responsible for forwarding the notification to the
user. More or less at the same time, the user also receives a message notification
from SAS. If the user wants to know the value of the observed property (wind
direction or wind speed), at the time of the notification, he has to connect first
to an SOS and send him a getObservation request after receiving the notification.
The answer will be an O&M document containing the the wind direction, or wind
speed, observation.

Sensors

SPS

SOS SOS DataBase

Catalog
Service

SAS WNS

re
gi

st
er

pu
bl

is
h

task

notify

SensorML

register

notity

SensorML

se
ar

ch

lis
t o

f S
AS

’s

publish

bind , getObservationO&M

bind , task

notification

bind

alert

register

SWE
services
clients

Fig. 2: Scenario of SWE services interaction.

3.2 Sensor Observations Service

Since the Sensor Observations Service (SOS) [14] is the nuclear service to access
sensors, is the one that will be treated in more detail in this document. SOS defines
a standard web interface to request, filter, and get observations and metadata from
sensors.

The getCapabilities is a mandatory operation used for receiving metadata about
the potentialities of the service. A getCapabilities request should include the type
of service that apply ("SOS" in this case), and which sections of the capabili-
ties document we are interested on. The answer to a getCapabilities request is an
XML document containing metadata about the potentialities of the service, namely
which operations are implemented and the location of the SensorML description
of each sensor.

The mandatory describeSensor operation allows us to access information of
each (local or remote) sensor, returning a SensorML or TML document. A de-
scribeSensor request must specify the format used in output data, the sensor
identification, the service identification and version, and the procedure needed
to obtain observations from that sensor, which is nothing more than the sensor
Uniform Resource Name (URN). The answer to describeSensor request is a Sen-
sorML or TML document describing the sensor. A summary of what one can get
in a SensorML document is: (i) the location of the sensor and (ii) the phenomena
that sensor monitors.

The getObservation is a mandatory operation used to request observations,
encoded in a O&M document. A getObservation request, containing all the fields
specified in the response to a getCapabilities, includes: the service and its version,
the offering we are interested in, the desired sampling time, the procedure, the
observed property, the feature of interest, the observation result, the model used
on the result, and the type of answer. The response to a GetObservation request
is usually an O&M document. The simplified structure of an observation encoded
in O&M [6], presented in figure 3, relates the observation with the feature of
interest, the applied procedures, the observed property, the result and the quality
of the result value, the time at which the sample was collected and the time the
result was generated (which may be equal to the previous time), some additional
metadata and parameters describing the event that resulted in the observation but
are neither strongly connected to the process nor to the feature of interest.

The registerSensor is an optional operation, which allows the SWE client to
register a sensor on SOS. The client can only insert observations belonging to
a sensor already registered with the SOS. A registerSensor request registers the
sensor in the SOS and returns the ID assigned to it. This ID should be used to
identify unequivocally the sensor when we interact with the SOS, for example
when making a describeSensor request.

The insertObservation operation allows an SOS client to insert observations
in the system associated with a sensor. The client needs to indicate the ID of
the sensor that produced the observation and the observation has to be specified
through an O&M document. The answer to a insertObservation request is the ID
of the observation that has just been inserted, which can be used later to request
the observation in question, sending a getObservationById request to the SOS.

4 The Weather Station Used to Test SOS

The weather station used to test the SOS was a Davis Vantage Pro2 [9]. This
weather station consists of a base station and a sensor suite. Among the available

Observation
+metadata : Metadata
+parameter : Any
+resultQuality : Quality
+resultTime : Time
+samplingTime : Time

Process

Any
Property

Feature
Metadata

Time

Quality

+featureOfInterest +procedure

+observedProperty
+result

1

0..11

Fig. 3: Simplified structure of an O&M observation.

sensors, we should mention a rain collector, a temperature sensor, a humidity
sensor, an anemometer, a barometer, wind speed and wind direction sensors. These
are the relevant sensors to Firestation’s fire propagation model. The accuracy of the
sensors included on the weather station is as follows: +/- 5% for the rain collector,
+/- 0.5oC for the temperature sensor, +/- 3% for the humidity sensor, +/- 5% for
the anemometer and +/- 4o for the wind direction sensor. The measured values
are sent through a wireless connection to the base station, yet distance can not
exceed 150 meters. Because of the base station can not be linked directly to a PC,
it is necessary an additional logger with a capacity for 2560 records. The logger
can be connected to a PC via USB. The communication protocol between logger
and PC is available freely.

5 The Application that Populates the SOS Database

To access the remote Vantis weather station, which is connected to an FTP server,
it was developed an application that connects to that server in order to obtain
meteorological data. This data is later processed and inserted in the SOS database.
It was used a PostgreSQL database. The application was implemented in JAVA
language, since it is multi-platform. The station in question is the Davis Vantage
Pro2 described in section 4, which can be configured through a template that
defines the meteorological fields that must be saved, the FTP site to where the
data will be periodically sent, as well as the format of the generated data file
(TXT, HTML, XML, etc). In order to facilitate the processing of the data file it

was selected the XML format. To insert the information in the SOS database, it was
necessary to implement a client version of the SOS insertObservation operation.
This operation will receive the meteorological data, which have to be embedded
in an request that adheres to the format and structure defined by the standard.
In particular, the insertObservation request must be a valid XML document and
include fields that identify: (i) the sensors involved in this observation, (ii) the
date or period in which the observation was collected, (iii) the address of the
applied procedure, (iv) the observed phenomena, (v) the coordinates of the location
where observation was collected, (vi) the set of values of the observed phenomena,
properly identified and structured.

In order to insert information in the SOS database, for example information
about wind, it is necessary to have registered previously the wind sensor on SOS.
In this case, the wind sensor provides two metrics, wind direction and wind speed.
To register sensors it is used the SOS registerSensor operation. A registerSensor
request must be a valid XML document and contain fields that specify: (i) the
sensor identifier, which must be unique for each SOS, (ii) the sensor state, which
can be active/inactive and be fixed/mobile, (iii) the sensor position, i.e., the co-
ordinates of its location, and (iv) the phenomena, with the respective units, that
sensor monitors.

Once a sensor has been registered in the SOS, it is available to insert data
relative to the phenomena it monitors. In order to execute this task automatic
and transparently, it was developed the aforementioned Java application. This
application connects to the FTP server, gets the last observation placed there by
the weather station and saves locally a copy of this observation, properly identified
with date and time. To be self-configurable, the application reads a configuration
file at startup, defining values for the following parameters:

– The identification of the FTP server (IP, username and password);
– The name of the files that we want to download, and if they are to be processed

or not;
– The way the application will work, including the frequency of the access to

the FTP server, if it is required to save locally a copy of files downloaded from
the FTP server and where they will be saved;

– Then it follows a section for the list of tags, providing from the file generated
by the weather station, that we intend to process and insert into the SOS
database. The section associated with each tag was includes:(i) the sensor
identification, (ii) the tag name in the file generated by the meteorological
station, (iii) when necessary, the factor to be applied on unit conversion, (iv)
the unit, (v) the phenomenon under study, which must be listed in the SOS,
(vi) the URN of the SOS phenomenon, (vii) the position where the sample was
collected, i.e., the coordinates of its location.

The application consists of three parsers: (i) one for configuration file, (ii)
another for the file generated by the weather station, which is conditioned by
the first file, because the fields are described in the configuration file, and finally,
(iii) a parser for the SOS answer. The application still includes a log file where it
saves all the errors it generates. Figure 4 presents an illustration of the architecture

where the developed application fits. The data flow within the application includes:
(i) to connect to the FTP server containing meteorological observations, (ii) to
make a copy of the last observation, which will be subsequently used to look for
the fields defined in the configuration file, (iii) to generate an XML document
with the insertObservation request, containing the data from the observation in
question, (iv) to send the request to the SOS and (v) to wait for the response
to this request. If the request succeeds, the observation is inserted into the SOS
database, otherwise an error is registered in the log file. It was also implemented
a notification mechanism, via e-mail, to inform when the application crashes or is
unable to obtain data from FTP. The notification system is quite simple. When
5 internal similar errors are reported consecutively, signaling that 5 consecutive
samples were not inserted into the SOS, it is then issued an e-mail informing about
the incident.

SOS Client

Meteorological
Station

wireless
connection

PC running
WeatherLink

 FTP
Server

Application to
Populate SOS

Database

SOS

SOS
Database

User

Fig. 4: Configuration of the meteorological station access through SOS.

6 Case Study: a WPS Algorithm that Accesses
Geo-referenced Spatial Data

This section describes the facilities required by a WPS algorithm that deals with
geo-referenced spatial data stored on a SOS database. In other words, it will be de-
scribed an SOS client implementation to mediate the interaction between WPS [17]
and SOS [14]. The SOS client utilization will be embedded on a WPS algorithm.

WPS is a OGC standard used to make calculations in a standard way through
the Internet. In practice it is a web service. The mandatory operations provided
by WPS are the following.

getCapabilites - Returns an XML document containing the name of the avail-
able algorithms, as well as other information about the WPS potentialities.

DescribeProccess - Returns details about a certain algorithm, including a
brief description of what it does and the number and type of inputs and outputs.

Execute - Executes a specified algorithm and returns the results. In CROSS-
Fire, where we use the WPS implementation from 52North, an execution request

is sent through an XML document that contains the name of the algorithm to be
executed, its inputs and outputs.

At this point, the facilities necessary for the mentioned WPS algorithm are
implemented as a GetObservation class, which provides two methods: (i) getData
that allows WPS to consult the SOS database and (ii) getStations that lets WPS
to know which weather stations are located in a given region. To implement this
class it was necessary to develop the classes CreateDoc, GetHTTP and Observa-
tionOffering, which will be described next.

CreateDoc - This internal class is responsible for creating the XML document
to be sent as a request to the SOS. When the class is instantiated it creates a
StringBuffer where it is inserted the header of the XML document to be sent to
the SOS, then providing methods to add the several fields:

(i) addOffering, to add a weather station;
(ii) setEventTime, which receives the time operator (which is fixed and with value

TM_During) and the initial and final dates;
(iii) addProcedure, to add the URN of the sensor to the document;
(iv) addObservedProperty, to add the feature of interest;
(v) addBottom, to add the footer part of the XML document;
(vi) getDoc, to return the XML document created.

GetHTTP - This class allows us to send requests to the SOS and receive the
answer. It has a single method, send, which sends the text received as parameter
to a certain URL. The implementation of the method is based on the external
library "Jakarta HttpClient", which deals with all the tasks involved in the HTTP
request.

ObservationOffering - This is a support class to store the data that will be
returned by the getStations method from GetObservation class, described next.
The class only contains methods for reading and writing the several fields, and
that are: (i) name, the station name, (ii) procedure, the sensor URN and (iii)
observedProperty, the list of phenomena observed by the meteorological station.

The two methods of the GetObservation class are now described.
getData - This method receives as parameters: (i) a list of offerings, which

are the weather stations available in SOS, (ii) the initial and final dates, defining
a timing window that delimitates the search, (iii) an identifier of the sensor in
question, and finally (iv) the list of features of interest we are looking for, such as
temperature, humidity or wind. The values needed to fill these parameters provide
from the getStations method that, beyond informing which stations are located in
a given area, returns additional information about each of them.

Firstly, the method creates an instance of the CreateDoc class that is responsi-
ble for creating the XML document to be sent as a request to the SOS. After the
instance is created, it goes through the various attributes received in the method,
and calls the methods of the CreateDoc class to insert them in the document. After
the document is created and filled, it is sent to the SOS, using the GetHTTP class.
The SOS answer, will be returned by a method of the GetHTTP class, which in
turn returns it to the getData method that initiated the operation. When the data
is in this getData method, it will be processed by a parser and placed in a HashMap

to be returned to the WPS algorithm that deals with geo-referenced spatial data,
and called the getData method.

getStations - This method receives two coordinates and the identifier of the
Spatial Referencing System (SRS) that will specify the Coordinate Reference Sys-
tem (CRS) to use, based on the the EPSG standard [15]. Initially, it will sent a
GetCapabilities request to the SOS, to tell us which stations it offers, including
its coordinates, which phenomena are observed by these stations and their URN.
This information, embedded in the Capabilities document, will be processed by
a parser to strip each of the fields mentioned above. In addition, it is applied a
spatial filter in order to consider only stations that are within the specified region.
This data will be stored in the ObservationOffering class that will be returned by
the getStations method to the caller WPS algorithm.

Just for validation purposes, we decided to implement a graphical user interface
(GUI) to the WPS algorithm (see figure 5). An example of operation with this GUI
is now presented. Firstly, it is necessary to select a CRS, then we must enter two
location points that define the area of interest. When the GetStation is pressed,
the SOS database will be queried and the list of weather stations (WS), located
in the selected area, will be displayed in the Station window. When we select
a certain WS, the sensors that are available on this WS will be displayed in the
Observed property window. After that, we must choose one or more sensors,
introduce a time interval, and press Get Observation to display the observations
stored in the SOS database (for that WS, sensor(s), and time interval).

Fig. 5: An implementation of a GUI to the WPS algorithm.

7 Conclusions and Future Work

The main reason to implement a new SOS client, instead of using an available one,
was the necessity of interacting with WPS, a facility not present on the reviewed
clients. Those clients also offer GIS facilities that are not relevant in our case. The
presented work includes the development of an SOS client, an application that
populates the SOS database with data from a weather station (WS), and a WPS
algorithm to access SOS and request from it observations from wind, tempera-
ture, humidity, and precipitation sensors. The developed SOS client is functional
and fully compliant with SOS, SensorML, and O&M standards from OGC. With
a slight modifying of the application that populates the SOS database, to take
into account the specificities of the way observations are provided by the concrete
WS, the implemented client works with any WS, without making any changes.
The client supports spatial and temporal filters. In relation to the integration of
meteorological data on Firestation it is necessary to finish the SOS client, con-
cretely implement the parser for the describeSensor and registerSensor operations.
It is our objective to integrate the SOS client on Google Maps to allow an easy
localization of the weather stations accessible through the SOS.

We are also working on the integration of other types of spatial data, such
as satellite images, on the CROSS-Fire project. To fulfill this task, projects like
SAFORAH [5], Sentinel Asia [10], GEO Grid [22], RGI [11], MRR and FIRMS [8]
were analyzed. These projects work with data from Terra, Aqua, EO1, and ALOS
satellites, and sensed by MODIS [20], ASTER [2] and PALSAR instruments. Given
the potential and the large community that uses data from Terra and Aqua, it
is our intention to use the information from these satellites too. Specifically, we
consider the utilization of the MODIS instrument an adequate alternative. The
data we are interested in is mainly land coverage (vegetation) and burned areas to
validate the maps of vegetation used by Firestation and the results of fire spread
simulations. The information will be provided as coverages by a WCPS service [3],
an extension of the WCS [21].

Acknowledgements

This research was funded by the Portuguese organization Fundação para a Ciên-
cia e a Tecnologia (FCT) through the CROSS-Fire project, a project with ref-
erence GRID/GRI/81795/2006. This research also includes results from the EC
FP7 EELA-2, E-science grid facility for Europe and Latin America: Deployment
of e-Infrastructures for scientific communities project.

References

1. 52North. "SWE Clients", http://52north.org/maven/project-sites/swe/clients/.
2010.

2. M. Abrams, S. Hook, and B. Ramachandran, "ASTER User Handbook,
Version 2", Jet Propulsion Laboratory, California Institute of Technology,
http://asterweb.jpl.nasa.gov/documents.asp, august (2002).

3. Peter Baumann. "The OGC Web Coverage Processing Service (WCPS) Standard",
Geoinformatica, Springer, july (2009).

4. Mike Botts. "OpenGIS Sensor Model Language (SensorML) Implementation Specifi-
cation", Open Geospatial Consortium Document 07-000, july (2007).

5. H. Chen, D, Goodenough, L. Di, A. Guan, A. Dyk and G. Hobart. "Grid-enabled OGC
Environment for EO Data and Services in Support of Canada’s Forest Applications",
september (2007).

6. Simon Cox. "Observations and Measurements - part 1 - Observation Schema", Open
Geospatial Consortium Document 07-022r1, december (2007).

7. Simon Cox, "Observations and Measurements - part 2 - Sampling Features", Open
Geospatial Consortium Document 07-002r3, december, (2007).

8. D. Davies, S. Ilavajhala, M. Wong and C. Justice. "Fire Information for Resource
Management System: Archiving and Distributing MODIS Active Fire Data", IEEE
Transactions on Geoscience and Remote Sensing, Vol. 47, Nž 1, january (2009).

9. Davis Instruments. "Wireless Vantage Pro2 and Vantage Pro2 Plus Station",
DS6152/6162/6153/6163 Rev C, may, (2007).

10. Kazuya Kaku. "Sentinel Asia contributing to Disaster Management Sup-
port in the Asia-Pacific Region" Space Applications and Promotion Center,
Japan Aerospace Exploration Agency (JAXA) UNGIWG-8, Bangkok, Thailand,
http://dmss.tksc.jaxa.jp/sentinel, november (2007).

11. L. Kooistra, A. Bergsma, B. Chuma and S. de Bruin. "The development of a dynamic
web mapping service for vegetation productivity using remote sensing and in situ
sensors in a sensor web based approach", Centre for Geo-Information, Wageningen
University, workshop Sensing a Changing World, november (2008).

12. A. Lopes. "FireStation User’s Manual", Universidade de Coimbra, (2000).
13. A. Lopes, M. Cruz and D. Viegas. "FireStation - an integrated software system for the

numerical simulation of fire spread on complex topography", Environmental Modelling
and Software, 17(3):269285, (2002).

14. Arthur Na and Mark Priest. "Sensor Observation Service", Open Geospatial Consor-
tium Document 06-009r6, october, (2007).

15. International Association of Oil and Gas Producers (OGP). "OGP Surveying and
Positioning Guidance, Note number 7, part 1 - Using the EPSG Geodetic Parameter
Dataset", http://www.epsg.org, november (2009).

16. A. Pina, B. Oliveira, J. Puga, A. Esteves and A. Proença. "CROSS-Fire: a risk
management decision support system on the Grid", 2nd EELA-2 Conference, Choroní,
Venezuela, pp. 25–27, (2009).

17. Peter Schut. "OpenGIS Web Processing Service", Open Geospatial Consortium Doc-
ument 05-007r7, june (2007).

18. Ingo Simonis. "OpenGIS Sensor Planning Service Implementation Specification",
Open Geospatial Consortium Document 07-014r3, august (2007).

19. I. Simonis, A. Wytzisk and J. Echterhoff. "Sensor Web Enablement: The 52North
Suite", Proceedings of the Free And Open Source Software for Geoinformatics
(FOSS4G), Lausanne, Switzerland, pp. 11–15, (2006).

20. United States Geological Survey (USGS). "MODIS Overview",
https://lpdaac.usgs.gov/lpdaac/products/modis_overview, october (2008).

21. A. Whiteside and J. Evans. "Web Coverage Service (WCS) Implementation Stan-
dard", Open Geospatial Consortium Document 07-067r5, march (2008).

22. N. Yamamoto, R. Nakamura, H. Yamamoto, S. Tsuchida, I. Kojima, Y. Tanaka
and S. Sekiguchi. "GEO Grid: Grid Infrastructure for Integration of Huge Satellite
Imagery and Geoscience Data Sets", Proceedings of the 6th IEEE/ACM International
Conference on Computer and Information Technology (CIT), (2006).

