
The Role of Coordination Analysis in Software
Integration Projects!

Nuno F. Rodrigues1,2, Nuno Oliveira2, and Lúıs S. Barbosa2

1 DIGARC - Polytechnic Institute of Cávado and Ave,
4750-810 Barcelos, Portugal

2 DI-CCTC - Universidade do Minho,
4710-057 Braga, Portugal

Abstract. What sort of component coordination strategies emerge in
a software integration process? How can such strategies be discovered
and further analysed? How close are they to the coordination compo-
nent of the envisaged architectural model which was supposed to guide
the integration process? This paper introduces a framework in which
such questions can be discussed and illustrates its use by describing part
of a real case-study. The approach is based on a methodology which
enables semi-automatic discovery of coordination patterns from source
code, combining generalized slicing techniques and graph manipulation.

1 Introduction

Integrating running software applications, usually referred in the literature as
the Enterprise Application Integration (EAI) problem [5,3], is one of most chal-
lenging tasks in enterprise systems development and management. According
to Forrester Research, more than 30% of all investments made in information
technologies are spent in the linkage of software systems in order to accomplish
global coherent enterprise software solutions. Actually, tuning to new markets,
fusion or acquisition of companies, evolution of legacy software, are just but
examples of typical scenarios which entail the need for integration.

EAI aims at the smooth composition of services, data and functionality from
different software systems, to achieve a single, integrated and coherent enterprise
solution. Conceptually, however, a main issue behind most EAI projects concerns
the definition and implementation of a specific coordination model between the
systems being integrated. Such a model is supposed to capture system’s be-
haviour with respect to its network of interactions. Its role is fundamental to
help the software architect to answer questions like, which sub-systems are con-
nected, how do they communicate and under which discipline, what are the
dependencies between such connections, how do component’s (w.r.t to integrat-
ing software systems) local constraints scale up to integrated systems, among
many others.
! This research was partially supported by Fct in the context of the Mondrian

project, under contract PTDC/EIA-CCO/108302/2008.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011 Workshops, LNCS 7046, pp. 83–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



84 N.F. Rodrigues, N. Oliveira, and L.S. Barbosa

If some sort of coordination strategy is a necessary component of any EAI
project, what gets implemented on completion of the integration project often
deviates from the envisaged strategy in a significant way. Reconstructing the
implemented strategy and rendering it into a suitable model becomes, therefore,
an important issue in EAI. On the one hand, such a reconstructed model plays
a role in validating the (coordination component) of the integration process. On
the other, it provides feedback to the software architect, eventually suggesting
alternative strategies.

Such is the problem addressed in this paper. In a series of recent papers the
authors have developed both a methodology [8,10] and a tool, CoordInspec-
tor [9] to extract, from source code, the structure of interactions among the
different, reasonably independent loci of computation from which a system is
composed of. The target of this methodology is what will be referred to in the
sequel as the coordination layer, i.e. the architectural layer which captures sys-
tem’s behaviour with respect to its network of interactions1. The extraction
methodology combines suitable slicing techniques over a family of dependence
graphs built directly from source code, in the tradition of program dependence
graphs (see, for example, [1,4]), which abstract all the relevant code information
for interaction control. Such graphs are called coordination dependence graphs
(CDG) in [10], where further details on their construction may be found. The
tool processes CIL code, for which every .Net compliant language compiles to,
thus making it potentially able to analyse systems developed in (combinations
of) more than 40 programming languages.

The paper introduces a case study on verification of design time integration
strategies. Section 2 sums up the methodology, and examples of its application
are discussed in 3. Conclusions and pointers for future work are enumerated in
section 4.

2 The Method

2.1 Coordination Patterns

Throughout this paper we adopt a coordination-driven view of software archi-
tecture in general and architectural analysis, in particular. On the other hand,
patterns, in the context of this research, are placed at a low-level: they aim to be
suitable representations of equivalence classes of (sub-graphs of) CDG extracted
from code. Qualifier ‘low-level’ means that our focus is not on the description
of traditional architectural styles, or even typical architectural elements, such as
components, software buses or connectors, but the specification of architectural
abstractions over dependence graphs extracted from code.

As an example consider the pattern depicted in Fig. 1 used to identify, in
the client side of a service interaction, the so-called asynchronous query pattern
1 The qualifier is borrowed from research on coordination models and languages [2],

which emerged in the nineties to exploit the full potential of parallel systems, con-
currency and cooperation of heterogeneous, loosely-coupled components.



The Role of Coordination Analysis in Software Integration Projects 85

with client multithreading. It is described in the graphical notation associated
to CoordL, a domain-specific language for coordination patterns introduced by
the authors in [6]. The corresponding textual version is shown in the right in a
window of CoordInspector. Even if it is not the aim of this paper to provide a
full description of CoordL, its graphical notation is almost self-explicative. For
the moment, and to get a flavour of what coordination patterns are, note in this
example how it encodes the following protocol: a client orders the execution of an
operation in one thread, x, and then launches a second thread, y, to retrieve the
result. Instances of this pattern are common whenever time consuming services
are to be invoked and calling threads can not suspend until a response is returned.

Fig. 1. Asynchronous query pattern with client multithreading

2.2 Discovering Coordination Patterns

Communication primitives, understood in the broad sense of any possible mech-
anism a component resorts to interact with another one, are the building blocks
of the coordination layer of a software system. Direct foreign calls to well ref-
erenced components such as web-services calls, RMI or .Net Remoting calls to
distributed objects are typical examples but, by no means, the only ones. The
specific combinations of such primitives is what allows systems to control and
interact, in complex ways, with other systems, processes, databases and services
in order to achieve common goals. Thus, it is reasonable to expect that any
coordination discovery strategy should start by identifying such primitive com-
munication statements in the source code, together with the specific program
context in which they are embedded. Therefore, our approach is parametric on
the communication primitives as well as on the mode they are invoked (syn-
chronous or asynchronous).



86 N.F. Rodrigues, N. Oliveira, and L.S. Barbosa

The reverse engineering process starts by the extraction of a comprehensive
dependence graph from source code, the Managed System Dependence Graph
(MSDG), which captures program statements in the vertices while the edges
represent data, control and inter-thread dependencies. Then MSDG vertices con-
taining primitive communication calls in their statements are singled out. We
call this operation the labelling phase which is parametric on both the communi-
cation primitives and the calling mode. The result of this phase is another graph
structure, the CDG, retaining only coordination relevant data with respect to
the set of rules specifying the communication primitives to look for. The CDG
is computed from the MSDG in a two stage process. First, nodes matching rules
encoding the use of specific interaction or control primitives are suitably labelled.
Then, by backward slicing, the MSDG is pruned of all sub-graphs found irrel-
evant for the reconstruction of the program coordination layer. Once the CDG
has been generated, it is used to search for specific coordination patterns and
trace them back to source code.

2.3 The Strategy

Recall the questions proposed in the introduction to this paper: What sort of
coordination strategies emerge in a software integration process? How close they
are to the coordination component of the envisaged architectural model which was
supposed to guide the integration process?. This paper focus in post-integration
analysis ; thus on a verification of the coordination models developed before the
integration process against the final, integrated system. Often, however, such
models are only informally recorded, and relevant information scattered among
documents describing the integration architecture.

The envisaged strategy has 4 stages. First the basic coordination solutions which
were designed for the integration project have to be identified, by analysing the
relevant documentation and, often, by interviewing the development team. In each
case, a correspondent coordination pattern is specified in the diagrammatical no-
tation of CoordInspector. At a third stage, such patterns are looked for in the
source code of the integrated system, with the support of CoordInspector.

Often, however, patterns are discovered only in an incremental way. The strat-
egy is to start the search with the pattern as described by the development team
and, if it not directly found, split it into small patterns until a match is found.
Then work on the reverse direction, re-building the shape of the patterns which
is actually implemented. In the limit, the graph pattern is reduced to a unstruc-
tured collection of nodes (corresponding, e.g. to web-service calls) which the
architect has to aggregate in patterns, in an iterative way. Actually, often what
has been recorded, or what developers report, as the envisaged coordination pol-
icy is far from what is effectively implemented. Our approach helps in identifying
and documenting such cases and also, once they have been retrieved, to discuss
possible alternatives, eventually leading to improvements in the implementation.
Such critical analysis is the fourth stage of our strategy.

Technically, coordination patterns are defined in a specific notation [6]. For a
brief explanation consider Fig. 2 . A pattern is a graph, where upwards triangles



The Role of Coordination Analysis in Software Integration Projects 87

represent the spawning of a new thread, downwards triangles denote a thread join,
vertices contain predicates (composed by regular expressions) and edges represent
control flow dependencies, both to be verified against a CDG. Edges bare two dif-
ferent types of labels, one capturing the number of edges to be matched on the
CDG control flow edges (as in Fig. 2, this label can take the value +, standing for
one or more edges), and a second label containing a variable to be bound to the
thread id being matched on the CDG. This last label type avoids having to impose
an order on the outgoing (incoming) thread edges of an upwards (downwards) tri-
angle, which facilitates the graphical layout of the patterns.

3 A Case-Study in Architectural Analysis

This section illustrates the use of CoordInspector and coordination patterns
in a particular case-study in architectural analysis. To respect space limits the
real case-study is merely glimpsed here and a small detail taken for illustrative
purposes.

The case-study, however, was a big one, dealing with the need to re-engineering
a set of independent, but enduring software systems to achieve an effective de-
gree of integration. It involved a Portuguese professional training company, with
facilities in six different locations (see [8] for a complete description).

Before the integration project, the company relied in four main software sys-
tems, to be referred in the sequel as the base components. They comprised
an Enterprise Resource Planner (ERP), a Customer Relationship Management
(CRM), a Training Server (TS), and a Document Management System (DMS).
The decision to integrate all these systems was pushed by the necessity of intro-
ducing a Web Portal, for on-line selling of both training courses and networking
devices. Thus, the final system included these four existing components, plus the
Web Portal developed during the integration project.

All those components operated in complete isolation from each other. Thus,
every exchange of information between them was performed manually. The ab-
sence of integration led to numerous information synchronisation problems which
had to be dealt with manually, at a daily basis. A sudden growth in the com-
pany business level, made it no longer feasible to maintain all the information
synchronised manually. Actually, several incoherencies in critical company data
inevitably started to emerge. When the integration project was launched an
administrative decision forced the choice of a point-to-point integration archi-
tecture.

Although the case-study encompassed the whole integration process we will
concentrate our attention here on a specific problem related to consistent data
update. The problem resided in the Web Portal application, the component
which was laid responsible for the user’s data update across all systems.

The re-engineering process started with an attempt to recover from the rel-
evant components source code all the coordination protocols governing user’s
data update.



88 N.F. Rodrigues, N. Oliveira, and L.S. Barbosa

Fig. 2. User update operation

Fig. 2 depicts a common coordination pattern for updating user’s data across
applications, found recurrently in the system. This patterns however is not able
to prevent the creation of already registered users (which in the generic descrip-
tion of the pattern would be translated to recurrent invocations of nodes 2, 4 and
6). To prevent this, the pattern can be changed by inserting extra vertices for
checking if a user already exists in the relevant data base component. However,
the calls to the remote creation operation (nodes 2, 4 and 6) are always carried
after a read operation (nodes 1, 3 and 5), which forces the first remote call to
the former to be aware of an eventual previous registration of the user. Thus,
only the subsequent remote creation calls (executed through loop edges 2 → 2,
4 → 4 and 6 → 6) suffer from the problem of inserting duplicate users.
Therefore, a small change is enough: insert user existence check nodes (nodes 3,
6 and 9 in Fig. 3) after each remote creation call.

The remote update of a user is only performed at the very end of this coordi-
nation pattern, in nodes 7, 8 and 9 (Fig. 2) or 10, 11 and 12 (Fig. 3). Moreover,
all updates occur in a single thread. This opens the possibility of a previous call
introducing delays in subsequent calls, resulting in significant delays for the over-
all remote operation. This single thread sequence of remote calls also demands
for a rigorous exception and error handling, given that each call may influence
subsequent ones and consequently the entire operation. In this case-study, once
the pattern was discovered, manual inspection of error handling routines was re-
quired, because these mechanisms were, then, not incorporated in the CoordL
pattern language.

Once identified, this pattern was improved by replacing the sequence of up-
date calls by their parallel execution, as represented in Fig. 3. This potentially
minimised the effect of delays introduced by individual calls. A possibility re-
mains, however, for a remote call to continually fail. In such a case, this pattern



The Role of Coordination Analysis in Software Integration Projects 89

Fig. 3. Corrected user update operation

may not only fail, but, what is worse, deadlock, which could ultimately lead
to a complete halt of the entire ECS system. Note that the discovery of such
deadlock situations was made easily by using the discovery algorithm to look for
loop patterns.

A solution to avoid deadlocks consists of introducing a counter for each identi-
fied loop and include a guard (or extend one, if a guard was already there) in the
loop to inspect the number of cycles performed. In case one of these loops has
overcome the maximum number of cycles allowed, the guard not only guarantees
that the program control leaves the loop, but also that the operation not carried
out is written to an error log table. The deadlock removal strategy introduces a
mechanism for error recovery and enables the introduction of different amounts
of tries for each remote call. Furthermore, the error log table can be used, for
instance, to run periodically a batch job responsible for the re-invocation of failed
operations.

What is important to underline at this stage is the method which lead to this
new protocol. First the problem was clearly identified by recovering, from source
code and at different components, the pattern corresponding to the protocol in
use. Then CoordInspector was used again to identify the associated loops,
source of possible deadlocks. Finally the knowledge gathered along the analysis
process was used to design a new solution, encode it as a new coordination
pattern and its integration back into the repository.



90 N.F. Rodrigues, N. Oliveira, and L.S. Barbosa

Another example of how effective this approach is is provided by coordination
protocol for the online sale of a set of training courses. The pattern actually
extracted with CoordInspector is depicted in Fig. 4. Without entering in
detail, it is easy to recognise a purely sequential flow of activities.

Fig. 4. Training courses sale operation

Fig. 5. Improved training courses sale operation



The Role of Coordination Analysis in Software Integration Projects 91

Note that, even though the user update and create operations are multi-
threaded, the actual sale operation is entirely performed on a single thread.
This, of course, degrades performance, while it would be possible to execute in
parallel several activities that do not depend on each other.

Therefore, the system’s integrator has proposed the modification of this pat-
tern as depicted in Fig. 5. The main modification concerns the introduction of
concurrency between every independent activity. However, some activities still
have to be performed in sequence. For example, vertex 9 is executed after vertex
8 because updating (in the former vertex) depends on the completion of the
payment operation contained in the latter.

4 Conclusions and Future Work

The need for methods and tools to identify, extract and record the coordination
layer of software systems is becoming more and more relevant as an increasing
number of software systems rely on non trivial coordination logic for combin-
ing autonomous services, typically running on different platforms and owned by
different organisations. Actually, if coordination policies can be extracted from
source code and made explicit, it becomes easier to understand the system’s
emergent behaviour (which, by definition, is the behaviour which cannot be in-
ferred directly from the individual components) as well as to verify the adequacy
of the software architecture (and of the code itself ) with respect to expected
interaction patterns and constraints.

This seems particularly relevant in the context of software integration projects,
as discussed in the paper. We proposed a tool-supported methodology for recov-
ering, from source code, the coordination strategies as-implemented in a software
integration project. The whole process is driven by the views of such strategies
as-stated in the project documentation, often in an informal and vague way. The
case study illustrates further how this sort of analysis can be useful in validating
design decisions, taken during the integration stage, eventually improving the
final system or, at least, providing a precise documentation of its (coordination)
architecture.

In the case study reported here, we were able to detect and correct several
coordination problems even before these have showed any evidences of themselves
as runtime errors or data inconsistencies between the integrated components.
Moreover, a number of subtle, yet important, coordination mistakes (e.g., the
wrong order of execution of two statements) were detected, that would be much
more difficult to discover by manual code inspection.

To the best of our knowledge, this line of enquiry in reverse architectural anal-
ysis, focused on coordination issues, is largely unexplored. There is, however, a
lot of work on automatic gathering and registering of architectural informa-
tion understood in a more classical way as the system’s gross structure. Among
others, the Alborz system [11] and the DiscoTect platform [12] should be
mentioned. Alborz presents the architecture as a graph of components and
keeps a relationship between this graph and the actual source code. The same



92 N.F. Rodrigues, N. Oliveira, and L.S. Barbosa

applies to Bauhaus [7], a system which maps architectures to graphs whose
nodes may represent types, routines, files or components and the edges model
relationships between them, from which different architectural views can be gen-
erated. A detailed comparison with our own, largely complementary work is still
lacking. Future developments of this work include a number of improvements to
CoordInspector, namely the inclusion of the possibility of directly modify-
ing the implementation code by editing the sub-graphs identified in the analysis
process and a performance study concerning different integration scenarios.

References

1. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

2. Gelernter, D., Carrier, N.: Coordination languages and their significance. Commu-
nication of the ACM 2(35), 97–107 (1992)

3. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2003)

4. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: PLDI 1988: Proceedings of the ACM SIGPLAN 1988 Conf. on Programming
Usage, Design and Implementation, pp. 35–46. ACM Press (1988)

5. Linthicum, D.S.: Enterprise application integration. Addison-Wesley Longman
Ltd., Essex (2000)

6. Oliveira, N., Rodrigues, N., Henriques, P.R., Barbosa, L.S.: A pattern language for
architectural analysis. In: 14th Brazilian Symposium in Programming Languages,
SBLP 2010, Slavador, Brasil, vol. 2, pp. 167–180. SBC — Brazilian Computer
Society (September 2010) ISSN: 2175-5922

7. Raza, A., Vogel, G., Plödereder, E.: Bauhaus - a Tool Suite for Program Analy-
sis and Reverse Engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-
Europe 2006. LNCS, vol. 4006, pp. 71–82. Springer, Heidelberg (2006)

8. Rodrigues, N.F.: Slicing Techniques Applied to Architectural Analysis of Legacy
Software. PhD thesis, Escola de Engenharia, Braga, Portugal (2008)

9. Rodrigues, N.F., Barbosa, L.S.: Coordinspector: a tool for extracting coordination
data from legacy code. In: SCAM 2008: Proc. of the Eighth IEEE Inter. Work-
ing Conference on Source Code Analysis and Manipulation, pp. 265–266. IEEE
Computer Society (2008)

10. Rodrigues, N.F., Barbosa, L.S.: Slicing for architectural analysis. Science of Com-
puter Programming (March 2010)

11. Sartipi, K., Dezhkam, N., Safyallah, H.: An orchestrated multi-view software ar-
chitecture reconstruction environment. In: 13th Working Conference on Reverse
Engineering (WCRE 2006), Benevento, Italy, October 23-27, pp. 61–70 (2006)

12. Schmerl, B.R., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering architec-
tures from running systems. IEEE Trans. Software Eng. 32(7), 454–466 (2006)


	The Role of Coordination Analysis in Software Integration Projects
	Introduction
	The Method
	Coordination Patterns
	Discovering Coordination Patterns
	The Strategy

	A Case-Study in Architectural Analysis
	Conclusions and Future Work
	References


